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Abstract: In this paper, we study the intrinsic structures of high-dimensional data sets for analyzing
their geometrical properties, where the core message of the high-dimensional data is hiding on
some nonlinear manifolds. Using the manifold learning technique with a particular focus on the
mean curvature, we develop new methods to investigate the uniqueness of constant mean curvature
spacelike hypersurfaces in the Lorentzian warped product manifolds. Furthermore, we extend the
uniqueness of stochastically complete hypersurfaces using the weak maximum principle. For the
more general cases, we propose some non-existence results and a priori estimates for the constant
higher-order mean curvature spacelike hypersurface.
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1. Introduction

Manifold learning is a promising tool in dimensionality reduction with many ap-
plications in medical imaging, pattern recognition, data mining and machine learning.
Manifold learning algorithms utilize the variables underlying the large and complex data
set with nonlinear distribution characteristics. In order to capture the geometrical features
of the original data, the manifold method assigns the original data points in a hypersurface
to a warped-product space using an isometric mapping and then uses the properties of
the inner-product space to determine the intrinsic dimension of the original data space.
After the nonlinear transformation, linear techniques can be used to reveal the nonlinear
structures of the original data set. Moreover, since the curvature of the manifold quantifies
the geometrical structure, we propose an approach to learn the properties of the constant
mean curvature spacelike hypersurface.

Recent advances in the analysis of high-dimensional data have attracted increasing
interest in geometry-based methods for nonlinearity data distribution. The interest in the
study of constant mean curvature spacelike hypersurfaces is motivated by their mathemati-
cal and physical properties. The classical Aleksandrov theorem [1] asserts that any compact
embedded hypersurface in Rn with the constant mean curvature is a round sphere. In this
direction, Calabi [2] proved that in Rn+1 (n ≤ 4) the only complete maximal spacelike
hypersurfaces are hyperplanes. Moreover, Cheng and Yau [3] extended this theorem for
Rn+1 (n > 4). Proceeding into this branch, Ros [4] provided the uniqueness theorem
for the higher order mean curvature and proved that the sphere is the only embedded
compact hypersurface in Rn+1 with Hk (k = 1, 2, . . . , n) constant. Alias et al. [5,6] also
proved the uniqueness of zero scalar curvature hypersurfaces and rotational hypersurfaces
in Rn+1. On the other hand, Treibergs [7] showed the existence of lots of complete non-zero
constant mean curvature spacelike hypersurfaces. In this paper, we are concerned with the
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uniqueness and existence of constant mean curvature spacelike hypersurfaces in a class of
Lorentzian warped product manifolds.

The uniqueness of constant mean curvature spacelike hypersurfaces immersed in
Lorentzian warped product spaces has been studied intensively. Under suitable restrictions
on the value of mean curvatures, the uniqueness of compact hypersurfaces was developed
by applying Omori-Yau maximum principle for the Laplacian operator [8,9]. Afterwards,
Alias et al. [10,11] extended the above results to the higher order mean curvatures using a
generalized version of the maximum principal for a new trace type differential operator
Lk. Furthermore, Aledo et al. [12] proved the uniqueness of complete parabolic constant
mean curvature spacelike hypersurfaces in a Lorentzian warped product with dimension
n + 1 ≤ 5. There are many special properties for the hypersurface of manifolds Mn+1,
in particular, when 3 ≤ n + 1 ≤ 7. In 2019, Zhou [13] proved that for the prescribed
mean curvature in an arbitrary closed manifold Mn+1 (3 ≤ n + 1 ≤ 7), there exists a
nontrivial, smooth, closed, almost embedded, constant mean curvature hypersurface of
any given mean curvature. However, all of the uniqueness studies were based on the
maximum principle. In this paper, we extend the uniqueness of complete hypersurfaces
with dimension 3 ≤ n + 1 ≤ 7 using the weak maximum principle of Grigor’ yan [14] and
Pigola et al. [15,16]. Combining with appropriate geometric assumptions, we obtain some
non-existence of constant mean curvature spacelike hypersurfaces as follows:

Let −I × f Mn be a generalized Robertson–Walker (GRW) spacetime with n ≥ 2,
where I is bounded and (log f )′′ ≤ 0. Then, there is no stochastically com-
plete spacelike hypersurface with non-zero constant mean curvature H such
that 〈N, ∂t〉 < 1− n.

Using the weak maximum principle [16,17] and its equivalent forms, we obtain the
following main result of uniqueness for the spacelike hypersurface in spacetimes−I× f Mn

of dimension 3 ≤ n + 1 ≤ 7.

Let −I × f Mn be a generalized Robertson–Walker spacetime satisfying the time-
like convergence condition (TCC) and the dimension 3 ≤ n + 1 ≤ 7, where
I = (a, b) with −∞ ≤ a < b < +∞. Suppose that ψ : Σn → −I × f Mn is
a stochastically complete spacelike hypersurface with non-zero constant mean
curvature H. Then, the hypersurface is a slice.

This paper is organized as follows. In Section 2, we outline the notations about the
hypersurface in GRW spacetimes, the weak maximum principal and its equivalent form,
which are our main analytical tools. In Section 3, we obtain the sign relationship between
the mean curvature and the derivative of the warping function, then present the application
of the curvature estimate. Furthermore, we provide the uniqueness and non-existence
results of constant mean curvature spacelike hypersurfaces. In Section 4, combining with
the results of curvature estimates and uniqueness, we prove the uniqueness of constant
k-mean curvature spacelike hypersurfaces in GRW spacetimes.

2. Materials and Methods

Let Mn be a connected n-dimensional Riemannian manifold, and f : R→ R+ be a pos-
itive smooth function. In the warped product differentiable manifold Mn+1

= −I × f Mn,
let πI and πM denote the projections onto the fibers I and M, respectively. A particular
class of Lorentzian manifold is the one obtained by furnishing M with the metric

〈v, w〉p = −〈(πR)∗v, (πI)∗w〉I + ( f ◦ πI)
2(p)(πM)∗v, (πM)∗w〉M,

for all p ∈ Mn+1 and all v, w ∈ Tp M, where 〈 , 〉I and 〈 , 〉M stand for the metrics of I
and Mn, respectively. Such a space is called a Lorentzian warped product space. In what
follows, we shall denote it as Mn+1

= −R× f Mn. For simplicity of notation, we denote
the warped metric as
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〈 , 〉 = −dt2 + f 2(t)〈 , 〉M.

