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Abstract: In this paper, we prove the nonexistence of stable integral currents in compact oriented
warped product pointwise semi-slant submanifold Mn of a complex space form M̃(4ε) under extrinsic
conditions which involve the Laplacian, the squared norm gradient of the warped function, and
pointwise slant functions. We show that i-the homology groups of Mn are vanished. As applications
of homology groups, we derive new topological sphere theorems for warped product pointwise
semi-slant submanifold Mn, in which Mn is homeomorphic to a sphere Sn if n ≥ 4 and if n = 3, then
M3 is homotopic to a sphere S3 under the assumption of extrinsic conditions. Moreover, the same
results are generalized for CR-warped product submanifolds.
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1. Introduction and Main Results

A traditional topic in Riemannian geometry is to find the geometrical and topological
structures of submanifolds; there has been much progress in this field. For instance,
the rigidity theorem was proved by Berger [1] for an even-dimensional complete simply
connected manifold M with sectional curvature 1

4 ≤ KM ≤ 1. Further, Gauhmen [2]
considered even n = 2m-dimensional submanifolds minimally immersed in the unit sphere
Sn+1 with a co-dimension equal to one, and showed that if ||h(u, u)||2 < 1 for any unit
vector u of Mn where h is the second fundamental form Mn, then Mn is totally geodesic
in Sn+1. If maxu∈M{||h(u, u)||2} = 1, then Mn is Sm( 1

2 )× Sm( 1
2 ) minimally embedded in

S2m+1, as described. A very famous result in this respect was formulated by Poincare [3],
who stated that every simply connected closed 3-manifold is homeomorphic to a 3-sphere.
Smale [4] generalized the Poincare conjecture and proved that for a closed C∞-manifold
Mn which has the homotopic types of an n-dimensional sphere greater than five, the
manifold Mn is homeomorphic to Sn. The differentiable sphere theorem was proven
by Brendle and Schoen [5] under Ricci flow. In recent years, much attention has been
paid to the classification of geometric function theory, topological sphere theorems, and
differentiable sphere theorems (see [6–11]). In the sequelae, the homology groups of a
manifold are important topological invariants that provide algebraic information about
the manifold. Federer-Fleming [7] showed that any non-trivial integral homology class
in Hp(M,G)) corresponds to a stable current. Motivated by the work of Federer and
Fleming [7], Lawson and Simon [9], and Xin [11] proved the nonexistence of stable integral
currents in a submanifold Mn and vanishing homology groups of Mn with non-negative
sectional curvature according to the following theorem.
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Theorem 1 ([9,11]). Let Mn be a compact n-dimensional submanifold isometrically immersed in
the space form M̃(c) of curvature c ≥ 0 with the second fundamental form h. Let l1, l2 be any
positive integers such that l1 + l2 = n and

l1

∑
α=1

n

∑
β=l1+1

{
2||h(eα, eβ)||2 − g

(
h(eα, eα), h(eβ, eβ)

)}
< l1l2c, (1)

for any x ∈ Mn and an orthonormal frame
{

ei
}

1≤i≤n of the tangent space TMn. Then, there do
not exist stable l1-currents in Mn and

Hl1(Mn,G) = Hn−l1=l2(Mn,G) = 0,

where Hi(Mn,G) stands for i-the homology group of Mn and G is a finite abelian group with
integer coefficients.

Due to these previous studies on large scales, a particular case we consider here is that
of warped product pointwise semi-slant submanifolds of complex space form where 4ε is
represented as a constant sectional curvature. In this regard, our motivation comes from
the study of Sahin [12], where he discussed the warped product pointwise semi-slant sub-
manifolds in a Kaehler manifold and showed that a warped product pointwise semi-slant
submanifold of type Nl1

T × f Nl2
θ is nontrivial when angle θ is treated as a slant function. Fur-

thermore, it was shown in [12] that the warped product pointwise semi-slant submanifold
Nl1

T × f Nl2
θ of a Kaehler manifold is a natural generalization of CR-warped products [13].

Inspired by this notion, we define the extrinsic condition to prove nonexistence-stable inte-
gral l1-currents and vanishing homology groups in a warped product pointwise semi-slant
submanifold of complex space forms M̃m(4ε). We use Theorem 1 on this basis to arrive at
our first result.

Theorem 2. Let Ml1+l2 = Nl1
T × f Nl2

θ be a compact warped product pointwise semi-slant subman-
ifold of a complex space form M̃m(4ε). If the following condition is satisfied

(
csc2 θ + cot2 θ + l2

)
||∇ f ||2 + f ∆ f +

f 2

l2
‖hµ‖2 < 3l1ε f 2, (2)

then there do not exist stable integral l1-currents in Ml1+l@ and

Hl1(Ml1+l2 ,G) = Hl2(Ml1+l2 ,G) = 0,

where Hi(Ml1+l2 ,G) stands for i-the homology group of Ml1+l2 with integer coefficients, ∇ f and
∆ f are the gradient and the Laplacian of the warped function f , respectively, and hµ represents the
components of the second fundamental form h in an invariant subspace µ.

Our next result is in accordance with Lemma 3.1 in [12], which states that the inner
product of the second fundamental form of Nl1

T and F-components of Nl1
θ is equal to zero.

To be precise, we have the following result.

Theorem 3. Let Ml1+l2 = Nl1
T × f Nl2

θ be a compact warped product pointwise semi-slant subman-
ifold of a complex space form M̃m(4ε). If the inequality

∥∥∇ f
∥∥2

<

{ (
4l1l2ε− ‖hµ‖2) f 2

2l2
(

csc2 θ + cot2 θ
)}, (3)
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holds, then there do not exist stable integral l1-currents in Ml1+l2 and

Hl1(Ml1+l2 ,G) = Hl2(Ml1+l2 ,G) = 0.

