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Abstract: The spread of rumors in the era of new media poses a serious challenge to sustaining social
order. Models regarding rumor propagation should be proposed in order to prevent them. Taking
the cooling-off period into account in this paper, a modified ISCR model with saturated incidence
and time delay on a scale-free network is introduced. The basic reproduction number R0, which
does not depend on time delay τ, is given by simple calculation. The stability of the rumor-free and
rumor-endemic equilibrium points is proved by constructing proper Lyapunov functions. The study
of the ISCR rumor-spreading process acquires an understanding of the impact of many factors on the
prevalence of rumors. Then, the optimal control strategy for restraining rumors is studied. Numerous
sensitivity studies and numerical simulations are carried out. Based on the saturated incidence and
time delay, results indicate that the effect of time delay plays a significant part in rumor propagation
on a scale-free network.
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1. Introduction

Rumors diffusion is defined as unconfirmed elaborations or annotations related to
shared interests and is widely spread through different channels [1]. With the flexibility
of social media development providing a low threshold, thousands of individuals, and
real-time dissemination of information in our daily life, people can be exposed to a large
amount of data more and more conveniently. However, some of the information that is
not screened can be the opposite of the facts, and this has greatly influenced people’s
lives. Spreading rumors is a common instance of social communication and is important to
social life. Rumors diffusion has a negative impact on society and causes panic among the
population. The rapid spread and the tremendous social trouble of rumors have brought
considerable costs to authority supervision. Studying the spreading process of rumors
can bring insight into the influence of different factors and significantly lower the adverse
effects of rumors to work out better control strategies to restrain rumor propagation [2].
Therefore, enhancing the investigations of the rumor dissemination mechanism can lead to
curbing rumor propagation by rapid government and media involvement.

There are many similarities between rumors diffusion and the transmission of disease
in the principle of propagation and the similarity of population classification. Therefore,
many scholars’ analyses of rumor propagation were based on research on disease transmis-
sion. In the early stages, the D-K model, a typical rumor propagation model was studied by
Daley and Kendall [3]. In this model, individuals are divided into three categories: people
who hear nothing of the rumor, people who transmit it, and people who hear it but will
never share it. Based on the D-K model, Maki and Thomson proposed the M-K model,
which assumes that a spreader can change into a stifler who stops spreading the rumor [4].
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Many extended rumor propagation models have been proposed and studied based on
these two models [5–7]. Kawachi et al. improved a rumor propagate model with multiple
contact interactions that can prove the rumor recursion [5]. Yao et al. studied different
contact statuses for other users considering some realistic constraint conditions [6]. Zhou
et al. proposed a new SCIR model that considers that trust affects the level of empathy [7].
However, these rumor propagations are not appropriate in a social network environment
without considering the influence of complex network topologies, such as regular networks,
random networks, small-world networks, and scale-free networks [8–11]. Zanette firstly
proposed the dynamic behavior of rumor-spreading on small-world networks and acquired
the network topologies that had a remarkable impact on the propagation threshold [8].
Moreno et al. developed the mean-field theory on the scale-free network [9]. Li et al. pro-
posed a novel I2S2R rumor model with a multilingual environment education process on
heterogeneous networks [10]. Ai et al. improved the traditional Barabasi–Albert scale-free
network and proposed a network topology model that conforms to the characteristics of
sharing social networks based on the complex network theory and the actual attributes of
sharing social networks [11]. These studies show that the network’s topology significantly
impacts rumor propagation, and different types of networks yield different results from
the propagation dynamics. As a result, research on the dynamics of complex network
propagation has always been attractive, and it is also crucial for understanding how rumors
spread in real network systems.

In addition, rumor propagation is influenced by many factors, such as heterogeneity
of transmission and network [12,13], the hesitating mechanism [14], the memory [15], the
skepticism and denial [16,17], the education or scientific knowledge [18], the latency [19],
super spreading effect [20], and others [21,22]. Based on different rumor-spreading models,
propagation delay is also an essential factor affecting rumor spreading. Different rumor-
spreading models suggest that propagation delay is also essential to rumor diffusion. Zhu
et al. established the I2S2R rumor model, incorporating time delay in both homogeneous
and heterogeneous networks [23]. Guan et al. formulated a modified SHIR model with two
susceptible groups and combined time delay and nonlinear incidence rate in networks with
various topologies [24]. Yu et al. researched new 2I2SR rumor propagation models with
and without time delay based on a multilingual environment, and a real-time optimization
method that minimizes the cost of the restraining rumor is proposed to eliminate the rumor
within an expected period [25]. Cheng et al. established an improved rumor-spreading
model to explore the new characteristics of the rumor spreading process considering media
coverage and the delay of the interactive system [26,27]. Without loss of generalization,
many scholars usually assume that the spreaders directly turn to stiflers regarding the
rumor model. However, these assumptions lose sight of the possibility that the rumor-
spreading may undergo an incubation period, such as a cooling-off period or a calmness
period, before becoming stiflers to make the rumor propagation model more realistic. Chen
proposed an ILSCR rumor model with a cooling-off period [28]. Chang et al. studied
a novel ISCR rumor propagation model, adding a calmness compartment to make the
model more realistic [29]. These studies point to the idea that in reality, specific factors will
significantly influence the process of spreading rumors, so it crucial for the research to take
these factors into account, such as propagation delay, calmness compartment, and so on.

In the above studies, many models only consider the linear incidence in rumor prop-
agation, but it is more beneficial to adopt a nonlinear incidence in reality. Wang et al.
proposed a nonlinear model to represent the impact of awareness by the media report [30].
Zhu et al. proposed a rumor propagation model with a silence-forcing function, and the
optimal control was discussed to reduce the frequency of rumor propagation in online
social networks [31]. On the other hand, Zhu et al. discussed a 2ISR rumor model with
nonlinear analysis and time delay in both homogeneous and heterogeneous networks [32].
Wang et al. studied an IS2R2 model concerning the nonlinear inhibition mechanism and
designed an optimal control strategy [33]. Chen et al. investigated a novel SEIR delayed ru-
mor model with saturation incidence on heterogeneous networks and proposed an optimal
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control strategy [34]. Additionally, many scholars continue to focus on the control of rumor
diffusion [35–39]. Zhu et al. established an SIS rumor model considering targeted immu-
nization control, acquaintance immunization control, and optimal control strategies [35].
Ding et al. proposed a hybrid control strategy, combining a continuous truth propagation
method and an impulsive rumor blocking method on online social networks [36]. Li et al.
developed comprehensive interventions with qualitative and quantitative analysis based
on the ILRDS rumor model [37]. Liu et al. studied a dynamic quarantine defense model
to improve the cost and efficiency of rumor diffusion control [38]. Yu et al. studied an
I2SR rumor model with an environment event-triggered impulsive control strategy in
heterogeneous networks [39]. Xia et al. proposed a new ILSR rumor-spreading model
combining the incubation mechanism and general nonlinear spreading rate [40]. As well
as aiming to explore the control of the spread of rumors, this paper will also put forward
effective control strategies that will help control rumor propagation on a scale-free network.

