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Abstract: COVID-19 is the name of the new infectious disease which has reached the pandemic stage
and is named after the coronavirus (COVs) which causes it. COV is a single-stranded RNA virus
which in humans leads to respiratory tract symptoms which can lead to death in those with low
immunities, particularly older people. In this study, a standard dynamic model for COVID-19 was
proposed by comparing a simple model and the optimal control model to reduce the number of
infected people and become a guideline to control the outbreak. Control strategies are the vaccination
rate and vaccine-induced immunity. An analysis was performed to find an equilibrium point, the
basic reproduction number (R0), and conditions that generate stability by using Lyapunov functions
to prove the stability of the solution at the equilibrium point. Pontryagin’s maximum principle was
used to find the optimal control condition. Moreover, sensitivity analysis of the parameters was
performed to learn about the parameters that might affect the outbreak in order to be able to control
the outbreak. According to the analysis, it is seen that the efficacy of vaccines (b) and the infection
rate (βan, βsn, βav, βsv) will affect the increased (decreased) incidence of the outbreak. Numerical
analyses were performed on the Omicron variant outbreak data collected from the Thailand Ministry
of Health, whose analyses then indicated that the optimal control strategy could lead to planning
management and policy setting to control the COVID-19 outbreak.

Keywords: COVID-19; optimal control; Lyapunov function; global stabilities; sensitivity

MSC: 37M05

1. Introduction

A huge outbreak of COVID-19 infections has reached every corner of the world. It is
now considered to be the largest health threat to the world since there are now millions of
confirmed cases of infection. Due to the pathogens of the COVID-19 virus, a single-stranded
RNA virus [1] belonging to the family of Coronaviridae, it causes respiratory sickness. The
coronaviruses can be classified into at least four genera: Alphacoronavirus, Betacoron-
avirus, Gammacoronavirus and Deltacoronavirus. The coronaviruses that cause diseases
in humans but do not cause severe respiratory symptoms or asymptomatic syndrome are
members of the Alphacoronavirus genus. The coronaviruses that cause severe diseases in
humans such as severe acute respiratory syndrome (SARS) and Middle East respiratory
syndrome (MERS), SARS-CoV and MERS-CoV, belong to the Betacoronavirus genus. These
last two viruses originated in animals but have crossed the species (animal-to-human)
barrier. The new coronaviruses in 2019 are a family of viruses which cause illnesses ranging
from the common cold to more severe diseases [2,3] and appeared only recently in humans.
They first appeared in bats. In humans, these viruses cause respiratory illnesses.
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COVID-19 is transmitted from person to person [4,5] through the air by droplets of
liquid that come from the noses and mouths of infected people when they cough, sneeze,
and talk, or by touching surfaces that are contaminated with the virus [6]. The length of
time between infection and the appearance of the first symptoms (incubation period) is
between 1 and 14 days (5–6 days on average). More than 97% of patients begin to show
symptoms of illness within 14 days. General symptoms include fever, fatigue, headache,
runny nose, sore throat, coughing, rapid breathing, and difficulty breathing. In severe
cases, patients may begin to show complications such as pneumonia, lung inflammation,
renal failure, or death [2,4,5,7,8]. Currently, there is no clear information showing how long
COVID-19 can survive on surfaces. It was found that viruses would not survive after being
exposed to disinfectants [8].

The spread of COVID-19 was first reported in the city of Wuhan in China when
it originated that a continuously increasing number of patients having pneumonia of
unknown etiology began in December 2019. It was officially reported on 3 January 2020 that
the pneumonia outbreak in Wuhan was caused by a new coronavirus (novel coronavirus
2019, 2019-nCoV) [5,9–13] through person-to-person contact. On 22 January 2020, the
Thailand Department of Disease Control, Ministry of Public Health elevated the emergency
operations to be level 3 (avoiding traveling). The Ministry of Public Health implemented
measures for temperature monitoring and screening at immigration checkpoints to monitor
and detect travelers at risk of COVID-19 infection. As of 29 June 2022, Thailand has
reported a cumulative total of 4,520,220 confirmed cases with 30,634 deaths [14]. Unlike
many countries in the world, Thailand has a well-developed public health system with
free medical health centers in every part of the country. The health centers are staffed by
medical doctors and nurses who are governmental employees working to serve the people.
Nothing is preventing Thailand from controlling the COVID-19 pandemic except for the
lack of knowledge on the spread of the disease, the control steps tailored to the country,
and the vaccines needed for preventing the spread of the virus. This study aims to provide
the knowledge needed to efficiently control the spread of the disease.

Mathematical modeling is a tool for analyzing strategies needed to control the spread
of COVID-19. From past to present, numerous researchers have proposed different models
of the spread of COVID-19 needed to study the dynamic of the spread. In the first half of the
20th century, the SEIR model was used to understand the behavior of infectious diseases,
with many researchers incorporating its use in developing the relevant mathematical
models to predict transmission dynamics with a view to control [15]. These have included
well known epidemics such as MERS [16], influenza [17–19], and dengue fever [20,21].
Gardner, Rey, et al. [22] introduced a basic model to study the spread of MERS-CoV in the
Arabian Peninsula, Europe, North America, Southeast Asia, the Middle East, and the United
States of America. The spread of MERS-CoV is not exactly the same as that of severe acute
respiratory syndrome SARS-CoV. Both of these coronaviruses are transmitted by person-to-
person contact. Differences in the epidemiology are used to create the mathematical model
for each coronavirus. The differences in the MERS-CoV transmission were the locations of
the contact and who the human contacts were. Ndaïroua et al. [11] created a mathematical
model to study the spread of COVID-19 in Wuhan, China. How humans get infected was
studied, and from this, the basic reproduction number was calculated, while sensitivity
of the parameters affecting the spread was considered. Enahoro et al. [10] developed
a mathematical model to study the dynamic of the spread and control of COVID-19 in
Nigeria. The model analyzed and determined the parameters using COVID-19 information
publicized by the Nigeria Center of Disease Control (NCDC) to assess the effects across
the country and within communities. Numerical simulation in the mathematical model
showed that COVID-19 could be efficiently controlled in Nigeria by using a moderate
level of social distancing across the country. Sen [23] created a mathematical model for the
spread of COVID-19 in the form of the SEIRD model (susceptible–infected–recovered–dead
model) by analyzing the spread in five countries, i.e., China, Italy, France, United States of
America, and India. Curve fitting analysis was conducted to compare the spread between
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real information and the created model. Kumar et al. [24] developed a simple mathematical
model to predict and examine the spread of COVID-19 in India. A mathematical method
was proposed to predict new cases of COVID-19 or cumulative confirmed cases in real
situations. Various simulation models were presented to predict the spread of COVID-19
in India and other countries. Hezam et al. [25] proposed a dynamic mathematical model
to control the spread of COVID-19 and cholera in Yemen. All four control functions were
used, namely, social distancing, lockdown, number of tests, and number of chlorine tablets.
Riyapan et al. [26] created a mathematical model and conducted an analysis to understand
the dynamic of COVID-19 spread in Bangkok. People were divided into seven groups,
i.e., susceptible group, exposed group, infected group, asymptomatic group, symptomatic
group (quarantined), recovered group, and dead group. According to the model analysis
and numerical results, it was shown that wearing a mask regularly could reduce the spread
of COVID-19.