The notation is the same as in Theorem 2.

To apply Theorems 2 and 3 in [14], let the slant function θ become globally constant,
setting θ = π

2 in Theorems 2 and 3. Then, the pointwise slant submanifold Nl1
θ is turned into

a totally real submanifold Nl2
⊥ . Thus, a warped product pointwise semi-slant submanifold

Ml1+l2 = Nl1
T × f Nl2

θ becomes CR-warped products in a Kaehler manifold of type Mn =

Nl1
T × f Nl2

⊥ . Therefore, following to the motivation of Chen [13], we deduce the following
result from Theorem 2 for the nonexistence of stable integral l1-currents and vanishing
homology in a CR-warped product submanifold of complex space forms M̃m(4ε).

Corollary 1. Let Ml1+l2 = Nl1
T × f Nl2

⊥ be a compact CR-warped product submanifold of complex
space form M̃2m(4ε). If the following condition is satisfied

(
1 + l2

)
||∇ f ||2 + f ∆ f +

f 2

l2
‖hµ‖2 < 3l1ε f 2, (4)

then there do not exist stable integral l1-currents in Ml1+l2 and Hl1(Ml1+l2 ,G) = Hl2(Ml1+l2 ,
G) = 0.

As an immediate consequence of Theorem 3, we have

Corollary 2. Let Ml1+l2 = Nl1
T × f Nl2

⊥ be a compact CR-warped product submanifold of complex
space form M̃2m(4ε) satisfying the following inequality

∥∥∇ f
∥∥2

<

{(
4l1l2ε− ‖hµ‖2) f 2

2l2

}
.

Then, there do not exist stable integral l1-currents in Ml1+l2 and we have the trivial homology
groups, i.e.,

Hl1(Ml1+l2 ,G) = Hl1(Ml1+l2 ,G) = 0.

Our next motivation comes from Calin [15] who studied geometric mechanics on
Riemannian manifolds and defined a positive differentiable function ϕ ( ϕ ∈ F (Mn) )
on a compact Riemannian manifold Mn. The Dirichlet energy of a function ϕ is defined
in [15] (see p. 41) as follows:

E(ϕ) =
1
2

∫
Mn
||∇ϕ||2dV 0 < E(ϕ) < ∞. (5)

In view of the kinetic energy formula (5) for a compact oriented manifold without
boundary along with Theorem 2, we arrive at the following result.

Theorem 4. Let Ml1+l2 = Nl1
T × f Nl2

⊥ be a compact warped product pointwise semi-slant subman-
ifold of a complex space form M̃2m(4ε) without boundary. If the following condition is satisfied

E
(

f
)
<

{∫
Mn

(
3l1l2ε− ‖hµ‖2

)
f 2dV

2l2(2 csc2 θ + l2)

}
, (6)
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where E( f ) is the Dirichlet energy of the warping function f with respect to the volume ele-
ment dV, then there do not exist stable integral l1-currents in Ml1+l2 and Hl1(Ml1+l2 ,G) =

Hl2(Ml1+l2 ,G) = 0.

An important concept relates to the geometrical and topological properties on Rieman-
nian manifolds when considering the pinched condition on its metric. It is interesting to
investigate the curvature and topology of submanifolds in a Riemannian manifold and the
usual sphere theorems in Riemannian geometry. For instance, using the nonexistence of
stable currents on compact submanifolds, Lawson and Simon [9] obtained their striking
sphere theorem, which proved that for an n-dimensional compact-oriented submanifold
Mn in a unit sphere Sn+k with the second fundamental form bounded above by a constant
which depends on the dimension n, then Mn is homeomorphic to a sphere Sn when n 6= 3
and M3 are homotopic to a sphere S3.

Making use of Lawson and Simon [9], Leung [16] proved that for a compact connected
oriented submanifold Mn in the unit sphere Sn+k such that ‖h(X, X)‖2 < 1

3 , when n 6= 3
and M3 are homotopic to a sphere S3, then Mn is homeomorphic to a sphere Sn. Recently,
it has been shown in [17] that if the sectional curvature satisfies some pinching condition
KM ≥ l1.sign(l1−1)

2(l1+1) for n-dimensional compact oriented minimal submanifold M in the

unit sphere Sn+l1 with co-dimension l1, then M is either a totally geodesic sphere, one
of the Clifford minimal hyper-surfaces Sk( k

n )× Sn−k( n−k
n ) in Sn+1 for k = 1, . . . , n− 1, or

a Veronese surface in S4. More recently, several results have been derived on topologi-
cal and differentiable structures of submanifolds when imposing certain conditions on
the second fundamental form, Ricci curvatures, and sectional curvatures in a series of
articles [4,10,11,18–23] by different geometers. For the warped product structure, we refer
to [20,24–30].

The second target of note is to establish topological sphere theorems from the view-
point of warped product submanifold geometry with positive constant sectional curvature
and pinching conditions in terms of the squared norm of the warping function and Lapla-
cian of the warped function as extrinsic invariants. In this sense, we work with conditions
on the extrinsic curvature (second fundamental form, warping function), which have the
advantage of being invariant under rigid motions. Motivated by Lawson and Simon [9],
(p. 441, Theorem 4), we consider a warped product pointwise semi-slant submanifold in a
complex space form M̃2m(4ε) such that the constant holomorphic sectional curvature is 4ε,
and state our main theorem of this paper.

