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Abstract: This article deals with the normalized Wright function and its geometric properties. In
particular, we find sufficiency criteria for close-to-convexity with respect to starlike function ς

1−ς2 .
We also find conditions such that the normalized Wright function is starlike. The convexity along
the imaginary axis and starlikeness of a certain order is also a part of our discussion. Moreover, we
study the bounded turning of the partial sums and prestarlikeness of this function. We use positivity
techniques to obtain these results.
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1. Introduction

The Wright function is defined by

Wa,b(ς) =
∞

∑
s=0

ςs

s!Γ(b + as)
, a > −1, b ∈ C, (1)

where Γ denotes the well-known Gamma function. The infinite series (1) converges
absolutely in C for a > −1, whereas the series converges for a = −1, in open unit disc U. It
should be recalled that Wa,b is an entire function. E. M. Wright, a British mathematician,
was the first person to come up with the idea of this function while investigating the theory
of partitions, see [1]. In [2], he studied integral representation for the derivation of the
asymptotic behavior of this function and investigated the four-parameter Wright function
in [3]. He only considered the case when a > 0. In [4], he studied the function Wa,b and
extended the range of the parameter a to a > −1. The distribution of zeros of the function
Wa,b, and its order, type, and indicator function, indicates that it is an entire function of
completely regular growth for every a > −1 [5]. It is worth mentioning that from the
viewpoint of the theory of analytic functions, it is the Wright function and not the Mittag–
Leffler function that is a natural fractional generalization of the exponential function.

Wright function plays an essential role in the theory of fractional partial differential
equations [5–13]. The Wright function and its generalizations play an important role
in an extension of the methods of the Lie groups to the partial fractional differential
equations [14,15]. It has various applications in the Mikusiński operational calculus and in
integral transforms of the Hankel type, see [16–19].

The generalizations of several functions such as the Array function and the Whittaker
function, and entire auxiliary functions, can be found in the connection with Wright
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functions. In particular, the function W1,v+1(−ς2/4) can be connected with the Bessel
function Jv as:

Jv(ς) =
( ς

2

)2
W1,v+1(

−ς2

4
) =

∞

∑
s=0

(−1)sς2s+v

22s+vs!Γ(s + v + 1)
.

For more details about the Wright function, see [20] (Chapter 7), [21] (Section 2.1),
and [22] (Chapter 10).

Denote by A, the well-known and most studied class of functions f, which are analytic
and of the form

f(ς) = ς +
∞

∑
s=2

csςs, ς ∈ U. (2)

Denote by S a class of univalent (one-to-one) functions in A. A function is known as
starlike if it maps U onto a domain that is starlike with respect to origin and convex if it
maps U onto a convex domain. We denote by S∗ and C, respectively, the class of all starlike
and convex univalent functions in U. The generalizations of S∗ and C, which are denoted
by S∗(δ) (starlike) and C(δ) (convex) of order δ ∈ [0, 1) are, respectively, defined as

S∗(δ) =
{
f : R

(
ςf′(ς)

f(ς)

)
> δ, ς ∈ U

}
,

and

C(δ) =
{
f : R

(
1 +

ςf′′(ς)

f′(ς)

)
> δ, ς ∈ U

}
.

The K(δ) (close-to-convex) of order δ is defined as

K(δ) =
{
f : R

(
ςf′(ς)

g(ς)

)
> δ, ς ∈ U, g ∈ S∗(0)

}
.

Let f ∈ A. Then, the class T [23] of typically real function is defined as

T ={I(ς)If(ς) > 0, ς ∈ U}.

A normalized univalent function f will be considered in CV , a class of convex functions
in an imaginary axis direction if and only if f(U) is a convex set in the same direction.
In other words,

[w1, w2] ⊂ f(U), w1, w2 ∈ f(U)

and Rw1 = Rw2. Robertson [23] has shown that a function f ∈ A having real coefficients is
in the class CV if ςf′(ς) ∈ T and equivalently satisfies

R
[(

1− ς2
)
f′(ς)

]
> 0, ς ∈ U.

If f ∈ T and satisfies Rf′(ς) > 0 for ς ∈ U, then f ∈ S∗, see [24]. The extended
definition with regard to order δ is due to Mondal and Swaminathan in [25].

For the functions f ∈ A given in (2) and g ∈ A having the following form:

g(ς) = ς +
∞

∑
s=2

csςs,

the convolution or Hadamard product is denoted and defined as

(f ∗ g)(ς) = ς +
∞

∑
s=2

cscsςs (ς ∈ U).
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Using the concept of convolution, Ruscheweyh [26] introduced the class Rξ , which
contains the prestarlike functions of order ξ as follows:

Let f ∈ A. Then, f ∈ Rξ if and only if{
R

f(ς)
ς > 0, ς ∈ U for ξ = 1,

ς

(1−ς)2(1−ξ) ∗ f(ς) ∈ S∗(ξ), ς ∈ U for 0 ≤ ξ < 1.