The structure of this paper is arranged as follows. In Section 2, it proposes a modified
ISCR model and gives the value of the basic reproduction number. In Section 3, the ISCR
model including the saturated incidence rate and the time delay is further investigated. In
Section 4, an optimal control problem is established and studied to control the spread of
rumors. In Section 5, sensitivity analysis and some numerical simulations are carried out.
In the Section 6, a brief comparison and conclusion are presented.

2. The Rumor Spreading Model
2.1. Model Formulation

As studied in [28,29], a novel ISCR model with saturated incidence and time delay on
a scale-free network is proposed. The flow diagram of the model is shown in Figure 1. The
total population is separated into four groups: Ignorants who have never known the rumor
and consequently are open to trusting the rumor, marked by I; Spreaders who know and
spread the rumor actively, marked by S; Cooled states or Cooling-off represent those who
calm down before stopping the propagation of the rumor, marked by C. In other words, it
takes into consideration the likelihood that spreaders may go through a cooling-off phase
before becoming Removes; Removes who have been contacted by the Spreaders or Cooled
states but resist and do not spread it, are marked by R. Each individual on the scale-free
network is represented by a network node, and the connections between those nodes
are what allow for rumor-spreading [9]. Taking closed and homogeneity into account, it
combines the connectivity of nodes on the networks with different topologies. Let Ik(t),
Sk(t), Ck(t) and Rk(t) be the relative densities of Ignorants, Spreaders, Cooling-off, and
Removes with the degree k = 1, 2, . . . , n at time t, respectively. The process of the ISCR
rumor propagation model is shown in Figure 1.

Mathematics 2022, 10, x FOR PEER REVIEW 4 of 25 
 

 

( )kC t

( )kR t

( )
( )1

k t
t

β τ
α τ
Θ −

+ Θ − γΛ

μ

μ μ

μ

ηε

σ

( )kI t ( )kS t

 
Figure 1. Flowchart of an ISCR rumor model. 
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This is based on the mean-field theory on complex networks [41,42]. The equations of
propagating dynamics can be described as follows.

dIk(t)
dt = Λ− βkΘ(t−τ)

1+αΘ(t−τ)
Ik(t)− σIk(t)− µIk(t)

dSk(t)
dt = βkΘ(t−τ)

1+αΘ(t−τ)
Ik(t)− εSk(t)− γSk(t)− µSk(t)

dCk(t)
dt = εSk(t)− ηCk(t)− µCk(t)

dRk(t)
dt = ηCk(t) + σIk(t) + γSk(t)− µRk(t)

(1)

where τ represents the incubation period. Θ(t− τ) is the average number of connections
between ignorant nodes and spreader nodes on a scale-free network. Expanding the time
function, it obtains

Θ(t− τ) =
n

∑
j=1

p(j|k)Sj(t− τ) =
n

∑
j=1

jp(j)
〈k〉 Sj(t− τ), j, k ∈ 1, 2, . . . n, (2)

where p(j|k) represents the conditional probability that a node with a degree k will be
connected to another node with the degree j, namely p(j|k) = jp(j)

〈k〉 , 〈k〉 = ∑
k

kp(k) is known

as the average degree of the scale-free network. When the Ignorants are connected to
the Spreaders, they will know the rumor and thus become Spreaders with a probability
of βkΘ(t−τ)

1+αΘ(t−τ)
and β is the infection rate. α represents the psychological inhibition factor,

which reveals individuals’ willingness to take action to refute rumors because of available
scientific knowledge both online and offline. The parameter γ is the recovery rate of the
Spreaders under the influence of the forgetting mechanism. σ is the immunity rate of
Spreaders with the effect of popular science education and media coverage. ε is the cooling-
off rate of Spreaders. η is the transfer rate from Cooling-off to Removes. It assumes that the
immigration rate is Λ and emigrate rate is µ. All the newly added nodes are classified as
Ignorants and the parameters are non-negative.

According to the actual situation in the rumor propagation process, the initial condi-
tions of the system (1) must satisfy Ik(0) ≥ 0, Sk(0) ≥ 0, Ck(0) ≥ 0, Rk(0) ≥ 0, Θ(0) ≥ 0,
Ik(0) + Sk(0) + Ck(0) + Rk(0) = 1. Therefore, Ik(t) + Sk(t) + Ck(t)+Rk(t)= 1 exists when
the differential equation of the system (1) is equal to zero. In such a method, the investiga-
tion on the rumor propagation model will be centered on the positive solution.

2.2. The Basic Reproduction Number of the System (1)

System (1) always has a rumor-free equilibrium E0 =
(

Λ
σ+µ , 0, 0, 0, · · · , Λ

σ+µ , 0, 0, 0
)

.
Furthermore, it assumes that the rumor-endemic equilibrium of system (1) is E∗(I∗1 , S∗1 , C∗1 ,
R∗1 , · · · , I∗n , S∗n, C∗n, R∗n). In light of the derivative value, the balance is zero, and it obtains

Λ− βkΘ∗

1+αΘ∗ I∗k (t)− σI∗k (t)− µI∗k (t) = 0
βkΘ∗

1+αΘ∗ I∗k (t)− εS∗k (t)− γS∗k (t)− µS∗k (t) = 0
εS∗k (t)− ηC∗k (t)− µC∗k (t) = 0

ηC∗k (t) + σI∗k (t) + γS∗k (t)− µR∗k (t) = 0

(3)

It is easy to see that S∗k (t), C∗k (t), R∗k (t) are linear function with reference to I∗k (t),
which obtains

S∗k (t) =
βkΘ∗

(1+αΘ∗)(ε+γ+µ)
I∗k (t)

C∗k (t) =
εβkΘ∗

(1+αΘ∗)(ε+γ+µ)(η+µ)
I∗k (t)

R∗k (t) = 1− I∗k (t)− S∗k (t)− C∗k (t)

(4)
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Then, the expression of rumor-endemic equilibrium can be as shown in Equation (3).