Under this condition, for a fixed t0 ∈ R, we say that Mn
t0

= {t0} × Mn is a slice

of Mn+1.
Let ψ : Σn → −I × f Mn be a spacelike hypersurface and A be the second fundamental

form of the immersion with respect to the past-pointing Gauss map. In this setting, at each
p ∈ Σn, A is restricted to a self-adjoint linear map Ap : TpΣ → TpΣ. For 0 ≤ k ≤ n, let
Sk(p) denote the rth elementary symmetric function on the eigenvalues of Ap. We define n
smooth functions Sk : Σn → R such that

det(tI − A) =
n

∑
k=0

(−1)kSktn−k,

where S0 = 1 by definition. If p ∈ Σn and {ek} is a basis of TpΣ formed by eigenvectors of
Ap, with the corresponding eigenvalues {λk}, then

Sk(p) = σk(λ1(p), λ2(p), . . . , λn(p)) = ∑
i1<···<ik

λi1(p) · · · λik (p),

and the k-mean curvature Hk of the hypersurface is defined by(
n
k

)
Hk = (−1)kSk = (−1)k ∑

i1<···<ik

λi1 · · · λik . (1)

Thus, H0 = 1 and H1 = − 1
n tr(A) = H is the mean curvature of Σn.

In what follows, we work with the so-called Newton transformations Pk : X(Σ)→ X(Σ),
which are defined from A by setting P0 = I (the identity of X(Σ)) and for 1 ≤ k ≤ n,

k =

(
n
k

)
Hk I + A ◦ Pk−1. (2)

Observe that the Newton transformations Pk are all self-adjoint operators which
commute with the shape operator A. Even more, if {ek} is an orthonormal frame on TpΣ
which is diagonalizable with Ap and Ap(ei) = λi(p)ei, then

Pk p(ei) = µi,k(p)ei, (3)

where
µi,k = (−1)k ∑

i1<···<ik ,ij 6=i
λi1 · · · λik .

For each k, 1 ≤ k ≤ n− 1, we have

tr(Pk) = ck Hk, tr(A ◦ Pk) = −ck Hk+1,

where ck = (n− k)
(

n
k

)
= (k + 1)

(
n

k + 1

)
.

We refer the reader to [18–20] for further details about the classical Newton transfor-
mations for hypersurfaces in Riemannian and Lorentzian spaces.

Associated with each Newton transformations Pk, we consider the second-order linear
differential operator Lk : C∞(Σ)→ C∞(Σ), given by

Lk( f ) = tr(Pk ◦ ∇2 f ) = tr(Pk ◦ hess( f )).
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In particular, L0 = ∆. Here, ∇2 f : X(Σ) → X(Σ) denotes the self-adjoint linear
operator which is metrically equivalent to the hessian of f . It is given by

〈∇2 f (X), Y〉 = 〈∇X(∇ f ), Y〉, X, Y ∈ X(Σ).

Let ψ : Σn → −I × f Mn be a Riemannian immersion with Σ oriented by the unit
vector field N. If N is in the opposite time orientation as ∂t, such that 〈N, ∂t〉 < 0, the
normal vector field N is past-pointing Gauss map of the hypersurface. In what follows, we
assume hyperbolic angle function 〈N, ∂t〉 does not change the sign on Σn. Let h denote the
(vertical) height function naturally attached to Σn, namely, h = (πI) |Σ.

Let ∇ and ∇ denote gradients with respect to the metrics of −I × f Mn and Σn,
respectively. A simple computation shows that the gradient of πR on −I × f Mn is given by

∇πI = −∂t,

so that the gradient of h on Σn is

∇h = (∇πR)
> = −∂t − 〈N, ∂t〉N.

In particular, we have
|∇h|2 = 〈N, ∂t〉2 − 1, (4)

where | | denotes the norm of a vector field on Σn.
The main results of this paper are based on the particular case of the following lemma

for the trace operator, which is an operator of the form

LT(u) = tr(T ◦ hess(u)) = div(T(∇u))− 〈divT,∇u〉.

We recall that stochastic completeness is the property for a stochastic process to have
an infinite lifetime as follows:

Definition 1. A Riemannian manifold (M, 〈 , 〉) is said to be stochastically complete if for some
(and therefore, for any) (x, t) ∈ M× (0,+∞),∫

M
p(x, y, t)dy = 1,

where p(x, y, t) is the heat kernel of the Laplace-Beltrami operator ∆.

Note that the metric 〈 , 〉 is not assumed to be complete in the above definition. For
a more detailed introduction to Definition 1, we refer to the book by Emery [21]. The
following Lemma 1 can be found in Grigor’yan [14] and Pigola et al. [15].

Lemma 1. Let (M, 〈 , 〉) be a Riemannian manifold. The following statements are equivalent:

• M is stochastically complete ;
• For every u ∈ C2(M) with supM u < +∞, there exists a sequence {xn}, n = 1, 2 . . ., such

that, for every n, u(xn) ≥ supM u− 1
n and 4u(xn) ≤ 1

n , which is the Weak Maximum
Principle (WMP) for the Laplacian operator;

• For every g ∈ C0(M) and every u ∈ C2(M) with u∗ = supM u < +∞ satisfying
4u ≥ g(u), we have g(u∗) ≤ 0.

Equivalently, for any u ∈ C2(M) with u∗ = infM u > −∞, there exists a sequence {yn},
which satisfies the corresponding geometric conditions. Furthermore, as the generalization
of Lemma 1, the following conclusion can be found in [15,17].
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Lemma 2. The weak maximum principal holds on M for the operator L if and only if one of the
following statements holds on:

• For every u ∈ C2(M) with u∗ = supM u < +∞ and every γ < u∗, we have

inf
Ωγ

Lu ≤ 0,

where Ωγ = {x ∈ M : u(x) > γ};
• For every g ∈ C0(R) and u ∈ C2(M) which solve the differential inequality Lu ≥ b(x)g(u)

(b(x) > 0), we have g(u∗) ≤ 0;
• For each g ∈ C0(R), for each open set Ω ⊂ M with ∂Ω 6= ∅, for each v ∈ C0(Ω) ∩ C1(Ω)

satisfying Lν ≥ g(ν) on Ω and supΩ ν < +∞, we have that either

sup
Ω

ν = sup
∂Ω

ν

or
g(sup

Ω
ν) ≤ 0.

