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Abstract: This research presents a nonlinear adaptive optimal control approach to the trajectory
tracking problem of a swarm of autonomous mobile robots. Mathematically, finding an analytical
adaptive control solution that meets the H2 performance index for the trajectory tracking problem
when controlling a swarm of autonomous mobile robots is an almost impossible task, due to the
great complexity and high dimensions of the dynamics. For deriving an analytical adaptive control
law for this tracking problem, a particular formulation for the trajectory tracking error dynamics
between a swarm of autonomous mobile robots and the desired trajectory is made via a filter
link. Based on this prior analysis of the trajectory tracking error dynamics, a closed-form adaptive
control law is analytically derived from a high-dimensional nonlinear partial differential equation,
which is equivalent to solving the trajectory tracking problem of a swarm of autonomous mobile
robots with respect to an H2 performance index. This delivered adaptive nonlinear control solution
offers the advantages of a simple control structure and good energy-saving performance. From
the trajectory tracking verification, this proposed control approach possesses satisfactory trajectory
tracking performance for a swarm of autonomous mobile robots, even under the effects of huge
modeling uncertainties.

Keywords: nonlinear adaptive optimal control; autonomous mobile robots; trajectory tracking design;
energy consumption

MSC: 37M05

1. Introduction

In recent decades, the diverse applications of autonomous mobile robots (AMRs) have
attracted much attention. Individually developed AMRs offer solutions for transportation,
security, inspection, and so on. Until now, most published studies, including backstepping
control [1–4], sliding mode control [5–8], feedback linearization control [9–11], neural net-
work control [12–15], and fuzzy control [16–22] have focused on the trajectory tracking
design of a single AMR. In practice, these proposed control designs are complicated in
practice and usually demand higher computational consumption. For achieving the above-
mentioned real applications, AMRs with long energy endurance, high maneuverability,
and tracking ability are required. Thus, effective optimal control, along with energy-saving
capacity, is important for AMRs, and several related publications [23–30] will be discussed.
Two main methods could allow AMRs to present good energy-saving performance. The
first one is a lower usage of driven actuators, such as motors, and the second is that a
simple optimal control structure should be developed. The first issue can be solved by
utilizing a mobile robot with a configuration that has two active wheels and one passive
wheel. The only way to address the second issue is a closed-form solution or analytical
solution that can be derived for the optimal trajectory tracking problem of AMRs. The
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analytical design for the optimal control of a single AMR was developed by the authors
of [31], based on the coordinate transformation. However, the complexity of the overall
dynamic is highly increased when a swarm of AMRs needs to be controlled simultaneously.
The solvability of the optimal trajectory tracking problem of a swarm of AMRs degrades to
almost zero; mathematically deriving the analytical solution for tracking the trajectory of a
swarm of AMRs is a difficult task. To the best of the authors’ knowledge, an optimal control
design for the trajectory tracking of a swarm of AMRs is rare. By careful arrangement, an
analytical solution was delivered to achieve the optimal trajectory tracking of a swarm of
AMRs in [32]. This developed result provides a low energy consumption solution for the
trajectory tracking problem of a swarm of AMRs with stationary system parameters. In
practice, AMRs with fixed system parameters are particular cases, and system parameters
such as mass, inertia, etc., inevitably change due to the variations in payload and energy
loss. Hence, for compensating the issue of system parameter variations that are never
considered in the optimal control design process of [32], an innovative nonlinear adap-
tive optimal control approach that offers a closed-form design with an easy-to-implement
control structure and precise trajectory tracking performance is proposed. This offers an
optimal trajectory tracking solution for the problem of a swarm of AMRs with modeling un-
certainties in this investigation. For tackling the varying system parameters of a swarm of
AMRs, a parameterized formulation is used on-line to precisely estimate the time-varying
system parameters, including mass, inertia, and so on. Furthermore, an adaptive control
law that contains this parameter estimation term is developed analytically to satisfy an H2
performance index corresponding to the optimal trajectory tracking problem of a swarm
of AMRs with modeling uncertainties. This proposed adaptive control law offers good
energy-saving performance because it is a closed-form solution and can mitigate the effect
of varying modeling uncertainties. This research is presented as follows: the introduction
and a literature review are given in Section 1; a description of the tracking error dynamics
between a swarm of AMRs and the desired trajectory is given in Section 2; statements
regarding the proposed adaptive H2 closed-form control law are expressed in Section 3; the
simulation results for a swarm of AMRs based on this proposed approach are illustrated in
Section 4; Section 5 summarizes our conclusions from this investigation.