From what was mentioned earlier, it can be seen that this research is different from the
research studies mentioned above. The objective of this research is to analyze the dynamic
of COVID-19 by creating a mathematical model, and consideration is made when people
get vaccinated for COVID-19. Specifically, the infective individuals’ trajectories with several
values of vaccination efficacies are compared against one another to see the effects that the
efficacies have on these trajectories. Furthermore, a numerical analysis is also conducted
on the infective data collected from the Thai Ministry of Health for the Omicron variant
outbreak, whereby the rates of transmission of symptomatic and asymptomatic infections
are estimated. Optimal control analyses are then performed to compare its effectiveness
against the uncontrolled counterparts. It is seen that the controlled trajectories outperform
the uncontrolled counterparts.

2. Materials and Methods
2.1. Mathematical Model

Yang and Wang [7] proposed a COVID-19 mathematical model in the form of the
SEIHRV model (susceptible–exposed–infected–hospitalized–recovered model) to study the
spread of COVID-19 by comparing different infection rates based on the Hamilton County
(USA) case reports. The study found that environmental factors played an important role
in the spread of COVID-19. Rajputet al. [27] proposed a nonlinear mathematical model
as a strategy for controlling the spread of COVID-19 by using vaccination as a means
to reduce the infection. Both studies are consistent with and are similar to the research
here. The World Health Organization (WHO) has reported that people vaccinated against
COVID-19 with one of the approved COVID-19 vaccines develop illnesses of different
severity, i.e., the symptoms of patients whose infectious status are due to the exposure to
mRNA fragments in the vaccine could be mild or strong enough to prevent hospitalization,
depending on the immune status of the patient and which vaccine was used. It should
be noted that the vaccines are only approved for different age groups. In order to be
able to take into account the possibility of the responses of individuals to the exposure to
mRNA of COVID-19 in its natural state or the mRNA in the vaccine, a modification of the
population groups in the model is made. In this research, the population is first divided
into two groups, the vaccinated population and the unvaccinated population, to study
differences in the responses of both groups. In addition, each population is further divided
into subgroups as follows: a group labelled unvaccinated and the susceptible population,
a group of unvaccinated and the exposed population, a group of unvaccinated and the
asymptomatic population, a group of unvaccinated and the symptomatic population, a
group of vaccinated and the susceptible population, a group of vaccinated and the exposed
population, a group of vaccinated and the asymptomatic population, a group of vaccinated
and the symptomatic population, a group of the hospitalized population, and a group of
the recovered population. Note that the isolated infected population group is not explicitly
included in the model but is rather included in the symptomatic infectious group. This is
because there was already a widespread use of the antigen testing kit amongst the Thai
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population, even in the rural regions, by the time of the Omicron outbreak; the symptomatic
infectious population, upon testing positive for COVID-19 with the kit, automatically
isolated themselves and received appropriate treatments via post mails. The developed
model is then dynamically analyzed to investigate the appropriate control measures.

The transmission dynamics are encapsulated in the following diagram.
Susceptible groups for the unvaccinated population infected with COVID-19 have the

rates of βan and βsn. The infection rate of the unvaccinated population η1 is determined as:

η1 = βan Ian + βsn Isn (1)

Similarly, the infection rate of the vaccinated population η2 is determined as:

η2 = βav Iav + βsv Isv (2)

From the diagram in Figure 1, the infection dynamics can be described as follows:
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The initial number in the unvaccinated human population susceptible to COVID-19
is (1− b)σ when 0 < b < 1. The unvaccinated and infected human population will
transmit the virus to the susceptible human population with the probabilities of βan and βsn,
respectively. When the human population is exposed to COVID-19, the incubation period is
at the rate of φ. If the body’s immune response is absent, they become infected. Infection in
humans can be symptomatic, showing symptoms, or asymptomatic, both being infectious
(able to transmit the infection). After getting infected, infected persons shall be hospitalized
with the rate of ω1 and ω2, respectively. When infected with COVID-19, some people die
of the disease, with a death rate of d. However, infected people who are asymptomatic may
not be hospitalized. After undergoing COVID-19 treatment, infected people will recover.
The human population shall die of natural causes at a rate of µ.

The number in the vaccinated human population susceptible to COVID-19 is bσ. The
vaccinated and infected human population shall transmit the virus to the susceptible human
population with the probability of βav and βsv, respectively. When the human population
is exposed to COVID-19, the incubation period is at the rate of (1− δ). If the body’s
immune response is absent, they become infected. Infection in humans is divided into
2 characteristics, namely, symptomatic infection and asymptomatic infection. After getting
infected, infected persons shall be hospitalized with the rate of ω3 and ω4, respectively.
When infected with COVID-19, some people die of the disease, with a death rate of d. Most
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of the infected people who are asymptomatic may not be hospitalized. After undergoing
COVID-19 treatment, infected people will recover. The human population shall die of
natural causes at a rate of µ.

A model of COVID-19 and vaccinations can be created by describing the relationship
of the mathematical model as follows:

dSn

dt
= (1− b)σ− η1Sn − µSn (3)

dEn

dt
= η1Sn − φEn − (1− φ)En − µEn (4)

dIan

dt
= φEn − (ω1 + γ2 + µ + d)Ian (5)

dIsn

dt
= (1− φ)En − (ω2 + µ + d)Isn (6)

dSv

dt
= bσ− η2Sv − µSv (7)

dEv

dt
= η2Sv − (1− δ)φEv − (1− δ)(1− φ)Ev − µEv (8)

dIav

dt
= (1− δ)φEv − (ω4 + γ3 + µ + d)Iav (9)

dIav

dt
= (1− δ)(1− φ)Ev − (ω3 + µ + d)Isv (10)

dHp

dt
= ω1 Ian + ω2 Isv + ω3 Isv + ω4 Iav − (γ1 + µ + d)Hp (11)

dR
dt

= γ1Hp + γ2 Ian + γ3 Iav − µR (12)

when
Nh = Sn + En + Ian + Isn + Sv + Ev + Iav + Isv + Hp + R (13)

where the parameters of Equations (3)–(12) are defined in Table 1.

Lemma 1. (From [28,29]). Let (Sn(t), En(t), Ian(t), Isn(t), Sv(t), Ev(t), Iav(t), Isv(t), Hp(t),R(t))
be the solution of the system (3)–(12) with positive initial conditions Sn(0), En(0), Ian(0),Isn(0),
Sv(0), Ev(0), Iav(0), Isv(0), Hp(0), R(0). Denoting also the invariant set

Ω =
{
(Sn, En, Ian, Isn, Sv, Ev, Iav, Isv, Hp, R ∈ R+

10 : Nh ≤ σ
µ

}
, and Ω is a positively invariant set

for (3)–(12).

Proof. Where Nh = Sn + En + Ian + Isn + Sv + Ev + Iav + Isv + Hp + R, the formula will be:

dNh
dt = dSn

dt + dEn
dt + dIan

dt + dIsn
dt + dSv

dt + dEv
dt + dIav

dt + dIsv
dt +

dHp
dt + dR

dt
dNh
dt = dSn

dt σ− µNh − d
(

Ian + Isn + Iav + Isv + Hp
)

≤ σ− µNh

It can be seen that dNh
dt ≤ σ− µNh ≤ 0. Therefore, when Nh(t) ≤ N(0)e−µt + σ

µ

[
1− e−µt],

the derivative dNh
dt satisfies dNh

dt ≤
σ
µ . Hence, as t→ ∞, e−µt → 0 , it then follows that all

trajectories within the invariant set Ω will form a positively invariant set in R+
10 for the

systems (3)–(12) since all epidemiological constants are nonnegative. �
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Table 1. Definitions of variables and parameters.