Here, L = trace(T ◦ hess(u)) = div(T(∇u))− 〈divT,∇u〉 is a trace operator with T being
a positive definite and symmetric endomorphism on the tangent bundle TM of manifold M.

We already know that L0 = 4 is always elliptic. According to Lemma 3.10 of [22], if
H2 > 0 on Σn, the operator L1 is elliptic, equivalently, P1 is positive definite. When k ≥ 2,
the lemma below establishes sufficient conditions which guarantee the ellipticity of the
operator Lr. The details about the lemma can be found in [23].

Lemma 3. Let ψ : Σn → Mn+1 be a spacelike hypersurface immersed into a semi-Riemannian
manifold Mn+1. If Σn has an elliptic point with respect to an appropriate choice of the Gauss map
N and Hr+1 > 0 on Σn for some 2 ≤ r ≤ n− 1, then Pk is positive definite and Hk is positive for
all 1 ≤ k ≤ r.

Recall that by an elliptic point in the spacelike hypersurface we mean a point p0 ∈ Σ
where all principal curvature λi(p0) have the same sign.

3. Uniqueness of Spacelike Hypersurfaces in Generalized Robertson Spacetimes

We consider a hypersurface Σn with a Gauss map satisfying 〈N, ∂t〉 ≤ −1. Under this
setting, we define the hyperbolic angle function Θ between Σn and ∂t which is a smooth
function and satisfies

−∞ < Θ = 〈N, ∂t〉 ≤ −1 < 0,

thus
|∇h|2 = Θ2 − 1.

The following are some useful expressions for the second-order linear differential
operator Lk, which can be found in [10].

Lemma 4. Let ψ : Σn → −I × f Mn be a complete spacelike hypersurface, g(t) =
∫ t

t0
f (s)ds be

defined on I, 〈N, ∂t〉 be the angle function for some fixed t0 ∈ I. We have that
Lkh = − f ′

f
(h)(ck Hk + 〈Pk∇h,∇h〉)− ck〈N, ∂t〉Hk+1,

Lk(g(h)) = −ck f (h)(
f ′

f
(h)Hk + 〈N, ∂t〉Hk+1),

(5)
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and

Lk−1( f (h)〈N, ∂t〉) =

(
n
k

)
f (h)〈∇h,∇Hk〉+ f ′(h)ck−1Hk

+
〈N, ∂t〉

f (h)

n

∑
i=1

µk−1,iKM(E∗i , N∗)‖E∗i ∧ N∗‖2

+
〈N, ∂t〉

f (h)
( f ′2 − f ′′ f )(ck−1Hk−1|∇h|2 − 〈Pk−1∇h,∇h〉)

+ f (h)〈N, ∂t〉
(

n
k

)
(nH1Hk − (n− k)Hk+1).

In particular, when k = 1, we have

∆( f (h)〈N, ∂t〉) = f (h)〈∇h,∇H〉+ f ′(h)nH + n f (h)〈N, ∂t〉(nH2 − (n− 1)H2)

+ f (h)〈N, ∂t〉
(

RicM(N∗, N∗)− (n− 1)( f ′2 − f ′′ f )(h)〈N∗, N∗〉M
)

,

where N∗ and E∗i denote the projections onto Pn of N and Ei, respectively, and {Ei}n
1 is a local

orthonormal frame such that the operators A and Pk−1 are commute, that is Pk−1Ei = µk−1,i Ei.

Observe that
Lk( f (h)) = f ′′(h)〈Pk∇h,∇h〉+ f ′(h)Lkh,

which implies that

Lk( f (h)) =
f ′′ f − f ′2

f
(h)〈Pk∇h,∇h〉 − ck f ′(h)Hk(

f ′

f
(h) + 〈N, ∂t〉

Hk+1
Hk

). (6)

Combining with the formula above, we have

Lk( f (h)〈N, ∂t〉) = 〈N, ∂t〉Lk f (h) + f (h)Lk〈N, ∂t〉+ 2
〈

Pk∇ f (h),∇〈N, ∂t〉
〉

.

Thus,

Lk−1〈N, ∂t〉 =

(
n
k

)
〈∇h,∇Hk〉+ 〈N, ∂t〉

(
n
k

)(
nH1Hk − (n− k)Hk+1

)
+

f ′(h)
f (h)

ck−1Hk +
〈N, ∂t〉
f 2(h)

n

∑
i=1

µk−1,iKM(E∗i , N∗)‖E∗i ∧ N∗‖2

+
〈N, ∂t〉
f 2(h)

( f ′2 − f ′′ f )
(

ck−1Hk−1|∇h|2 − 〈Pk−1∇h,∇h〉
)

+ 〈N, ∂t〉
f ′2 − f ′′ f

f 2 〈Pk−1∇h,∇h〉

+ 〈N, ∂t〉(
f ′(h)
f (h)

)2ck−1Hk−1 +
f ′(h)
f (h)

〈N, ∂t〉2ck−1Hk

+ 2〈N, ∂t〉(
f ′(h)
f (h)

)2〈Pk−1∇h,∇h〉 − 2
f ′(h)
f (h)

〈Pk−1∇h, A∇h〉.

On the other hand, since

hess(X) = − f ′(h)
f (h)

(X + 〈X,∇h〉∇h) + 〈N, ∂t〉AX,
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the square algebraic trace-norm of the hessian tensor of h is

|hess(h)|2 = (
f ′(h)
f (h)

)2(n− 1 + Θ4) + Θ2‖A‖2 + 2nH
f ′(h)
f (h)

Θ− 2
f ′(h)
f (h)

Θ〈A∇h,∇h〉. (7)

Moreover,

〈hess(h), Pk−1 ◦ hess(h)〉 = (
f ′(h)
f (h)

)2ck−1Hk−1 + 2Θ
f ′(h)
f (h)

ck−1Hk

+ Θ2
(

n
k

)(
nH1Hk − (n− k)Hk+1

)
+ (

f ′(h)
f (h)

)2〈Pk−1∇h,∇h〉+ (
f ′(h)
f (h)

)2Θ2〈Pk−1∇h,∇h〉

− 2Θ〈A∇h, Pk−1∇h〉.