I∗k (t) =
Λ(1+αΘ∗)

(σ+µ)(1+αΘ∗)+βkΘ∗

S∗k (t) =
ΛβkΘ∗

(ε+γ+µ)[βkΘ∗+(σ+µ)(1+αΘ∗)]

C∗k (t) =
ΛεβkΘ∗

(η+µ)(ε+γ+µ)[βkΘ∗+(σ+µ)(1+αΘ∗)]
R∗k (t) = 1− I∗k (t)− S∗k (t)− C∗k (t)

(5)

When substituting the S∗k (t) in Equation (5) into the time function Θ(t) and expanding
Θ(t), the formula can be defined as self-consistency equality.

Θ =
Λβ

ε + γ + µ

n

∑
j=1

jp(j)
〈k〉

kΘ
βkΘ + (σ + µ)(1 + αΘ)

= f (Θ) (6)

Θ(t) = 0 is a value to the autonomous Equation (2). Moreover, the solution of the
formula f (Θ) at Θ = 1 has numerical results, as follows.

f (1) =
n

∑
j=1

jp(j)
〈k〉

Λ
ε + γ + µ

βk
βk + (σ + µ)(1 + α)

< 1 (7)

Therefore, the following results must be fulfilled so that for the independent Equation (6)
concerning the function Θ(t) exists a unique non-zero solution within the range of zero
and one.

d f (Θ)

dΘ

∣∣∣∣
Θ=0

=
Λβ

(σ + µ)(ε + γ + µ)

〈
k2〉
〈k〉 > 1 (8)

The equation of the basic reproduction number R0 can be found on account of the
system (1), as follows.

R0 =
Λβ

(σ + µ)(ε + γ + µ)

〈
k2〉
〈k〉 (9)

where
〈
k2〉 = ∑

k
k2 p(k), 〈k〉 has previously been mentioned in the text. According to

Equation (4), it can prove that the basic reproduction number R0 has no connection to time
delay τ. In brief, if R0 < 1, the rumor will gradually vanish away, and if R0 > 1, the rumor
will accelerate rapid diffusion on a scale-free network.

3. The Stability of the Rumor Propagate Model

This section investigates the global asymptotic stability of rumor-free and rumor-
endemic equilibrium utilizing the Lyapunov function and Lasalle’s invariant set principle.
The stability of the rumor-endemic equilibrium point will be theoretically studied, consid-
ering the basic reproduction number is greater than 1.

Theorem 1. If R0 = Λβ
(σ+µ)(ε+γ+µ)

〈k2〉
〈k〉 < 1, rumor-free equilibrium E0 of the system (1) is

globally asymptotic stable. If not, it is unstable.

Proof. The function f (x) = x − 1 − ln x, x > 0 is constructed for the sake of stability
proof. It means that the function f (x) is a non-negative function on account of f (1) =
1− 1− ln 1 = 0. The following is the construction of the Lyapunov functions.

V1(t) =
n
∑

k=1
g(k) f

(
Ik(t)

I0
k

)
+

n
∑

k=1
g(k)Sk(t)

V2(t) =
∫ t

t−τ (ε + γ + µ) Θ(x)
1+αΘ(x)dx

V(t) = V1(t) + V2(t)

(10)
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where g(k) = kp(k)
〈k〉 , k = 1, · · · , n. In this text, it has been demonstrated that certain nodes

in the system (1) have positive qualities. It can be determined that V(t) is a positive value
considered in terms of Ik(t) = I0

k , Sk(t) = 0, and the equation is also a positive value if
V1(t) ≥ 0. In conclusion, Lyapunov’s second theorem will satisfy the positive qualitative
requirement. �

Then, V1(t) and V2(t) are arranged appropriately. The derivative V1(t) is expanded
as follows.

dV1(t)
dt =

n
∑

k=1
g(k)

(
1− I0

k (t)
Ik(t)

)
dIk(t)

dt +
n
∑

k=1
g(k)dSk(t)

dt

=
n
∑

k=1
g(k)

(
1− I0

k (t)
Ik(t)

)[
Λ− βkΘ(t−τ)

1+αΘ(t−τ)
Ik(t)− σIk(t)− µIk(t)

]
+

n
∑

k=1
g(k)

[
βkΘ(t−τ)

1+αΘ(t−τ)
Ik(t)− εSk(t)− γSk(t)− µSk(t)

] (11)

At the rumor-free equilibrium, every differential equation has a zero derivative. Ac-
cording to the first section of the Equation (11), it can be obtained with Λ = βkΘ(t−τ)

1+αΘ(t−τ)
I0
k +

(σ + µ)I0
k ; uniting this with the first equation of the system (1), it can acquire dSk(t)

dt ≤
Λ− (σ + µ)Ik(t). It solves the original function of Ik(t) by giving up Λ− (σ + µ)Ik(t) 6= 0.
It obtains Ik(t) = − ce−(σ+µ)t

σ+µ + Λ
σ+µ , c > 0. The following inequality can be obtained,

Ik(t)
t→∞

≤ Λ
σ+µ + ξ, ξ > 0, since the first section of the equation is negative. On account of

Λ− (δ + µ)Ik(t) = 0, it’s obvious that Ik(t)
t→∞

= Λ
σ+µ . Therefore, it is concluded that Ik(t)

t→∞
≤

Λ
σ+µ , namely, nodes of Spreaders are bounded and satisfy lim

t→∞
supIk(t) = Λ

σ+µ = I0
k . Simpli-

fying the derivative V1(t) obtains ∑
k

g(k)
(

1− I0
k

Ik

)
< 0 on account of βkΘ(t−τ)

1+αΘ(t−τ)
I0
k > 0.

dV1(t)
dt =

n
∑

k=1
g(k)

(
1− I0

k (t)
Ik(t)

)[
βkΘ(t−τ)

1+αΘ(t−τ)
I0
k (t) + (σ + µ)I0

k (t)−
βkΘ(t−τ)

1+αΘ(t−τ)
Ik(t)− (σ + µ)Ik(t)

]
+

n
∑

k=1
g(k)

[
βkΘ(t−τ)

1+αΘ(t−τ)
Ik(t)− εSk(t)− γSk(t)− µSk(t)

]
≤

n
∑

k=1
g(k)

(
1− I0

k
Ik

)[
(σ + µ)