Theorem 5. Let Ml1+l2 = Nl1
T × f Nl2

θ be a compact warped product pointwise semi-slant subman-
ifold in a complex space form M̃2m(4ε) satisfying the condition (2). Then, Ml1+l2 is homeomorphic
to sphere Sl1+l2 when l1 + l2 ≥ 4, while M3 is homotopic to a sphere S3.

Remark 1. As a consequence of Theorem 5, we obtain the following sphere theorem for a compact
CR-warped product submanifold in a complex space form M̃2m(4ε), thanks to Chen [13].

Corollary 3. Let Ml1+l2 = Nl1
T × f Nl2

⊥ be a compact CR-warped product submanifold in a complex
space form M̃2m(4ε) satisfying the pinching condition (4). Then, Ml1+l2 is homeomorphic to a
sphere Sl1+l2 when l1 + l2 ≥ 4, and M3 is homotopic to a sphere S3.

Using Theorem 4 and 5, we can now obtain an important result.

Corollary 4. Let Mp+q = Np
T × f Nq

θ be a compact warped product pointwise semi-slant subman-
ifold of complex space form M̃2m(4ε). If (6) is satisfied, then Ml1+l2 is homeomorphic to sphere
Sl1+l2 when l1 + l2 ≥ 4 and M3 is homotopic to a sphere S3.
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Remark 2. The principle behind Cheng’s eigenvalue comparison theorem (see [31]) forms the basis
of the following finding. With the help of the first non-zero eigenvalue of the Laplacian operator,
Cheng has demonstrated that if M is complete and isometric to the sphere of the standard unit then
the following theorem can be inferred using the maximum principle for the first non-zero eigenvalue
λ1, provided that Ric(M)geq1 and d(M) = π.

Theorem 6. Let Ml1+l2 = Nl1
T × f Nl2

θ be a compact warped product pointwise semi-slant sub-
manifold of a complex space form M̃2m(4ε) with f being a non-constant eigenfunction of the first
non-zero eigenvalue λ1 such that the following inequality is satisfied:

λ1 <
3l1l2ε− ‖hµ‖

l1
(
2 csc2 θ + l2

) . (7)

Then, Ml1+l2 is homeomorphic to sphere Sl1+l2 when l1 + l2 ≥ 4 and M3 is homotopic to a
sphere S3 when l1 + l2 = 3.

Motivated by Bochner’s formula [32], we arrive at the following result.

Theorem 7. Let Ml1+l2 = Nl1
T × f Nl2

θ be a compact warped product pointwise semi-slant subman-
ifold of a complex space form M̃2m(4ε) such that following inequality holds:

‖∇2 f ‖2 + Ric(∇ f ,∇ f ) >

{(
‖hµ‖2 − 3l1l2ε

)
f ∆ f(

2 csc2 θ + l2
) }

, (8)

where ‖∇2 f ‖2 denotes the Hessian form of the warping function f and Ric denotes the Ricci
curvature along the base manifold Nl1

T . Then, Ml1+l2 is homeomorphic to sphere Sl1+l2 when
l1 + l2 ≥ 4 and M3 is homotopic to a sphere S3 when l1 + l2 = 3.

2. Preliminaries

Let M2m(4ε) be a complex space form with the complex dimension dimR M = 2m.
Then, the curvature tensor R of M2m(4ε) with constant holomorphic sectional curvature 4ε
is expressed as

R(X2, Y2)Z2 = c
(

g(X2, Z2)Y2 − g(Y2, Z2)X2 + g(X2, JZ2)JY2

− g(Y2, JZ2)X2 + 2g(X2, JY2)JZ2

)
. (9)

The Gauss and Weingarten formulas for transforming submanifold Mn into an almost
Hermitian manifold M̃2m are provided by

∇̃X2Y2 = ∇X2Y2 + h(X2, Y2),

∇̃X2 N = −AN X2 +∇⊥X2
N,

for each X2, Y2 ∈ X(TM) and N ∈ X(T⊥M) such that the second fundamental form and
the shape operator are denoted by h and AN . They are connected as g(h(U, V), N) =
g(ANU, V). Now, for any X2 ∈ X(M) and N ∈ X(T⊥M), we have

(i) JX2 = TX2 + FX2, (ii) JN = tN + f N, (10)

where TX2(tN) and FX2( f N) are the tangential and normal components of JX2(JN),
respectively.
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The Gauss equation for a submanifold Mn is defined as

R̃(X2, Y2, Z2, W2
)
=R(X2, Y2, Z2, W2) + g

(
h(X2, Z2), h(Y2, W2)

)
− g
(
h(X2, W2), h(Y2, Z2)

)
, (11)

for any X2, Y2, Z2, W2 ∈ X(TM), where R̃ and R are the curvature tensors on M̃2m and
Mn, respectively.

The norm of second fundamental form h for an orthonormal frame {e1, e2, · · · en} of
the tangent space TM on Mn is defined by

hr
ij = g(h(ei, ej), er), ||h||2 =

n

∑
i,j=1

g(h(ei, ej), h(ei, ej)). (12)

Let {e1, . . . , en} be an local orthonormal frame of vector field Mn. Then, we have

∇ϕ =
n

∑
i=1

ei(ϕ)ei.

and

‖∇ϕ‖2 =
n

∑
i=1

(
(ϕ)ei

)2, (13)

where ∇ϕ and ||∇ϕ||2 are the gradient of function ϕ and its squared norm.