It is easy to see that ‖hess(h)‖2 ≥ 0 and 〈hess(h), Pk−1 ◦ hess(h)〉 ≥ 0 when Pk−1 is
positive. Subsequently, we obtain the following result that will be used in our computations.

Lemma 5. Let ψ : Σn → −I × f Mn be a complete spacelike hypersurface with constant k-mean
curvature Hk, Θ = 〈N, ∂t〉 be the angle function and h be the height function, then we have

∆Θ = n〈∇h,∇H〉+ Θ
(

RicM(N∗, N∗)− (n− 1)( f f ′′ − f ′2)|∇h|2
)
−Θ(log f )′′|∇h|2

+
‖hess(h)‖2

Θ
+

f ′
f (h)

Θ
|∇h|2

( f ′

f
(h)Θ2 + nHΘ + (n− 1)

f ′

f
(h)
)

and

Lk−1Θ =

(
n
k

)
〈∇h,∇Hk〉+

Θ
f 2(h)

n

∑
i=1

µk−1,iKM(E∗i , N∗)‖E∗i ∧ N∗‖2

+ Θ
f ′2 − f ′′ f

f 2

(
ck−1Hk−1|∇h|2 − 〈Pk−1∇h,∇h〉

)
+ Θ

f ′2 − f ′′ f
f 2 〈Pk−1∇h,∇h〉+ 〈hess(h), Pk−1 ◦ hess(h)〉

Θ

+ Θ
f ′(h)
f (h)

( f ′

f
(h)ck−1Hk−1 + ck−1HkΘ +

f ′

f
(h)〈Pk−1∇h,∇h〉

)
−

f ′
f (h)

Θ

( f ′

f
(h)ck−1Hk−1 + ck−1HkΘ +

f ′

f
(h)〈Pk−1∇h,∇h〉

)
,

where |∇h|2 = f 2(h)〈N∗, N∗〉M.

Using Lemma 1, we prove the following sign relationship between mean curvature H
and the derivative of warping function f . Furthermore, we obtain the result about mean
curvature estimates.

Lemma 6. Let ψ : Σn → −I × f Mn (n ≥ 2) be a stochastically complete spacelike hypersurface
with non-zero constant mean curvature H and (log f )′′ ≤ 0, where I = (a, b) with −∞ ≤ a <
b ≤ +∞. If H > 0 and h∗ < b, then f ′ > 0; similarly, if H < 0 and h∗ > a, then f ′ < 0.
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Proof. First, we prove the case for H > 0 and f ′ > 0. Since the weak maximum principle
holds on the hypersurface, 〈N, ∂t〉 ≤ −1 and h is bounded from above, then using Lemma 1,
there exists a sequence {pj} such that

h(pj) > h∗ − 1
j
, 4h(pj) ≤

1
j
,

i.e.,

4h(pj) = −
f ′

f
(h(pj))(n + |∇h(pj)|2)− nH〈N, ∂t〉(pj) ≤

1
j
.

The inequality (log f )′′ ≤ 0 implies f ′
f (h) ≥

f ′
f (h
∗). This further leads to

− f ′

f
(h(pj)) ≤

n
n + |∇h(pj)|2

〈N, ∂t〉H +

1
j

n + |∇h(pj)|2
<

n
n + |∇h(pj)|2

〈N, ∂t〉H +
1
j
,

where 〈N, ∂t〉 ≤ −1, H is a positive constant and 0 ≤ |∇h|2 = 〈N, ∂t〉2− 1. Therefore, there
exists a positive integer N, such that

f ′

f
(h(pj)) > 0, ∀j > N.

Moreover, since f ′ is non-vanishing, we have f ′ > 0.
Following a similar argument as before, we can show that if the constant mean

curvature H is strictly negative, then f ′ < 0.

From the proof of Lemma 6, one can ensure that 〈N, ∂t〉H f ′ < 0 either f ′ or H is
non-vanishing.

Theorem 1. Let ψ : Σn → −I× f Mn (n ≥ 2) be a stochastically complete spacelike hypersurface with
non-zero constant mean curvature H and (log f )′′ ≤ 0, where I = (a, b) with−∞ ≤ a < b ≤ +∞. If
H > 0 and h∗ < b, then 0 < H ≤ f ′

f (h
∗); similarly, if H < 0 and h∗ > a, then f ′

f (h∗) ≤ H < 0.

Proof of Theorem 1. If h is constant, it is easy to show that Σ is a slice {h∗} × Mn with
constant H. Now, we assume that h is non-constant. Since H is non-vanishing, we just
consider the case H > 0. We can complete the proof in a similar way when H < 0.
Combining with Lemma 6, we can assume that f ′

f (h
∗) < H, then we can prove it by

contradiction. From the hypothesis, we consider γ < h∗ such that ∂Ωγ 6= ∅, where
Ωγ = {x ∈ Σ : h(x) > γ}, and there exists some ε > 0, such that

H − f ′

f
(h) ≥ ε,

and

∆g(h) = −n f (h)(
f ′

f
(h) + ΘH)

≥ −n f (h)(
f ′

f
(h)− H)

≥ −n f (h)(−ε)

≥ f (γ)ε > 0.
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Since the hypersurface is stochastically complete, from Lemma 1, the weak maximum
principle holds on Σn for the Laplace–Beltrami operator ∆. Applying it, we obtain

σ = f (γ)ε ≤ 0,

which is a contradiction. Thus, we complete the proof.

In order to extend the result above to the higher-order mean curvature, we introduce
two second-order elliptic differential operators, which will be used in our computation as
follows. The more detailed version can be found in [11].

Lemma 7. Let ψ : Σn → −I× f Mn be a complete spacelike hypersurface with an elliptic point and
non-vanishing k-mean curvature Hk (2 ≤ k ≤ n). Now, we define the operators Pk−1 as follows

Pk−1 =
k−1

∑
i=0

ck−1
ci

( f ′

f
(h)
)k−1−i

(−Θ)iPi,

where Pi is defined in Equation (2). Then

Lk−1 =
k−1

∑
i=0

ck−1
ci

( f ′

f
(h)
)k−1−i

(−Θ)iLi = Tr(Pk−1 ◦ hess),

and

Lk−1(g(h)) = −ck−1 f (h)
(
(

f ′

f
(h))k − (−Θ)k Hk

)
.

