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Abstract: Given real parameters a, b, c and integer shifts n1, n2, m, we consider the ratio
R(z) = 2F1(a + n1, b + n2; c + m; z)/2F1(a, b; c; z) of the Gauss hypergeometric functions. We find a
formula for Im R(x± i0) with x > 1 in terms of real hypergeometric polynomial P, beta density and
the absolute value of the Gauss hypergeometric function. This allows us to construct explicit integral
representations for R when the asymptotic behaviour at unity is mild and the denominator does not
vanish. The results are illustrated with a large number of examples.
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1. Introduction

The Gauss hypergeometric functions ([1], [2] (Chapter II), [3] (Chapter 15))

2F1(a, b; c; z) = 2F1

(
a, b
c

z
)
=

∞

∑
n=0

(a)n(b)n

(c)nn!
zn (1)

and 2F1(a + n1, b + n2; c + m; z) are called contiguous in a wide sense if n1, n2, m ∈ Z;
see [4]. Any three functions of this type satisfy a linear relation with coefficients rational
in a, b, c, z. If n1, n2, m ∈ {−1, 0, 1}, then the coefficients of this relation are linear in z,
and the functions are called contiguous in a narrow sense. Such a contiguous relation
was used by Euler to derive a continued fraction (much later termed T-fraction) for the
ratio 2F1(a, b + 1; c + 1; z)/2F1(a, b; c; z). Gauss described all three-term relations among
the functions contiguous in the narrow sense and found another continued fraction for the
above ratio, which has the following form [1] (p. 134) (see also [5] (Formula (89.9)) or [6]
(p. 123)):

G(z) =
F(a, b + 1; c + 1; z)

F(a, b; c; z)
=

α0

1−
α1z

1−
α2z

1− · · ·

, (2)

where α0 = 1, and for n ≥ 0,

α2n+1 =
(a + n)(c− b + n)
(c + 2n)(c + 2n + 1)

, α2n+2 =
(b + n + 1)(c− a + n + 1)
(c + 2n + 1)(c + 2n + 2)

. (3)

Clearly, we have limn→∞ αn = 1/4, while supn |αn| =: γ/4 ≥ 1/4. So, if αn > 0,
n = 1, 2, . . ., then it follows from [7] that there exists a unique positive measure dµ(s)
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on [0, γ] whose support is dense in [0, 1] and has at most finitely many points in (1, γ],
such that

G(z) =
∫
[0,γ]

dµ(s)
1− sz

. (4)

(The fact that dµ(s) has at most finitely many atoms in this interval directly follows
from the fact that 2F1(a, b; c; z) has finitely many zeros in [0, 1). The latter is given by
Theorem 4, a corollary of [8].) In general, on sending γ to infinity in (4) so that the in-
tegration is over [0,+∞), and letting dµ(s) run over all positive measures dµ(s) such
that

∫ ∞
0 (1− s)−1dµ(s) < ∞, we obtain the collection of functions called the Stieltjes class S .

For functions asymptotically behaving as ∑∞
k=0 skzk at the origin, the class S is character-

ized by a continued fraction α0/
(
1− α1z/(1− · · · )

)
with αj ≥ 0 for all j, see [7] or, for

example, [9] (p. 6). Such functions arise often in different areas, ranging from analysis and
operator theory to combinatorics and probability.

The tighter collection of functions obtained by taking γ = 1 in (4) and letting dµ(s)
run over all positive measures, making the integral convergent, is known as the Markov
classM. The same class can be described as the collection of generating functions of the
Hausdorff moment sequences; see [5] (Chapter XIV). Certainly, if γ < ∞, we can re-scale
the integration variable to make γ equal 1.

Theorem 69.2 from [5] asserts that one may take γ = 1 in (4) if αn = (1− gn−1)gn
for all n ≥ 1 with some numbers gn ∈ [0, 1] (the cases where gn for some n is 0, or 1
corresponds to rational G(z)). It is immediate to see that the condition αn > 0 is satisfied
for the Gauss continued fraction for all n when −1 < b < c and 0 < a < c + 1. The more
restrictive condition gn ∈ [0, 1] holds true if 0 ≤ a ≤ c + 1, 0 ≤ b ≤ c; see [10] (Proof of
Theorem 1.1) for details. Surprisingly enough, the representing measure dµ in (4) for the
Gauss continued fraction was only computed in 1982 by Vitold Belevitch [11]. Around
the same time, Jet Wimp [12] constructed explicit formulae for the odd convergence of the
continued fraction (2) in terms of hypergeometric polynomials.

The main protagonist of this paper is the following generalization of the Gauss ratio (2)

Rn1,n2,m(z) =
2F1(a + n1, b + n2; c + m; z)

2F1(a, b; c; z)
, (5)

where n1, n2, m ∈ Z are arbitrary. This ratio was studied in our recent preprint [13].
The ideas presented in this preprint were developed further in [14]. The present work
constitutes a corrected, streamlined and elaborated version of a part of [13]. The main
objectives are to furnish a complete derivation of the integral representation of Rn1,n2,m(z),
including all detailed proofs omitted in [14], and to illustrate its structure with numerous
examples. As a by-product, each example contains sufficient conditions for Rn1,n2,m ∈ M
in terms of the parameters a, b, c.

The ratios of the Gauss hypergeometric functions are a recurring theme in the litera-
ture. An important particular case of this ratio is the logarithmic derivative of the Gauss
hypergeometric function. Its Stieltjes transform representation can be used to study the
infinite divisibility of certain ratios of beta-distributed beta variables in a way similar to
the investigation of the ratios of the gamma random variables in [15]. Furthermore, inte-
gral representations of the ratios of the Gauss hypergeometric functions are useful when
determining whether they belong to certain important functional classes. For example,
the authors of [16] applied such a representation to verify that R0,1,0(z) can be written
as (4), and hence a certain pair of hypergeometric weights forms the so-called Nikishin
system—an important property in the realm of multiple orthogonal polynomials.

Concerning further applications, observe that the membership of Rn1,n2,m in the
Markov classM, conditions for which we give in each of the examples of Section 3, has a
number of important implications. These include the normality of all Padé approximants
and uniform convergence to Rn1,n2,m(z) of the para-diagonal Padé approximants on all com-
pact subsets of C\[1, ∞); two sided bounds on the real line in terms of Padé approximants;
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the univalence of Rn1,n2,m(z) and zRn1,n2,m(z) in Re(z) < 1 and its various consequences;
and the starlikeness of zRn1,n2,m(z) in the disk |z| < r∗ with r∗ =

√
13
√

13− 46 ≈ 0.934.
Details regarding these claims and further references can be found in [17,18].

There are many intriguing open questions related to our work. For example, the case
when the shifts are no longer an integer is also of interest for applications, but requires
additional tools. For the Jacobi polynomials, certain relevant results are presented in [19].
For the non-polynomial case, there are only very fragmentary results of this type, such
as [20] (Lemma 4.5).

Another compelling problem is to extend the results of this paper to the ratios of the
generalized hypergeometric functions pFq which, for certain integer shifts, have explicitly
known branched continued fractions generalizing the Gauss continued fraction (2); see [9]
(Sections 13–14). Similar problems may be posed, mutatis mutandis, for the basic hyperge-
ometric functions, cf. [9] (Section 15). The basic analogue of the Gauss continued fraction is
considered in detail in [21,22].