2. Trajectory Tracking Dynamics for a Swarm of Autonomous Mobile Robots

The trajectory tracking dynamics of a swarm of AMRs that integrates n AMRs is briefly
described in this section. Furthermore, the nonlinear trajectory tracking error dynamics
between a swarm of AMRs and the desired trajectory, in terms of global coordinates, is
formulated.

2.1. Dynamics of a Single AMR

From the schematics of the single AMR in Figure 1, it is easy to find out that this AMR
is separated by 2W; two driving wheels have the same radius of r in the heading direction
and an omnidirectional wheel is installed in the back. The instantaneous position of this
controllable AMR in the Earth frame {O, X, Y} is denoted as c. P = (xp,yp) represents the
position of the controllable AMR in the Earth frame, and the angle θ denotes the direction
of the Body frame {P, Xp, Yp}. According to the aforementioned descriptions, the universal
coordinate frame of the AMR can be presented using Equation (1), as follows:

c = [xp yp θ]
T (1)

The AMR illustrated in Figure 1 usually moves along the orientation of the axis of
the driving wheels, and the kinematics of the AMR with constraints can be described as
follows [33]:
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.
c =


.
xp.
yp.
θ

 =

cos θ −d sin θ
sin θ d cos θ

0 1

[vl
ω

]
(2)

where vl and ω denote the linear and angular velocities, respectively.
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Figure 1. Schematics of the controlled AMR.

Based on the AMR kinematics in Equation (2), and since n AMRs are supposed to be
considered in this investigation, the dynamics of each single AMR can be inferred, as in
Equation (3):

Fi(ci)
..
ci + Oi(ci,

.
ci)

.
ci + Gi(ci) = Mi(ci)τi, for i = 1, . . . , n (3)

where Fi(ci) ∈ <3×3 is a symmetric positive definite inertia matrix, Oi(ci,
.
ci) ∈ <3×3

denotes the Coriolis and centripetal force matrix, Gi(ci) ∈ <3×3 denotes the gravitational
vector, Mi(ci) ∈ <3×2 denotes the transformation matrix, and τi ∈ <2×1 is the torque vector
and can be regarded as the control input vector. As to

.
ci and

..
ci, they are the velocity and

acceleration vectors of the controlled AMR, with the index, i. Practically speaking, the
gravitational vector Gi(ci) is countervailed naturally, due to the reaction force from the
ground to the controlled AMR. This term can be ignored from the dynamics in Equation (3).

The modified dynamics of the controlled AMR can be further described as the following:

Fi(ci)
..
ci + Oi(ci,

.
ci)

.
ci = Mi(ci)τi, for i = 1, . . . , n. (4)

Details of Fi(ci) ∈ <3×3, Oi(ci,
.
ci) and Mi(ci) ∈ <3×2 are given below:

Fi(ci) =

 mi 0 midi sin θi
0 mi −midi cos θi

midi sin θi −midi cos θi IPi

 (5)

Oi(ci,
..
ci) =

0 0 midi
.
θi cos θi

0 0 midi
.
θi sin θi

0 0 0

 (6)
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Mi(ci) =
1
ri

cos θi sin θi
sin θi sin θi

Wi −Wi

 (7)

τi =

[
τri
τli

]
(8)

where τri and τli are the right and left wheel torques, respectively, mi stands for the
mass, di is the distance between P and c, IPi is the inertia, and θi is the heading angle.
In this investigation, the system parameters (mi, di, IPi) are uncertain due to modeling
perturbations representing variations in payloads ∆mi.