Remark 1. Combing with the definition of the elliptic point and Lemma 3, we obtain that if N is
the right orientation such that the k-mean curvature Hk is positive, then the operator Pk is always
positive definite. Thus, using Lemma 3, we have Lk is elliptic. Using the assumption that f ′ > 0
and 〈N, ∂t〉 < 0, it is easy to see that Pk−1 is positive definite, equivalently, the operator Lk−1
is elliptic.

Next, we generalize the result of Theorem 1 to the case of constant higher-order mean curvatures.
Alías et al. proved the case of f ′ > 0 in [17] (Theorem 4.4). We extend the conclusion to f ′ 6= 0,
which is presented below. In order to apply Lemma 3, we assume the existence of the elliptic point.
Now, we deduce the following result, which is about the higher-order mean curvature estimate for
spacelike hypersurfaces.

Theorem 2. Let ψ : Σn → −I × f Mn be a complete spacelike hypersurface with non-vanishing
constant k-mean curvature Hk (2 ≤ k ≤ n) and supΣ |H| < +∞, where I = (a, b) with
−∞ ≤ a < b ≤ +∞. Suppose that the weak maximum principle is valid on Σn for the operator Lk,
and there exists an elliptic point on Σn and (log f )′′ ≤ 0. Then, if Hk > 0 and h∗ < b, we have

0 < H
1
k
k ≤

f ′
f (h); similarly, if Hk < 0 and h∗ > a, then f ′

f (h) ≤ H
1
k
k < 0.

Proof of Theorem 2. Since Hk (k ≥ 2) is non-vanishing, there exists an elliptic point on Σ.
Using Lemma 6 and Cauchy–Schwarz inequality, we have

H ≥ H
1
2
2 ≥ · · · ≥ H

1
k
k > 0.

Similarly, if Hk < 0, then n must be odd, so we have H < 0 and (−1)k+1Hk < 0.
The operator Pk is positive by Lemma 3. Combining with the Remark 1, we have that

the operator Lk−1 is elliptic. Furthermore, since supΣ |H| < +∞ and the weak maximum
principle is valid on Σn for the operator Lk, then the weak maximum principle is also valid
on Σn for the operator Lk−1.



Mathematics 2022, 10, 3894 10 of 18

If h is constant, then it is easy to see Σ is a slice h∗ ×Mn such that f ′k

f k (h) = Hk. Now,

we consider the case of non-constant h and non-vanishing f ′. We will prove the case of

0 < H
1
k
k ≤

f ′
f (h).

We assume that f ′
f (h
∗) < H

1
k
k , then there exists γ < h∗ and ε > 0 such that ∂Ωγ 6= ∅,

where Ωγ = {x ∈ Σ : h(x) > γ} and

Hk −
f ′k

f k (h) ≥ ε.

Denoting g(h) =
∫ t

t0
f (s)ds, then g(h) is an increasing function and g(h)∗ = g(h∗) < +∞.

Since (log f )′′ ≤ 0 and 〈N, ∂t〉 ≤ −1, we obtain

f ′k

f k (h)− (−Θ)k Hk ≤
f ′k

f k (γ)− Hk ≤ −ε

on Ωγ. Since f ′ > 0, then

Lk−1(g(h)) = −ck−1 f (h)
(
(

f ′

f
(h))k − (−Θ)k Hk

)
≥ ck−1 f (h)ε

≥ ck−1 f (γ)ε > 0

on Ωγ. Then, applying Lemma 2 to Ωγ for the elliptic operator Lk, with ν ≡ ck−1 f (γ)ε a
positive constant, we obtain

ck f (γ)ε ≤ 0.

Therefore, it is in contradiction with the hypothesis, then we obtain the conclusion.
If H < 0, i.e., (−1)k+1Hk < 0, we denote the operator (−1)k−1Lk−1 is elliptic, where

the operator Tr
(
(−1)k−1Pk−1

)
is positive definite. The proof follows a similar method as

H > 0.

Remark 2. For the case of k = 1, there is no need for the existence of an elliptic point. If
H2 > 0, then H2 ≥ H2 > 0. We have H > 0 by choosing the appropriate Gauss map. Since
n2H2 = ∑ k2

i + n(n− 1)H2 > k2
i , then µi,1 = nH1 + Ki > 0 for any i, so P1 is positive definite,

which guarantees the ellipticity of L1.
If the hyperbolic angle function Θ < 0, recall that the constant mean curvature spacelike hyper-

surface in M is the spacelike slice τ×Mn of the Lorentzian warped product M = −I × f Mn, if and

only if it satisfies H = f ′(τ)
f (τ) , which is extended to the higher order mean curvature Hk = ( f ′(τ)

f (τ) )
k.

Theorem 3. Let ψ : Σ2 → −I × f M2 be a stochastically complete spacelike surface with non-zero
constant mean curvature H, and be contained in a slab and on which (log f )′′ ≤ 0. Then, the
surface Σ2 must be a slice.

Proof. Since the mean curvature is non-zero constant, from Lemma 6, we have f ′ 6= 0. Using
Lemma 4, we have
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∆h = −
( f ′

f
(h)Θ2 + nΘH + (n− 1)

f ′

f
(h)
)

= − 1
f ′
f (h)

(
(

f ′

f
(h)Θ)2 + nΘH

f ′

f
(h) + (n− 1)

f ′2

f 2 (h)
)

= − 1
f ′
f (h)

(( f ′

f
(h)Θ +

nH
2
)2

+ (n− 1)
( f ′2

f 2 (h)− n2H2

4(n− 1)
))

.

If n = 2, combining with Theorem 1, we have

∆h = − 1
f ′
f (h)

(
(

f ′

f
(h)Θ + H)2 + (

f ′2

f 2 (h)− H2)
)
≤ 0.

Since the surface is contained in a slab, we have h∗ > −∞, then applying Lemma 1,
we obtain that

g(h∗) = −
1

f ′
f (h∗)

(
(

f ′

f
(h∗)Θ + H)2 + (

f ′2

f 2 (h∗)− H2)
)
≥ 0.

From Theorem 1, we have f ′
f (h∗) ≥

f ′
f (h) ≥ H > 0. Clearly, the only solution of this

inequality is f ′
f (h∗) = H and Θ = −1, which implies that the surface is a slice.

Under the assumption of Theorem 3, we have that the constant mean curvature
spacelike slice {γ} ×Mn is given by H = f ′

f (γ), therefore, we obtain some non-existence
results as follows.