In particular, when we put ξ = 1/2 then C = R0 and S∗(1/2) = R1/2. The class
Rξ was generalized to the classR[α, ξ] by Sheil-Small et al. [27]. A function f ∈ R[α, ξ] if
f ∗ Sα ∈ S∗(ξ), where Sα = ς

(1−ς)2−2α , 0 ≤ α < 1. It is easy to see thatR[ξ, ξ] = Rξ .
It is noted that the functionWa,b is not in class A; therefore, we assume the following

function:

Wa,b(ς) = ςWa,b(ς)Γ(b) = ς +
∞

∑
s=1

Γ(b)
s!Γ(b + as)

ςs+1, a > −1, b > 0.

We also recall here the Schwarz reflection principle and the minimum principle of
harmonic functions.

The Schwarz Reflection Principle: It states that if an analytic function is defined on
the upper half-plane and has well-defined (non-singular) real values on the real axis, then
it can be extended to the conjugate function on the lower half-plane. In notation, if f is a
function that satisfies the above requirements, then its extension to the rest of the complex
plane is given by

f(ς) = f(ς). (3)

The extension Formula (3) is an analytic continuation to the whole complex plane [28].
Minimum Principle of Harmonic Functions: a harmonic function u cannot have

either a minimum or a maximum at an interior point unless it is constant, see [29].
In the last few years, some researchers have shown considerable interest in the geomet-

ric properties of certain special functions. For further detail, see [30–37]. Parajapat [31] was
the first who studied the starlikeness and convexity of the functionWa,b. The main tools
of his investigation were the functional inequalities of this function. Later, Raza et al. [38]
studied the starlikeness and convexity of order α for the functionWa,b. They also investi-
gated Hardy spaces and the close-to-convexity of the function. The radii of starlikeness
and the convexity of some normalized forms of the Wright functions were discussed by
Baricz et al. [39]. Maharana et al. [40] discussed the close-to-convexity with respect to
certain starlike functions and strongly starlike functions of the functionWa,b.

In recent years, by using the positivity technique, the geometric properties of hyperge-
ometric functions were studied by Sangal and Swaminathan [41].

In this work, we focus on certain geometric properties ofWa,b by using the results
of [41]. We complete the study of Wa,b by discussing starlikeness, close-to-convexity,
convexity in the direction of the imaginary axis, and prestarlikeness. The main tools of our
study are the positivity techniques.

2. Preliminaries

We use the following lemmas to obtain our main results.

Lemma 1 ([25]). Let f ∈ A be such that f′ and f′(ς) − δ
f(ς)

ς both belong to T . Additionally,

suppose that R f′(ς) > 0 and R
(
f′(ς)− δ

f(ς)
ς

)
> 0. Then, f ∈ S∗(δ), 0 ≤ δ < 1.

Lemma 2 ([42]). Let κ ≥ 0, λ ∈ R such that 0 < λ + κ < 1 and m ∈ N. If c0 = c1 = 1 and
c2s = c2s+1 = (κ+λ)s

s! . m!(κ+1)m−s
(κ+1)m(m−s)! for 1 ≤ s ≤ m. Then,
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(i)
m
∑

s=0
cos(sθ)cs > 0⇔ λ + κ ≤ λ∗

(
1
2

)
= 0.691556 . . . ,

(ii)
2m+1

∑
s=1

sin(sθ)cs > 0⇔ λ + κ ≤ λ∗
(

1
2

)
,

(iii)
2m
∑

s=1
sin(sθ)cs > 0 for λ ≤ 1−κ

2 ,

where λ∗(τ), τ ∈ (0, 1] is the solution of

(τ+1)π∫
0

sin(x− τπ)

x1−λ
dx = 0

which is unique in [0, 1]. It is observed that λ∗(τ) was first obtained by Koumandos and
Ruscheweyh [42]. In this work, we use λ∗

(
1
2

)
= λ∗0 .

Lemma 3 ([41]). Let κ ≥ 0, λ ∈ R such that 0 < λ + κ < 1 and m ∈ N. If {cs}s≥1 is a sequence
of decreasing numbers that are non-negative such that c0 > 0 and

s(m− s + 1 + κ)c2s ≤ (s + λ + κ − 1)(m− s + 1)c2s−1, for 1 ≤ s ≤ m, (4)

then for all 0 < θ < π
m

∑
s=0

cs cos sθ > 0⇔ λ + κ ≤ λ∗0 .

Lemma 4 ([41]). Let 0 ≤ κ ≤ 2λ∗0 − 1, λ ∈ R such that 0 < λ + κ < 1 and m ∈ N. If {cs}s≥1
is a sequence of decreasing numbers that are non-negative such that c0 > 0 and

s(1− s + m + κ)c2s ≤ (λ + κ + s− 1)(1− s + m)c2s−1, for 1 ≤ s ≤ m,

then for all 0 < θ < π
m

∑
s=0

cs sin sθ > 0⇔ λ + κ ≤ 1 + κ

2
.