The following classifications can be provided as:

(i) If J(Tx M) ⊆ Tx M for every x ∈ Mn, then Mn is a holomorphic submanifold.
(ii) If J(Tx M) ⊆ T⊥M for each x ∈ Mn, then Mn is a totally real submanifold.

There are four types of submanifolds of a Kaehler manifold, namely, the CR-submanifold,
slant submanifold, semi-slant submanifold, pointwise slant submanifold, and pointwise semi-
slant submanifold. The definitions and classifications of such submanifolds are discussed
in [12,13]. Moreover, for examples of a pointwise semi-slant submanifold in a Kaehler manifold
and related problems, we refer to [12]. It follows from Definition 3.1 in [12] that if we denote as
l1 and l2 the dimensions of a complex distribution DT and pointwise slant distribution Dθ of a
pointwise semi-slant submanifold in a Kaehler manifold M̃2m, then the following remarks hold:

Remark 3. Mn is invariant if l1 = 0 and pointwise slant if l2 = 0.

Remark 4. If we consider the slant function θ : Mn → R as globally constant on Mn and θ = π
2 ,

then Mn is a CR-submanifold.

Remark 5. An invariant subspace µ under J of normal bundle T⊥M, is defined as T⊥M =
FDθ ⊕ µ.

3. Warped Product Submanifolds

A product manifold of the type Mn = Nl1
1 × f Nl2

2 is a warped product manifold

if the metric is defined as g = g1 + f 2g2, where Nl1
1 and Nl2

2 are two Riemannian man-
ifolds and their Riemannian metrics are g1 and g2, respectively. It was discovered by
Bishop and O’Neill [33] that the warping function f is a smooth function defined on base
Nl1

1 . The following properties are a direct consequence of the warped product manifold
Mn = Nl1

1 × f Nl2
2 :

(i) ∇ZX = ∇XZ = (X f )
f Z,

(ii) ∇ZW = ∇′ZW − g(Z,W)
f ∇ f ,
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for any X, Y ∈ X(TN1) and Z, W ∈ X(TN2), where ∇ and ∇′ denote the Levi-Civita
connection on Mn and N2, respectively.

The gradient ∇ f of f is written as

g(∇ ln f , X2) = X2(ln f ). (14)

The following relation is an interesting property of warped products:

R(X2, Z2)Y2 =
H f (X2, Z2)

f
Y2, (15)

whereH f is a Hessian tensor of f ; the remarks below follow as a consequence.

Remark 6. A warped product manifold Mn = Nl1
1 × f Nl2

2 is said to be trivial or simply a

Riemannian product manifold if the warping function f is a constant function along Nl1
1 .

Remark 7. If Mn = Nl1
1 × f Nl2

2 is a warped product manifold, then Nl1
1 is totally geodesic and

Nl2
2 is a totally umbilical submanifold of Mn, respectively.

4. Non-Trivial Warped Product Pointwise Semi-Slant Submanifolds Nl1
T × f Nl2

θ

It is well known that warped product submanifolds of types

(i) Nl2
θ × f Nl1

T , and (ii) Nl1
T × f Nl2

θ ,

are called warped product pointwise semi-slant submanifolds, which were discovered
in [12]. They contain holomorphic and pointwise slant submanifolds of a Kähler manifold.
The first case, with Mn = Nl2

θ × f Nl1
T in a Kähler manifold, is trivial. The second is non-

trivial. Before proceeding to the second case, let us recall the following result [12].

Lemma 1. Let Mn = Nl1
T × f Nl2

θ be a warped product pointwise semi-slant submanifold of a
Kähler manifold M̃m. Then,

g(h(X2, Z2), FTZ2) =− (X2 ln f ) cos2 θ||Z2||2, (16)

g(h(Z2, JX2), FZ2) =(X2 ln f )||Z2||2, (17)

for any X2, Y2 ∈ X(TNT) and Z2 ∈ X(TNθ).

5. Proof of Main Results
5.1. Proof of Theorem 2

The crucial point of this paper is to derive an upper bound for

l1

∑
i=1

n

∑
j=l1+1

{
2||h(ei, ej)||2 − g

(
h(ei, ei), h(ej, ej)

)}
in terms of ∆ f and ||∇ f ||2.

Let M = Nl1
T × f Nl2

θ be an n = l1 + l2-dimensional warped product pointwise semi-

slant submanifold with dimNl1
T = l1 = 2α and dimNl2

θ = l2 = 2β, where Nl1
θ and Nl1

T
are integral manifolds of Dθ and D, respectively. Thus, we consider {e1, e2, · · · eα, eα+1 =
Je1, · · · e2α = Jeα} and {e2α+1 = e∗1 , · · · e2α+β = e∗β, e2α+β+1 = e∗β+1 = sec θPe∗1 , · · · el1+l2 =

e∗l2 = sec θPe∗β} to be orthonormal frames of TNT and TNθ , respectively. Thus the orthonor-

mal frames of the normal sub-bundles FDθ and µ are {en+1 = ē1 = csc θFe∗1 , · · · en+β =
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ēβ = csc θFe∗1 , en+β+1 = ēβ+1 = csc θ sec θFPe∗1 , · · · en+2β = ē2β = csc θ sec θFPe∗β} and
{en+2β+1, · · · e2m}, respectively. Then, from the Gauss Equation (11), we have

l1

∑
i=1

l2

∑
j=1

g
(

R(ei, ej)ei, ej
)
=

l1

∑
i=1

l2

∑
j=1

g
(

R̃(ei, ej)ei, ej
)
+ ||h(ei, ej)||2

−
l1

∑
i=1

l2

∑
j=1

g
(
h(ei, ej), h(ei, ej)

)
.