Corollary 1. Let ψ : Σn → −I× f Mn (n ≥ 3) be a spacelike hypersurface with non-zero constant
mean curvature H and (log f )′′ ≤ 0, where I = (a, b) with −∞ ≤ a < b < +∞. Then, there
is no stochastically complete spacelike hypersurface with non-zero constant mean curvature H
such that

H2 <
4(n− 1)

n2
f ′2

f 2 (h).

Considering the warped product manifold −R×et M2, the warping function f = et

satisfies (log f )′′ ≤ 0. In particular, using the proof of Theorem 1, we obtain that f ′
f = 1 can

replace the assumption of the constant mean curvature. As an application of Theorem 3,
we obtain the following corollary.

Corollary 2. Let ϕ : Σ2 → −R×et M2 be a stochastically complete spacelike surface which is
contained in a bounded slab. Assume that the non-vanishing mean curvature H is bounded, then
the surface ϕ(Σ2) is a slice of −R×et M2, and H = 1.

Theorem 4. Let−I× f Mn be a GRW spacetime with n ≥ 2, where I is bounded and (log f )′′ ≤ 0.
Then, there is no stochastically complete spacelike hypersurface with non-zero constant mean
curvature H such that Θ < 1− n.
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Proof of Theorem 4. Assume that there exists a constant mean curvature hypersurface
with Θ < 1− n, now we can prove it by contradiction. From the assumption that there is
an ε > 0 such that Θ− (1− n) ≤ −ε < 0, combining with the proof of Theorem 3, we have

∆h = −
( f ′

f
(h)Θ2 + nΘH + (n− 1)

f ′

f
(h)
)

≤ −H
(

Θ2 + nΘ + (n− 1)
)

= −H(Θ + 1)(Θ + n− 1)

≤ −H(Θ + 1)(−ε)

≤ −H(−n + 2− ε)(−ε) < 0.

It is easy to obtain ∆h ≤ −H(Θ + 1)(Θ + n− 1) < 0 when n ≥ 2. Applying Lemma 1,
we obtain

ν = g(h∗) = −Hε(n− 2 + ε) ≥ 0,

which is a contradiction, so we complete the proof.

If we denote {ek} as an orthogonal frame on TpΣ which is diagonalizable with Ap, such
that Ap(ei) = λi(p)ei, then Pk(ei) = µi,kei and ∇h(ei) = σiei. In order to extend the unique-
ness to higher-order mean curvatures, we need to estimate the range of 〈Pk−1∇h,∇h〉.
Using Chebyshev inequality, we have that

min〈Pk−1∇h,∇h〉 ≤ ck−1Hk−1
n

|∇h|2 ≤ max〈Pk−1∇h,∇h〉,

where the inequality holds if and only if µk−1,i = µk−1,j or σt = σs with 1 ≤ i, j, s, t ≤ n and
i 6= j, s 6= t. Thus, we can assume that there exists θ ≥ 1 satisfying that

〈Pk−1∇h,∇h〉 ≥ ck−1Hk−1
θn

|∇h|2. (8)

Now, we extend the result of Theorem 4 to higher order mean curvatures. For simplic-
ity, we just focus on the case of f ′ > 0, the case of f ′ < 0 can be obtained in a similar way.

Theorem 5. Let −I × f Mn(n ≥ 2) be a GRW spacetime satisfying (log f )′′ ≤ 0 and I be
bounded. Then, there is no stochastically complete spacelike hypersurface with non-zero constant
k-mean curvature Hk (2 ≤ k ≤ n) and supΣ |H| < ∞, such that Θ < 1− θn; especially, if θ = 1,
then Θ < 1− n.

Proof of Theorem 5. From the hypothesis, the weak maximum principle for Lk holds on
the hypersurface. From Theorem 2, we obtain

Lk−1h = − f ′

f
(h)
(

ck−1Hk−1 + 〈Pk−1∇h,∇h〉
)
− ck−1〈N, ∂t〉Hk

≤ − f ′

f
(h)ck−1Hk−1 −

f ′

f
(h)

ck−1Hk−1
θn

|∇h|2 −Θck−1Hk−1H
1
k
k

= − 1
θn

ck−1Hk−1

( f ′

f
(h)Θ2 + θnΘH

1
k
k + (θn− 1)

f ′

f
(h)
)

≤ − 1
θn

ck−1Hk−1

( f ′

f
(h)Θ2 + θnΘ

f ′

f
(h) + (θn− 1)

f ′

f
(h)
)

= − 1
θn

f ′

f
(h)(Θ + θn− 1)(Θ + 1).

Now, using Lemma 2, we can finish the proof in a similar way as the proof in
Theorem 4.
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4. The Application of Prior Estimation of the Constant k-th Order Mean Curvature
Spacelike Hypersurface

In this section, we consider the generalized Robertson–Walker spacetime −I × f Mn

satisfying the following (see [24] ) null convergence condition (NCC):

RicM ≥ (n− 1) sup
I
( f ′′ f − f ′2)〈 , 〉M, (9)

where RicM is the Ricci tensor of the fiber Mn; furthermore, recall that the spacetime
−I × f Mn obeys the timelike convergence condition (TCC) when its Ricci curvature is
non-negative on timelike directions, i.e.,

f ′′ ≤ 0, RicM ≥ (n− 1) sup
I
( f ′′ f − f ′2)〈 , 〉M. (10)

Theorem 6. Let −I × f Mn be a generalized Robertson–Walker spacetime satisfying the TCC
and the dimension 3 ≤ n + 1 ≤ 7, where I = (a, b) with −∞ ≤ a < b < +∞. Suppose that
ψ : Σn → −I × f Mn is a stochastically complete spacelike hypersurface with non-zero constant
mean curvature H. Then, the hypersurface is a slice.

Proof of Theorem 6. Consider the formula for ∆Θ of Lemma 5, we have

∆Θ = Θ(RicM(N∗, N∗)− (n− 1)(log f )′′|∇h|2)−Θ(log f )′′|∇h|2

+
‖hess(h)‖2

Θ
+

f ′
f (h)

Θ
|∇h|2

( f ′

f
(h)Θ2 + nHΘ + (n− 1)

f ′

f
(h)
)
,

where N∗ denotes the projection of N onto the fiber Mn. Observe that

‖∇h‖2 = ‖N∗‖2 = f 2(h)〈N∗, N∗〉M.