2.2. Trajectory Tracking Error Dynamics

We assume that the related desired trajectory cri used in this investigation is a twice
continuously differentiable function cri ∈ C2 and denote

.
cri and

..
cri as the velocity and

acceleration vector of the cri, respectively. According to the above statement, the trajectory
tracking error between the controlled AMR ci and the related desired trajectory cri can be
expressed as follows:

e =

[ .
ĉi
ĉi

]
=

[ .
ci −

.
cri

ci − cri

]
(9)

where:
cri = [xdi ydi θdi]

T (10)

The dynamics of the trajectory tracking error can be easily derived using Equations (4)
and (9), as below:

.
ei =

[
−Fi

−1(ci)Oi(ci,
.
ci) 03×3

I3×3 03×3

]
ei +

[
−..

cri − Fi
−1(ci)Oi(ci,

.
ci)

.
cri

03×3

]
+

[
Fi
−1(ci)Mi(ci)τi

03×3

]
(11)

By observing the governing equations of the controlled AMR in Equation (11), we
found that it is difficult to treat this trajectory tracking problem involving a swarm of AMRs
with Equation (11), if the design target is to find out the analytical solution to this problem.
For solving this issue, the following mapping of li(t) is constructed:

li(t) = δi
.
ĉi + εi ĉi (12)

where δi and εi are designable positive constants.
The differentiation of the mapping li(t) is:

.
li(t) = −Fi

−1(ci)Oi(ci,
.
ci)li(t) + εiFi

−1(ci)[−Φi(t)ξi(t) + Mi(ci)τi] (13)

where:

Φi(t)ξi(t) = Φi(ci,
.
ci,

.
cir −

δi
εi

ĉi,
..
cir −

δi
εi

.
ĉi)ξi(t) = Fi(ci)(

..
cir −

δi
εi

.
ĉi) + Oi(ci,

.
ci)(

.
cir −

δi
εi

ĉi) (14)

Φi(t) =


..
xi

.
yi sin θi +

.
θi

2 cos θi 0
..
yi −

.
θi cos θi +

.
θi

2 sin θi 0
0

..
xi sin θi −

..
yi cos θi

..
θi

 (15)

ξi(t) =

 mi
midi
Ipi

 (16)
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By using Equation (13), the trajectory tracking error dynamics in Equation (11) can be
revised as a formulation with a parameterized term Φi(t)ξi(t) for the purpose of precisely
estimating the disturbed systems’ parameters, mi, di and Ipi:

.
ei = T−1

[ .
li(t).
ĉi(t)

]
= Hi(ei, t)ei(t) + εiPi(ei, t)

[
−Φi(t)ξi(t) + τi

′] (17)

in which:

Hi(ei, t) = Ti
−1

[
−Fi

−1(ci)Oi(ci,
.
ci) 03×3

1
εi

I3×3 − δi
εi

I3×3

]
Ti (18)

Pi(ei, t) = Ti
−1BiFi

−1(ci) (19)

Bi =

[
I3×3
03×3

]
(20)

τi
′ = Mi(ci)τi (21)

and Ti is the state-space transformation matrix:

Ti =

[
δi I3×3 εi I3×3
I3×3 03×3

]
(22)

whence δi and εi will be derived in the following section.
If we choose τi

′ as:

τi
′ = Φi(t)ξ̂i(t) +

1
εi

ui (23)

Then modified trajectory tracking error dynamics for each AMR of a swarm of AMRs
can be further presented as:

.
ei = Hi(ei, t)ei(t) + Pi(ei, t)

[
εiΦi(t)ξ̃i(t) + ui

]
(24)

where ξ̃i(t) = ξ̂i(t)− ξi(t) denotes the parameter estimation errors.
The overall trajectory tracking error dynamics of a swarm of AMRs can be further

described using the following vector-matrix form:

.
E(t) = H(E(t), t)E(t) + P(E(t), t)εΦ(t)ξ̃(t) + P(E(t), t)U(t) (25)

where:
E(t) =

[
e1(t) e2(t) . . . en−1(t) en(t)

]T (26)

H(E(t), t) = diag(H1(e1, t), H2(e2, t), . . . , Hn(en, t)) (27)

P(E(t), t) = diag(P1(e1, t), P2(e2, t), . . . , Pn(en, t)) (28)