By adding the squared norm of the second fundamental terms in both side of the
above equation, we obtain

l1

∑
i=1

l2

∑
j=1

g
(

R(ei, ej)ei, ej
)
+ ||h(ei, ej)||2 =

l1

∑
i=1

l2

∑
j=1

g
(

R̃(ei, ej)ei, ej
)

−
l1

∑
i=1

l2

∑
j=1

g
(
h(ej, ej), h(ei, ei)

)
+ 2||h(ei, ej)||2. (18)

Using the orthonormal frames
{

ei
}

1≤i≤l1
and

{
ej
}

1≤j≤l2
of Nl1

T and Nl2
θ , respectively,

in (15), we derive

R(ei, ej)ei =
ej

f
H f (ei, ei).

Summing up with an orthonormal frame
{

ej
}

1≤j≤l2
(here it should be pointed out that

we have adopted the opposite sign from the usual sign convention for the Laplacian), then

l1

∑
i=1

l2

∑
j=1

g
(

R(ei, ej)ei, ej
)
= − l2

f

l1

∑
i=1

g
(
∇ei∇ f , ei

)
. (19)

Thus, from Equations (18) and (19), we can derive

l1

∑
i=1

l2

∑
j=1

{
2||h(ei, ej)||2−g

(
h(ej, ej), h(ei, ei)

)}
+

l1

∑
i=1

l2

∑
j=1

g
(

R̃(ei, ej)ei, ej
)

= − l2
f

l1

∑
i=1

g
(
∇ei∇ f , ei

)
+

l1

∑
i=1

l2

∑
j=1

(
hr

ij
)2. (20)

First, we figure out the term ∆ f for Mn, which is the Laplacian of f .

∆ f =−
n

∑
i=1

g
(
∇ei grad f , ei

)
=−

l1

∑
α=1

g
(
∇eα grad f , eα

)
−

l2

∑
β=1

g
(
∇eβ

grad f , eβ

)
.
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The above equation can be expressed as components of Nq
θ from adapted orthonormal

framel in this way, we obtain

∆ f =−
l1

∑
α=1

g
(
∇eα grad f , eα

)
−

β

∑
j=1

g
(
∇ej grad f , ej

)
− sec2 θ

β

∑
j=1

g
(
∇Tej grad f , Tej

)
.

Benefiting from ∇ being a Levi-Civita connection on Mn, we derive

∆ f =−
l1

∑
α=1

g
(
∇eα grad f , eα

)
−

β

∑
j=1

(
ejg
(

grad f , ej
)
− g
(
∇ej ej, grad f

))
.

− sec2 θ
β

∑
j=1

(
Tejg

(
grad f , Tej

)
− g
(
∇Tej Tej, grad f

))
.

From the property of the gradient of function (14), we obtain

∆ f =−
l1

∑
α=1

g
(
∇eα grad f , eα

)
−

β

∑
j=1

(
ej(ej f )− (∇ej ej f )

)

− sec2 θ
β

∑
j=1

(
Tej(Tej( f ))− (∇Tej Tej f )

)
.

After computation, we have

∆ f =−
l1

∑
α=1

g
(
∇eα grad f , eα

)
−

β

∑
j=1

(
ej

(
g(grad f , ej)

)
− g(∇ej ej, grad f )

)

− sec2 θ
β

∑
j=1

(
Tej

(
g(grad f , Tej)

)
− g(∇Tej Tej, grad f )

)
.

Starting from the hypothesis of a warped product pointwise semi-slant submanifold,
Nl1

T is totally geodesic in Mn. This implies that grad f ∈ X(TNT), and from (i)–(ii) in
Section 3, we obtain

∆ f =− 1
f

β

∑
j=1

(
g(ej, ej)‖∇ f ‖2 + sec2 θg(Tej, Tej)‖∇ f ‖2

)

−
l1

∑
i=1

g
(
∇ei grad f , ei

)
.

By multiplying the above equation by 1
f , from (3.7) of Corollary 3.1 in [12] we obtain

∆ f
f

= − 1
f

l1

∑
i=1

g
(
∇ei grad f , ei

)
− l2‖∇(ln f )‖2.

It is not difficult to check that

− 1
f

l1

∑
i=1

g
(
∇ei grad f , ei

)
=

∆ f
f

+ l2||∇ ln f ||2.
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This combines with (20) to yield

l2
2 ||∇(ln f )||2 + l2∆ f

f
+

l1

∑
α=1

l2

∑
β=1

(
hr

αβ

)2

=
l1

∑
i=1

l2

∑
j=1

{
2||h(ei, ej)||2 − g

(
h(ej, ej), h(ei, ei)

)}

+
l1

∑
i=1

l2

∑
j=1

g
(

R̃(ei, ej)ei, ej
)
. (21)

On taking X = ei and Z = ej for 1 ≤ i ≤ l1 and 1 ≤ j ≤ l2, respectively, we have

2m

∑
r=n+1

l1

∑
i=1

l2

∑
j=1

(
hr

ij
)2

=
n+2β

∑
r=n+1

l1

∑
i=1

l2

∑
j=1

g
(
h(ei, e∗j ), er

)2

+
2m

∑
r=n+2β+1

l1

∑
i=1

l2

∑
j=1

g
(
h(ei, e∗j ), er

)2.