This paper is organized as follows. Section 2.1 deals with the asymptotic behavior
of Rn1,n2,m(z) near the point z = 1 and at infinity. In Section 2.2, we derive a formula
for the values of Im(Rn1,n2,m(x ± i0)) for x > 1 using a recent duality identity for the
Gauss hypergeometric function. Section 2.3 is at the heart of our work: it contains the
integral representation for Rn1,n2,m(z). The basic ingredients are Theorem 4, which is a
corollary of Runckel’s theorem from [8] and Lemma 4 connecting Im(Rn1,n2,m(x± i0)) with
a Cauchy-type integral. The largest section of this paper—Section 3—illustrates our study
with 15 different examples. In the last section, we show how our results may help to
calculate “generalized beta integrals”, as well as obtaining integral representations of such
functions as z/ Log(1 + z).

2. Main Results
2.1. Asymptotic Behavior

In this section, we will record the behavior of Rn1,n2,m(z) in the neighborhood of the
singular points z = 1 and z = ∞. It will be convenient to use the following notation: if a is
a real number, then

(a)− := min(a, 0) and (a)+ := max(a, 0).

Denote also N := {1, 2, . . . } and N0 := N∪ {0} = {0, 1, . . . }. We will use the standard
symbols φ1(z) = o(φ(z)) and φ2(z) = O(φ(z)) as z→ A to denote the functions satisfying
the relations

lim
z→A

φ1(z)
φ(z)

= 0 and |φ2(z)| ≤ C|φ(z)| for z near A,

respectively (C is a positive constant independent of z). The goal of this section is the
following theorem, which is a slightly corrected version of [14] (Lemma 1) presented there
without proof.

Theorem 1. Let a, b, c ∈ R and c, c + m /∈ −N0. Then there exist four constants ε1, ε∞ ∈
{−1, 0, 1} and L1, L∞ 6= 0 independent of z such that

Rn1,n2,m(z) = L1 (1− z)η(a+n1,b+n2,c+m)−η(a,b,c) [log(1− z)]ε1
(
1 + o(1)

)
as z→ 1; (6)

Rn1,n2,m(−z) = L∞ zζ(a+n1,b+n2,c+m)−ζ(a,b,c) [log(z)]ε∞
(
1 + o(1)

)
as z→ ∞, (7)

where

η(a, b, c) =


(c− a− b)+, if − a, b− c ∈ N0 or − b, a− c ∈ N0;
0, if − a ∈ N0 and/or − b ∈ N0 while a− c, b− c /∈ N0;
c− a− b, if − a,−b /∈ N0, while a− c ∈ N0 and/or b− c ∈ N0;
(c− a− b)−, otherwise

(8)
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and

ζ(a, b, c) =


−a, if A(b, a, c) = 0
−b, if A(a, b, c) = 0
−min(a, b), otherwise

, where A(x1, x2, x3) =
Γ(x3)Γ(x2 − x1)

Γ(x2)Γ(x3 − x1)
. (9)

Remark 1. The function A(x1, x2, x3) is defined by continuity if some of the arguments of
the gamma functions become non-positive integers. Details can be found in this section below
Formula (12).

The above theorem is a corollary of three lemmas giving a more precise description of
the behavior of Rn1,n2,m(z) in the neighborhood of the singular points z = 1 and z = ∞. We
will furnish a detailed proofs of these lemmas below. Before formulating the first lemma,
note that the condition

{a, a + n1, b, b + n2, c− a, c + m− a− n1, c− b, c + m− b− n2} ∩ −N0 = ∅ (10)

is equivalent to the claim that neither 2F1(a + n1, b + n2; c + m; z) nor 2F1(a, b; c; z) reduce
to a polynomial or polynomial multiple of a power of (1− z)—the cases we will refer to as
degenerate. Note that Formulae (6) and (7) also hold for such degenerate cases.

Our first lemma deals with the singular point z = 1.

Lemma 1. Suppose that −c,−c − m /∈ N0 and condition (10) hold true for some a, b, c ∈ R
and n1, n2, m ∈ Z. Denote ρ = c− a− b, q = m− n1 − n2 and write δx,y for the Kronecker
delta. Then

Rn1,n2,m(z) = M
(1− z)(ρ+q)− [1− δρ+q,0 + δρ+q,0 log(1− z)]

(1− z)(ρ)− [1− δρ,0 + δρ,0 log(1− z)]
(1 + o(1)) (11)

as z→ 1 with some constant M 6= 0 independent of z. If (10) is violated, Formula (11) should be
modified as follows:

(a) If −a ∈ N0 (−b ∈ N0), then the denominator should be replaced by 1, except when −a ≥
ρ ∈ N (−b ≥ ρ ∈ N) in which case it should be replaced by (1− z)ρ.

(b) If −a− n1 ∈ N0 (−b− n2 ∈ N0), then the numerator should be replaced by 1, except when
−a − n1 ≥ ρ + q ∈ N (−b − n2 ≥ ρ + q ∈ N), in which case it should be replaced by
(1− z)ρ+q.

(c) If −a,−b /∈ N0 but a− c ∈ N0 and /or b− c ∈ N0, then the denominator should be replaced
by (1− z)ρ.

(d) If −a− n1,−b− n2 /∈ N0, but a + n1 − c−m ∈ N0 and /or b + n2 − c−m ∈ N0, then
the numerator should be replaced by (1− z)ρ+q.

Proof. Suppose first that (10) is satisfied. Then, if ρ = c − a − b /∈ Z, according to [3]
(15.8.4), we have

2F1(a, b; c; 1− z) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b) 2F1(a, b; 1 + ρ; z) +

Γ(c)Γ(a + b− c)
Γ(a)Γ(b)

zρ
2F1(c− a, c− b; 1− ρ; z).

If ρ = c− a− b = s ∈ N0, then according to [2] (2.10(12–13)) or [3] (15.8.10), we have

2F1(a, b; c; 1− z) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

s−1

∑
n=0

(a)n(b)n

(1− ρ)nn!
zn +

(−1)sΓ(c)
Γ(a)Γ(b)s!

zρ
∞

∑
n=0

(c− a)n(c− b)n

(1 + ρ)nn!
Hnzn

− (−1)sΓ(c)
Γ(a)Γ(b)s!

zρ log(z)2F1(c− a, c− b; 1 + ρ; z),

https://dlmf.nist.gov/15.8#E4
https://dlmf.nist.gov/15.8#E10
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where the sum over the empty index set equals zero, and

Hn = ψ(n + 1) + ψ(n + s + 1)− ψ(a + n + s)− ψ(b + n + s), ψ(z) = Γ′(z)/Γ(z).

If ρ = c− a− b = −s for some s ∈ N0, according to [2] (2.10(14-15)), we have

2F1(a, b; c; 1− z) =
Γ(c)Γ(a + b− c)zρ

Γ(a)Γ(b)

s−1

∑
n=0

(c− a)n(c− b)n

(1 + ρ)nn!
zn

+
(−1)sΓ(c)

Γ(c− a)Γ(c− b)s!

∞

∑
n=0

(a)n(b)n

(1− ρ)nn!
Ĥnzn − (−1)sΓ(c)

Γ(c− a)Γ(c− b)s!
log(z)2F1(a, b; 1− ρ; z),

and
Ĥn = ψ(n + 1) + ψ(n + s + 1)− ψ(a + n)− ψ(b + n).