ε =
[
ε1 ε2 . . . εn−1 εn

]T (29)

Φ(t) = diag(Φ1(t), Φ2(t), . . . , Φn(t)) (30)

ξ̃(t) = diag
(

ξ̃1(t), ξ̃2(t), . . . , ξ̃n(t)
)

(31)

U(t) =
[
u1 u2 . . . un−1 un

]T (32)

3. Nonlinear Adaptive Optimal Control Approach
3.1. The Trajectory Tracking Problem of a Swarm of AMRs

When we consider the overall trajectory tracking error dynamics of a swarm of AMRs
in Equation (25), the design objective is to develop an adaptive H2 closed-form control law
to satisfy the H2 performance index. The trajectory tracking problem of a swarm of AMRs
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is solved if this problem exists when a closed-form solution U∗(t) and an adaptive law ξ̂(t)
can fulfill the H2 optimal performance index, below, for all t f ∈ [0, ∞):

Γ(U∗) = min
U(t)∈[0,t f )

[
ET(t f )K f E(t f ) + ξ̃T(t f )Rξ̃(t f ) +

∫ t f
0
[
ET(t)KE(t) + UT(t)SU(t)

]
dt
]

= ET(0)Γ(E(0), 0)E(0) + ξ̃T(0)Rξ̃(0)
(33)

where K f = diag
(

K f 1, K f 2, . . . , K f n

)
, K = diag(K1, K2, . . . , Kn), R = diag(R1, R2, . . . , Rn)

and S = diag(S1, S2, . . . , Sn) are the designated positive definite weighted matrices, K f =

KT
f , and S = ST > 0.

Based on the mathematical proof shown in Appendix A, if one unique solution
Γ(E(t), t) can be found for the following nonlinear and time-varying differential equa-
tion, the trajectory tracking problem of a swarm of AMRs is guaranteed to be solved
analytically. In this instance:

.
Γ(E(t), t) + Γ(E(t), t)H(E(t), t) + HT(E(t), t)Γ(E(t), t) + K
−Γ(E(t), t)P(E(t), t)S−1PT(E(t), t)Γ(E(t), t) = 0

(34)

and the corresponding control law can be described as:

τ′(E(t), t) = Φ(t)ξ̂(t) +
1
ε

U∗(E(t), t) (35)

where:
U∗(E(t), t) = −S−1PT(E(t), t)Γ(E(t), t)E(t) (36)
.
ξ̂(t) = −εR−1ΦT(t)PT(E(t), t)Γ(E(t), t)E(t) (37)

Γ(E(t), t) = ΓT(E(t), t) ≥ 0 (38)

The details of Equation (34) are revealed below:

.
Γ1(e1, t) + Γ1(e1, t)H1(e1, t) + HT

1 (e1, t)Γ1(e1, t) + K1 − Γ1(e1, t)P1(e1, t)S−1
1 PT

1 (e1, t)Γ1(e1, t)
.
Γ2(e2, t) + Γ2(e2, t)H2(e2, t) + HT

2 (e2, t)Γ2(e2, t) + K2 − Γ2(e2, t)P2(e2, t)S−1
2 PT

2 (e2, t)Γ2(e2, t)
...
...
...

.
Γn(en, t) + Γn(en, t)Hn(en, t) + HT

n (en, t)Γn(en, t) + Kn − Γn(en, t)Pn(en, t)S−1
n PT

n (en, t)Γn(en, t)


=



0
0
...
...
...
0


(39)

Then, the trajectory tracking problem of a swarm of AMRs is likewise solved.

3.2. Analytical Solution Γ(E(t), t) of the Trajectory Tracking Problem of a Swarm of AMRs

By observing Equation (34), it is obvious that the trajectory tracking problem is analyt-
ically solved if the closed-form solution Γ(E(t), t), i.e., Γi(ei(t), t), is found mathematically.
Finding the analytical solution Γ(E(t), t) or Γi(ei(t), t) of Equation (34) is a difficult task due
to the complicated and time-varying properties of this differential equation. Fortunately,
an analytical solution Γ(E(t), t) can be constructed via applicably selecting Γi(ei(t), t) as
the following form:

Γi(ei(t), t) = ZT
i

[
Hi(ei(t), t) 03×3

03×3 Qi

]
Zi (40)

where Zi and Qi represent a designable positive matrix that will be derived under certain
conditions.