Lemma 5 ([41]). Let 0 ≤ κ ≤ 2λ∗0 − 1 and −κ < λ ≤ 1−κ
2 , c1 = 1, cs ≥ 0 satisfy

[s(1 + κ)(1− λ− κ)− 1 + 2λ + κ]cs

≥ [(s + 1)(1 + κ)(1− λ− κ)− 1 + 2λ + κ]cs+1, (5)

(λ + s + κ − 1)(1− s + m)[2s(κ + 1)(1− λ− κ)− 1 + 2λ + κ]c2s

≥ s(1− s + m + κ)[(1 + κ)(2s + 1)(1− λ− κ)− 1 + 2λ + κ]c2s+1, (6)

for 1 ≤ s ≤ m. Then, fm(ς) =
m
∑

s=1
csςs ∈ S∗(δ), where δ = 1−2λ−κ

(1+κ)(1−λ−κ)
. Moreover, in the

limiting case, f(ς) = limm→∞ fm(ς) =
∞
∑

s=1
csςs ∈ S∗(δ) if {cs} satisfies (5) and in addition

(s + λ + κ − 1)[(1− λ− κ)2s(1 + κ) + 2λ + κ − 1]c2s

≥ s[(1 + κ)(2s + 1)(1− λ− κ)− 1 + 2λ + κ]c2s+1, for s ≥ 1. (7)

Lemma 6 ([41]). Let λ ∈ R and κ ≥ 0 such that 0 < λ + κ < 1 and let c1 = 1 and cs ≥ 0 satisfy

0 ≤ mcm ≤ · · · ≤ (s + 1)cs+1 ≤ scs ≤ · · · ≤ 3c3 ≤ 2c2 ≤
λ + κ

λ∗0
, λ + κ ∈ (0, λ∗0 ], (8)
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and

2(s− 1 + λ + κ)(m− s + 1)c2s ≥ (m + κ − s + 1)(1 + 2s)c2s+1, 1 ≤ s ≤
[m

2

]
. (9)

Then, fm(ς) = ς +
m
∑

s=2
csςs satisfies R(f′m(ς)) > 1− λ+κ

λ∗0
.

Lemma 7 ([25]). Consider the sequence {cs}∞
s=1 of positive real number such that c1 = 1. Let

c1 ≥ 8c2 and (s− 1)cs − (1 + s)cs+1 ≥ 0, ∀s ≥ 2. Then, f(ς) = ς +
∞
∑

s=2
csςs ∈ K with respect

to starlike function ς
1−ς2 .

Lemma 8 ([25]). Consider the sequence {cs}∞
s=1 of a positive real number such that c1 = 1. Let

0 ≤ λ < 1 and

(i) (1− δ)c1 ≥ (2− δ)c2 ≥ 2(δ+1)(3− δ)c3,
(ii) (s− 1− δ)(s− δ)cs ≥ s(s− δ + 1)cs+1, ∀s ≥ 3.

Then, f(ς) = ς +
∞
∑

s=2
csςs ∈ S∗(δ).

Lemma 9 ([43]). If the function f(ς) =
∞
∑

s=1
csςs−1, where c1 = 1 and cs ≥ 0, ∀s ≥ 2 is analytic in

U, and if {cs}∞
s=1 is a convex decreasing sequence, i.e., cs+2 − 2cs+1 + cs ≥ 0 and cs − cs+1 ≥ 0,

∀s ≥ 1, then

Rf(ς) >
1
2

, ∀ς ∈ U.

Lemma 10 ([43]). If cs ≥ 0, {scs} and {scs − (s + 1)cs+1} are non-increasing, then f defined by
f(ς) = ς + c2ς2 + c3ς3 + ..., (ς ∈ U) is in S∗.

3. Main Results

Theorem 1. Let a ≥ 1, b ≥ 1, and

Γ(a + b) ≥ 8Γ(b), 2Γ(2a + b) ≥ 3Γ(a + b)

are satisfied. Then,Wa,b ∈ K with respect to starlike function ς
1−ς2 .

Proof. Consider

Wa,b(ς) = ς +
∞

∑
s=2

csςs,

where cs = Γ(b)
(s−1)!Γ(a(s−1)+b) , ∀s ≥ 2. We have to show that cs satisfies the hypothesis

of Lemma 7. It is clear that, for a ≥ 1 and b ≥ 1, the inequality Γ(a + b) ≥ 8 Γ(b) is
satisfied. Additionally,

c1 = 1 and c1 ' 8c2.

Again for s ≥ 2, consider

(s− 1)cs − (s + 1)cs+1 = A(s)M(s),

where

A(s) =
cs

sΓ(as + b)
,

M(s) = s(s− 1)Γ(as + b)− (s + 1)Γ(a(s− 1) + b).
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One can easily observe that A(s) is non-negative for a ≥ 1, b ≥ 1 and M(s) is non-
negative for a ≥ 1, b ≥ 1 if 2Γ(2a + b) ≥ 3Γ(a + b). It is clear that {cs}∞

s=1 satisfies Lemma 7.
This completes the result.

Theorem 2. Let a ≥ 1, b ≥ 1, and

Γ(a + b) > Γ(b), {2Γ(2a + b) + Γ(b)}Γ(a + b) > 4Γ(b)Γ(2a + b),

are satisfied. Then,

R

{Wa,b(ς)

ς

}
>

1
2

, for ς ∈ U.