(
I0
k (t)− Ik(t)

)]
+

n
∑

k=1
g(k) βkΘ(t−τ)

1+αΘ(t−τ)
I0
k (t)

− (ε + γ + µ)
n
∑

k=1
g(k)Sk(t)

=
n
∑

k=1
g(k)

(
1− I0

k
Ik

)[
(σ + µ)

(
I0
k (t)− Ik(t)

)]
+

n
∑

k=1
g(k) βkΘ(t−τ)

1+αΘ(t−τ)
Λ

σ+µ

− (ε + γ + µ)
n
∑

k=1
g(k)Sk(t)

(12)

Calculating the derivative of the function V2(t) to t obtains the following.

dV2(t)
dt

= (ε + γ + µ)

[
Θ(t)

1 + αΘ(t)
− Θ(t− τ)

1 + αΘ(t− τ)

]
(13)

Furthermore, according to Equation (2), the following relations can be obtained.

n

∑
k=1

kP(k)
〈k〉 (ε + γ + µ)Sk(t) = (ε + γ + µ)Θ(t)



Mathematics 2022, 10, 3900 7 of 20

Since (ε + γ + µ) Θ(t)
1+αΘ(t) < (ε + γ + µ)Θ(t), the above can be given up, which obtains

the V(t) as:

dV(t)
dt = dV1(t)

dt + dV2(t)
dt

≤
n
∑

k=1
g(k)

(
1− I0

k
Ik

)[
(σ + µ)

(
I0
k (t)− Ik(t)

)]
+

n
∑

k=1
g(k) βkΘ(t−τ)

1+αΘ(t−τ)
Λ

σ+µ

− (ε + γ + µ)
n
∑

k=1
g(k)Sk(t) + (ε + γ + µ)

[
Θ(t)

1+αΘ(t) −
Θ(t−τ)

1+αΘ(t−τ)

]
=

n
∑

k=1
µg(k)

(
1− I0

k
Ik

)[
I0
k (t)− Ik(t)

]
+ (ε + γ + µ)(R0 − 1) Θ(t−τ)

1+αΘ(t−τ)

+ (ε + γ + µ)
[

Θ(t)
1+αΘ(t) −Θ(t)

]
− [(ε + γ + µ)− (ε + γ + µ)]

Θ(t−τ)
1+αΘ(t−τ)

≤
n
∑

k=1
µg(k)

(
1− I0

k
Ik

)[
I0
k (t)− Ik(t)

]
+ (ε + γ + µ)(R0 − 1) Θ(t−τ)

1+αΘ(t−τ)

(14)

In Equation (2), because Ik(t) ≤ I0
k (t), then

n
∑

k=1
µg(k)

(
1− I0

k
Ik

)[
I0
k (t)− Ik(t)

]
≤ 0.

When R0 ≤ 1, (ε + γ + µ)(R0 − 1) Θ(t−τ)
1+αΘ(t−τ)

≤ 0, therefore, if R0 ≤ 1, it is obvious that
dV(t)

dt ≤ 0 exists when, and only when, Ik(t) = I0
k (t),

dV(t)
dt = 0. This part reveals that the

established Lyapunov function is a function with a positive definiteness, and the derivative
is negative. Thus, in terms of LaSalle’s invariance principle, rumor-free equilibrium E0 can
be globally asymptotically stable when R0 < 1. If not, it is unstable. Theorem 1 is proved.

Theorem 2. If R0 = Λβ
(σ+µ)(ε+γ+µ)

〈k2〉
〈k〉 > 1, or any non-negative time delay τ, it exists a unique

rumor-endemic equilibrium E∗
(

I∗1 , S∗1 , C∗1 , R∗1 , · · · , I∗n , S∗n, C∗n, R∗n
)

that is globally asymptotically
stable.

Proof. When R0 > 1, it considers that the rumor-endemic equilibrium point of the system
is E∗

(
I∗1 , S∗1 , C∗1 , R∗1 , · · · , I∗n , S∗n, C∗n, R∗n

)
to demonstrate its stability. Considering the rumor-

endemic equilibrium of system (1) to establish the Lyapunov function V1(t) and V2(t) is
as follows

V1 = Ik(t)−
∫ Ik(t)

I∗k (t)
I∗k (s)
Ik(s)

ds + Sk(t)−
∫ Sk(t)

S∗k (t)
S∗k (s)
Sk(s)

ds + ε+γ+µ
ε

[
Ck(t)−

∫ Ck(t)
C∗k (t)

C∗k (s)
Ck(s)

ds
]

V2 = (ε + γ + µ)S∗k (t)
∫ 0
−τ H

(
Ck(s)
C∗k (t)

)
ds

(15)

where H(x) = x− 1− ln x, the function H(x) is greater than 0. Thus, Vk1(t) and Vk2(t) are
both greater than zero. Following is a definition of the Lyapunov function Vk(t). �

V(t) = V1(t) + V2(t) (16)

By employing the derivative of V1(t) for t and substituting the system (1) into the
function (16), one obtains

dV1(t)
dt =

(
1− I∗k (t)

Ik(t)

)(
Λ− βkΘ(t−τ)

1+αΘ(t−τ)
Ik(t)− σIk(t)− µIk(t)

)
+
(

1− S∗k (t)
Sk(t)

)(
βkΘ(t−τ)

1+αΘ(t−τ)
Ik(t)− εSk(t)− γSk(t)− µSk(t)

)
+ ε+γ+µ

ε

(
1− C∗k (t)

Ck(t)

)
(εSk(t)− ηCk(t)− µCk(t))

(17)
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Since Λ = βkΘ(t−τ)
1+αΘ(t−τ)

I∗k + (σ + µ)I∗k , substituting the system equilibrium point into the
function (16) can also be expressed as follows.

dV1(t)
dt =

(
1− I∗k (t)

Ik(t)

)
(σ + µ)

[
I∗k (t)− Ik(t)

]
−
(

1− I∗k (t)
Ik(t)

)
(ε + γ + µ)S∗k (t)

− (ε + γ + µ)S∗k (t)−
S∗k (t)
Sk(t)

Ik(t)
I∗k (t)

(ε + γ + µ)S∗k (t)

− (ε + γ + µ) Sk(t)
S∗k (t)

C∗k (t)
Ck(t)

− (ε + γ + µ)S∗k (t)
Ck(t)
C∗k (t)

+ (ε + γ + µ)S∗k (t)

≤
(

1− I∗k (t)
Ik(t)