In the above equation, the first term on the right hand side is the FDθ-component and
the second term is the µ-component for the orthonormal frame for vector fields of Nl1

T and
Nl2

θ . Summing over the vector fields of Nl1
T and Nl2

θ and using (16) and (17) from Lemma 1
in the last equation, we are able to find that

2m

∑
r=n+1

l1

∑
i=1

l2

∑
j=1

(
hr

ij
)2

=2
(

csc2 θ + cot2 θ
) α

∑
i=1

β

∑
j=1

(
ei ln f )

)2g(e∗j , e∗j )
2

+ 2
(

csc2 θ + cot2 θ

) α

∑
i=1

β

∑
j=1

(
Jei ln f )

)2g(e∗j , e∗j )
2

+
2m

∑
r=n+2β+1

l1

∑
i=1

l2

∑
j=1

g
(
h(ei, e∗j ), er

)2.

From the adapted orthonormal frame for NT , the last equation can then be expressed
as follows:

2m

∑
r=n+1

l1

∑
i=1

l2

∑
j=1

(
hr

ij
)2

=2
(

csc2 θ + cot2 θ
) l1

∑
i=1

(
ei(ln f )

)2
l2

∑
j=1

g(e∗j , e∗j )
2

+
2m

∑
r=n+2β+1

l1

∑
i=1

l2

∑
j=1

g
(
h(ei, e∗j ), er

)2.

Together with the definition of the squared norm of the gradient function f from (13),
the above implies that

2m

∑
r=n+1

l1

∑
i=1

l2

∑
j=1

(
hr

ij
)2

= l2
(

csc2 θ + cot2 θ
)
||∇ ln f ||2 + ‖hµ‖2. (22)
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Following (21) and (22), we arrive at

l2∆ f
f

+l2
2 ||∇(ln f )||2 + l2

(
1 + 2 cot2 θ

)
||∇(ln f )||2 + ‖hµ‖2

=
l1

∑
i=1

l2

∑
j=1

{
2||h(ei, ej)||2 − g

(
h(ej, ej), h(ei, ei)

)}

+
l1

∑
i=1

l2

∑
j=1

g
(

R̃(ei, ej)ei, ej
)
.

Because we have the following relation for symmetry of the curvature tensor R,

l1

∑
i=1

l2

∑
j=1

g
(

R̃(ei, ej)ei, ej
)
=

l1

∑
i=1

l2

∑
j=1

R̃
(
ei, ej, ei, ej

)
. (23)

Next, we use the curvature tensor from Formula (9) for the complex space form
M̃m(4ε), which can be simply written as

l1

∑
i=1

l2

∑
j=1

R̃
(
ei, ej, ei, ej

)
= ε

l1

∑
i=1

l2

∑
j=1

{
g(ei, ej)g(ei, ej)− g(ei, ei)g(ej, ej)

− g(Jei, ei)g(Jej, ej)

+ 3g(Jei, ej)g(Jej, ei)

}
. (24)

As we know that ei ∈ X(TNT) and ej ∈ X(TNθ), then g(ei, ej) = 0, and g(Jei, ei) =
0(resp, g(Jej, ei) = 0) by the fact that for Jei ⊥ ei(Jej ⊥ ej), respectively. Similarly, from
(10)i, we can derive that g(Jei, ej) = g(Tei + Fei, ej) = 0 for Tei ∈ X(TNT) and ej ∈ X(TNθ);
thus, (24) implies that

l1

∑
i=1

l2

∑
j=1

R̃
(
ei, ej, ei, ej

)
= −ε

l1

∑
i=1

l2

∑
j=1

g(ei, ei)g(ej, ej).

After computation using the above equation, we can derive

l1

∑
i=1

l2

∑
j=1

R̃
(
ei, ej, ei, ej

)
= −l1l2ε, (25)

Therefore, following (23) and (25), we finally obtain

l2∆ f
f

+ l2
2 ||∇(ln f )||2 + l2

(
csc2 θ + cot2 θ

)
||∇(ln f )||2 + ‖hµ‖2 + l1l2ε

=
l1

∑
i=1

l2

∑
j=1

{
2||h(ei, ej)||2 − g

(
h(ej, ej), h(ei, ei)

)}
. (26)

If the pinching condition (2) is satisfied, then from (26) we have

l1

∑
i=1

l2

∑
j=1

{
2||h(ei, ej)||2 − g

(
h(ej, ej), h(ei, ei)

)}
< 4l1l2ε
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By applying Theorem 1 with c = 4ε > 0, we obtain the following:

l1

∑
i=1

l2

∑
j=1

{
2||h(ei, ej)||2 − g

(
h(ej, ej), h(ei, ei)

)}
< l1l2c.

This completes the proof of Theorem 2, as the assertion follows from Theorem 1.

5.2. Proof of Theorem 4

If we consider Mn as the compact-oriented Riemannian manifold without boundary
∂Mn = ∅, then we are able to prove the strong result in terms of tthe Dirichlet energy and
pointwise slant immersion as follows. Taking the integration along the volume element dV
in (2), we obtain∫

Mn

(
csc2 θ + cot2 θ + l2

)
||∇ f ||2dV+

∫
Mn

f ∆ f dV

<
∫

Mn

(
3l2ε−

‖hµ‖2

l2

)
f 2dV. (27)

From the divergence theorem
∫

Mn(∆ f )dV = 0 in [34] without boundary. Using this
fact, we can compute the following as

0 =
∫

Mn
∆
(

f 2

2

)
dV = −

∫
Mn

div
(
∇
( f 2

2

))
dV

=−
∫

Mn
div( f∇ f )dV = −

∫
Mn

g(∇ f ,∇ f )dV +
∫

Mn
f ∆ f dV

which implies that ∫
Mn

f ∆ f dV =
∫

Mn
‖∇ f ‖2dV. (28)

The inequality (27) takes its new form by virtue of (28), that is,

2
∫

Mn

(
csc2 θ||∇ f ||2

)
dV+l2

∫
Mn
||∇ f ||2dV <

∫
Mn

(
3l1ε−

‖hµ‖2

l2

)
f 2dV. (29)

Using the Dirichlet energy from Formula (5) in the above equation, we have

2
(
2 csc2 θ + l2

)
E( f ) <

∫
Mn

(
3l1ε−

‖hµ‖2

l2

)
f 2dV.