Proof. To obtain our result, we first prove that the sequence

{cs}∞
s=1 =

{
Γ(b)

(s− 1)!Γ(a(s− 1) + b)

}∞

s=1
,

is decreasing. Since

s!Γ(as + b) > (s− 1)!Γ(a(s− 1) + b) (∀ s ≥ 1, a ≥ 1 and b ≥ 1).

Therefore,

Γ(b)
(s− 1)!Γ(a(s− 1) + b)

>
Γ(b)

s!Γ(as + b)
(∀ s ≥ 1, a ≥ 1 and b ≥ 1).

Now, we prove that the sequence {cs}∞
s=1 is convex and decreasing. For this, we prove

that cs + cs+2 − 2cs+1 ≥ 0. Take

cs+2 − 2cs+1 + cs =

Γ(b)


(s + 1)!{s!Γ(as + b)− 2(s− 1)!Γ(a(s− 1) + b)}Γ(a(s + 1) + b)

+s!Γ(as + b){(s− 1)!Γ(a(s− 1) + b)}
s!Γ(as + b){(s− 1)!Γ(a(s− 1) + b)}{(s + 1)!Γ(a(s + 1) + b)}

. (10)

The expression (10) is non-negative for all s ≥ 1, a ≥ 1 and b ≥ 1, if 2Γ(2a + b) +
Γ(b) > 4Γ(b)Γ(2a+b)

Γ(a+b) , which shows that {cs}∞
s=1 is a convex decreasing sequence. Now, from

the Lemma 9 {cs}∞
s=1 satisfy

R

(
∞

∑
s=1

csςs−1

)
>

1
2

, for all ς ∈ U,

therefore,

R

(Wa,b(ς)

ς

)
>

1
2

, for all ς ∈ U.

Hence, the result follows.

Theorem 3. Let a ≥ 1, b ≥ 1, and

Γ(a + b) > 2Γ(b) , {2Γ(2a + b) + 3Γ(b)}Γ(a + b) > 8Γ(b)Γ(2a + b),

are satisfied. Then the normalized Wright functionWa,b ∈ S∗.
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Proof. To prove that Wa,b ∈ S∗, we show that {scs} and {scs − (s + 1)cs+1} both are
non-increasing since cs ≥ 0 forWa,b(ς) under the given conditions. So, consider

scs − (s + 1)cs+1 =
Γ(b)

(s− 1)!

{
s2Γ(as + b)− (s + 1)Γ(a(s− 1) + b)

sΓ(as + b)Γ(a(s− 1) + b)

}
> 0 (∀ s ≥ 1, a ≥ 1 and b ≥ 1).

Now,

(s + 2)cs+2 − 2(s + 1)cs+1 + scs

=
Γ(b)

(s− 1)!


Γ(a(s + 1) + b)(s + 1)

{
s3Γ(as + b)− 2s(s + 1)Γ(a(s− 1) + b)

}
+s(s + 2)Γ(as + b)Γ(a(s− 1) + b)

s2(s + 1)Γ(a(s + 1) + b)Γ(as + b)Γ(a(s− 1) + b)

. (11)

The expression (11) is non-negative for all s ≥ 1, a ≥ 1 and b ≥ 1, if 2Γ(2a + b) +
3Γ(b) > 8Γ(b)Γ(2a+b)

Γ(a+b) . So, from Lemma 10Wa,b(ς) is starlike in U.

Remark 1. This result improves the result of Prajapat [31] (Theorem 2.7 p. 4.).

Theorem 4. Let 0 ≤ κ ≤ 2λ∗0 − 1, −κ < λ ≤ 1−κ
2 , 2λ + κ > 1, a ≥ 1 and b ≥ 2. If

M1 = (1 + κ)(1− λ − κ) > 0 and M2 = −1 + 2λ + κ > 0, then Wa,b is starlike of order
1−2λ−κ

(1+κ)(1−λ−κ)
.

Proof. It is observed that (Wa,b)m(ς) =
m
∑

s=1
csςs provides c1 = 1 and cs =

Γ(b)
(s−1)!Γ(a(s−1)+b)

for s ≥ 2. The relation between cs and cs+1 is

cs+1 =
Γ(a(s− 1) + b)

sΓ(as + b)
cs, for s ≥ 1.

To proceed the proof of this result, it would be enough to prove the assertion that
{cs}∞

s=1 satisfies the conditions (5) and (7) of Lemma 5. Making use of the above relation
followed by simple computation leads us to

[s(1− λ− κ)(1 + κ) + 2λ + κ − 1]cs − [(s + 1)(1 + κ)(1− λ− κ)− 1 + 2λ + κ]cs+1

=
Γ(a(s− 1) + b)cs

sΓ(as + b)
h(s),

where h is defined as

h(s) =
sΓ(as + b)

Γ(a(s− 1) + b)
[s(1− λ− κ)(1 + κ) + 2λ + κ − 1]

−[(s + 1)(1− λ− κ)(1 + κ) + 2λ + κ − 1]

=
sΓ(as + b)

Γ(a(s− 1) + b)
(sM1 + M2)− [(s + 1)M1 + M2]