)
(σ + µ)

[
I∗k (t)− Ik(t)

]
+ (ε + γ + µ)

[
4− I∗k (t)

Ik(t)
− S∗k (t)

Sk(t)
Ik(t)
I∗k (t)
− Sk(t)

S∗k (t)
C∗k (t)
Ck(t)

− Ck(t)
C∗k (t)

]
(18)

Then, the derivative of the function V2(t) concerning t is employed. It obtains

dV2(t)
dt = (ε + γ + µ)S∗k (t)

d
dt

∫ 0
−τ H

(
Ck(s)
C∗k (t)

)
ds

= (ε + γ + µ)S∗k (t)
[

Cj(t)−Cj(t−τ)

C∗j (t)
+ ln

Cj(t−τ)

Cj(t)

] (19)

Furthermore, according to (16), it can obtain the expression of dV(t)
dt = dV1(t)

dt + dV2(t)
dt as

dV(t)
dt =

(
1− I∗k (t)

Ik(t)

)
(σ + µ)

[
I∗k (t)− Ik(t)

]
+ (ε + γ + µ)

[
4− I∗k (t)

Ik(t)
− S∗k (t)

Sk(t)
Ik(t)
I∗k (t)
− Sk(t)

S∗k (t)
C∗k (t)
Ck(t)

− Ck(t)
C∗k (t)

]
(ε + γ + µ)I∗k (t)

[
Cj(t)−Cj(t−τ)

C∗j (t)
+ ln

Cj(t−τ)

Cj(t)

]
=
(

1− I∗k (t)
Ik(t)

)
(σ + µ)

[
I∗k (t)− Ik(t)

]
+ (ε + γ + µ)

[
−
(

I∗k (t)
Ik(t)

−1− ln I∗k (t)
Ik(t)

)
+

(
Cj(t)
C∗j (t)

− ln
Cj(t)
C∗j (t)

)
−
(

Ck(t)
C∗k (t)

− ln Ck(t)
C∗k (t)

)
−
(

S∗k (t)
Sk(t)

Ik(t)
I∗k (t)
− 1− ln S∗k (t)

Sk(t)
Ik(t)
I∗k (t)

)
−
(

Sk(t)
S∗k (t)

C∗k (t)
Ck(t)

− 1− ln Sk(t)
S∗k (t)

C∗k (t)
Ck(t)

)
−
(Cj(t−τ)

Cj(t)
− 1− ln

Cj(t−τ)

Cj(t)

)
=
(

1− I∗k (t)
Ik(t)

)
(σ + µ)

[
I∗k (t)− Ik(t)

]
++(ε + γ + µ)

[(
Cj(t)
C∗j (t)

− ln
Cj(t)
C∗j (t)

)
−
(

Ck(t)
C∗k (t)

− ln Ck(t)
C∗k (t)

)
− H

(
I∗k (t)
Ik(t)

)
− H

(
S∗k (t)
Sk(t)

Ik(t)
I∗k (t)

)
− H

(
Sk(t)
S∗k (t)

C∗k (t)
Ck(t)

)
− H

(Cj(t−τ)

Cj(t)

)

(20)

where, −H
(

I∗k (t)
Ik(t)

)
,−H

(
S∗k (t)
Sk(t)

Ik(t)
I∗k (t)

)
,−H

(
Sk(t)
S∗k (t)

C∗k (t)
Ck(t)

)
, and −H

(Cj(t−τ)

Cj(t)

)
are a part of the

function−H(x). According to H(x) = x− 1− ln x > 0 is always positive; thus,−H(x) < 0,
namely, these four functions are all less than zero.

Define ajk = βkI∗k ∑
j

jp(j)
〈k〉 S∗j , Gk(Ck(t)) = −

Cj(t)
C∗j (t)

+ ln
Cj(t)
C∗j (t)

, j, k ∈ Nn, it obtains

Fkj(t) = Gk(Ck(t))− Gj
(
Cj(t)

)
− H

(
I∗k (t)
Ik(t)

)
− H

(
S∗k (t)
Sk(t)

Ik(t)
I∗k (t)

)
− H

(
Sk(t)
S∗k (t)

C∗k (t)
Ck(t)

)
− H

(Cj(t−τ)

Cj(t)

)
≤ Gk(Ck(t))− Gj

(
Cj(t)

)
, j, k = 1, 2, · · · , n

where, Vk(t), Fkj(t) and Gk(Ck(t)) support the stated hypothesis in Reference [43]. Fkj(t) ≤ 0.

Therefore, it meets dV(t)
dt ≤ 0 when, and only when, the system (1) satisfies the rumor-

endemic equilibrium E∗
(

I∗1 , S∗1 , C∗1 , R∗1 , · · · , I∗n , S∗n, C∗n, R∗n
)
, dV(t)

dt = 0. In summary, the
rumor-endemic equilibrium point E∗ of the system is globally asymptotically stable for any
τ ≥ 0 if R0 > 1 on account of LaSalle’s invariance principle of the time-delay system [44].
Namely, no matter the Spreaders’ initial density, the rumor will eventually stabilize, and
then the rumors will become prevalent.
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As a result, for any non-negative time delays, if R0 = Λβ
(σ+µ)(ε+γ+µ)

〈k2〉
〈k〉 > 1, the rumor-

endemic equilibrium E∗ is globally asymptotic stable, which provides Vk(Ik(t),Sk(t), Ck(t),
Rk(t)) = 0 tenable forever.

4. Optimal Control Strategy for Rumor Propagation

Since adopting optimal control strategies to control rumor propagation may bring in-
evitable expenses in reality, the limitation of resources has to be considered. This section
intends to acquire an optimal rumor propagation control strategy with saturated incidence
and time delay. In system (1), there exist state variables Ik(t), Sk(t), Ck(t), Rk(t) and Sk(t− τ).
A control variable uk(t) ∈ U ={ukmeasurable : 0 ≤ uk ≤ 1, t ∈ [0, T], k = 1, 2, . . . , n} is in-
troduced, which can turn Sk(t)→ Rk(t) with the help of a media campaign.