These formulae imply that

2F1(a, b; c; 1− z) =


A(1 + α1z + α2z2 + · · · ) + Bzρ(1 + β1z + β2z2 + · · · ), ρ /∈ Z;

Â(1 + α̂1z + α̂2z2 + · · · ) + B̂zρ log(z)(1 + β̂1z + β̂2z2 + · · · ), ρ ∈ N0;

Ãzρ(1 + α̃1z + α̃2z2 + · · · ) + B̃ log(z)(1 + β̃1z + β̃2z2 + · · · ), − ρ ∈ N,

where the constants A, Â, Ã, B, B̂, B̃ do not vanish due to condition (10). In a similar fashion,

2F1(a + n1, b + n2; c + m; 1− z)

=


C(1 + δ1z + δ2z2 + · · · ) + Dzρ+q(1 + γ1z + γ2z2 + · · · ), ρ + q /∈ Z;

Ĉ(1 + δ̂1z + δ̂2z2 + · · · ) + D̂zρ+q log(z)(1 + γ̂1z + γ̂2z2 + · · · ), ρ + q ∈ N0;

C̃zρ+q(1 + δ̃1z + δ̃2z2 + · · · ) + D̃ log(z)(1 + γ̃1z + γ̃2z2 + · · · ), − ρ− q ∈ N,

where the constants C, Ĉ, C̃, D, D̂, D̃ do not vanish due to condition (10). Substituting
these formulae into definition (5) of the function Rn1,n2,m(z) and analyzing the principal
asymptotic term in each of the five possible cases (1) ρ /∈ Z; (2) ρ ∈ N0 and ρ + q ∈ N0;
(3) ρ ∈ N0 and −ρ− q ∈ N; (4) −ρ ∈ N and ρ + q ∈ N0; (5) −ρ ∈ N and −ρ− q ∈ N, we
arrive at Formula (11).

If condition (10) is violated, then claims (a)–(d) of the lemma follow from the following
two facts: (1) If −a ∈ N0 and /or −b ∈ N0, then 2F1(a, b; c; z) reduces to a polynomial; (2) If
−a,−b /∈ N0, but a− c ∈ N0 and /or b− c ∈ N0, then Euler’s transformation

2F1(a, b; c; z) = (1− z)ρ
2F1(c− a, c− b; c; z)

implies that 2F1(a, b; c; z) = (1 − z)ρ × polynomial. In view of a similar statement for
2F1(a + n1, b + n2; c + m; z), we arrive at the conclusions contained in claims (a)–(d) of the
lemma on the basis of case-by-case analysis.

We now turn our attention to the neighborhood of the point z = ∞. According to [23]
(2.3.12) or [3] (15.8.2), as long as a− b /∈ Z, we have

2F1(a, b; c;−z) = A(a, b, c)z−a
(

1 + ∑∞
j=1 α̂jz−j

)
+ A(b, a, c)z−b

(
1 + ∑∞

j=1 α̃jz−j
)

(12)

for some finite numbers α̂j, α̃j, where, in accord with (9),

A(x1, x2, x3) =
Γ(x3)Γ(x2 − x1)

Γ(x2)Γ(x3 − x1)
.

Note that the situation A(a, b, c) = A(b, a, c) = 0 is not possible as long as we as-
sume that −c /∈ N0. With that, one of the numbers A(a, b, c) or A(b, a, c) vanishes when

https://dlmf.nist.gov/15.8#E2
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{−a,−b, a− c, b− c} ∩N0 6= ∅. This is precisely the degenerate case: 2F1(a, b; c; z) reduces
to a polynomial, possibly times a power of (1− z). A brief analysis shows that (12) remains
valid in this degenerate case, despite the possibility that a− b ∈ Z. In such a situation,
one of the numbers A(a, b, c) or A(b, c, a) vanishes, while the other is well defined under
the convention

Γ(−k)
Γ(−n)

= (−1)n−k n!
k!

,

which results from computing the limit of Γ(−k + ε)/Γ(−n + ε) as ε→ 0. We will assume
this extended definition of A(x1, x2, x3) in what follows. Define further for brevity

A1 = A(a + n1, b + n2, c + m), A2 = A(b + n2, a + n1, c + m),

A3 = A(a, b, c), A4 = A(b, a, c).
(13)

Note that the condition A1 A2 A3 A4 6= 0 is equivalent to (10). The following quantities
will play an important role for the sequel. Put α = ζ(a + n1, b + n2, c + m) and γ = ζ(a, b, c)
with ζ from (9). In detail,

α =


−min(a + n1, b + n2) if A1 A2 6= 0
−a− n1 if A2 = 0
−b− n2 if A1 = 0

, γ =


−min(a, b) if A3 A4 6= 0
−a if A4 = 0
−b if A3 = 0

. (14)

Note that α is well defined since A2
1 + A2

2 6= 0 as long as −c−m /∈ N0, including the
case when one of A1, A2 is infinite; similarly, γ is well defined since A2

3 + A2
4 6= 0 as long

as −c /∈ N0, including the case when one of A3, A4 is infinite. Put further

Aα =

{
A1, if α = −a− n1
A2, if α = −b− n2

, Aγ =

{
A3, if γ = −a
A4, if γ = −b

. (15)

The above definition implies that both Aα and Aγ do not vanish as long as −c,−c−
m /∈ N0. We will break the result in two sub-cases. The following lemma treats the case
when no logarithmic terms appear in the asymptotics.

Lemma 2. Suppose that the numbers A1, A2, A3, A4 defined in (13) are all finite. Then the
principal asymptotics of Rn1,n2,m(−z) have the form

Rn1,n2,m(−z) ∼ Aα

Aγ
zα−γ(1 + o(1)) as z→ ∞, (16)

where α,γ are defined in (14) and Aα, Aγ are defined in (15). The term o(1) is a (generally infinite)
linear combination of negative powers of z.

Proof. In view of (12) and definitions (14) and (15), we have

2F1(a, b; c;−z) = Aγzγ
(

z−δ f (z) + g(z)
)

, (17)

where δ = |a− b| in the non-degenerate case, or δ = 1 in the degenerate case, while f (z) =
∑∞

j=0 α′jz
−j and g(z) = 1 + ∑∞

j=1 ᾱjz−j for some numbers α′j, ᾱj. Now, for y→ 0

1
y f (z) + g(z)

=
1/g(z)

1− (−y f (z)/g(z))
=

∞

∑
k=0

(−y)k f k(z)
gk+1(z)

, (18)

so the left-hand side is just a sum of the geometric series on the right-hand side. On plug-
ging y = z−δ into (18) and writing expansions of the ratios f k(z)/gk+1(z) in powers of z−1
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through f (z) and g(z) using the standard recursion formulae (see also [24] (p. 141, notation
on p. 6)), we arrive at

[2F1(a, b; c;−z)]−1 = (Aγ)
−1z−γ

(
1 +

∞

∑
k=1

αk
zσ̂k

)
(19)

for some positive numbers σ̂k. (In our case f (z), g(z) and, hence, f k(z)/gk+1(z) actually
converge to functions analytic near infinity; this makes the proof even simpler.) Analogous
to (17),

2F1(a + n1, b + n1; c + m;−z) = Aαzα
(

1 + β′1z−ε + β′2z−ε−1 + · · ·+ β̄1z−1 + β̄2z−2 + · · ·
)

(20)

for some numbers β′j, β̄ j and ε = |a + n1 − b− n2| in the non-degenerate case or ε = 1 in
the degenerate case. Multiplying (19) by (20), we arrive at (16).

The condition a− b /∈ Z in Lemma 2 ensures that no logarithms appear in the asymp-
totics. If, on the contrary, a− b ∈ Z such that also a + n1 − b− n2 ∈ Z, the asymptotic
expansions of the hypergeometric functions in both the numerator and denominator of
Rn1,n2,m(−z) will contain logarithmic terms if (10) holds true (i.e., A1 A2 A3 A4 6= 0). We
will treat this situation in the lemma below. If (10) is violated, however, then either the
numerator (if A1 A2 = 0) or denominator (if A3 A4 = 0) or both will reduce to a polynomial
possibly times a power of (1− z) in which case the logarithmic terms are missing, and
(12) holds. Note also that in the non-degenerate case when a − b ∈ Z \ {0}, we have
0 6= |A3| < ∞, |A4| = ∞ if a < b and 0 6= |A4| < ∞, |A3| = ∞ if a > b. This implies that
γ = −min(a, b) in (14), and Aγ in (15) is well defined. Similar claims hold for α and Aα

when a + n1 − b− n2 ∈ Z \ {0}.