Variables and Parameters Description

Sn The number in the unvaccinated, susceptible population.
En The number in the unvaccinated, exposed population.
Ian The number in the unvaccinated, asymptomatic, infected population.
Isn The number in the unvaccinated, symptomatic, infected population.
Sv The number in the vaccinated, susceptible population.
Ev The number in the vaccinated, exposed population.
Iav The number in the vaccinated, asymptomatic, infected population.
Isv The number in the vaccinated, symptomatic, infected population.
Hp The number in the hospitalized population.
R The number in the recovered population.
b Efficacy of vaccination.
σ Initial number in the population.

βan Infection rate of the unvaccinated, asymptomatic, infected population.
βsn Infection rate of the unvaccinated, symptomatic, infected population.
βav Infection rate of the vaccinated, asymptomatic, infected population.
βsv Infection rate of the vaccinated, symptomatic, infected population.
φ Incubation period of the disease.
δ Efficacy of the vaccination against COVID-19.

ω1 Hospitalization rate of the unvaccinated, asymptomatic, infected population.
ω2 Hospitalization rate of the unvaccinated, symptomatic, infected population.
ω3 Hospitalization rate of the vaccinated, asymptomatic, infected population.
ω4 Hospitalization rate of the vaccinated, symptomatic, infected population.
γ1 Recovery rate after hospitalization.
γ2 Recovery rate of the unvaccinated, asymptomatic, infected population.
γ3 Recovery rate of the vaccinated, asymptomatic, infected population.
µ Death rate from natural causes.
d Death rate from COVID-19.

Nh Total number in the human population.

2.2. Stability Analysis
2.2.1. Equilibrium Point

The dynamical systems analysis for the models of (3)–(12) can be performed, firstly, by
evaluating the equilibrium of the system. This is conducted by setting Equations (3)–(12) to
zero. The two such equilibrium points for this system are as follows:

The disease-free equilibrium point is:

G∗0 =
(

S∗n, E∗n, I∗an, I∗sn, S∗v , E∗v , I∗av, I∗sv, H∗p , R∗
)
=

(
(1− b)σ

µ
, 0, 0, 0,

bσ

µ
, 0, 0, 0, 0, 0

)
(14)

when R0 < 1, and the endemic equilibrium point is:

G∗1 =
(

S∗n, E∗n, I∗an, I∗sn, S∗v , E∗v , I∗av, I∗sv, H∗p , R∗
)

(15)
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when
S∗n = (1−b)σ

(µ+η∗1)
,

E∗n =
(1−b)ση∗1

(1+µ)(µ+η∗1)
,

I∗an =
(1−b)φση∗1

k1
,

I∗sn =
(1−b)(1−φ)ση∗1

k2
,

S∗v = bσ

(µ+η∗2)
,

E∗v =
bση∗2

(1+µ−δ)(µ+η∗2)
,

I∗av =
b(1−δ)φση∗2
(1+µ−δ)k3

,

I∗sv =
b(1−δ)(1−φ)ση∗2

(1+µ−δ)k4
,

H∗p = k5

(
(1− b)φω1η∗1

k1
+

(1− b)(1− φ)ω2η∗1
k2

+
b(1− δ)φω4η∗2
(1 + µ− δ)k3

+
b(1− δ)(1− φ)ω3η∗2

(1 + µ− δ)k4

)

R∗ = k6

 (1−b)φγ2η∗1
k1

+
b(1−δ)φγ3η∗2
(1+µ−δ)k3

+

k7

(
(1−b)φω1η∗1

k1
+

(1−b)(1−φ)ω2η∗1
k2

+
b(1−δ)φω4η∗2
(1+µ−δ)k3

+
b(1−δ)(1−φ)ω3η∗2

(1+µ−δ)k4

)
where k1 = (1 + µ)(d + γ2 + µ + ω1)

(
µ + η∗1

)
, k2 = (1 + µ)(d + µ + ω2)

(
µ + η∗1

)
, k3 =

(d + γ3 + µ + ω4)(µ + η∗2 ), k4 = (d + µ + ω3)(µ + η∗2 ), and k5 = σ
γ1+µ+d , k6 = σ

µ , k5 =
γ1

γ1+µ+d , when R0 > 1.
The forces of infection, η∗1 and η∗2 , appearing in the components of the endemic equi-

librium point can be determined by using the following expressions:

η∗1 = βan I∗an + βsn I∗sn (16)

and
η∗2 = βav I∗av + βsv I∗sv (17)

2.2.2. The Basic Reproduction Number

The calculation of the basic reproduction number (R0) plays a huge and important role
since it is used to measure the transmission potential of a disease. It is the average number
of secondary infections which can be caused by a patient in a completely susceptible
population throughout this infectious period. In this research, the basic reproduction
number was calculated using the next-generation matrix method [30,31] for COVID-19
mathematical model. The states En, Ian, Isn, Ev, Iav and Isv were chosen to construct the gain
and loss vectors, where the gain vector represents the possible pathways of creating new
infections, and the loss vector represents the possible pathways of transferring from one
group to another.∣∣∣∣∣∣∣∣∣∣∣∣

Gains to En
Gains to Ian
Gains to Isn
Gains to Ev

Gains to Iav
Gains to Isv

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣

η1Sn
0

0
η2Sv
0
0

∣∣∣∣∣∣∣∣∣∣∣∣
,

∣∣∣∣∣∣∣∣∣∣∣∣

Losses f rom En
Losses f rom Ian
Losses f rom Isn
Losses f rom Ev

Losses f rom Iav
Losses f rom Isv

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣

φEn + (1− φ)En + µEn
−φEn + (ω1 + γ2 + µ + d)Ian
−(1− φ)En + (ω2 + µ + d)Isn

(1− δ)φEv + (1− δ)(1− φ)Ev + µEv
−(1− δ)φEv + (ω4 + γ3 + µ + d)Iav
−(1− δ)(1− φ)Ev + (ω3 + µ + d)Isv

∣∣∣∣∣∣∣∣∣∣∣∣
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The required F and V matrices are the Jacobian matrices of the gain and loss vectors,
respectively. Then we have

F =



0 βanSn βsnSn 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 βavSv βsvSv
0 0 0 0 0 0
0 0 0 0 0 0



V =



φ + (1− φ) + µ 0 0 0 0 0
−φ ω1 + µ + d 0 0 0 0

−(1− φ) 0 ω2 + µ + d 0 0 0
0 0 0 (1− δ)φ + (1− δ)(1− φ) + µ 0 0
0 0 0 −(1− δ)φ ω4 + γ3 + µ + d 0
0 0 0 −(1− δ)(1− φ) 0 ω3 + µ + d


Note that we evaluate the gain and loss matrices at the disease-free equilibrium point:

G∗0 =
(

S∗n, E∗n, I∗an, I∗sn, S∗v , E∗v , I∗av, I∗sv, H∗p , R∗
)
=

(
(1− b)σ

µ
, 0, 0, 0,

bσ

µ
, 0, 0, 0, 0, 0

)
The required basic reproduction number is computed as R0 = FV−1, where R0 is the
maximum positive eigenvalue of the matrix FV−1. Therefore, the formula is:

R0 = max{Rn, Rv} (18)

when

Rn = (b−1)σ(d(βsn(φ−1)−βanφ)+βsn(φ−1)(γ2+µ+ω1)−βanφ(µ+ω2)
µ(1+µ)(d+γ2+µ+ω1)(d+µ+ω2)

Rv = bσ(δ−1)(d(βsv(φ−1)−βavφ)−βavφ(µ+ω3)−βsv(φ−1)(γ3+µ+ω4)
µ(1−δ+µ)(d+µ+ω3)(d+γ3+µ+ω4)

2.2.3. Global Stability Analysis

In this part, the global stability analysis of each equilibrium point of the model in
the system of Equations (3)–(12) around the two steady states G∗0 and G∗1 is performed as
demonstrated in the following.