=

[
s2Γ(as + b)

Γ(a(s− 1) + b)
− (s + 1)

]
M1 +

[
sΓ(as + b)

Γ(a(s− 1) + b)
− 1
]

M2. (12)

It is observed that under the certain conditions, expression (12) is positive for s ≥ 1
but with (7) to verify further. Now,

(s + λ + κ − 1)[2s(1 + κ)(1− λ− κ)− 1 + 2λ + κ]c2s

≥ s[(2s + 1)(1 + κ)(1− λ− κ)− 1 + 2λ + κ]c2s+1.
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Clearly,

(s + λ + κ − 1)[2s(1− λ− κ)(1 + κ) + 2λ + κ − 1]c2s

−s[(2s + 1)(1 + κ)(1− λ− κ)− 1 + 2λ + κ]c2s+1 =
Γ(a(2s− 1) + b)c2s

2Γ(a(2s) + b)
g(s),

where g is defined as

g(s) = 2
Γ(a(2s) + b)

Γ(a(2s− 1) + b)
(s + λ + κ − 1)[2s(1− λ− κ)(1 + κ) + 2λ + κ − 1)]

−[(2s + 1)(1− λ− κ)(1 + κ)− 1 + 2λ + κ]

=
Γ(a(2s) + b)

Γ(a(2s− 1) + b)
2(s + λ + κ − 1)[2sM1 + M2]− [(2s + 1)M1 + M2]

=

[
Γ(a(2s) + b)

Γ(a(2s− 1) + b)
4s(s + λ + κ − 1)− (2s + 1)

]
M1

+

[
Γ(a(2s) + b)

Γ(a(2s− 1) + b)
2(s + λ + κ − 1)− 1

]
M2. (13)

It is observed that the expression (13) is positive under the given conditions for
s ≥ 1, which proves the hypothesis.

Theorem 5. Let 0 ≤ κ ≤ 2λ∗0 − 1, 2λ + κ > 1, a ≥ 1, b ≥ 2 and c1 = 1, cs ≥ 0 satisfy

scs − (s + 1)cs+1 ≥ 0, s = 1, 2, 3, ..., s− 1,

(m− s + 1)(s + λ + κ − 1)(2s− 1)c2s−1 ≥ 2s2(m− s + 1 + κ)c2s, s = 4, 5, ...,
[

m + 3
2

]
, (14)

for s ≥ 4, −κ < λ ≤ 1−κ
2 . Then, (Wa,b)m is convex along the imaginary axis.

Proof. To proove the result, we need to show that ς(Wa,b)
′
m(ς) is typically real and

(Wa,b)m(ς) has real coefficients. Set

ς(Wa,b)
′
m(ς) = ς +

m

∑
s=2

sΓ(b)
(s− 1)!Γ(a(s− 1) + b)

ςs,

where cs =
Γ(b)

(s−1)!Γ(a(s−1)+b) . To obtain the result, it is required that the coefficients of Wright
functions cs must fullfil the conditions mentioned in Lemma 4. Consider,

scs − (s + 1)cs+1 =
Γ(b)

(s− 1)!

[
s2Γ(as + b)− (s + 1)Γ(a(s− 1) + b)

sΓ(a(s− 1) + b)Γ(as + b)

]
> 0,

for s = 1, 2, 3, . . . , m− 1. Take

(m− s+ 1)(2s− 1)(s+ λ + κ− 1)c2s−1− 2s2(m− s+ κ + 1)c2s =
c2sΓ(a(2s− 1) + b)

Γ(a(2s− 2) + b)
q(s),

here q is defined as

q(s) = (m− s + 1)(2s− 1)2(s + λ + κ − 1)− 2s2(m− s + κ + 1)
Γ(a(2s− 2) + b)
Γ(a(2s− 1) + b)

. (15)

Since Γ is an increasing function in
[ 3

2 , ∞
)
, therefore (15) becomes positive when

m ≥ s, a ≥ 1 and b ≥ 2. Thus, the sequence {cs}∞
s=1 satisfies the conditions of Lemma 4.
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Therefore, by following the minimum principle for harmonic functions with the conditions
λ + κ ∈

(
0, 1+κ

2

]
I
(
ςf′m(ς)

)
=

m

∑
s=1

csrs sin sθ > 0, where θ ∈ [0, π] and r ∈ [0, 1]

and
I
(
ςf′m(ς)

)
= 0 for ς ∈ (0, 1).

The Schwarz reflection principle provides that I(ςf′m(ς)) < 0 for θ ∈ (π, 2π). So,
ςf′m(ς) is typically real, which leads to the required result.