Lemma 3. Suppose that n2 − n1 6= a− b ∈ Z \ {0}, A1 A2 A3 A4 6= 0 (⇔ condition (10) holds)
such that α = −min(a + n1, b + n2) and γ = −min(a, b). Let Aα, Aγ be defined in (15). Then
the asymptotic expansion of Rn1,n2,m(−z) as z→ ∞ has the form

Rn1,n2,m(−z) ∼ Aα

Aγ
zα−γ

1 +
min(δ,ε)−1

∑
k=1

ak

zk +
∞

∑
k=min(δ,ε)

ak

zk

[
1 + b1,k log(z) + · · ·+ bk,k logk(z)

], (21)

where the sum over the empty index set is zero, ak and bj,k are real numbers (possibly vanishing),
ε = |a + n1 − b− n2| and δ = |a− b| are positive integers.

Proof. Indeed if |a− b| ≥ 1, we apply [3] (15.8.8), which can be written in the form:

2F1(a, b; c;−z) = Aγzγ

(
1 +

∞

∑
j=1

f j

zj + log(z)
∞

∑
k=δ

ek

zk

)
,

where as before γ = −min(a, b), δ = |a − b| ∈ N, and Aγ is defined in (15). Hence,
letting y = z−1 log(z), f (z) = ∑∞

k=δ ek/zk−1 and g(z) = 1 + ∑∞
j=1 f j/zj in (18) yields

[2F1(a, b; c;−z)]−1 = (Aγ)
−1z−γ

(
1 +

∞

∑
j=1

f̂ j

zj

[
1 + êj,1

log(z)
zδ−1 + êj,2

log2(z)
z2(δ−1)

+ · · ·+ êj,j
logj(z)
zj(δ−1)

])
. (22)

In a similar fashion,

2F1(a + n1, b + n2; c + m;−z) = Aαzα

(
1 +

∞

∑
j=1

gj

zj + log(z)
∞

∑
k=ε

qk

zk

)
, (23)

where as before α = −min(a + n1, b + n2), ε = |a + n1 − b− n2| ∈ N and Aα is defined
in (15). The multiplication of (22) and (23) yields (21).

https://dlmf.nist.gov/15.8#E8
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Note that in the above lemma, α − γ ∈ Z. The remaining cases not covered by
Lemmas 2 and 3 are the following. If a = b, but −a, a− c /∈ N0, according to [3] (15.8.8),
we have

2F1(a, a; c;−z) =
log(z)Γ(c)

Γ(a)Γ(c− a)za

(
1 +

f0

log(z)
+

∞

∑
k=1

ek

zk

[
1 +

fk
log(z)

])
,

so that (18) with y = 1/ log(z), f (z) = f0 + ∑∞
k=1 ek fk/zk and g(z) = 1 + ∑∞

k=1 ek/zk

implies

[2F1(a, a; c;−z)]−1 =
Γ(a)Γ(c− a)za

Γ(c) log(z)

(
1 +

∞

∑
k=1

f k
0

[log(z)]k
+

∞

∑
j=1

f̂ j

zj

[
1 +

êj,1

log(z)
+ · · ·+

êj,j

[log(z)]j

])
. (24)

In a similar fashion, if a + n1 = b + n2, but −a− n1, a + n1 − c−m /∈ N0, we will have

2F1(a + n1, a + n1; c + m;−z) =
z−a−n1 log(z)Γ(c + m)

Γ(a + n1)Γ(c− a + m− n1)

(
1 +

g0

log(z)
+

∞

∑
k=1

qk

zk

[
1 +

gk
log(z)

])
. (25)

Hence, when both a = b and a + n1 = b + n2, but there are no non-negative inte-
gers among the numbers −a, a− c,−a− n1, a + n1 − c−m, the asymptotic expansion of
Rn1,n2,m(−z) is obtained by the multiplication of (24) and (25). If a = b but a + n1 6= b + n2,
we have to multiply (24) by (23) or, if a + n1 = b + n2 but a 6= b, then multiply (25) by (22).
Finally, if the denominator is degenerate while the numerator is not, we multiply (19)
by (23) when a + n1 6= b + n2 or by (25) when a + n1 = b + n2. Similarly, if the numerator
is degenerate while the denominator is not, we multiply (20) by (22) when a 6= b or by (24)
when a = b.

2.2. Boundary Values

For any integer r, define the Pochhammer symbol by (z)r = Γ(z + r)/Γ(z). Given
three integers n1, n2, m ∈ Z, define the following related quantities:

n = min(n1, n2), n = max(n1, n2), p = (m− n1 − n2)+, l = (n1 + n2 −m)+

r = l + (m)+ − n− 1 =

{
max(m− n, n)− 1, m ≥ 0
max(−n, n−m)− 1, m ≤ 0.

(26)

Note that p− l = m− n1 − n2 and r may only be negative when n1 = n2 = m = 0,
in which case r = −1. In the following theorem, which forms the main result of this
subsection, we give an explicit formula for the imaginary part of Rn1,n2,m(z) on the banks
of the branch cut [1, ∞). Note that for x > 1, the function 2F1(a, b; c; x± i0) may vanish at
finitely many points in the degenerate case {−a,−b, c− a, c− b} ∩N0 6= ∅, but does not
vanish otherwise, see, respectively, Theorem 4 and [8] (Lemma 2, p. 54).

Theorem 2. Suppose that n1, n2, m ∈ Z, a, b, c ∈ R and c, c + m /∈ −N0. The following identity
holds on the banks of the branch cut x > 1:

Im[Rn1,n2,m(x± i0)] = ±πBn1,n2,m(a, b, c)
xl−n−c(x− 1)c−a−b−l Pr(1/x)

|2F1(a, b; c; x)|2 , (27a)

where

Bn1,n2,m(a, b, c) = − Γ(c)Γ(c + m)

Γ(a)Γ(b)Γ(c− a + m− n1)Γ(c− b + m− n2)
(27b)

and Pr(t) is a polynomial of degree r (P−1 ≡ 0) given by

Pr(t) = (−1)n
r

∑
k=0

(−t)k
k−n

∑
j=(k−p)+−n

(−1)j
(

p
k− n− j

)
Kj, (28a)

https://dlmf.nist.gov/15.8#E8
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where, with the convention 1/(−i)! = 0 for i ∈ N,

Kj =
(1− a)j(c− a)m+j

(b− a)n2+j+1(j + n1)!
4F3

(
−j− n1, a, 1 + a− c, a− b− n2 − j
a− j, 1 + a− c−m− j, 1 + a− b

1
)

+
(1− b)j(c− b)m+j

(a− b)n1+j+1(j + n2)!
4F3

(
−j− n2, b, 1 + b− c, b− a− n1 − j
b− j, 1 + b− c−m− j, 1 + b− a

1
)

. (28b)

Remark 2. Note that the coefficients of Pr depend on the parameters, so the whole expression (27a)
may remain nonzero even when Bn1,n2,m(a, b, c) vanishes. Furthermore, the polynomial
Pr(t) = Pr(t; n1, n2, m) depends on all three indices n1, n2, m and not only on the degree r.
For example, rather, the straightforward calculation yields

P0(t; 0; 1; 1) = −1
b

, P0(t; 1, 1, 1) = − 1
ab

,

P1(t; 0, 2, 2) =− ct + b− a + 1
b(b + 1)

, P1(t; 0, 0, 2) = ct + a + b− 2c− 1.