Theorem 1. The disease-free equilibrium point G∗0 of the model in the system (3)–(12) is globally
asymptotically stable in Ω if R0 < 1.

We assume that {
βan = βsn = µ+d

S∗n
βav = βsv = µ+d

S∗v

(19)

Proof. Consider the continuously differentiable linear Lyapunov function defined by

L = (Sn − S∗nlnSn) + En + Ian + Isn + (Sv − S∗v lnSv) + Ev + Iav + Isv + Hp + R

To explain the use of lnSn and lnSv have

dL
dt

= S′n

(
1− S∗n

Sn

)
+ E′n + I′an + I′sn + S′v

(
1− S∗v

Sv

)
+ E′v + I′av + I′sv + H′p + R′
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dL
dt = ((1− b)σ− η1Sn − µSn)

(
1− S∗n

Sn

)
+ (η1Sn − φEn − (1− φ)En − µEn)

+(φEn − (ω1 + γ2 + µ + d)Ian) + ((1− φ)En − (ω2 + µ + d)Isn)

+(bσ− η2Sv − µSv)
(

1− S∗v
Sv

)
+ (η2Sv − (1− δ)φEv − (1− δ)(1− φ)Ev − µEv)

+((1− δ)φEv − (ω4 + γ3 + µ + d)Iav) + ((1− δ)(1− φ)Ev − (ω3 + µ + d)Isv)
+
(
ω1 Ian + ω2 Isv + ω3 Isv + ω4 Iav − (γ1 + µ + d)Hp

)
+
(
γ1Hp + γ2 Ian + γ3 Iav − µR

)
= (1− b)σ

(
1− S∗n

Sn

)
+ βan IanS∗n + βsn IsnS∗n − µSn + µS∗n − µEn − (µ + d)Ian

−(µ + d)Isn + bσ
(

1− S∗v
Sv

)
+ βav IavS∗v + βsv IsvS∗v − µSv + µS∗v − µEv

−(µ + d)Iav − (µ + d)Isv − (µ + d)Hp − µR
= (1− b)σ

(
1− S∗n

Sn

)
+ µS∗n

(
1− Sn

S∗n

)
+ (βanS∗n − (µ + d))Ian

+(βsnS∗n − (µ + d))Isn − µEn + bσ
(

1− S∗v
Sv

)
+ µS∗v

(
1− Sv

S∗v

)
+(βavS∗v − (µ + d))Iav + (βsvS∗v − (µ + d))Isv − µEv − (µ + d)Hp − µR

Substitute Equation (19) to obtain

dL
dt = (1− b)σ

(
1− S∗n

Sn

)
+ µS∗n

(
1− Sn

S∗n

)
− µEn + bσ

(
1− S∗v

Sv

)
+ µS∗v

(
1− Sv

S∗v

)
− µEv

−(µ + d)Hp − µR

Substitute S∗n = (1−b)σ
µ and S∗v = bσ

µ from the disease-free equilibrium point to obtain

dL
dt = (1− b)σ

(
1− S∗n

Sn

)
+ µ

(1−b)σ
µ

(
1− Sn

S∗n

)
+ bσ

(
1− S∗v

Sv

)
+ µ bσ

µ

(
1− Sv

S∗v

)
− µEn

−(µ + d)Hp − µR

dL
dt = (1− b)σ

(
1− S∗n

Sn

)
+ (1− b)σ

(
1− Sn

S∗n

)
+ bσ

(
1− S∗v

Sv

)
+ bσ

(
1− Sv

S∗v

)
−µEn − (µ + d)Hp − µR
= (1− b)σ

(
2− S∗n

Sn
− Sn

S∗n

)
+ bσ

(
2− S∗v

Sv
− Sv

S∗v

)
− µEn − (µ + d)Hp − µR

= −(1− b)σ
(

(S∗n−Sn)
2

S∗nSn

)
− bσ

(
(S∗v−Sv)

2

S∗v Sv

)
− µEn − (µ + d)Hp − µR

dL
dt

= −
[
(1− b)σ

(
(S∗n − Sn)

2

S∗nSn

)
+ bσ

(
(S∗v − Sv)

2

S∗vSv

)
+ µEn + (µ + d)Hp + µR

]
≤ 0 (20)

It can be clearly seen that all conditions shown in Equation (20) are negative. Applying
the LaSalle’s invariance principle [4,32–34], dL

dt = 0 if S∗n = Sn and S∗v = Sv, and 1− b is
a positive number since it is known that 0 < b < 1. Note further that, dL

dt = 0 if En = 0
Ev = 0, Hp = 0 and R = 0. On the other hand, the result of Theorem 1 implies that since
the states En, Ev, Hp, and R are all positive, the resulting dL

dt obtained in Equation (20) will
be absolute negative. Consequently, LaSalle’s invariant principle then implies that the
disease-free steady state G∗0 is globally asymptotically stable on Ω. �

Theorem 2. The endemic equilibrium point G∗1 of the model in the system (3)–(12) is globally
asymptotically stable in Ω if R0 > 1. We assume that

η∗1 = η∗2
µ =

(
µ + η∗1

)
βsn = ω2+µ+d

S∗n
βsv = ω3+µ+d

S∗v
βsn = ω2+µ+d

S∗n
βav = ω4+γ3+µ+d

S∗v

(21)
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Proof. We consider the following Lyapunov function:

K = (Sn − S∗nlnSn) + En + Ian + Isn + (Sv − S∗v lnSv) + Ev + Iav + Isv
dK
dt = S′n

(
1− S∗n

Sn

)
+ E′n + I′an + I′sn + S′v

(
1− S∗v

Sv

)
+ E′v + I′av + I′sv

dK
dt = ((1− b)σ− η1Sn − µSn)

(
1− S∗n

Sn

)
+ (η1Sn − φEn − (1− φ)En − µEn)

+(φEn − (ω1 + γ2 + µ + d)Ian) + ((1− φ)En − (ω2 + µ + d)Isn)

+(bσ− η2Sv − µSv)
(

1− S∗v
Sv

)
+ (η2Sv − (1− δ)φEv − (1− δ)(1− φ)Ev − µEv)

+((1− δ)φEv − (ω4 + γ3 + µ + d)Iav)
+((1− δ)(1− φ)Ev − (ω3 + µ + d)Isv)

dK
dt = (1− b)σ

(
1− S∗n

Sn

)
− µSn

(
1− S∗n

Sn

)
+ (βan Ian + βsn Isn)S∗n − µEn

−(ω1 + γ2 + µ + d)Ian − (ω2 + µ + d)Isn + bσ
(

1− S∗v
Sv

)
− µSv

(
1− S∗v

Sv

)
+ (βav Iav + βsv Isv)S∗v − µEv − (ω4 + γ3 + µ + d)Iav − (ω3 + µ + d)Isv

= (1− b)σ
(

1− S∗n
Sn

)
+ µS∗n

(
1− Sn

S∗n

)
+ Ian((βanS∗n − (ω1 + γ2 + µ + d))