In this section, optimized control solutions are suggested to prevent the spread of
rumors and lower the cost of controlling social media platforms. The minimum principle
of Pontryagin is employed to determine the most effective control solution [45]. Therefore,
a control variable u(t) is employed to express the function of the control strategy for Ik(t).
Next, the definition of a valid control set follows:

U =
{

u(t) ∈ L2(0, T) : 0 ≤ t ≤ T; 0 ≤ u(t) ≤ t
}

(21)

In the system (1), there are five state variables, Ik(t), Sk(t), Sk(t− τ),Ck(t), Rk(t). Accord-
ing to the optimal control strategies, the control variable uk(t) ∈ Uad can control the variation,
in which Sk(t) turns into Rk(t). Namely, the percentage of Spreaders will turn into Removes.
Furthermore, Uad ∈ U = {uk(t)is measurable : 0 ≤ uk(t) ≤ 1, t ∈ [0, T], k = 1, 2, . . . , n}
stands for the range of values for the recovery rate. The maximum control range is
0 ≤ u(t) ≤ 1 for all rumor-spreading. Therefore, to compress the objective function,
an optimal control problem is taken into account.

J(u) =
∫ T

0

n

∑
k=1

[
Sk(t) +

1
2

cku2
k(t)

]
dt (22)

The controlled system can be obtained by

dIk(t)
dt = Λ− βkΘ(t−τ)

1+αΘ(t−τ)
Ik(t)− σIk(t)− µIk(t),

dSk(t)
dt = βkΘ(t−τ)

1+αΘ(t−τ)
Ik(t)− εSk(t)− γSk(t)− µSk(t)− uk(t)Sk(t),

dCk(t)
dt = εSk(t)− ηCk(t)− µCk(t),

dRk(t)
dt = σIk(t) + γSk(t) + ηCk(t) + uk(t)Sk(t)− µRk(t),

(23)

where ck, k = 1, 2, . . . , n is all positive parameters. ck is set as a trade-off factor. The square
of the control variable shows the significance of the remove scale effect. To acquire the
optimal value, the Lagrangian function is defined as.

L = L(Ik(t), Sk(t), Ck(t), Rk(t), uk(t)) =
n

∑
k=1

[
Sk(t) +

1
2

cku2
k(t)

]
(24)

The control system’s Hamiltonian function is defined as follows.

H = L +
n

∑
k=1

[
λ1k(t)

dIk(t)
dt

+ λ2k(t)
dSk(t)

dt
+ λ3k(t)

dCk(t)
dt

+ λ4k(t)
dRk(t)

dt

]
(25)

where λ1k(t), λ2k(t), λ3k(t), λ4k(t), k = 1, 2, . . . , n is an adjoint function to be determined.

Theorem 3. In the optimal control system (30), an optimal control u∗(t) =
(
u∗1(t), u∗2(t), . . . , u∗n(t)

)
making J(u∗(t)) = maxJ(u∗(t)) exists with initial conditions.
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Proof. The control and state variables in this minimization problem satisfy the target
function’s essential convexity for being non-negative. �

u(t) = (u1(t), u2(t), . . . , un(t)) represents the control spaces.

Uad ∈ U = {uk(t)is measurable : 0 ≤ uk(t) ≤ 1, t ∈ [0, T], k = 1, 2, . . . , n}

is a convex closed function, and the control system is bounded [45]. Additionally, the inte-
grand L = L(I, S, C, R, u) is convex for control u(t). It exits positive constants β > 1, η1 > 1,
and η2 > 1 that make L ≥ η1|u|β/2 − η2, meaning that the optimal control is in effect.

The maximum principle of Pontryag is applicable to the Hamiltonian function to
acquire the optimal values.

H(t, x(t), λ(t)) = f (t, x(t), u(t)) + λ(t)g(t, x(t), u(t)) (26)

If (x∗(t), u∗(t)) is the optimal solution to the control strategy, it exists a nontrivial
vector function λ(t) = (λ1(t), λ2(t), . . . , λn(t)) that satisfies the equilibrium as follows.

dλ
dt = − ∂H(t,x∗(t),u∗(t),λ(t))

∂x
∂H(t,x∗(t),u∗(t),λ(t))

∂u = 0
dx
dt = − ∂H(t,x∗(t),u∗(t),λ(t))

∂λ

(27)

the following value range for the optimal control approach is obtained.
u∗ = 0, i f ∂H

∂u < 0,
0 ≤ u∗ ≤ 1, i f ∂H

∂u = 0,
u∗ = 1, i f ∂H

∂u > 0,
(28)

Theorem 4. Suppose I∗k (t), S∗k (t), S∗k (t− τ), C∗k (t), and R∗k (t) are the optimal solutions with
respect to the optimal control variable u∗k (t) in the optimal control system (22), where I∗k (t) =(

I∗1 (t), I∗2 (t), . . . , I∗n(t)
)
, S∗k (t) =

(
S∗1(t), S∗2(t), . . . , S∗n(t)

)
, S∗k (t− τ) = (S∗1(t− τ), S∗2(t− τ),

. . . , S∗n(t− τ)), C∗k (t) =
(
C∗1 (t), C∗2 (t), . . . , C∗n(t)

)
, and R∗k (t) =

(
R∗1(t), R∗2(t), . . . , R∗n(t)

)
.

The adjoint variables λ∗1(t), λ∗2(t), λ∗3(t), λ∗4(t) meet

dλ1k(t)
dt = (λ1k(t)− λ2k(t))βk Θ(t−τ)

1+αΘ(t−τ)
+ σ[λ1k(t)− λ4k(t)] + µλ1k(t),

dλ2k(t)
dt = −1 + (ε + γ + µ + uk(t))λ2k(t)− ελ3k(t)− [uk(t) + γ]λ4k(t) + χ[0,T−τ][λ1k(t + τ)− λ2k(t + τ)]

βk2 p(k)
〈k〉

Ik(t)
[1+αΘ(t−τ)]2

, χ[0,T−τ] = Γ(t) =
{

1, i f t ∈ Γ
0, i f t /∈ Γ

,

dλ3k(t)
dt = (η + µ)λ3k(t)− ηλ4k(t),

dλ4k(t)
dt = µλ4k(t),

(29)

with conditions λ1k(T) = λ2k(T) = λ3k(T) = λ4k(T) = 0, k = 1, 2, . . . , n. It can obtain the
optimal control u∗k (t) with the following form.

u∗k (t) = min
{

max
(

0,
λ2k − λ4k

ck
I∗k

)
, 1
}

, k = 1, 2, . . . , n, (30)