The key fact that we will need for the proof of the above theorem is a more precise
version of a particular case of [25] (Theorem 1), which (after some change of notation), reads:

Theorem 3. Assume that n1, n2, m ∈ Z. Then

(γ− α)−n2(γ− β)m−n2 tn1

(γ− 1)n1−n2+1
2F1

(
1− γ + α, 1− γ + β

2− γ
t
)

2F1

(
γ− α− n2, γ− β + m− n2

γ + n1 − n2
t
)
+

(1− α)−n1(1− β)m−n1 tn2

(1− γ)n2−n1+1
2F1

(
α, β
γ

t
)

2F1

(
1− α− n1, 1− β + m− n1

2− γ + n2 − n1
t
)
=

tnPr(t)
(1− t)p , (29)

where Pr(t) is the polynomial (28) of degree r (P−1 ≡ 0) with parameters a = α, b = 1 + α− γ,
c + α − β. This polynomial can also be computed by multiplying the left hand side of (29) by
t−n(1− t)p and calculating the first r + 1 Taylor coefficients on the left-hand side.

Remark 3. The particular 2F1 case of our general identity [25] (Theorem 1) given in (29) was
essentially discovered by Ebisu in [26]. Namely, it can be derived by combining Theorem 3.7 with
Proposition 3.4 from [26].

Remark 4. Our identity from [25] (Theorem 1) does not contain explicit expression (28) for the
polynomial Pr. This expression is found in [27] (Lemma 6.1). It can also be computed by taking the
limit q→ 1 in [28] (Theorem 2). For specific values of n1, n2, m, the second method of computing
Pr(t) indicated in the above theorem is more practical.

Proof. The boundary values of the generalized hypergeometric function on the cut [1, ∞)
was found in [18] (Theorem 3). For the case of the Gauss function 2F1, this theorem takes
the form (x > 1):

2F1(a, b; c; x± i0) = − πΓ(c)
Γ(a)Γ(b)

G2,1
3,3

(
1
x

1, 3/2, c
a, b, 3/2

)
± πi

Γ(c)
Γ(a)Γ(b)

G2,0
2,2

(
1
x

1, c
a, b

)
,

where Gm,n
p,q denotes Meijer’s G function defined by the Mellin–Barnes integral

Gm,n
p,q

(
z

a1, . . . , ap
b1, . . . , bq

)
:=

1
2πi

∫
L

Γ(1− a1−s) · · · Γ(1− an − s)Γ(b1+s) · · · Γ(bm+s)
Γ(an+1+s) · · · Γ(ap+s)Γ(1− bm+1−s) · · · Γ(1− bq−s)

z−sds, (30)

where the contour L is a simple loop that starts and ends at infinity and separates the
poles of s→ Γ(bj+s), j = 1, . . . , m, leaving them on the left from those of s→ Γ(1− aj−s),
j = 1, . . . , n, leaving them on the right. Details regarding the choice of the contour L and
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the convergence of the above integral can be found, for instance, in [3] (Section 16.17), [27]
(Formula (1.2)). As

Im
(

α + iβ
γ + iδ

)
=

βγ− αδ

|γ + iδ|2 ,

by writing φ±(x) = Im[Rn1,n2,m(x± i0)], we will get

φ±(x)= Im
[

2F1(a + n1, b + n2; c + m; x± i0)
2F1(a, b; c; x± i0)

]
=± π2Γ(c)Γ(c + m)

|2F1(a, b; c; x)|2Γ(a)Γ(b)Γ(a + n1)Γ(b + n2){
G2,1

3,3

(
1
x

1, 3/2, c + m
a + n1, b + n2, 3/2

)
G2,0

2,2

(
1
x

1, c
a, b

)
− G2,1

3,3

(
1
x

1, 3/2, c
a, b, 3/2

)
G2,0

2,2

(
1
x

1, c + m
a + n1, b + n2

)}
.

Meijer’s G function here can be expanded as follows [18] (Proof of Theorem 3):

− G2,1
3,3

(
t

1, 3/2, c
a, b, 3/2

)
=

Γ(b− a)Γ(a)ta

πΓ(c− a) 2F1

(
a, 1− c + a
1− b + a

t
)

cos(πa)

+
Γ(a− b)Γ(b)tb

πΓ(c− b) 2F1

(
b, 1− c + b
1− a + b

t
)

cos(πb)

and

G2,0
2,2

(
t

1, c
a, b

)
=

Γ(b− a)Γ(a)ta

πΓ(c− a) 2F1

(
a, 1− c + a
1− b + a

t
)

sin(πa)

+
Γ(a− b)Γ(b)tb

πΓ(c− b) 2F1

(
b, 1− c + b
1− a + b

t
)

sin(πb).

Substituting these expansions into the above formula for φ±(x) and collecting terms,
the expression in the braces becomes

Γ(b− a)Γ(a + n1 − b− n2)Γ(b + n2)Γ(a)x−a−b−n2

π2Γ(c− a)Γ(c + m− b− n2)
2F1

(
a, 1− c + a
1− b + a

1
x

)
× 2F1

(
b + n2, 1− c−m + b + n2
1− a− n1 + b + n2

1
x

)
sin(π(b + n2 − a))

+
Γ(a− b)Γ(b + n2 − a− n1)Γ(a + n1)Γ(b)x−b−a−n1

π2Γ(c− b)Γ(c + m− a− n1)
2F1

(
b, 1− c + b
1− a + b

1
x

)
× 2F1

(
a + n1, 1− c−m + a + n1
1− b− n2 + a + n1

1
x

)
sin(π(a + n1 − b)).

Then, writing t = 1/x, applying Euler’s transformation and the reflection formula
Γ(z)Γ(1− z) = π/ sin(πz), we obtain

https://dlmf.nist.gov/16.17
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|2F1(a, b; c; 1/t)|2Γ(a)Γ(b)Γ(a + n1)Γ(b + n2)

Γ(c)Γ(c + m)
φ+(1/t) =

=
Γ(a− b)Γ(b + n2 − a− n1)Γ(a + n1)Γ(b)ta+b+n1

Γ(c− b)Γ(c + m− a− n1)

× 2F1

(
b, 1− c + b
1− a + b

t
)

2F1

(
a + n1, 1− c−m + a + n1
1− b− n2 + a + n1

t
)

sin(π(a + n1 − b))

+
Γ(b− a)Γ(a + n1 − b− n2)Γ(b + n2)Γ(a)ta+b+n2

Γ(c− a)Γ(c + m− b− n2)

× 2F1

(
a, 1− c + a
1− b + a

t
)

2F1

(
b + n2, 1− c−m + b + n2
1− a− n1 + b + n2

t
)

sin(π(b + n2 − a))

=
πΓ(a− b)Γ(b− a + n2 − n1)Γ(a + n1)Γ(b)ta+b+n1(1− t)c−a−b+m−n1−n2

Γ(c− b)Γ(c− a + m− n1)Γ(a− b + n1)Γ(1 + b− a− n1)

× 2F1

(
b, 1− c + b
1− a + b

t
)

2F1

(
1− b− n2, c− b + m− n2
1 + a− b + n1 − n2

t
)

+
πΓ(b− a)Γ(a− b + n1 − n2)Γ(b + n2)Γ(a)ta+b+n2(1− t)c−a−b+m−n1−n2

Γ(c− a)Γ(c + m− b− n2)Γ(b− a + n2)Γ(1 + a− b− n2)

× 2F1

(
a, 1− c + a
1− b + a

t
)

2F1

(
1− a− n1, c− a + m− n1
1 + b− a + n2 − n1

t
)

.