Therefore, by the timelike convergence condition (10), we have

RicM(N∗, N∗)− (n− 1)(log f )′′|∇h|2 ≥ 0,

and

−Θ(log f )′′|∇h|2 = −Θ
f ′′ f
f 2 |∇h|2 + Θ

f ′2

f 2 |∇h|2 ≤ Θ
f ′2

f 2 |∇h|2.

Furthermore, using the inequality |hess(h)|2 ≥ 0, and the result of Theorem 1, we
have for every 3 ≤ n + 1 ≤ 7,

∆Θ ≤ |∇h|2
Θ

( f ′2

f 2 (h)Θ2 + nHΘ
f ′

f
(h) + (n− 1)

f ′2

f 2 (h)
)
+
|∇h|2

Θ
f ′2

f 2 (h)Θ2

=
|∇h|2

Θ

(
2

f ′2

f 2 (h)Θ2 + nHΘ
f ′

f
(h) + (n− 1)

f ′2

f 2 (h)
)

=
Θ2 − 1

Θ

(
2
( f ′

f
(h)Θ +

nH
4
)2

+ (n− 1)
( f ′2

f 2 (h)− n2

8(n− 1)
H2)) ≤ 0.

Furthermore, since the hypersurface is stochastically complete, if we denote

g(Θ) =
Θ2 − 1

Θ

(
2
( f ′

f
(h)Θ +

nH
4
)2

+ (n− 1)
( f ′2

f 2 (h)− n2

8(n− 1)
H2)),
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then using the weak maximum principle of Lemma 1, we have

g(Θ∗) =
Θ2
∗ − 1
Θ∗

(
2
( f ′

f
(h)Θ∗ +

nH
4
)2

+ (n− 1)
( f ′2

f 2 (h)− n2

8(n− 1)
H2)) ≥ 0,

where the inequality holds if and only if Θ2
∗ = 1. Thus, combining with Θ ≤ −1, we have

Θ = −1, i.e., |∇h|2 = Θ2
∗ − 1 = 0. It means that when 2 ≤ n ≤ 6 the hypersurfaces are

slices.

Motivated by the previous results, we extend the result of Theorem 6 to constant
higher order mean curvatures.

Theorem 7. Let −I × f Mn be a generalized Robertson–Walker spacetime with dimension
3 ≤ n + 1 ≤ 7, where I = (a, b) and −∞ ≤ a < b < +∞. Suppose that ψ : Σn → −I × f Mn is
a complete spacelike hypersurface with non-zero constant k-mean curvature Hk (2 ≤ k ≤ n) and there
exists an elliptic point on Σ. Suppose that the Ricci curvature of Mn satisfies KM ≥ supI( f f ′′ − f ′2)
and ( f )′′ ≤ 0, the WMP holds on the operator Lk and supΣ H < +∞. Furthermore,
〈Pk−1∇h,∇h〉 ≥ ck−1 Hk−1

n |∇h|2, i.e., θ = 1. Then, the hypersurface is a slice.

Proof of Theorem 7. Now, we consider the hypersurface with the constant k-th order mean
curvature. We already know that

Lk−1〈N, ∂t〉 =
Θ

f 2(h)

n

∑
i=1

µk−1,iKM(E∗i , N∗)‖E∗i ∧ N∗‖2

+ Θ
f ′2 − f ′′ f

f 2

(
ck−1Hk−1|∇h|2 − 〈Pk−1∇h,∇h〉

)
+ Θ

( f ′2 − f ′′ f )
f 2 〈Pk−1∇h,∇h〉+ 〈hess(h), Pk−1 · hess(h)〉

Θ

+ Θ
f ′(h)
f (h)

( f ′

f
(h)ck−1Hk−1 + ck−1HkΘ +

f ′

f
(h)〈Pk−1∇h,∇h〉

)
−

f ′
f (h)

Θ

( f ′

f
(h)ck−1Hk−1 + ck−1HkΘ +

f ′

f
(h)〈Pk−1∇h,∇h〉

)
.

Using the decomposition

N = N∗ + 〈N, ∂t〉∂t, Ei = E∗i + 〈Ei, ∂t〉∂t, ∂t = ∇h + 〈N, ∂t〉N,

we have
|E∗i ∧ N∗|2 = |∇h|2 − 〈∇h, Ei〉2 ≤ |∇h|2 = 〈N, ∂t〉2 − 1.

If we denote η := supI{ f ′2 − f ′′ f }, we have

n

∑
i=1

µk−1,iKM(E∗i , N∗)‖E∗i ∧ N∗‖2 ≥ η
n

∑
i=1

µk−1,i‖E∗i ∧ N∗‖2

= η(ck−1Hk−1|∇h|2 − 〈Pk−1∇h,∇h〉).

Thus,

1
f 2(h)

n

∑
i=1

µk−1,iKM(E∗i , N∗)‖E∗i ∧ N∗‖2 − f ′′ f − f ′2

f 2(h)
(
ck−1Hk−1|∇h|2 − 〈Pk−1∇h,∇h〉

)
≥ η − ( f ′′ f − f ′2)

f 2(h)
(
ck−1Hk−1|∇h|2 − 〈Pk−1∇h,∇h〉

)
≥ 0.
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Therefore, we have

Lk−1〈N, ∂t〉 ≤
|∇h|2

Θ
f ′

f
(h)
( f ′

f
(h)ck−1Hk−1 + ck−1HkΘ +

f ′

f
(h)〈Pk−1∇h,∇h〉

)
+ Θ

f ′2

f 2 〈Pk−1∇h,∇h〉

≤ ck−1Hk−1|∇h|2
nΘ

(
2

f ′2

f 2 (h)Θ
2 + nΘH

1
k
k + (n− 1)

f ′2

f 2 (h)
)

=
ck−1Hk−1|∇h|2

nΘ

(
2(

f ′

f
(h)Θ +

nH
1
k
k

4
)2 + (n− 1)(

f ′2

f 2 (h)−
n2

8(n− 1)
H

2
k
k )
)

.

When 3 ≤ n + 1 ≤ 7, we obtain n2

8(n−1) < 1, thus Lk−1Θ ≤ 0. Combining with
Theorem 2, we can finish the proof by Lemma 2 in a similar way as in the proof of
Theorem 6.