Proof. To identify the adjoint function, the differential equation of Hamiltonian (26) concern-
ing Ik(t), Sk(t), Sk(t− τ), Ck(t), Rk(t) is adopted, and Ik(t) = I∗k (t), Sk(t) = S∗k (t), Ck(t) =
C∗k (t), Rk(t) = R∗k (t), and Sk(t− τ) = S∗k (t) are substituted to acquire the first adjoint
function’s expression as follows. �
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dλ1k(t)
dt = − ∂H(t)

∂Ik(t)
= −

[
−λ1k(t)

(
βk Θ(t−τ)

1+αΘ(t−τ)
+ σ + µ

)
+ λ2k(t)βk Θ(t−τ)

1+αΘ(t−τ)
+ σλ4k(t)

]
= (λ1k(t)− λ2k(t))βk Θ(t−τ)

1+αΘ(t−τ)
+ σ[λ1k(t)− λ4k(t)] + µλ1k(t),

(31)

The second adjoint function’s expression is as follows.

dλ2k(t)
dt = − ∂H(t)

∂Sk(t)
− χ[0,T−τ](t)

∂H(t+τ)
∂Sk(t−τ)

= −1 + (ε + γ + µ + uk(t))λ2k(t)− ελ3k(t)− [uk(t) + γ]λ4k(t)

+ χ[0,T−τ][λ1k(t + τ)− λ2k(t + τ)]
βk2 p(k)
〈k〉

Ik(t)
[1+αΘ(t−τ)]2

,

χ[0,T−τ] = Γ(t) =
{

1, i f t ∈ Γ
0, i f t /∈ Γ

,

(32)

The third adjoint function’s expression is as follows.

dλ3k(t)
dt

= − ∂H(t)
∂Ck(t)

= (η + µ)λ3k(t)− ηλ4k(t), (33)

The fourth adjoint function’s expression is as follows.

dλ4k(t)
dt

= − ∂H(t)
∂Rk(t)

= µλ4k(t), (34)

According to the conditions of (38), ∂H(t)
∂uk(t)

∣∣∣
Ik(t)=I∗k (t),Sk(t)=S∗k (t),Ck(t)=C∗k (t),Rk(t)=R∗k (t),

Sk(t−τ)=S∗k (t)
= cku∗k (t)− S∗k (t)λ2k(t) + S∗k (t)λ4k(t) = 0, k = 1, 2, . . . , n is established. Fur-

thermore, it obtains

u∗k (t) =


0, λ2k(t)−λ4k(t)

ck
I∗k (t) < 0,

λ2k(t)−λ4k(t)
ck

S∗k (t), 0 ≤ λ2k(t)−λ4k(t)
ck

I∗k (t) ≤ 1,

1, λ2k(t)−λ4k(t)
ck

I∗k (t) > 1,

(35)

It is equivalent to

u∗k (t) = min
{

max
(

0,
λ2k − λ4k

ck
S∗k

)
, 1
}

, k = 1, 2, . . . , n, (36)

The optimal control of recovery variables has already been established. Equation (23)
expands the adjoint function’s specific form, and the equation provides the following
optimal control approach.

dI∗k (t)
dt = Λ− βkΘ∗(t−τ)

1+αΘ∗(t−τ)
I∗k (t)− σI∗k (t)− µI∗k (t),

dS∗k (t)
dt = βkΘ∗(t−τ)

1+αΘ∗(t−τ)
I∗k (t)− εS∗k (t)− γS∗k (t)− µS∗k (t)−min

{
max

(
0, λ2k−λ4k

ck
S∗k
)

, 1
}

S∗k (t),
dC∗k (t)

dt = εS∗k (t)− ηC∗k (t)− µC∗k (t),
dR∗k (t)

dt = σI∗k (t) + γS∗k (t) + ηC∗k (t) + min
{

max
(

0, λ2k−λ4k
ck

S∗k
)

, 1
}

S∗k (t)− µR∗k (t),

(37)

From the above discussion, the optimality strategy is built up. Due to the uncer-
tainty of the actual situation, obtaining an effective control strategy can solve a series of
practical problems.

5. Numerical Simulations

This section provides some numerical simulations to support and extend the main
theoretical results on a scale-free network with p(k) = (γ1 − 1)mγ1−1k−γ1 , where the
parameter m represents the smallest degree of the network nodes, and the parameter γ1
is the power-law variable [9]. Suppose m = 2, γ1 = 3, and the number of the nodes on
the scale-free network is N, define N = 100. Moreover, the average degree of all nodes is
computed as 〈k〉= 3.1586. According to the general law of rumor propagation, there exist
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the initial values of the system
(

N
∑

k=1
Ik(0),

N
∑

k=1
Sk(0),

N
∑

k=1
Ck(0),

N
∑

k=1
Rk(0)

)
= (0.65, 0.35, 0, 0)

to investigate the contents of this section in more detail.

5.1. Dynamical Behavior of System (1) on the Scale-Free Network

The basic reproduction number R0 = 0.5258 < 1 in system (1) is given with the
parameters Λ = 0.03, β = 0.004, σ = 0.05, ε = 0.2, γ = 0.12, η = 0.24, α = 1, µ = 0.03,
τ = 1, k = 30. Obviously, system (1) is asymptotically stable at the rumor-free equilibrium
point E0 in Figure 2a, which indicates that the densities of Ignorants and Removes tend to a
positive constant, and the densities of Spreaders and Cooling-off tend to zero, which is con-
sistent with the conclusion of Theorem 1. The basic reproduction number R0 = 6.5725 > 1
in the system (1) is given with the parameters Λ = 0.04, β = 0.05, σ = 0.05, ε = 0.2,
γ = 0.12, η = 0.24, α = 1, µ = 0.03, τ = 1, k = 30.
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Figure 2. The densities of I30(t), S30(t), C30(t), R30(t), (a) R0 < 1, (b) R0 > 1.

As Figure 2b shows, the densities of Ignorants, Spreaders, Cooling-off, and Removes
can be obtained over time. It demonstrates that the change range of solution curves
will gradually decrease as time goes on. That is to say, system (1) eventually tends to a
stable state. Namely, for any given initial value, the densities of Ignorants and Spreaders
ultimately converges to a positive constant.