+Isn(βsnS∗n − (ω2 + µ + d))− µEn + bσ
(

1− S∗v
Sv

)
+ µS∗v

(
1− Sv

S∗v

)
+ Iav(βavS∗v − (ω4 + γ3 + µ + d)) + Isv(βsvS∗v − (ω3 + µ + d))− µEv

Substitute S∗n = (1−b)σ
(µ+η∗1)

and S∗v = bσ

(µ+η∗2)
from the endemic equilibrium point to obtain

dK
dt = (1− b)σ

(
1− S∗n

Sn

)
+ µ

(1−b)σ
(µ+η∗1)

(
1− Sn

S∗n

)
+ Ian((βanS∗n − (ω1 + γ2 + µ + d))

+Isn(βsnS∗n − (ω2 + µ + d))− µEn + bσ
(

1− S∗v
Sv

)
+ µ bσ

(µ+η∗2)

(
1− Sv

S∗v

)
+Iav(βavS∗v − (ω4 + γ3 + µ + d)) + Isv(βsvS∗v − (ω3 + µ + d))− µEv

Substitute Equation (21) to obtain

dK
dt = (1− b)σ

(
1− S∗n

Sn

)
+ (1− b)σ

(
1− Sn

S∗n

)
+ bσ

(
1− S∗v

Sv

)
+ bσ

(
1− Sv

S∗v

)
− µEn − µEv

= (1− b)σ
(

2− S∗n
Sn
− Sn

S∗n

)
+ bσ

(
2− S∗v

Sv
− Sv

S∗v

)
− µEn − µEv

= −(1− b)σ
(

(S∗n−Sn)
2

S∗nSn

)
− bσ

(
(S∗v−Sv)

2

S∗v Sv

)
− µEn − µEv

dK
dt = −

[
(1− b)σ

(
(S∗n−Sn)

2

S∗nSn

)
+ bσ

(
(S∗v−Sv)

2

S∗v Sv

)
+ µEn + µEv

]
≤ 0

(22)

From the condition of Equation (22), dK
dt is absolute negative. Then, the endemic

equilibrium point G∗1 is globally asymptotically stable in Ω. �

3. Numerical Analysis Result
3.1. Model Fitting

In this part, numerical simulation modelling of the system of Equations (3)–(12) was
performed to compare information on the spread in Thailand. Data were collected from
COVID-19-infected people from the Department of Disease Control, Ministry of Public
Health, Thailand [14] from 1 January 2022, since the Omicron variant was confirmed,
until 1 March 2022 to estimate the parameters βan, βsn, βav, and βsv using ode45 and the
lsqcurvefit algorithm [12,35] in MATLA,B as shown in Figure 2. Figure 2a depicts the match
between the modelled response for the unvaccinated, susceptible individuals against the
COVID-19 data. Similarly, Figure 2b then compares the real data against the modelled
response for the susceptible, vaccinated individuals. It can be noticed that the simulation
model and real information are consistent with one another.
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Figure 2. Data fitting of the model (3)–(12) to the actual data: (a) susceptible with vaccinated fitting;
(b) susceptible with unvaccinated fitting.

3.2. Numerical Analysis Result

Numerical information on the spread of COVID-19 and getting vaccinations was
analyzed using the parameters obtained from the literature review as seen in Table 2
and the data fitted for some parameters, namely, infection rate, βan, βsn, βav, and βsv.
The Runge–Kutta method of order 4 in the MATLAB program was used to confirm the
equilibrium point result and stability as seen in Figures 3 and 4.

Table 2. The parameters used in the numerical simulation.

Parameters The Disease-Free The Endemic Reference

b 0.5 0.5 Estimated
σ 1 1400 Estimated

βan 0.00001 0.00001 Data fitted
βsn 0.000009 0.000009 Data fitted
βav 0.000008 0.000008 Data fitted
βsv 0.00001 0.00001 Data fitted
φ 1/7 1/7 [7,36]
δ 0.8 0.8 Assumed

ω1 0.1 0.1 [5,7]
ω2 0.1 0.1 [5,7]
ω3 0.1 0.1 [5,7]
ω4 0.1 0.1 [5,7]
γ1 1/7 1/7 [7]
γ2 1/14 1/14 [10]
γ3 1/14 1/14 [7]
µ 0.0000365 0.0000365 [37,38]
d 0.00286 0.00286 [31]
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Figure 3. Graphs of the system of Equations (3)–(12) at the disease-free equilibrium point of
Sn, En, Ian, Isn, Sv, Ev, Iav, Isv, Hp, and R when R0 < 1: (a) the number in the unvaccinated,
susceptible population; (b) the number in the unvaccinated, exposed population; (c) the number in
the unvaccinated, asymptomatic, infected population; (d) the number in the unvaccinated, symp-
tomatic, infected population; (e) the number in the vaccinated, susceptible population; (f) the number
in the vaccinated, exposed population; (g) the number in the vaccinated, asymptomatic, infected
population; (h) the number in the vaccinated, symptomatic, infected population; (i) the number in
the hospitalized population; and (j) the number in the recovered population.
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Figure 4. Graphs of the system Equations (3)–(12) at the endemic equilibrium point of
Sn, En, Ian, Isn, Sv, Ev, Iav, Isv, Hp, and R when R0 > 1: (a) the number in the unvaccinated,
susceptible population; (b) the number in the unvaccinated, exposed population; (c) the number in
the unvaccinated, asymptomatic, infected population; (d) the number in the unvaccinated, symp-
tomatic, infected population; (e) the number in the vaccinated susceptible population; (f) the number
in the vaccinated, exposed population; (g) the number in the vaccinated, asymptomatic, infected
population; (h) the number in the vaccinated, symptomatic, infected population; (i) the number in
the hospitalized population; and (j) the number in the recovered population.



Mathematics 2022, 10, 3899 15 of 29

Figures 3 and 4 show the convergence of the number in the unvaccinated, exposed
population; the number in the unvaccinated, asymptomatic, infected population; the num-
ber in the unvaccinated, symptomatic, infected population; the number in the vaccinated,
exposed population; the number in the vaccinated, asymptomatic, infected population;
the number in the vaccinated, symptomatic, infected population; the number in the hos-
pitalized population; and the number in the recovered population. It can be noticed that
in Figure 3, the graph reached its maximum height and gradually declined to 0, meaning
that En, Ian, Isn, Sv, Ev, Iav, Isv, Hp, and R decreased as time progressed. The number in
the unvaccinated, susceptible population and the number in the vaccinated, susceptible
population would converge to the equilibrium points of 6849 and 20,547, respectively. This
result shows that the states Sn and Sv increase as time increases due to the disease-free
steady state when R0 < 1. Figure 4 shows the epidemic under the endemic equilibrium
point when R0 > 1. Note that in this case, the trajectories experience some overshooting at
around day 100 before settling down at the equilibrium points.