Further, writing a = α, b = 1− γ + α, c = 1− β + α after tedious but elementary
transformations with the use of the relations

(1− z)−k =
(−1)k

(z)k
and (z− r)k =

(z)k−r
(z)−r

= (−1)k (1− z)r

(1− z)r−k
,

the above expression reduces to

|2F1(a, b; c; 1/t)|2Γ(a)Γ(b)Γ(a + n1)Γ(b + n2)

Γ(c)Γ(c + m)
φ+(1/t)

= −πt2α−γ+1(1− t)γ−α−β+m−n1−n2 Γ(α + n1)Γ(1 + α− γ + n2)

Γ(1− β + m− n1)Γ(γ− β + m− n2)
×{

(γ− α)−n2(γ− β)m−n2 tn1

(γ− 1)n1−n2+1
2F1

(
1− γ + α, 1− γ + β
2− γ

t
)

2F1

(
γ− α− n2, γ− β + m− n2
γ + n1 − n2

t
)

+
(1− α)−n1(1− β)m−n1 tn2

(1− γ)n2−n1+1
2F1

(
α, β
γ

t
)

2F1

(
1− α− n1, 1− β + m− n1
2− γ + n2 − n1

t
)}

= −πt2α−γ+1+n(1− t)γ−α−β−lΓ(α + n1)Γ(1 + α− γ + n2)

Γ(1− β + m− n1)Γ(γ− β + m− n2)
Pr(t),

where the ultimate equality is an application of Theorem 3 with the notation introduced
in (26).

Now substituting back α = a, β = 1− c + a, γ = 1− b + a, we obtain

|2F1(a, b; c; 1/t)|2φ+(1/t) = − πΓ(c)Γ(c + m)ta+b(1− t)c−a−b

Γ(a)Γ(b)Γ(c− a + m− n1)Γ(c− b + m− n2)

tnPr(t)
(1− t)l .

It remains to plug here x = 1/t to arrive at (27a).

2.3. Integral Representation

The goal of this subsection is to construct an explicit integral representation for
Rn1,n2,m(z)—the central result of this paper. It will be based on a polynomial correction
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of the standard Schwarz formula expressing the analytic function in the upper half-plane
via the boundary values of its real part. The Schwarz formula is a particular case of the
Stieltjes–Perron inversion formula (the measure in the Stieltjes–Perron inversion formula is
often assumed to be positive (see [7] (no. 39), [6] (p. 188) or [5] (p. 250)), although this re-
quirement can be relaxed) applied for recovering the representing measure in (4). However,
the integral representation of the form (4) may already be too restrictive for the Gauss ra-
tio G(z) = R0,1,1(z), let alone Rn1,n2,m(z). The two main reasons are that (1) the right-hand
side of (4) is analytic in C \R, while R0,1,1(z) may have complex poles for certain values
of a, b, c, and (2) the representing measure may grow too fast for the integral in (4) to be con-
vergent. We deal with the first problem in Theorem 4 below containing conditions ensuring
that there are no poles in C \ [1, ∞) as well as on the banks of the branch cut. Under these
conditions, the corresponding signed measure (or charge) is supported on [1,+∞) and
has an analytic density. Thus, to obtain an integral representation we only need to deal
with the asymptotic behavior of Rn1,n2,m(z) near the points z = 1 and z = ∞ to handle the
second problem. This was solved by our rational correction presented in [14] (Lemma 4).
In this paper, we will only use a particular case of [14] (Lemma 4) containing a polynomial
correction at infinity. Recall that an analytic function is called real if f (z) = f (z) in the
appropriate domain.

Lemma 4. Let f (z) be a real analytic function defined in the cut plane C \ [1,+∞) and suppose
that u(x) := 1

π Im f (x + i0) is continuous on (1,+∞). Suppose that there exists n ∈ N0 such that

lim
|z−1|→0

∣∣ f (z)(1− z)
∣∣ = lim

|z|→∞

∣∣ f (z)z−n∣∣ = 0 (31)

and u(x)x−n−1 is absolutely integrable over (1,+∞). Then

f (z) =
n−1

∑
k=0

f (k)(0)zk

k!
+ zn

∫ +∞

1

u(x) dx
(x− z)xn . (32)

The above lemma assumes that the function f is analytic in C \ [1,+∞). Hence,
in order to apply it to Rn1,n2,m(z), we need to make sure that the denominator 2F1(a, b; c; z)
does not vanish in this domain. Such conditions will follow from an important theorem
due to Runckel [8]. We will denote by bξc the maximal integer number ≤ ξ for any ξ ∈ R.
Note that if ξ is non-integer, then b−ξc = −bξc − 1.

Theorem 4. The function 2F1(a, b; c; z) does not vanish for z ∈ C \ [1,+∞), including on the
banks of the branch cut if and only if (a, b, c) ∈ V⊂R3, where V is the set of points (a, b, c) with
c 6= 0 satisfying any of the following conditions:

(I) −1 < min(a, b) ≤ c ≤ max(a, b) ≤ 0;
(II) −1 < min(a, b) ≤ 0 ≤ max(a, b) ≤ c;
(III) −1 < c ≤ min(a, b) ≤ 0 ≤ max(a, b) < c + 1;
(IV) 0 ≤ min(a, b) ≤ c and max(a, b) < c + 1;
(V) a, b, c, c− a, c− b are non-integer negative numbers, such that bξ1c+ 1 = bξ4c and

bξ2c = bξ3c, where ξ1, . . . , ξ4 are the numbers a, b, c− a, c− b taken in non-decreasing
order:

min(a, b, c− a, c− b) = ξ1 ≤ ξ2 ≤ ξ3 ≤ ξ4 = max(a, b, c− a, c− b);

(VI) 0 ∈ {a, b, c− a, c− b}.

In this form, this theorem was formulated and proved by us in [14] (Corollary 2).

Remark 5. Under condition (V), one necessarily has c− ξ4 = ξ1 < ξ2 and c− ξ2 = ξ3 < ξ4.
Indeed, ξ1 + ξ4 = c = ξ2 + ξ3 in view of a + (c− a) = c = b + (c− b). So, if we have one of
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the equalities ξ1 = ξ2 and ξ3 = ξ4, we automatically have the other, assuming that the last two
equalities together will contradict to bξ1c+ 1 = bξ4c on account of bξ2c = bξ3c.

In fact, (V) is generated by the following two basic cases,

− k− 1 < a < min(b, c− b) ≤ max(b, c− b) < −k < c− a < −k + 1, k ∈ N, and

− k− 1 < a < −k < min(b, c− b) ≤ max(b, c− b) < c− a < −k + 1, k ∈ N,

further extended through the symmetry a ↔ b and Euler’s transformation exchanging
(a, b)↔ (c− a, c− b).

Another important fact established by Runckel is the following corollary of [8] (Lemma 2):

Lemma 5. If a, b, c− a, c− b /∈ −N0 and x > 1, then 2F1(a, b; c; x± i0) 6= 0.

Lemmas 2 and 3 and the subsequent remarks show that the asymptotic expansion of
Rn1,n2,m(z) at infinity is a combination of terms of the form Azµ[log(z)]k, where A and µ
are real numbers, while k is an integer. Condition (34) in the theorem below requires each
exponent µ satisfying µ ≥ N, N ∈ N0 to be an integer and the corresponding k to be zero
(no logarithms at powers µ ≥ N). The following theorem is the main result of this section.