Theorem 6. Let 0 ≤ κ ≤ 2λ∗0 − 1, −κ < λ ≤ 1−κ
2 with 2λ + κ > 1, a ≥ 1, b ≥ 3

2 and c1 = 1,
cs ≥ 0 satisfy

[s(1 + κ)(1− λ− κ)− 1 + 2λ + κ]cs ≥
[(s + 1)(1 + κ)(1− λ− κ)− 1 + 2λ + κ]cs+1, (16)

(m− s + 1)(s + λ + κ − 1)[2s(1 + κ)(1− λ− κ)− 1 + 2λ + κ]c2s ≥
s(m− s + 1 + κ)[(2s + 1)(1 + κ)(1− λ− κ)− 1 + 2λ + κ]c2s+1, (17)

for 1 ≤ s ≤ m. Then, (Wa,b)m ∈ S
∗(δ), where δ = 1−2λ−κ

(1+κ)(1−λ−κ)
. Furthermore, the limiting

function f(ς) = limm→∞(Wa,b)m(ς) =
∞
∑

s=1
csς

s ∈ S∗(δ) if {cs}∞
s=1 satisfies (16) with

(s + λ + κ − 1)[2s(1− λ− κ)(1 + κ) + 2λ + κ − 1]c2s

≥ s[(2s + 1)(1− λ− κ)(1 + κ) + 2λ + κ − 1]c2s+1, for s ≥ 1. (18)

Proof. Let (Wa,b)m(ς) = ς +
m
∑

s=2
csςs and δ = 1−2λ−κ

(1+κ)(1−λ−κ)
. Then,

gm(ς) = (Wa,b)
′
m(ς) +

(Wa,b)m(ς)

ς
= c0 +

m−1

∑
s=1

csςs.

Here, c0 = (1− δ) and cs = (s+ 1− δ)cs+1, for 1 ≤ s ≤ m, and cs+1 = Γ(κ)
(s−1)!Γ(α(s−1)+κ)

.
It see that c0 > 0. Now, to prove that {cs}∞

s=1 is decreasing we will show that

(s− δ)cs ≥ (s + 1− δ)cs+1

or equivalently(
s− 1− 2λ− κ

(1 + κ)(1− λ− κ)

)
cs ≥

(
s + 1 +

1− 2λ− κ

(1 + κ)(1− λ− κ)

)
cs+1. (19)

We obtain (16) by rearranging (19). Now, to show that {cs}∞
s=1 satisfies (4), we have

(s + λ + κ − 1)(m− s + 1)(2s− δ)c2s ≥ s(2s + 1− δ)(m− s + 1 + κ)c2s+1,

(s + λ + κ − 1)(m− s + 1)
(

2s− 1− κ − 2λ

(1 + κ)(1− λ− κ)

)
c2s

≥ s(m− s + 1 + κ)

(
2s + 1− 1− κ − 2λ

(1 + κ)(1− λ− κ)

)
c2s+1.
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Under the given conditions and for a ≥ 1, b ≥ 3
2 above relation is satisfied. This

shows that {cs}∞
s=1 satisfies the conditions of Lemmas 3 and 4. Now, by using the minimum

principle of harmonic functions, we have

R(gm(ς)) =
m

∑
s=0

csrs cos(sθ) > 0, for θ ∈ (0, π) and r ∈ [0, 1).

Furthermore, I(gm(ς)) = ∑m
s=1 csrs sin(sθ) ≡ 0, if −1 < ς = x + iy < 1 and

I(gm(ς)) > 0 in D∩{ς : I(ς) > 0}. By the reflection principle I(gm(ς)) < 0 in the above-
mentioned domain. This implies gm(ς) is typically real. For other part of the theorem, it is
enough to show that (Wa,b)

′
m is typically real with real part. Now,

(Wa,b)
′
m(ς) = 1 +

m−1

∑
s=1

(s + 1)cs+1ςs.

Clearly, by the same arguments R(Wa,b)
′
m(ς) > 0 and typically real. Therefore

by Lemma 1, it is clear that (Wa,b)m(ς) is starlike of order 1−2λ−κ
(1+κ)(1−λ−κ)

. For the case
m → ∞ (17) becomes (18), so we haveWa,b(ς) = limm→∞(Wa,b)m(ς) is starlike of order

1−2λ−κ
(1+κ)(1−λ−κ)

if {cs} satisfy (16) and (18).

Theorem 7. Let λ ∈ R and κ ≥ 0 such that 2λ + κ > 1, and let c1 = 1 and cs ≥ 0 satisfy

0 ≤ mcm ≤ . . . ≤ (s + 1)cs+1 ≤ scs ≤ ...3c3 ≤ 2c2 ≤
λ + κ

λ∗0
, λ + κ ∈ (0, λ∗0 ], (20)

and

2(s + λ + κ − 1)(m− s + 1)c2s ≥ (2s + 1)(m− s + 1 + κ)c2s+1, 1 ≤ s ≤
[m

2

]
. (21)

If a ≥ 1 and b ≥ 2, then (Wa,b)m satisfies R(f′m(ς)) > 1− λ+κ
λ∗0

.

Proof. Let σ − 1 = − λ+κ
λ∗0

and (Wa,b)m(ς) = ς +
m
∑

s=2
csςs, where cs = Γ(b)

(s−1)!Γ(a(s−1)+b) .