The World Health Organization defines the efficacy of vaccines as an overall measure
of the ability of the vaccine to reduce the chance of getting infected, the death rate, the
severity of the illness, the prolonged hospitalization rate, and the ability of the vaccine to
creating herd immunity. The efficacy of vaccination depends on numerous factors, such as
individual basic health status, individual age when getting the vaccination, or previous
exposure to the disease. All factors have effects on the efficacy of vaccines. The effects of
the parameters affecting the spread of COVID-19 are shown in Figures 5–9. Figure 5 shows
the comparison of the efficacy of vaccination by comparing the trajectories for the cases of b
= [0.5, 0.6, 0.7, 0.8, 0.9] while keeping the other parameters as given in Table 2. Looking at
plots in Figure 5a–d, we see that the graphs overlap. When these graphs are magnified, we
see that the number of unvaccinated states, Sn, En, Ian, and Isn, decrease when the efficacy
of the vaccines is increased. Another factor affecting the spread of COVID-19 is the infection
rate as seen in Figures 6–9. To investigate these cases, we look at the following cases:
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Figure 5. Graphs of the system of Equations (3)–(12) showing the comparison results of efficacy of
vaccination (b) when R0 > 1: (a) the number in the unvaccinated, susceptible population; (b) the
number in the unvaccinated, exposed population; (c) the number in the unvaccinated, asymptomatic,
infected population; and (d) the number in the unvaccinated, symptomatic, infected population.
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Figure 6. Graphs of the system of Equations (3)–(12) showing the comparison results of the infection
rate of the asymptomatic, unvaccinated, infected population (βan) when R0 > 1: (a) the number in
the unvaccinated, susceptible population; (b) the number in the unvaccinated, exposed population;
(c) the number in the unvaccinated, asymptomatic, infected population; and (d) the number in the
unvaccinated, symptomatic, infected population.

Mathematics 2022, 10, x FOR PEER REVIEW 18 of 32 
 

 

  
(a) (b) 

  
(c) (d) 

Figure 6. Graphs of the system of Equations (3)–(12) showing the comparison results of the 
infection rate of the asymptomatic, unvaccinated, infected population (𝛽 ) when 𝑅 > 1: (a)  the 
number in the unvaccinated, susceptible population; (b) the number in the unvaccinated, exposed 
population; (c)  the number in the unvaccinated, asymptomatic, infected population; and (d)  the 
number in the unvaccinated, symptomatic, infected population. 

  
(a) (b) 

Time(days)
0 100 200 300 400 500 600 700 800

104

0

0.5

1

1.5

2

2.5

beta an=0.00001
beta an=0.000034
beta an=0.000054
beta an=0.000074
beta an=0.000094

Time(days)
0 100 200 300 400 500 600 700 800

0

200

400

600

800

1000

1200

1400

1600

beta an=0.00001
beta an=0.000034
beta an=0.000054
beta an=0.000074
beta an=0.000094

Time(days)
0 100 200 300 400 500 600 700 800

104

0

0.5

1

1.5

2

2.5

3

3.5

4

beta sn=0.000005
beta sn=0.000006
beta sn=0.000007
beta sn=0.000008
beta sn=0.000009

Time(days)
0 100 200 300 400 500 600 700 800

0

200

400

600

800

1000

1200

1400

1600

1800

2000

beta sn=0.000005
beta sn=0.000006
beta sn=0.000007
beta sn=0.000008
beta sn=0.000009

Figure 7. Cont.



Mathematics 2022, 10, 3899 17 of 29Mathematics 2022, 10, x FOR PEER REVIEW 19 of 32 
 

 

  
(c) (d) 

Figure 7. Graphs of the system of Equations (3)–(12) showing the comparison results of the 
infection rate of the symptomatic, unvaccinated, infected population (𝛽 ) when 𝑅 > 1: (a)  the 
number in the unvaccinated, susceptible population; (b) the number in the unvaccinated, exposed 
population; (c)  the number in the unvaccinated, asymptomatic, infected population; and (d)  the 
number in the unvaccinated, symptomatic, infected population. 

  
(a) (b) 

  
(c) (d) 

Figure 8. Graphs of the system of Equations (3)–(12) showing the comparison results of the 
infection rate of the asymptomatic, vaccinated, infected population (𝛽 ) when 𝑅 > 1: (a) the 
number in the vaccinated, susceptible population; (b) the number in the vaccinated, exposed 

Time(days)
0 100 200 300 400 500 600 700 800

104

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

beta av=0.000008
beta av=0.00002
beta av=0.00004
beta av=0.00006
beta av=0.00009

Time(days)
0 100 200 300 400 500 600 700 800

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

beta av=0.000008
beta av=0.00002
beta av=0.00004
beta av=0.00006
beta av=0.00009

Figure 7. Graphs of the system of Equations (3)–(12) showing the comparison results of the infection
rate of the symptomatic, unvaccinated, infected population (βsn) when R0 > 1: (a) the number in
the unvaccinated, susceptible population; (b) the number in the unvaccinated, exposed population;
(c) the number in the unvaccinated, asymptomatic, infected population; and (d) the number in the
unvaccinated, symptomatic, infected population.
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Figure 8. Graphs of the system of Equations (3)–(12) showing the comparison results of the infection
rate of the asymptomatic, vaccinated, infected population (βav) when R0 > 1: (a) the number in the
vaccinated, susceptible population; (b) the number in the vaccinated, exposed population; (c) the
number in the vaccinated, asymptomatic, infected population; and (d) the number in the vaccinated,
symptomatic, infected population.
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Figure 9. Graphs of the system of Equations (3)–(12) showing the comparison results of the infection
rate of the symptomatic, vaccinated, infected population (βsv) when R0 > 1: (a) the number in the
vaccinated, susceptible population; (b) the number in the vaccinated, exposed population; (c) the
number in the vaccinated, asymptomatic, infected population; and (d) the number in the vaccinated,
symptomatic, infected population.

Case 1: Changes in βan. Here, the system is simulated with βan = [0.00001, 0.000034,
0.000054, 0.000074, 0.000094] while keeping the other parameters as given by Table 2.
Case 2: Changes in βsn. In this case, the system is resimulated with βsn = [0.000005, 0.000006,
0.000007, 0.000008, 0.000009] while keeping the other parameters as given by Table 2.
Case 3: Changes in βav. In this case, the system is resimulated with βav = [0.000008, 0.00002,
0.00004, 0.00006, 0.00009] while keeping the other parameters as given by Table 2.
Case 4: Changes in βsv. In this case, the system is resimulated with βsv = [0.000003, 0.000004,
0.000005, 0.000006, 0.00001] while keeping the other parameters as given by Table 2.

For the susceptible people (both vaccinated and unvaccinated), it is seen from Figures 5–9
that a low infection rate causes a slow convergence to an equilibrium point, meaning that
disease control will be slower. As for the group of the exposed population, both unvac-
cinated and vaccinated, exhibiting both symptomatic and asymptomatic symptoms, an
infection rate increment causes a quicker convergence to the equilibrium point, contributing
to a more rapid onset of disease control. It can be seen that the comparison of the efficacy
of vaccination and the infection rate is a better means to control the spread of the dis-
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ease. To minimize the spread of the disease immediately, everyone needs to strictly follow
preventive measures, wear a mask, wash hands thoroughly, and keep social distancing.