As an application of Theorems 6 and 7, we obtain the following corollary.

Corollary 3. Let−I× f Mn be a generalized Robertson–Walker spacetime with dimension n + 1 ≥ 8
satisfying the TCC. Suppose that ψ : Σn → −I × f Mn is a complete spacelike hypersurface with
I = (a, b) and −∞ ≤ a < b < +∞. Assume that one of the following holds:

(i) the spacelike hypersurface is stochastically complete with non-zero constant mean curvature
H;

(ii) the spacelike hypersurface has constant k-mean curvature Hk (k ≤ n), where the WMP
holds on Σ for the operator Lk and supΣ |H| < +∞, there exists an elliptic point in Σ and
〈Pk−1∇h,∇h〉 ≥ ck−1 Hk−1

n |∇h|2.

Then, there exists no spacelike hypersurface such that

H
2
k
k <

8(n− 1)
n2

f ′2

f 2 (h) (2 ≤ k ≤ n).

Theorem 8. Let ψ : Σn → I × f Mn be a complete spacelike hypersurface, where I = (a, b) with
−∞ ≤ a < b < +∞. Assume that one of the following holds:

(i) the stochastically complete spacelike hypersurface has non-zero constant mean curvature H,
(log f )′′ ≤ 0 and RicM(N∗, N∗) ≥ (n− 1) supI( f ′′ f − n

2(n−1) f ′2);

(ii) the complete spacelike hypersurface has non-zero constant k-mean curvature Hk (k ≤ n)
and there exists an elliptic point on Σ, the Ricci curvature of Mn satisfies RicM ≥ 0,
〈Pk−1∇h,∇h〉 ≥ ck−1 Hk−1

n |∇h|2 and ( f )′′ ≤ 0, and the WMP holds on the operator
Lk and supΣ H < +∞.

Then, the hypersurface is a slice.

Proof of Theorem 8. (i) Since the hypersurface is stochastically complete, we have the
weak maximum principle holds on the Laplace–Beltrami operator. Consider the inequality
RicM(N∗, N∗) ≥ (n− 1) supI( f ′′ f − n

2(n−1) f ′2) holds on the spacetimes, we have



Mathematics 2022, 10, 3894 16 of 18

∆Θ = Θ
(

RicM(N∗, N∗)− (n− 1)(log f )′′|∇h|2
)
−Θ(log f )′′|∇h|2

+
‖hess(h)‖2

Θ
+

f ′
f (h)

Θ
|∇h|2

( f ′

f
(h)Θ2 + nHΘ + (n− 1)

f ′

f
(h)
)

≤ |∇h|2
Θ

( f ′2

f 2 (h)Θ2 + nHΘ
f ′

f
(h) + (n− 1)

f ′2

f 2 (h)
)
+

n− 2
2
|∇h|2

Θ
f ′2

f 2 (h)Θ2

=
|∇h|2

Θ

(n
2

f ′2

f 2 (h)Θ2 + nHΘ
f ′

f
(h) + (n− 1)

f ′2

f 2 (h)
)

=
|∇h|2

Θ

(
n
2

( f ′

f
(h)Θ + H

)2
+ (n− 1)

( f ′2

f 2 (h)− nH2

2(n− 1)

))
≤ 0.

Thus, if we denote

g(Θ) =
|∇h|2

Θ

(
n
2

( f ′

f
(h)Θ + H

)2
+ (n− 1)

( f ′2

f 2 (h)− nH2

2(n− 1)

))
,

then using Theorem 2 and Lemma 1, we obtain that ∀ n ≥ 2,

g(Θ∗) =
Θ∗2 − 1

Θ∗

(
n
2

( f ′

f
(h)Θ∗ + H

)2
+ (n− 1)

( f ′2

f 2 (h)− nH2

2(n− 1)

))
≥ 0.

Therefore, we have Θ = −1, which implies the hypersurface is a slice.
(ii) From the hypothesis RicM ≥ 0 and ( f )′′ ≤ 0, combining with the proof of

Theorem 7, we have

Lk−1Θ =
Θ

f 2(h)

n

∑
i=1

µk−1,iKM(E∗i , N∗)‖E∗i ∧ N∗‖2

+ Θ
f ′2 − f ′′ f

f 2

(
ck−1Hk−1|∇h|2 − 〈Pk−1∇h,∇h〉

)
+ Θ

( f ′2 − f ′′ f )
f 2 〈Pk−1∇h,∇h〉+ 〈hess(h), Pk−1 · hess(h)〉

Θ

+ Θ
f ′(h)
f (h)

( f ′

f
(h)ck−1Hk−1 + ck−1HkΘ +

f ′

f
(h)〈Pk−1∇h,∇h〉

)
−

f ′
f (h)

Θ

( f ′

f
(h)ck−1Hk−1 + ck−1HkΘ +

f ′

f
(h)〈Pk−1∇h,∇h〉

)
≤ |∇h|2

Θ
f ′

f
(h)
( f ′

f
(h)ck−1Hk−1 + ck−1HkΘ +

f ′

f
(h)〈Pk−1∇h,∇h〉

)
+ Θ

f ′2 − f ′′ f
f 2 ck−1Hk−1|∇h|2

≤ ck−1Hk−1|∇h|2
nΘ

(
(n + 1)

f ′2

f 2 (h)Θ
2 + nΘH

1
k
k + (n− 1)

f ′2

f 2 (h)
)

=
ck−1Hk−1|∇h|2

nΘ

(
n(

f ′

f
(h)Θ +

1
2

H
1
k
k )

2 + n(
f ′2

f 2 (h)−
1
4

H
2
k
k ) +

f ′2

f 2 (h)|∇h|2
)

.

Since f ′2

f 2 (h) ≥ H
2
k
k , we have Lk−1Θ ≤ 0. Using the same way as case (i), we can

complete the proof.
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5. Conclusions

Manifold learning for high-dimensional data is becoming increasingly important in
many areas. In this paper, we investigated the geometrical structure of the high dimensional
manifold by considering the constant mean curvature hypersurface. In particular, we
illustrated the uniqueness of constant mean curvature spacelike hypersurfaces. For higher-
order mean curvature spacelike hypersurfaces, we demonstrated the prior estimates and
non-existence results. For future work, we would like to extend the framework to many
real data applications, including biological sequence analysis and gene-disease association
studies.
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