Then,
(Wa,b)

′
m(ς)− σ

1− σ
=

m−1

∑
s=0

csςs,

where cs =
(s+1)cs+1

1−σ and c0 = 1 for 1 ≤ s ≤ m− 1. It is observed that for a ≥ 1 and b ≥ 2,
the coefficients cs are positive. Therefore, cs > 0 for s ≥ 1. To prove the assertion, we need
to prove that the coefficients’ sequence {cs} is decreasing and satisfies (9). For this, consider

(s + 1)cs+1 − (s + 2)cs+2 =
Γ(b)

(s− 1)!

[
(s + 1)2Γ(a(s + 1) + b)− (s + 2)Γ(as + b)

(s + 1)Γ(a(s + 1) + b)Γ(as + b)

]
> 0,

for s = 1, 2, 3, . . . , m− 2. This shows that the coefficients’ sequence of thw Wright function
is decreasing and c1 < c0 ⇒ 2c2 < 1− σ. Now, to prove (9), consider
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2s(λ + κ + s− 1)(m− s + 1)c2s − s(m− s + κ + 1)(2s + 1)c2s+1

=
2s(λ + κ + s− 1)(m− s + 1)Γ(b)

(2s− 1)!Γ(a(2s− 1) + b)
− s(m− s + 1 + κ)(2s + 1)Γ(b)

(2s)!Γ(a(2s) + b)

=
sΓ(b)

(2s− 1)!


4s2(λ + κ + s− 1)(m− s + 1)(2s)!Γ(a(2s) + b)
−(m− s + κ + 1)(2s + 1)Γ(a(2s− 1) + b)

2sΓ(a(2s) + b)Γ(a(2s− 1) + b)


> 0, for 1 ≤ s ≤

[m
2

]
.

It is evident that

2s(λ + κ + s− 1)(m− s + 1)c2s − s(m− s + κ + 1)(2s + 1)c2s+1 > 0

for m ≥ s, a ≥ 1 and b ≥ 2. Additionally, this yields the (21) due to the increasing behavior
of Γ in

[ 3
2 , ∞

)
. By similar arguments, the usage of the principle of minimum for harmonic

functions, we obtain the result.

4. Prestarlikeness of Wright Functions

Theorem 8. Let a ≥ 1 and b ≥ 1. Then,Wa,b ∈ R[α, ξ] if for 0 ≤ ξ < 1

Γ(a + b)
Γ(b)

≥
{

T1(α, ξ), 0 ≤ α ≤ α0(ξ)
max{T1(α, ξ), T2(α, ξ)M1, T3(α, ξ)}M2, α0(ξ) ≤ α ≤ 1

,

where

T1(α, ξ) =
2(2− ξ)(1− α)

1− ξ
, T2(α, ξ) =

2ξ+1(3− ξ)(3− 2α)

4(2− ξ)

T3(α, ξ) =
(4− ξ)(4− 2α)

3(2− ξ)(3− ξ)
, α0(ξ) = 1− 2(1− ξ)(4− ξ)

6(2− ξ)2(3− ξ)− 2(1− ξ)(4− ξ)

M1 =
{Γ(a + b)}2

Γ(2a + b)Γ(b)
, M2 =

Γ(a(s− 1) + b)
Γ(as + b)

Γ(a + b)
Γ(b)

Proof. Consider the function h(ς) = ς +
∞
∑

s=2
csςs, cs which is provided as

c1 = 1, cs+1 =
(s + 1− 2α)

s2
Γ(a(s− 1) + b)

Γ(as + b)
cs, ∀s ≥ 1.

For 0 ≤ ξ < 1, α < 1, a ≥ 1 and b ≥ 1

Γ(a + b)
Γ(b)

≥ max{{s1(α, ξ), s2(α, ξ)M1, s3(α, ξ)}M2}.

Clearly, Γ(a + b) ≥ s1(α, ξ)Γ(b), which is equivalent to (1− ξ)Γ(a + b) ≥ 2(2− ξ)(1−
α)Γ(b). Hence, (1− ξ)c1− (2− ξ)c2 = 1

Γ(a+b) [(1− ξ)Γ(a + b)− 2(2− ξ)(1− α)Γ(b)]. Again,

(2− ξ)c2− 2ξ+1(3− ξ)c3 =
c2

4Γ(2a + b)

[
4(2− ξ)Γ(2a + b)− 2ξ+1(3− ξ)(3− 2α)Γ(a + b)

]
.
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Take

4(2− ξ)Γ(2a + b)− 2ξ+1(3− ξ)(3− 2α)Γ(a + b) ≥ 0

4(2− ξ)Γ(2a + b) ≥ 2ξ+1(3− ξ)(3− 2α)Γ(a + b)
Γ(a + b)

Γ(b)
≥ s2(α, ξ)M1.

Let us consider

A(α, ξ) = Γ(as + b) (22)

B(α, ξ) = (8− 2ξ)Γ(as + b)− Γ(a(s− 1) + b) (23)

C(α, ξ) = {(5− ξ)(3− ξ) + 3(2− ξ)}Γ(as + b)− (8− 2α− ξ)Γ(a(s− 1) + b) (24)

D(α, ξ) = 3(2− ξ)(3− ξ)Γ(as + b)− (4− ξ)(4− 2α)Γ(a(s− 1) + b). (25)

Since Γ is an increasing function in
[ 3

2 , ∞
)
, therefore (22)–(25) become positive under

the conditions a ≥ 1 and b ≥ 1. Now, if Γ(a+b)
Γ(b) ≥ s3(α, ξ).M2, then clearly D(α, ξ) ≥ 0, and

it can easily be observed that

A(α, ξ) = Γ(as + b) > 0.