3.3. Sensitivity Analysis of Parameters

A sensitivity analysis of the basic reproduction number reveals the parameter values
that can affect the numerical simulation model results. In addition, it will indicate the
importance of each parameter that affects the basic reproduction number, whose number
indicates the spread of the disease. Therefore, a sensitivity analysis of the COVID-19
simulation model from (3)–(12) can provide in-depth information about changes in the
spread and can help public health agencies to determine strategies for preventing the
spread of COVID-19.

Definition 1. (Chitnis, Hyman, and Cushing [39]). The normalized forward-sensitivity index of
a variable, R0, that depends differentiably on a parameter, κ, is defined as:

YR0
κ =

∂ R0

∂κ
× κ

R0
(23)

Information in Table 2 is used to show the parameter values for the numerical simula-
tion model. The calculation results of the sensitivity of the basic reproduction number of
each parameter are shown in Table 3.

Table 3. Sensitivity values of the basic reproduction numbers.

Parameters Sensitivity Indices

b +1.0000
σ +1.0000

βan +0.1209
βsn +0.8791
βav +0.0730
βsv +0.9270
δ +0.0007
φ −0.0026

ω1 −0.0872
ω2 −0.8544
ω3 −0.9009
ω4 −0.0419
γ1 −0.0311
γ2 −0.0299
γ3 −1.0004
µ −0.0269

Numerical results from the sensitivity analysis of the basic reproduction number are
given in Table 3. If the sensitivity index of the basic reproduction number is positive, it
means that an increase (or decrease) in each parameter leads to an increase (or decrease) in
the basic reproduction number. Conversely, if the sensitivity index of the basic reproduction
number is negative, it means that an increase (or decrease) in each parameter leads to a
decrease (or increase) in the basic reproduction number. Consequently, according to the
sensitivity analysis of the models (3)–(12), parameters affecting the sensitivity to become
positive are b, σ, βan, βsn, βav, βsv, and δ, while parameters affecting the sensitivity to
become negative are φ, ω1, ω2, ω3, ω4, γ2, γ3, µ, and d.

To sum up, the research results indicate that the most effective control strategy is
controlling the rate of vaccinated people (b) and the initial number of people (σ) since the
sensitivity index of the parameters is equal to 1. It means that an increase (or decrease) in
the rate of vaccinated people, the population birth rate, and the number in the population
by 10% enables the basic reproduction number to increase by 10%. The sensitivity analysis
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mentioned above causes a reduction in the spread of COVID-19 among people in an
efficient manner.

4. Optimal Control Problem

Having analyzed the mathematical model predicting the spread of the COVID-19 in
Thailand, an optimal control strategy is now sought in order to help reduce the number
of infected people and control and prevent the spread of the disease. In this article, a
strategy for controlling COVID-19 in Thailand was proposed by considering the control
functions, u1 and u2, where u1 is the rate of vaccination and u2 is the susceptible group
that is changed to the recovered group (due to immunity from the vaccination). According
to the optimal control problem, the mathematical model for controlling COVID-19 can be
created as follows:

dSn

dt
= (1− b)σ− η1Sn − µSn − u1(t)Sn (24)

dEn

dt
= η1Sn − φEn − (1− φ)En − µEn (25)

dIan

dt
= φEn − (ω1 + γ2 + µ + d)Ian (26)

dIsn

dt
= (1− φ)En − (ω2 + µ + d)Isn (27)

dSv

dt
= bσ− η2Sv − µSv − u2(t)Sv (28)

dEv

dt
= η2Sv − (1− δ)φEv − (1− δ)(1− φ)Ev − µEv (29)

dIav

dt
= (1− δ)φEv − (ω4 + γ3 + µ + d)Iav (30)

dIav

dt
= (1− δ)(1− φ)Ev − (ω3 + µ + d)Isv (31)

dHp

dt
= ω1 Ian + ω2 Isv + ω3 Isv + ω4 Iav − (γ1 + µ + d)Hp (32)

dR
dt

= γ1Hp + γ2 Ian + γ3 Iav − µR + u1(t)Sn + u2(t)Sv (33)

We now seek the optimal control strategy for the system of Equations (24)–(33) using
Pontryagin’s maximum principle [40,41] to reduce the number of infected people, in other
words, the optimal values u1 and u2. In light of this, the optimal control problem is
determined in terms of the following objective functions:

J(u1(t), u2(t)) =
∫ T

0

(
A1 Ian(t) + A2 Isn(t) + A3 Iav(t) + A4 Isv(t) +

1
2

A5u1
2(t) +

1
2

A6u2
2(t)

)
(34)

The objective function of the system of Equation (34) depends on hypotheses consider-
ing the number of Ian(t), Isn(t), Iav(t), and Isv(t). Please kindly note that A1, A2, A3, A4, A5,
and A6 are the weight constants. The most suitable problem solving guideline of this model
is determined by using Lagrangian and Hamiltonian approaches to solve the optimal
control problem as follows:

L(Ian, Isn, Iav, Isv, u1, u2) = A1 Ian(t) + A2 Isn(t) + A3 Iav(t) + A4 Isv(t) +
1
2

A5u1
2(t) +

1
2

A6u2
2(t) (35)

Theorem 3. With a suitable control u∗ =
(
u∗1 , u∗2

)
and a problem-solving guideline consistent with

Sn, En, Ian, Isn, Sv, Ev, Iav, Isv, Hp, and R for the initial problem (24)–(33) that the minimizes
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J(u1, u2), there exists an adjoint variable λi, i = 1, 2, 3, . . . , 10 under the control that satisfies
the following:

dλi
dt

= −∂H
∂ψ

(36)

When ψ = (Sn, En, Ian, Isn, Sv, Ev, Iav, Isv, Hp, R), together with the transversality conditions
given as λi(T) = 0 for all i = 1, 2, 3, . . . , 10, and

u∗1 =


0 i f λ1Sn−λ10Sn

A5
≤ 0

λ1Sn−λ10Sn
A5

i f λ1Sn−λ10Sn
A5

< umax
1

umax
1 i f λ1Sn−λ10Sn

A5
≥ umax

1

(37)

u∗2 =


0 i f λ5Sv−λ10Sv

A6
≤ 0

λ5Sv−λ10Sv
A6

i f λ5Sv−λ10Sv
A6

< umax
2

umax
2 i f λ5Sv−λ10Sv

A6
≥ umax

2

(38)

Proof. The Hamiltonian function can be defined as

H = L(Ian, Isn, Iav, Isv, u1, u2) + λ1
dSn
dt + λ2

dEn
dt + λ3

dIan
dt + λ4

dIsn
dt + λ5

dSv
dt + λ6

dEv
dt

+λ7
dIav
dt + λ8

dIsv
dt + λ9

dHp
dt + λ10

dR
dt

when

L(Ian, Isn, Iav, Isv, u1, u2) = A1 Ian(t) + A2 Isn(t) + A3 Iav(t) + A4 Isv(t) + 1
2 A5u1

2(t)
+ 1

2 A6u2
2(t)

is the Lagrangian of the control problem, then we have

H = A1 Ian(t) + A2 Isn(t) + A3 Iav(t) + A4 Isv(t) + 1
2 A5u1

2(t) + 1
2 A6u2

2(t)
+λ1[(1− b)σ− η1Sn − µSn − u1(t)Sn]
+λ2[η1Sn − φEn − (1− φ)En − µEn]
+λ3[φEn − (ω1 + γ2 + µ + d)Ian]
+λ4[(1− φ)En − (ω2 + µ + d)Isn]
+λ5[bσ− η2Sv − µSv − u2(t)Sv]
+λ6[η2Sv − (1− δ)φEv − (1− δ)(1− φ)Ev − µEv]
+λ7[(1− δ)φEv − (ω4 + γ3 + µ + d)Iav]
+λ8[(1− δ)(1− φ)Ev − (ω3 + µ + d)Isv]
+λ9