Thus, we obtain the required result (6). This completes the proof of the theorem.

5.3. Proof of Corollary 1 and 2

The proof of Corollary 1 and Corollary 3 arises directly from Theorems 2 and 5
by substituting θ = π

2 to point out a totally real submanifold from a pointwise slant
submanifold, which then provides the promised results.

5.4. Proof of Theorem 5

From Theorem 2, we can find that there do not exist stable integral l1-currents in
a warped product pointwise semi-slant submanifold Mn and that the homology groups
are zero for all positive integers l1 , l2 such that n = l1 + l2 6= 3; that is, Hl1(Mn,G) =
Hl2(Mn,G) = 0. Therefore, Mn is a homology sphere, and in addition is a homotopic
sphere following the same arguments as in [19].
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Therefore, applying the generalized Poincarẽ conjecture
(
Smale n ≥ 5 [4], Freedman

n = 4 [8]
)
, we know that Mn is homotopic to the sphere Sn as an immediate consequence

of Sjerve[10], implying that the fundamental group π1(Mn) = 0 on Mn when applying
the same arguments as above. This implies that Ml1+l2 is homeomorphic to the sphere
Sl1+l2 . Similarly, it is not hard to check that M3 is homotopic to a sphere S3 when n = 3
from [9,16]. This completes the proof of Theorem 5.

5.5. Proof of Theorem 6

From the minimum principle on the first eigenvalue λ1, we can obtain the outcome
from [32], p. 186. Let us assume that f is a non-constant warping function

λ1

∫
Mn

f 2dV ≤
∫

Mn
‖∇ f ‖2dV. (30)

where the equality holds if and only if ∆ f = λ1 f . Integrating Equation (29) and Green’s
lemma, we have

(
2 csc2 θ + q

) ∫
Mn
‖∇ f ‖2dV <

∫
Mn

(
3l1ε−

‖hµ‖2

l2

)
f 2dV,

which implies that

∫
Mn
‖∇ f ‖2dV <

1(
2 csc2 θ + l2

) ∫
Mn

(
3l1ε−

‖hµ‖2

l2

)
f 2dV. (31)

By virtue of (30) in (31), we can find that

∫
Mn

{
λ1 −

(
3l1l2ε− ‖hµ‖

)
l2
(
2 csc2 θ + l2

)} f 2dV < 0.

From this, we arrive at our result (7) by combining Theorems 2 and 5, which completes
the proof.

Here, we remember the lemma below.

Lemma 2 ([12]). Assume that M̃2m is a Kaehler manifold and Ml1+l2 = Nl1
T × f Nl2

θ is a warped
product pointwise semi-slant submanifold of M̃2m. Then, we have

g
(
h(X2, Y2), FZ2

)
= 0. (32)

for any X2, Y2 ∈ X(TNT) and Z2, W2 ∈ X(TNθ).

In view of Lemma 2, we can find our next result.

5.6. Proof of Theorem 3

We can write the following from (12) as follows:

l1

∑
i=1

l2

∑
j=1

{
2||h(ei, ej)||2 − g

(
h(ej, ej), h(ei, ei)

)}
=2

l1

∑
i=1

l2

∑
j=1
||h(ei, ej)||2

−
l1

∑
i=1

l2

∑
j=1

g
(
h(ei, ei), ej

)2,
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or equivalently as

l1

∑
i=1

l2

∑
j=1

{
2||h(ei, ej)||2−g

(
h(ej, ej), h(ei, ei)

)}

= 2
l1

∑
i=1

l2

∑
j=1
||h(ei, ej)||2 −

l1

∑
i=1

l2

∑
j=1

g
(
h(ei, ei).Fe∗j

)2.

By virtue of (32), we have

l1

∑
i=1

l2

∑
j=1

{
2||h(ei, ej)||2−g

(
h(ej, ej), h(ei, ei)

)}
= 2

l1

∑
i=1

l2

∑
j=1
||h(ei, ej)||2.

Using Equation (22) on the right hand side of the above equation, we have

l1

∑
i=1

l2

∑
j=1

{
2||h(ei, ej)||2−g

(
h(ej, ej), h(ei, ei)

)}
=

2l2
f 2

(
csc2 θ + cot2 θ

)
‖∇ f ‖2 + ‖hµ‖2. (33)

If assumption (3) is satisfied, then the following inequality is implied by (33):

l1

∑
i=1

l2

∑
j=1

{
2||h(ei, ej)||2−g

(
h(ej, ej), h(ei, ei)

)}
< 4l1l2ε. (34)

Thus, the proof is complete from Theorem 1 and from (34).

Based on Theorem 3 and the similar proof of Theorem 5, we reach the following result.

Corollary 5. Assume that Ml1+l2 = Nl1
T × f Nl2

θ is a compact warped product pointwise semi-slant
submanifold of a complex space form M̃2m(4ε) satisfying the following:

‖∇ f
∥∥2

<

{ (
4l1l2ε− ‖hµ‖2) f 2

2l2
(

csc2 θ + cot2 θ
)}.

Then, Mp+q is homeomorphic to a sphere Sp+q when p + q 6= 3, while M3 is homotopic to a
sphere S3.