Additionally, we can observe that

B(α, ξ) = (8− 2ξ)Γ(as + b)− Γ(a(s− 1) + b)
> 6Γ(as + b)− Γ(a(s− 1) + b) > 0.

Similarly,

C(α, ξ) = {(5− ξ)(3− ξ) + 3(2− ξ)}Γ(as + b)− (8− 2α− ξ)Γ(a(s− 1) + b)
> 11Γ(as + b)− 5Γ(a(s− 1) + b) > 0.

Now, for s ≥ 3, consider

(s− 1− ξ)(s− ξ)cs − s(s + 1− ξ)cs+1 = A(s)M(s),

where
A(s) =

cs

s2Γ(as + b)

and

M(s) = s2(s− 1− ξ)(s− ξ)Γ(as + b)− s(s + 1− ξ)(s + 1− 2α)Γ(a(s− 1) + b)
= (s− 3)3 A(α, ξ) + (s− 3)2c(α, ξ) + (s− 3)C(α, ξ) + D(α, ξ). (26)

Here, A(α, ξ), B(α, ξ), C(α, ξ), and D(α, ξ) are positive expressions as given in (22)–
(25), respectively. Since in the polynomial of M(s) the coefficients of (s− 3) and constant
D(α, ξ) are positive, we have M(s) to be an increasing function for s ≥ 3. Since M(3) is
positive, thus we have

(s− 1− ξ)(s− ξ)cs ≥ s(s + 1− ξ)cs+1.
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It is clear that cs satisfies the hypothesis of Lemma 8. This shows that g ∈ S∗(ξ). After
tittle simplification, we can conclude that g(ς) = Wa,b(ς) ∗ ς

(1−ς)2−2α . Therefore, by the
definition ofR[α, ξ], we haveWa,b(ς) ∈ R[α, ξ]. Now,

T3(α, ξ)− T1(α, ξ) =
(4− ξ)(4− 2α)

3(2− ξ)(3− ξ)
− 2(2− ξ)(1− α)

1− ξ

=
(1− ξ)(4− ξ)(4− 2α)− 6(2− ξ)2(3− ξ)(1− α)

3(1− ξ)(2− ξ)(3− ξ)
.

We can easily observe that for 0 ≤ α ≤ α0(ξ), the numerator is negative for all ξ and
hence T3(α, ξ) ≤ T1(α, ξ). Similarly, if 0 ≤ α ≤ α1(ξ), T3(α, ξ) ≤ T2(α, ξ) for all ξ. Here,

α0(ξ) = 1− 2(1− ξ)(4− ξ)

6(2− ξ)2(3− ξ)− 2(1− ξ)(4− ξ)
,

α1(ξ) = 1− 3.2ξ(2− ξ)(3− ξ)2 − 4(2− ξ)(4− ξ)

4(2− ξ)(4− ξ)− 6.2ξ(2− ξ)(3− ξ)2 .

From the above calculation, it is clear that min
i=1,2,3

{Ti(α, ξ)} = T3(α, ξ). Additionally,

we can conclude that, for 0 ≤ α ≤ min{α0(ξ), α1(ξ)}. To complete the proof, we only need
to check that min{α0(ξ), α1(ξ)}. For this, consider

α0 − α1 =
2(1− ξ)(4− ξ)

6(2− ξ)2(3− ξ)− 2(1− ξ)(4− ξ)
− 3.2ξ(2− ξ)(3− ξ)2 − 4(2− ξ)(4− ξ)

4(2− ξ)(4− ξ)− 6.2ξ(2− ξ)(3− ξ)2

=
M(ξ)

{6(2− ξ)2(3− ξ)− 2(1− ξ)(4− ξ)}
{

4(2− ξ)(4− ξ)− 6.2ξ(2− ξ)(3− ξ)2
}

where

M(ξ) = {2(1− ξ)(4− ξ)}
{

4(2− ξ)(4− ξ)− 6.2ξ(2− ξ)(3− ξ)2
}

−
{

3.2ξ(2− ξ)(3− ξ)2 − 4(2− ξ)(4− ξ)
}{

6(2− ξ)2(3− ξ)− 2(1− ξ)(4− ξ)
}

< 0.

Therefore, α0(ξ) = min{α0(ξ), α1(ξ)}, which completes the proof.

5. Conclusions

In this article, we have studied the geometric properties of the normalized Wright
function. We have mainly focused on the close-to-convexity, starlikeness, convexity in the
direction of the imaginary axis, and prestarlikeness. We have obtained the conditions such

that R
{
W ′a,b(ς)

}
> 1

2 and R
(Wa,b(ς)

ς

)
> 1

2 in U. The main tools of our investigations are
positivity techniques.

The techniques used in this work can be utilized to study the geometric properties of
certain other special functions.
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