[
ω1 Ian + ω2 Isv + ω3 Isv + ω4 Iav − (γ1 + µ + d)Hp

]
+λ10

[
γ1Hp + γ2 Ian + γ3 Iav − µR + u1(t)Sn + u2(t)Sv

]

(39)

To obtain the optimal control, adjoint function becomes

dλ1
dt = − ∂H

∂Sn
= λ1(t)

(
βan Ian + βsn Isn + µ + u∗1(t)

)
− λ2(t)(βan Ian + βsn Isn)− λ10(t)u∗1(t)

dλ2
dt = − ∂H

∂En
= λ2(t)(1 + µ)− λ3(t)φ− λ4(t)(1− φ)

dλ3
dt = − ∂H

∂Ian
= βanSn(λ1(t)− λ2(t)) + λ3(t)(d + γ2 + µ + ω1)− λ9(t)ω1 − λ10(t)γ2 − A1

dλ4
dt = − ∂H

∂Isn
= βsnSn(λ1(t)− λ2(t)) + λ4(t)(d + µ + ω2)− λ9(t)ω2 − A2

dλ5
dt = − ∂H

∂Sv
= λ5(t)(βav Iav + βsv Isv + µ + u∗2(t))− λ6(t)(βav Iav + βsv Isv)− λ10(t)u∗2(t)

dλ6
dt = − ∂H

∂Ev
= λ6(t)(µ + (1− δ)(1− φ) + (1− δ)φ)− λ7(t)(1− δ)φ− λ8(t)(1− δ)(1− φ)

dλ7
dt = − ∂H

∂Iav
= βavSv(λ5(t)− λ6(t)) + λ7(t)(d + γ3 + µ + ω4)− λ9(t)ω4 − λ10(t)γ3 − A3

dλ8
dt = − ∂H

∂Isv
= βsvSv(λ5(t)− λ6(t)) + λ8(t)(d + µ + ω3)− λ9(t)ω3 − A4

dλ9
dt = − ∂H

∂Hp
= λ9(t)(d + µ + γ1)− λ10(t)γ1

dλ9
dt = − ∂H

∂R = λ10(t)µ
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The characterization of the suitable controls, u∗1 and u∗2 , depends on ∂H
∂uj

= 0 for all
j = 1, 2 at uj = u∗j at j = 1, 2.

Therefore,

∂H
∂u1

= A5u1 − λ1Sn + λ10Sn ⇒ u∗1 = λ1Sn−λ10Sn
A5

∂H
∂u2

= A6u2 − λ5Sv + λ10Sv ⇒ u∗2 = λ5Sv−λ10Sv
A6

Thus, the optimal control function for COVID-19 can be defined as follows:

u∗1 =


0 i f λ1Sn−λ10Sn

A5
≤ 0

λ1Sn−λ10Sn
A5

i f λ1Sn−λ10Sn
A5

< umax
1

umax
1 i f λ1Sn−λ10Sn

A5
≥ umax

1

u∗2 =


0 i f λ5Sv−λ10Sv

A6
≤ 0

λ5Sv−λ10Sv
A6

i f λ5Sv−λ10Sv
A6

< umax
2

umax
2 i f λ5Sv−λ10Sv

A6
≥ umax

2

�

Figures 10 and 11 show the numerical analysis of the optimal control policy. The
equations were solved using the fourth order Runge–Kutta forward–backward sweep
method [33]. For all simulation models, time T was determined to be 120 days. Controlled
weight values were A1 = 1000, A2 = 900, A3 = 700, A4 = 500, A5 = 300, and A6 = 100.
It can be clearly seen that the cases with control converged to an equilibrium point more
quickly than the cases without the optimal control. As a consequence, it can be concluded
that a good preventive policy through vaccination to develop immunity to the body is a
suitable method to reduce the prevalence of the spread of the disease.
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5. Discussion and Conclusions

This study shows the details of a mathematical model to control COVID-19, a pan-
demic currently infecting the world. It is based on the mathematical description of what
is happening around the world. The current study is based on parameters which are
appropriate in Thailand, one of the countries experiencing the infection. The mathematical
model is created by considering two groups of people: the unvaccinated people and the
vaccinated people. Standard dynamic modeling is used to study, analyze, and find the
equilibrium points and establish stability. From this study, two equilibrium points were
obtained, namely the disease-free equilibrium point (G∗0 ) and the endemic equilibrium
point (G∗1 ), according to parameter conditions. The Lyapunov function was used to de-
termine the stability of each equilibrium point. From the simulation model, the basic
reproduction number (R0) was obtained by considering the basic reproduction number
of the disease-free steady states and the endemic steady states. It can be seen that the
disease-free steady states are stable when (R0 < 1) and the endemic steady states are
stable when (R0 > 1). According to the sensitivity analysis of the parameters, the efficacy
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of vaccination (b) and the infection rates (βan, βsn, βav, and βsv) are the most sensitive
parameters that contribute to an increase in the spread of COVID-19. It is noticeable that
the infection rate is highly important. Therefore, to design a usable optimal control strategy
for containing the spread of the Omicron variant in Thailand, a curve fitting algorithm was
performed on the real-world Omicron data to analyze and seek the most suitable value
of the infection rate to ensure it is similar to the current situation. The results in Figure 2
confirmed that this is so.

To examine and confirm the analysis results for the effects of the spread, parameter
values were chosen to be the values given in Table 2, incorporating the fitted parameters.
According to Figure 5, considering of the efficacy of the vaccines, it was found that if the
efficacy of the vaccines increases, spread control is achieved more quickly. Considering
the infection rate showed that when the rate of spread increased, the basic reproduction
number increased, since the basic reproduction number is the average number of secondary
infections which can be caused by a patient in a completely susceptible population through-
out his infectious period. If the infection rate is high, the epidemic shall spread at a slower
rate when the infection rate is low. Therefore, if the basic reproduction number is high, the
epidemic would spread at a fast rate and converge to an equilibrium point more quickly
when the basic reproduction is low. From what was mentioned above, it can be seen that
Figures 6–9 follow the above-mentioned conditions. Nonetheless, there are a lot of factors
affecting the spread. The spread can be minimized by planning and formulating policies.
In this regard, the optimal control strategy is used by considering the rate of vaccination
and immunity achieved from vaccination to reduce the spread of COVID-19. It can be
concluded that the spread of COVID-19 can be controlled and minimized by vaccination
and self-care practices following preventive measures, as seen in Figures 10 and 11. Note
that the main limitation of our model is that we did not use the multiple-patch model,
where the Omicron outbreak in the rural regions is different from the one in the city because
of the population density and socioeconomics. Nevertheless, the model used in this paper
is simple enough to capture the main dynamics of the system and allows for the conjuration
of suitable optimal control to combat the spread.

In conclusion, the use of the control strategy for disease prevention is a guideline
to help prevent and control the spread of the disease. There are many strategies for
disease control, such as social distancing, wearing masks, or following preventive measures
introduced by the government. Future research should determine other strategies to help
control and prevent COVID-19, accordingly.
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