Theorem 5. Suppose that (a, b, c) ∈ V, with V defined in Theorem 4, and η(·) given in (8)
satisfies

η(a + n1, b + n2, c + m)− η(a, b, c) > −1. (33)

Assume further that there exists N ∈ N0 such that the asymptotics of Rn1,n2,m(z) at infinity
have the form

Rn1,n2,m(z) = Qa,b,c(z) + o(zN) as z→ ∞, (34)

where Qa,b,c(z) is a (possibly vanishing) polynomial with real coefficients and the lowest degree
non-vanishing term ∼ zN . Then the following representation holds true:

Rn1,n2,m(z) = Qa,b,c(z) +
N−1

∑
k=0

R(k)
n1,n2,m(0)

k!
zk

+ zN Bn1,n2,m(a, b, c)
∫ ∞

1

xl−n−c−N(x− 1)c−a−b−l Pr(1/x)
|2F1(a, b; c; x)|2(x− z)

dx, (35)

where r, l and Bn1,n2,m(a, b, c) retain their meanings from Theorem 2 and Pr is defined in (28).
If (34) holds with N = 0, we obtain

Rn1,n2,m(z) = Qa,b,c(z) + Bn1,n2,m(a, b, c)
∫ ∞

1

xl−n−c(x− 1)c−a−b−l Pr(1/x)
|2F1(a, b; c; x)|2(x− z)

dx (36)

In particular, (34) holds for N = 0, Qa,b,c(z) being a constant if n1, n2 ≥ 0 and (10) is
satisfied.

Remark 6. Note that the choice of N and Qa,b,c(z) in (34) is not unique. In particular, it follows
from Lemmas 2 and 3 that we can always take Qa,b,c(z) = 0 by choosing a large enough N.

Remark 7. The first two terms of the Taylor expansion of Rn1,n2,m(z) are given by

Rn1,n2,m(z) = 1 +
(an2 + bn1 + n1n2)c− abm

c(c + m)
z + O(z2).

Remark 8. Substitution x = 1/t brings Formula (36) to the form (we write B = Bn1,n2,m(a, b, c)
for brevity):
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Rn1,n2,m(z) = Qa,b,c(z) +
N−1

∑
k=0

R(k)
n1,n2,m(0)

k!
zk + zN B

∫ 1

0

ta+b+n+N−1(1− t)c−a−b−l Pr(t)
|2F1(a, b; c; 1/t)|2(1− zt)

dt. (37)

This form turns out to be more convenient in most applications. Moreover, taking z = 0 or
z = 1, we obtain the following curious integral evaluations:

∫ 1

0

ta+b+n+N−1(1− t)c−a−b−l Pr(t)
|2F1(a, b; c; 1/t)|2 dt =

R(N)
n1,n2,m(0)−QN N!

N!B
, (38)

where QN denotes the coefficient at zN in Qa,b,c(z), and∫ 1

0

ta+b+n+N−1(1− t)c−a−b−l−1Pr(t)
|2F1(a, b; c; 1/t)|2 dt =

Rn1,n2,m(1)−Qa,b,c(1)
B

− 1
B

N−1

∑
k=0

R(k)
n1,n2,m(0)

k!
, (39)

where, in view of the Gauss summation formula,

Rn1,n2,m(1) =
(c)m(c− a− b)m−n1−n2

(c− a)m−n1(c− b)m−n2

.

Multiplying the integrand in (39) by (1− t), splitting the result in two summands, and using
both formulae (38) and (39), we also obtain∫ 1

0

ta+b+n+N(1− t)c−a−b−l−1Pr(t)
|2F1(a, b; c; 1/t)|2 dt =

Rn1,n2,m(1)−Qa,b,c(1) + QN

B
− 1

B

N

∑
k=0

R(k)
n1,n2,m(0)

k!
. (40)

Remark 9. The absolute value of 2F1 on the branch cut in the integrands in (35) and (36) can be
computed as follows (x > 1):

|2F1(a, b; c; x)|2 =
π2Γ(c)2

Γ(a)2Γ(b)2

{
(x− 1)2(c−a−b)

[Γ(c− a− b)]2

[
2F1

(
c− a, c− b
c− a− b

1− x
)]2

+

[
Γ(b− a)Γ(a)x−a

Γ(c− a)Γ(1/2− a)Γ(1/2 + a) 2F1

(
a, 1− c + a
1− b + a

1/x
)

+
Γ(a− b)Γ(b)x−b

Γ(c− b)Γ(1/2− b)Γ(1/2 + b) 2F1

(
b, 1− c + b
1− a + b

1/x
)]2}

.

Proof of Theorem 5. Define f (z) = Rn1,n2,m(z)− Qa,b,c(z). As the lowest degree term in
Qa,b,c(z) is ∼ zN , in view of the condition (a, b, c) ∈ V, Theorem 4 implies that the function

f̂N(z) = Rn1,n2,m(z)−Qa,b,c(z)−
N−1

∑
k=0

f (k)(0)
k!

zk = Rn1,n2,m(z)−Qa,b,c(z)−
N−1

∑
k=0

R(k)
n1,n2,m(0)

k!
zk

is holomorphic in z ∈ C \ [1, ∞) and has no singularities on the banks of the branch cut
other than z = 1 and z = ∞. We aim at the application of Lemma 4 to the function
f̂N(z). Denote u(x) = Im( f̂N(x + i0)). As Qa,b,c(z) has real coefficients, we conclude that
u(x) = Im[Rn1,n2,m(x + i0)].

If condition (33) is satisfied, then Formula (6) from Theorem 1 guarantees that the first
limit in (31) in Lemma 4 is indeed equal to zero for Rn1,n2,m(z) and hence also for f̂N(z).
Moreover, for any −1 < θ < η(a + n1, b + n2, c + m)− η(a, b, c), we will have

|u(x)x−N−1| ≤ |Rn1,n2,m(x + i0)| ≤ M|1− x|θ (41)

for some M > 0 in certain neighborhood of x = 1. Hence, u(x)x−N−1 is integrable in the
neighborhood of x = 1.

Further, condition (34) leads to the second equality in (31) with n = N for the function
f̂N(z). Indeed, the condition (34) gives precisely (31) for the function f (z) by the definition
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of o symbol and the extra terms in f̂N(z) go to zero as z → ∞ after division by zN . Then
Lemmas 2 and 3 imply that the asymptotics at infinity must have one of the forms

z−N f̂N(z) =
C

log(z)

(
1 + O

(
[log(z)]−1

))
as z→ ∞

or
z−N f̂N(z) =

C
zτ

(1 + o(1)) as z→ ∞

for some τ > 0. In view of ∣∣∣∣Im 1
log(x + i0)

∣∣∣∣ ≤ π

log2 |x|+ π2

which leads to

u(x)
xN+1 = O

(
1

x log2(x)

)
or

u(x)
xN+1 = O

(
1

x1+τ

)
as x → ∞.

This implies the absolute integrability of x−N−1u(x) on (1,+∞). Hence, we are in
the position to apply Lemma 4 leading to formula (35) by an application of Theorem 2.
The ultimate claim of the Theorem follows directly from Lemmas 2 and 3.

3. Examples

In this section, we will apply Theorem 5 to 15 specific triples (n1, n2, m) to obtain
integral representations of the ratio Rn1,n2,m(z) defined in (5). These representations are
only valid if Rn1,n2,m(z) is well behaved near z = 1 and its denominator 2F1(a, b; c; z) 6= 0
in the cut plane C \ [1,+∞) and on the banks of the branch cut. Conditions for the latter
are given in Theorem 4, while the former in ensured by the inequality (33). To relax these
restrictions, one needs a kind of regularization near the point z = 1 as well as near all
zeros of the denominator. Such regularizations were explored by us in [14]. We will further
mention conditions for Rn1,n2,m(z) to belong the Markov M and the Stieltjes S classes,
whose definitions can be found below formula (4).

Example 1. For the Gauss ratio R0,1,1(z) according to (26), we obtain p = l = r = 0. Theorem 3
and definition (27b) yield

B0,1,1P0(t) ≡
Γ(c)Γ(c + 1)

Γ(a)Γ(b + 1)Γ(c− a + 1)Γ(c− b)
.