5.7. Proof of Theorem 7

In this theorem, we replace our pinching condition (2) with the Hessian of the warping
function and Ricci curvature by using the concept of the eigenvalue of the warped function.
If f is a first eigenfunction of the Laplacian of Mn associated with the first eigenvalue λ1,
that is, ∆ f = λ1 f , then we an recall Bochner’s formula (see, e.g., [32]), which states that for
a differentiable function f defined on a Riemannian manifold, the following relation holds:

1
2

∆‖∇ f ‖2 = ‖∇2 f ‖2 + Ric(∇ f ,∇ f ) + g
(
∇ f ,∇(∆ f )

)
.

By integrating the above equation with the aid of Stokes’ theorem, we obtain∫
‖∇2 f ‖2dV +

∫
Ric(∇ f ,∇ f )dV +

∫
g
(
∇ f ,∇(∆ f )

)
dV = 0.

Now, by using ∆ f = λ1 f and slightly rearranging the above equation, we derive

∫
‖∇ f ‖2dV = − 1

λ1

( ∫
‖∇2 f ‖2dV +

∫
Ric(∇ f ,∇ f )dV

)
. (35)
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On combing Equations (28) and (27), we obtain

(
2 csc2 θ + l2

) ∫
Mn
‖∇ f ‖2dV +

∫
Mn

f 2‖hµ‖2

l2
dV < 3l1ε

∫
Mn

f 2dV. (36)

Following from (35) and (36), we find that

∫
Mn

(‖hµ‖2

l2
− 3l1ε

)
f 2dV <

(
2 csc2 θ + l2

)
λ1

∫
Mn

(
‖∇2 f ‖2 + Ric(∇ f ,∇ f )

)
dV,

which implies that

‖∇2 f ‖2 + Ric(∇ f ,∇ f ) >

{(
‖hµ‖2 − 3l1l2ε

)
λ1 f 2(

2 csc2 θ + l2
) }

. (37)

The proof follows from the above Equation (37) along with Theorem 2.

6. Consequences

It is well known that a complete simply-connected complex space form M̃2m(4ε) is
holomorphicaly isometric to the complex Euclidean space Cm, the complex projective
m-space CPm(4), and a complex hyperbolic m-space CHm(−4) with ε = 0, 1 & ε =
−1. Therefore, we define the following corollaries in consequence of our Theorem 2 and
Theorem 5.

Corollary 6. Let Ml1+l2 = Nl1
T × f Nl2

θ be a compact warped product pointwise semi-slant sub-
manifold in a complex Euclidean space Cm satisfying the condition

(
csc2 θ + cot2 θ + l2

)
||∇ f ||2 + f ∆ f +

f 2

l2
‖hµ‖2 < 0.

Then, there do not exist stable integral l1-currents in Ml1+l2 and Hl1(Ml1+l2 ,G) = Hl2(Ml1+l2 ,
G) = 0. Furthermore, Ml1+l2 is homeomorphic to a sphere Sl1+l2 when l1 + l2 ≥ 4, while M3 is
homotopic to a sphere S3.

Similarly, for the complex projective m-space CPm(4) we have the following.

Corollary 7. Let Ml1+l2 = Nl1
T × f Nl2

θ be a compact warped product pointwise semi-slant sub-
manifold in a complex projective m-space CP2m(4) satisfying the condition

(
csc2 θ + cot2 θ + l2

)
||∇ f ||2 + f ∆ f <

f 2

l2

(
3l1l2 − ‖hµ‖2).

Then, there do not exist stable integral l1-currents in Ml1+l2 and Hl1(Ml1+l2 , G) = Hl2(Ml1+l2 ,
G) = 0. In addition, Ml1+l2 is homeomorphic to a sphere Sl1+l2 when l1 + l2 ≥ 4, while M3 is
homotopic to a sphere S3.

7. Conclusions

The presented study is significant in light of the extant literature thanks to the new
pinching conditions presented in terms of pointwise slant functions and the Laplacian of the
warped function. We have discussed the rigidity results and investigated several topological
classifications. In addition, we have derived a number of extrinsic conditions involving
relevant geometric quantities by analyzing the extent to which the topology of warped
product submanifolds is affected by the conditions on the main intrinsic and main extrinsic
curvature invariants. A number of topological sphere theorems have been investigated
in refeence to the connection between warped product submanifolds and homotopic–
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homologic theory. The contents of the present paper can be expected to attract researchers
to the prospect of finding possible applications in various research areas of physics.

Author Contributions: Writing and original draft, A.H.A.; funding acquisition, editing and draft,
A.A.; review and editing, I.A.; methodology, project administration, A.H.A.; formal analysis, re-
sources, P.L.-I. All authors have read and agreed to the published version of the manuscript.

Funding: The authors would like to express their gratitude to Deanship of Scientific Research at King
Khalid University, Saudi Arabia for providing funding to the research group under the research grant
R.G.P. 2/199/43.

Acknowledgments: The authors are grateful to the referee for his/her valuable suggestions and
critical comments which improve the quality and presentation of this paper in the present form.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Berger, M. Les variétés riemanniennes ( 1
4 )-pincées. Ann. Scuola Norm. Sup. Pisa Cl. Sei. 1960, 14, 161–170.

2. Gauchman, H. Minimal submanifolds of sphere with bounded second fundamental form. Trans. Am. Math. Soc. 1993, 79, 779–791.
[CrossRef]

3. Rauch, H.E. A contribution to differentail geometry in the large. Ann. Math. 1951, 54, 38–55. [CrossRef]
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