When substituting Equation (40) into the related sub-equation of the nonlinear time-
varying differential Equation (39), we obtain:
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.
Γi(ei, t) + Γi(ei, t)Hi(ei, t) + HT

i (ei, t)Γi(ei, t) + Ki − Γi(ei, t)Pi(ei, t)S−1
i PT

i (ei, t)Γi(ei, t) = 0 (41)

Using the dynamic equation of trajectory tracking error in (17) and Γi(ei(t), t) in
Equation (40) yields:

.
Γi(ei, t) + Γi(ei, t)Hi(ei, t) + HT

i (ei, t)Γi(ei, t) = Ωi (42)

where:

Ωi =

[
03×3 Qi
Qi 03×3

]
(43)

Using Equations (19) and (40), the following result can be obtained:

Γi(ei, t)Pi(ei, t) = BT
i Ti (44)

Based on Equations (42) and (44), the time-varying differential Equation (41) can be
presented, as below:

Ωi + Ki − TT
i BS−1

i BTTi = 0 (45)

Therefore:
Si = ρ2

i I6×6 (46)

where ρi > 0, and the positive definite symmetric matrix Ki in Equation (45) is a diagonal
form and can be further factorized in the following form:

Ki =

[
ki11

Tki11 ki12
kT

i21 ki22
Tki22

]
, for i = 1, . . . , n. (47)

Ultilizing Bi and Ti together, as defined in (20) and (22), Equation (45) can be expressed
in detail as: [

ki11
Tki11 − 1

ρi
2 Ti11

TTi11 Qi + ki12 − 1
ρi

2 Ti11
TTi12

Qi + ki12
T − 1

ρi
2 Ti12

TTi11 ki22
Tki22 − 1

ρi
2 Ti12

TTi12

]
= 0 (48)

From Equation (22), the sub-matrices Ti11 and Ti12 can be obtained as:

Ti11 = ρiki11 (49)

Ti12 = ρiki22 (50)

Hence, we have:

Ti =

[
ρiki11 ρiki22
0n×n In×n

]
(51)

In order to satisfy Ti11 = δi I3×3 and Ti22 = εi I3×3 in (22), the weighting matrix ki11 and
ki22 in (48) must be a diagonal form, that is:

ki11 = ki22 = I3×3 (52)

and:
δi = εi = ρi (53)

When applying the derived results of Equation (45), the nonlinear adaptive optimal
control law ui

∗(ei(t), t) for a single AMR can be expressed as in Equations (54) and (55),
respectively:

ui
∗(ei(t), t) = − 1

ρi
Ξi

Tei(t) (54)

where Ξi =
[
ki11 ki22

]T .
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Furthermore, the adaptive law ξ̃i(t) for a single AMR is derived as follows:

ξ̃i(t) = R−1
i Φi(t)Ξiei(t) (55)

By integrating ui
∗(ei(t), t) and ξ̃i(t), as derived for a single AMR in Equations (54)

and (55), the overall nonlinear adaptive optimal control law U∗(E(t), t) and the adaptive

law
.
ξ̂(t) for a swarm of AMRs are derived as follows:

U∗(E(t), t) = −ρT
TΞT

TE(t) (56)

.
ξ̂(t) = −R−1ΦT(t)ΞT

TE(t) (57)

where ρT =
[

1
ρ1

1
ρ2

. . . 1
ρn

]T
and ΞT = diag(Ξ1, Ξ2, . . . , Ξn).

Then, the trajectory tracking problem of adaptive H2 closed-form control can be solved
by the following adaptive H2 control law:

τ′(E(t), t) = Φ(t)ξ̂(t) +
1
ε

U∗(E(t), t) (58)

4. Performance Verification

One testing scenario using a square-type trajectory is adopted for verifying the tracking
ability of the proposed method in this section. The desired square-type trajectory has four
straight lines and four corners. Details of this trajectory will be presented mathematically
later. In addition, the trajectory tracking performance of this proposed method is verified
using MATLAB software, version 2021b.