To further examine the rigor of the theoretical analysis results, Figures 3 and 4 com-
pare the equilibrium conditions under their limit thresholds in system (1), respectively.
Considering the evolution of the system (1) with given parameters, the basic reproduction
number R0 = 0.0053, R0 = 0.5258, and R0 = 0.9464 can be acquired. The variation trend of
I30(t) and S30(t) over time is shown in Figure 3a,b, respectively. In Figure 4, the rumor-free
equilibrium point E0 is of global asymptotic stability. At the same time, Figure 4 reveals
that the larger R0 it is, the slower the system (1) approaches rumor-free equilibrium point,
that is to say, rumor-spreading cannot diffuse rapidly on the scale-free network when
R0 < 1. Similarly, considering the evolution of the system (1) with given parameters, the
basic reproduction number R0 = 1.3087, R0 = 6.6525 and R0 = 13.3048 can be acquired.
Moreover, the further evolution mechanism of I30(t) and S30(t) over time is shown in
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Figure 4a,b, respectively. If R0 > 1, with the gradual raising of R0, the density of Ignorants
in the system (1) will decrease; conversely, the density of Spreaders will increase, and the
level of rumor-spreading will rise accordingly, which reveals that restraining the size of the
basic reproduction number R0 is an effective path to prevent rumor propagation when the
rumor occurs.
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Figure 3. The densities of I30(t) (a), S30(t) (b), considering the variance of R0 when R0 < 1.
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5.2. The Effect of Node Degree k on Rumor Propagation

The influence of degree k on rumor propagation with fixed parameters is analyzed by
altering the value of k. The basic reproduction number R0 is simply calculated as R0 > 1.
Figure 5 represents evolutions of Ignorants and Spreaders with different k = 20, 40, 60, 80
and 100, respectively. With the increase of k, the density of Ignorants decreases, whereas the
density of Spreaders increases. According to the simulation results, the phenomenon shown
in Figure 5 occurs, since nodes with more neighbors have easier access to rumor-spreading
by contacting the spreaders on the scale-free network.
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5.3. The Effect of Psychological Inhibition Factor α on Rumor Propagation

The basic reproduction number R0 > 1 is defined with the fixed parameters, compar-
ing varied densities of I30(t) and S30(t) in the system (1) when α = 1, 3, 6, 9. From Figure 6,
with the gradual growth of the psychological inhibition factor α, it is worth noting that the
density of Ignorants increased, whereas the density of Spreaders decreased in the process
of rumor propagation. This indicates that the psychological inhibition factor can reduce the
density of rumor-spreading in the system (1) and restrain the influence of rumor. Namely,
the psychological inhibition factor α reflects the willingness of Spreaders to take active
measures to suppress the spread of rumors when related rumors diffuse.
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Figure 6. The densities of I30(t) (a) and S30(t); (b) with different α when R0 > 1.

5.4. The Effect of Time Delay

τ on Rumor Propagation
To explain the effect of time delay τ on rumor propagation, the basic reproduction

number is set as R0 < 1 and R0 > 1. Time evolutions impact solutions of system (1)
with various τ as τ = 1, 3, 6, and 9. From Figures 7a and 8a, it is evident that time delay
τ will restrain the Ignorants’ peak density. For the time delay τ increases, the density
of Ignorants gradually decreases. Moreover, the time delay τ promotes the peak of the
density of Ignorants for Figures 7b and 8b. Since the time delay τ increases, the maximum
density of Ignorants also gradually increases. This shows that as the time delay τ of rumor
propagation increases, it takes longer to eliminate the influence of rumors, making it harder
to suppress the spread of rumors. Therefore, it is necessary to boost the level of public
scientific knowledge through various social networking platforms by releasing widely
popular science videos or articles.
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5.5. The Effect of Optimal Control Strategy on Rumor Propagation

To explain the effectiveness of the optimal control strategy, the basic reproduction
number R0 > 1 is defined with fixed parameters for the sake of simplicity. Figure 9 shows
the densities of I30(t) and S30(t) with and without the optimal control. Compared with the
system (1) without control, the density of Ignorants is more prominent, whereas the density
of Spreaders is smaller in the system (37). This implies that the scale of rumor-spreading
can be restrained effectively with the implementation of the control strategy.
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5.6. Comparative Analysis of ISR Model and ISCR Model

The comparison model considers the ISCR model without a Cooling-off state with
other parameters to remain unchanged, that is, the ISR model. The time parameters of the
two models are defined as τ = 1. From Figure 10a,b, it is easy to examine how Cooling-off
affects Spreaders and Removes over time. The red solid line and the blue solid line in
Figure 10a can be compared to show how the cooling-off affects the spread rate of rumor-
spreading, the highest level of spreaders, and the amount of time it takes for spreaders to
achieve stability. As is evident from Figure 10b, the final proportion of Removes in the ISCR
model is smaller in contrast to the ISR model. In other words, the proportion of individuals
who finally know but do not spread the rumors is also reduced, and Cooling-off affects
the scale of rumor-spreading. Moreover, the system is inclined to be stable for a long time.
Namely, the existence of Cooling-off in the system is long, and the influence of rumors is
more significant.
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6. Discussions

This paper proposed a modified ISCR model on a scale-free network. It considers
adding time delay to the model to make the rumor propagation model more realistic. At the
same time, it employs a function βkΘ(t−τ)

1+αΘ(t−τ)
to describe the nonlinear incidence rate on the

scale-free network. As Θ(t) increases to a certain extent, βkΘ(t−τ)
1+αΘ(t−τ)

is inclined to saturate.
It demonstrates the stability of steady states, namely, if R0 < 1, the rumor-free equilibrium
is globally asymptotically stable; if R0 > 1, the rumor-free equilibrium is unstable, and
the rumor-endemic equilibrium is globally asymptotically stable by constructing different
Lyapunov functions. Furthermore, this paper has analyzed the optimal control strategy
for the rumor propagation model. Finally, it has verified the previous theoretical research
by several numerical simulations. Implementing a control strategy can effectively restrain
the rumors spread, which has good practical significance. When associated rumors diffuse,
the psychological inhibition factor α represents the willingness of rumor spreaders to
take positive steps to halt the spread of rumors. It is essential to increase the public’s
understanding of science through social media platforms by publishing widely shared
scientific knowledge, such as videos or articles.

From a realistic perspective, future work will extend and enhance the rumor-spreading
model by including new variables such as media coverage [46], spatial diffusion [47], mul-
tilayered network [48], control strategies [49], and so on, which sustain the mathematical
model of the rumor-spreading and make it more practical [50,51]. The stochastic rumor
model, including the Lévy process, can more accurately reflect the complex rumor prop-
agation law in the real world [52]. Additionally, the network structure can be thought of
as static to some extent, encouragin us to explore the construction of dynamical networks
and investigate time delay and the nonlinear dynamics of a certain rumor-spreading model
with actual data.
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