4.1. Setting of Simulation Environment

In this trajectory tracking verification, four AMRs corresponding to a practical AMR
are used. The related system parameters of this practical AMR are given in Table 1. The
time-varying mass m = m + ∆m is set up as the integration of a nominal value m = 10(Kg)
and a disturbed value for ∆m, which is a 20% variation of m for simulating the practical
situation of AMRs carrying different goods. In addition, the desired square-type trajectory
is constructed with eight segments: s1, s2, . . . , s8 of sub-trajectories; the brief descriptions
for these sub-trajectories are introduced, as follows.

Table 1. System parameters of the controlled AMRs.

Description Parameter Value

AMR wheel radius r 6.5 (cm)
AMR width 2W 35.6 (cm)

Distance from P to c d 14 (cm)
AMR mass m 10 (kg)

AMR inertia IP 10 (kg-m2)

Equation (59) shows that s1 starts from the initial value (x0, y0) and moves forward to
the right-hand side, with a moving velocity of vr.

s1 :


xr1 = x0 + vrt1
yr1 = y0
θr1 = 0

(59)

Using Equation (59), s1 starts from the initial value (x0, y0) and moves forward to the
right-hand side with a moving velocity of vr.
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The first curve s2 of this desired trajectory, which is one-quarter of a circular trajectory
with a radius rr, can be generated using the following equation:

s2 :


xr2 = xr1 + rr cos(θr2 + 270

◦
)

yr2 = yr1 + rr sin(θr2 + 270
◦
)

θr2 =
∫ t2

t1
ωrdt

(60)

where (xr1, yr1) is the final value of the first segment s1, and θr2 is the rotation angle of s2.
The erect segment s3 of this trajectory is expressed as follows:

s3 :


xr3 = xr2
yr3 = yr2 + vrt3
θr3 = 90

◦
(61)

where (xr2, yr2) is the final value of the first segment s2; θr3 = 90
◦

shows that this segment,
when is use, is perpendicular to s1.

Similarly, the second curve s4 of this trajectory can be presented as:

s4 :


xr4 = xr3 + rr cos(θr4)
yr4 = yr3 + rr sin(θr4)

θr4 =
∫ t4

t3
ωrdt + 90

◦
(62)

where (xr3, yr3) is the final value of the first segment s1, and θr4 is the rotation angle of s4.
The segment of the desired trajectory, which moves in the reverse direction of s1, with

a velocity of vr and a constant θr5 = 90
◦

is presented as:

s5 :


xr5 = x4 − vrt5
yr5 = yr4
θr5 = 180

◦
(63)

where (xr4, yr4) is the final value of the first segment, s5.
The third curve s6 of this trajectory can be presented as:

s6 :


xr6 = xr5 + rr cos(θr6 + 90

◦
)

yr6 = yr5 + rr sin(θr6 + 90
◦
)

θr6 =
∫ t6

t5
ωrdt + 180

◦
(64)

where (xr5, yr5) is the final value of the first segment s5, and θr6 is the rotation angle of s6.
The seven segments of this desired trajectory comprise an erect segment that is parallel

to s3, as well as having a velocity vr and a constant θr5 = 270
◦
, and is expressed as:

s7 :


xr7 = xr6
yr7 = yr6 − vrt7
θr7 = 270

◦
(65)

where (xr6, yr6) is the final value of the first segment s5.
Finally, the fourth curve s8 of this desired trajectory can be expressed as:

s8 :


xr8 = xr7 + rr cos(θr8 + 180

◦
)

yr8 = yr7 + rr sin(θr8 + 180
◦
)

θr8 =
∫ t8

t7
ωrdt + 270

◦
(66)

where (xr7, yr7) is the final value of the first segment s7, and θr8 is the rotation angle of s6.
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In this investigation, the desired square-type trajectory is generated using Equations
(59)–(66) and is shown as in Figure 2; the initial conditions of this desired trajectory are set
up as x0 = −5(m), y0 = −6(m), and ωr = 3

◦
/s.
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Figure 2. The desired square trajectory, with a radius of 6 m from x0 = −5 m, y0 = −6 m.

Remark 1. The reason why we chose this desired trajectory as a testing scenario for our proposed
method is as almost any trajectory, such as an s-shaped trajectory, trapezoidal-type trajectory, circle
trajectory, or even wild trajectories, can be constructed using a combination of the above-mentioned
segments and adjustments of the trajectory parameters, such as the velocity vr, the rotation angle
θri, and the radius rr for practical applications.

In this control trajectory tracking verification, four AMRs are chosen; the velocity vr
and the radius rr are set up as 0.8 m/s for 1 m, respectively. As to the rotation angle θri, for
i = 1, . . . , 4 can be calculated via integrating ωr = 3

◦
/s, as depicted in the above equations.

The control parameters of this proposed method are gained from Equations (67)–(69).

ρT = diag(0.5, 0.5, . . . , 0.5) (67)

R = diag(0.3, 0.3, . . . , 0.3) (68)

Ξ = diag(I3×3, I3×3, . . . , I3×3) (69)

The initial conditions of the controlled AMRs are given in Table 2.
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Table 2. Initial positions and attitudes of a swarm of AMRs.

Number of the Controlled AMR Initial Position (xp,yp) Attitude θ

#1 (Blue color) (7,7) 5π/4
#2 (Green color) (−7,7) 7π/4
#3 (Purple color) (−7,−7) π/4

#4 (Red color) (7,−7) 3π/4

4.2. Simulation Results

For comparisons, a published H2 closed-form control approach is adopted in this
investigation [33]. Four AMRs with system parameters in Table 1, initial conditions listed
in Table 2, and control gains from Equations (67)–(69) are considered in this trajectory
tracking performance verification. For avoiding confusion, the trajectory tracking results of
this proposed method (AH2) and the H2 closed-form control method (H2) will be revealed
separately in the following discussion. Figures 3 and 4 show the trajectory tracking results
of four AMRs controlled using the AH2 and H2 methods, with respect to the desired square-
type trajectory. From Figures 3 and 4, a similar tracking performance can be found for these
two control methods. Obviously, the AMRs in Figure 3, controlled by the proposed AH2
method, have quicker convergence rates in tracking the desired trajectory than with the H2
method from the trajectory profiles.
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Figure 3. The verification result of the square trajectory by the adaptive H2 closed-form control
approach from xp = 7 m, yp = 7 m (blue line), xp = −7 m, yp = 7 m (green line), xp = −7 m, yp = −7 m
(purple line), xp = 7 m, yp = −7 m (red line).

Tracking errors, including errors (eXi, eYi, eθi), for i = 1, . . . , 4, in the X-axis, Y-axis, and
the heading angle of the individual AMR are illustrated in the following figures. Figures 5–7
depict the histories of tracking errors eX, eY, and eθ for the #1 AMR, using the AH2 and
H2 method. From these tracking results, it is easy to establish that the trajectory tracking
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performance of the H2 method is worse than the proposed AH2 method because of the
existence of steady state errors in eX1, eY1, and eθ1 under the effects of the 20% modeling
uncertainties caused by ∆m. The trajectory tracking errors eX1, eY1, and eθ1 of the #1 AMR,
which converge to almost zero, can be transparently observed from Figures 5–7. Similar
tracking results can be found from Figures 8–16 for #2 AMR, #3 AMR and #4 AMR. From
these results, the proposed AH2 method obviously outperforms the H2 method.
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According to the above trajectory tracking verification, this proposed AH2 method
τ′(E(t), t) = Φ(t)ξ̂(t)+ 1

ε U∗(E(t), t), which can precisely estimate the time-varying system

parameters: (mi, di, Ii) via adaptive learning law:
.
ξ̂(t) = −R−1ΦT(t)ΞT

TE(t), is superior to
the H2 method, which is constructed with fixed system parameters: (mi, di, Ii).

5. Conclusions

A nonlinear adaptive optimal control design that presents good energy-saving per-
formance has been successfully developed for the trajectory tracking problem of a swarm
of autonomous mobile robots in this study. In the past few decades, complex control
structures have always been revealed as part of the announced control laws because of
the sub-optimal control approach. The most challenging part of this investigation has
been to identify the closed-form solution for this trajectory tracking problem of a swarm
of autonomous mobile robots. According to our survey of the existing published litera-
ture, the analytical solution for the trajectory tracking problem of a swarm of autonomous
mobile robots has not been achieved yet, due to the great complexity of its dynamics.
For achieving this design target, one main contribution is delivered in this investigation:
“An analytical control solution, which has the simplest and easy-to-implemented control
structure for the trajectory tracking problem of a swarm of autonomous mobile robots is
elegantly derived”. In practice, complicated control structures mean that the cost in terms
of computation consumption will be great and a high-speed calculator is always needed.
From the comparisons of this proposed method with respect to a published H2 method,
which is an analytical solution as well, the control performance of this proposed method
is superior to the H2 method, no matter what the convergence of tracking errors or the
elimination of modeling uncertainties.
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Appendix A

Consider the performance index Γ(U∗) in Equation (33), which is equal to the follow-
ing formulation:

Γ(U∗) = ET(t f )K f E(t f ) + ξ̃T(0)Rξ̃(0) +
∫ t f

0
[
ET(t)KE(t) + UT(t)SU(t)+

d
dt

[
ET(t)Γ(E(t), t)E(t) + ξ̃T(t)Rξ̃(t)

]]
dt− ET(t f )Γ(E(t f ), t f )E(t f )+

ET(0)Γ(E(0), 0)E(0)

(A1)

From the terminal condition Γ(E(t f ), t f ) = K f , the following result can be obtained:

Γ(U∗) = ET(0)Γ(E(0), 0)E(0) + ξ̃T(0)Rξ̃(0) +
∫ t f

0
[
ET(t)KE(t) + UT(t)SU(t)+

.
E

T
(t)Γ(E(t), t)E(t) + ET(t)

.
Γ(E(t), t)E(t) + ET(t)Γ(E(t), t)

.
E(t)+

.
ξ̃

T
(t)Rξ̃(t) + ξ̃T(t)R

.
ξ̃(t)

]
dt

(A2)

Substituting the trajectory tracking error dynamics (25) into (A2) leads to the following
result:

Γ(U∗) = ET(0)Γ(E(0), 0)E(0) + ξ̃T(0)Rξ̃(0)+∫ t f
0

[
ET(t)

( .
Γ(E(t), t) + Γ(E(t), t)H(E(t), t) + HT(E(t), t)Γ(E(t), t) + K

)
E(t)+

UT(t)SU(t) + UT(t)PT(E(t), t)Γ(E(t), t)E(t) + ET(t)Γ(E(t), t)P(E(t), t)U(t)+
.
ξ̃

T
(t)Rξ̃(t) + ξ̃T(t)R

.
ξ̃(t) + εξ̃T(t)ΦT(t)PT(E(t), t)Γ(E(t), t)E(t)+

ε ET(t)Γ(E(t), t)P(E(t), t)Φ(t)ξ̃(t)
]
dt

(A3)

Thus, with the first fact that
.
ξ̃(t) =

.
ξ̂(t), and by using the adaptive law

.
ξ̂(t) =

−R−1ΦT(t)PT(E(t), t)Γ(E(t), t)E(t) in Equation (35) and the differential in Equation (34),
we have:

Γ(U∗) = ET(0)Γ(E(0), 0)E(0) + ξ̃T(0)Rξ̃(0)+∫ t f
0

[(
U(t) + S−1PT(E(t), t)Γ(E(t), t)E(t)

)T×
S
(
U(t) + S−1PT(E(t), t)Γ(E(t), t)E(t)

)]
dt

(A4)

Selecting the control law U∗(E(t), t) = −S−1PT(E(t), t)Γ(E(t), t)E(t), as shown in
Equation (36), (A4) can be concisely simplified, as below:

Γ(U∗) = ET(0)Γ(E(0), 0)E(0) + ξ̃T(0)Rξ̃(0) (A5)

This is Equation (33) and proof is completed.
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