Next, using (16) and (21), or directly, it is easy to verify that

Qa,b,c = lim
z→∞

R0,1,1(z) =

{
0, b ≤ a

[c(b− a)]/[b(c− a)], b > a.

Then, Theorem 5 with N = 0 yields

R0,1,1(z) = Qa,b,c +
Γ(c)Γ(c + 1)

Γ(a)Γ(b + 1)Γ(c− b)Γ(c− a + 1)

1∫
0

ta+b−1(1− t)c−a−bdt
(1− zt)|2F1(a, b; c; t−1)|2 .

In order for this representation to hold, we need to assume that (a, b, c) ∈ V, that is to
say (a, b, c) satisfies at least one of the conditions (I)–(VI) from Theorem 4. For (a, b, c) ∈ V
the condition (33) from Theorem 5 holds automatically since the parameter q = m− n1 − n2 in
Lemma 1 vanishes such that R0,1,1(z) is integrable in the neighborhood of z = 1. We remark that the
integrand is symmetric with respect to the interchange of a and b, and the asymmetry of R0,1,1(z) is
only reflected in the constants Qa,b,c and B0,1,1.
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The above integral representation was first found by V. Belevitch in [11] (Formula (72)) under
the restrictions 0 ≤ a, b ≤ c, c ≥ 1 (there is a small mistake in Belevitch’s paper—a superfluous
2 in the denominator of the constant Qa,b,c). Independently, using the Gauss continued fraction
(2) and Wall’s theorem, Küstner [10] (Theorem 1.5) proved that R0,1,1(z) is a Markov function
(generating function of a Hausdorff moment sequence) if 0 < a ≤ c + 1, 0 < b ≤ c. As we
mentioned in introduction, the coefficients of the Gauss continued fraction (2) for R0,1,1(z) are all
positive if (a) −1 < a < 0 and either −1 < b < c < 0 or 0 < c < b < c + 1 or (b) 0 < a < c + 1,
c > 0 and −1 < b < c. If these conditions hold, while conditions of Runckel’s Theorem 4 are
violated, i.e., (a, b, c) /∈ V, then representation (4) is true while the above integral representation is
not. Hence, in this situation, R0,1,1(z) has pole(s) in the interval (0, 1), which are reflected by the
atoms of the representing measure in (4) at some real points sk > 1. This is the case, for instance,
if 0 < c < a < c + 1 and −1 < b < 0. In this situation R0,1,1(z) still belongs to the Stieltjes
class S .

Example 2. For the ratio R0,1,0(z) according to (26), we obtain l = 1, p = r = 0. Theorem 3 and
definition (27b) yield

B0,1,0P0(t) ≡
[Γ(c)]2

Γ(a)Γ(b + 1)Γ(c− a)Γ(c− b)
.

Next, using (16) and (21), or directly, we can verify that

Qa,b = lim
z→∞

R0,1,0(z) =

{
0, b ≤ a

(b− a)/b, b > a.

Then Theorem 5 with N = 0 yields

R0,1,0(z) = Qa,b +
[Γ(c)]2

Γ(a)Γ(b + 1)Γ(c− a)Γ(c− b)

∫ 1

0

ta+b−1(1− t)c−a−b−1dt
(1− zt)|2F1(a, b; c; 1/t)|2 .

Note that similarly to Example 1, the integrand is symmetric with respect to the interchange of
a and b, and the asymmetry of the left-hand side is only reflected in the constants. In order for this
representation to hold, we need to assume that (a, b, c) ∈ V in Theorem 4. Under this restriction
and except for the degenerate cases ab = 0 and (c− a)(c− b) = 0, the condition (33) reads

(c− a− b− 1)− − (c− a− b)− > −1,

which is easily seen to be equivalent to c > a + b. The above set of conditions holds, for example,
if −1 < a < 0 and 0 < b < c or a > 0 and −1 < b < c− a. Note that the degenerate cases
ab = 0 and (c− a)(c− b) = 0 yield the standard Euler’s integral [23] (Theorem 2.2.4) in the
above representation (although the integral may disappear when multiplied by zero). This remark is
also true for all subsequent examples, so we will omit it in the sequel.

Using continued fractions, Küstner [10] (Theorem 1.5) proved that R0,1,0(z) ∈ M (the
Markov class) if −1 ≤ b ≤ c and 0 < a ≤ c. Askitis [29] (Lemma 6.2.2) found another proof for
the this claim (without a use of continued fractions). We also remark that the continued fraction for
R0,1,0 was also found by Gauss; see [1] (Equation (26)) or [10] (Equation (2.7)), in the form

1

1−
α1z

1−
α2z

1− . . .

,
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where α1 = a/c, and for k ≥ 1

α2k =
(b + k)(c− a + k− 1)
(c + 2k− 2)(c + 2k− 1)

, α2k+1 =
(a + k)(c− b + k− 1)
(c + 2k− 1)(c + 2k)

.

From these formulae, it is also not difficult to formulate sufficient conditions for αn ≥ 0
ensuring that R0,1,0 ∈ S (the Stieltjes class).

Example 3. For the ratio R1,1,1(z) according to (26), we obtain l = 1, p = r = 0. Theorem 3 and
definition (27b) yield

B1,1,1P0(t) =
Γ(c)Γ(c + 1)

Γ(a + 1)Γ(b + 1)Γ(c− a)Γ(c− b)

Next, it is easy to verify using (16) and (21) or directly that

Qa,b,c = lim
z→∞

R1,1,1(z) = 0.

Then, according to the case N = 0 of Theorem 5, we obtain

R1,1,1(z) =
Γ(c)Γ(c + 1)

Γ(a + 1)Γ(b + 1)Γ(c− a)Γ(c− b)

∫ 1

0

ta+b(1− t)c−a−b−1dt
(1− zt)|2F1(a, b; c; 1/t)|2 .

In order for this representation to hold, we need to assume that (a, b, c) ∈ V in Theorem 4.
Under this restriction and except for the degenerate cases ab = 0 and (c− a)(c− b) = 0, the
condition (33) reads

(c− a− b− 1)− − (c− a− b)− > −1,

which is easily seen to be equivalent to c > a + b. All these conditions are satisfied, for example,
if (a) −1 < a < 0 and 0 < b < c or (b) 0 < a < c and −1 < b < c− a. The above integral
representation obviously implies that R1,1,1 ∈ M if the constant in front of the integral is positive
(or −R1,1,1 ∈ M otherwise).

Example 4. For the ratio R1,1,2(z) according to (26), we obtain l = p = r = 0. Theorem 3 and
definition (27b) yield

B1,1,2P0(t) = B1,1,2P0 =
Γ(c + 1)Γ(c + 2)

Γ(a + 1)Γ(b + 1)Γ(c− a + 1)Γ(c− b + 1)
.

Next, it is easy to verify using (16) and (21) or directly that

Qa,b,c = lim
z→∞

R1,1,2(z) = 0.

Then, according to the case N = 0 of Theorem 5, we obtain

R1,1,2(z) =
Γ(c + 1)Γ(c + 2)

Γ(a + 1)Γ(b + 1)Γ(c− a + 1)Γ(c− b + 1)

∫ 1

0

ta+b(1− t)c−a−bdt
(1− zt)|2F1(a, b; c; 1/t)|2 .

In order for this representation to hold, we need to assume that (a, b, c) ∈ V in Theorem 4.
Under this restriction and except for the degenerate cases ab = 0 and (c− a)(c− b) = 0, the
condition (33) reads

(c− a− b)− − (c− a− b)− > −1

and is trivially satisfied. If the above integral representation holds true, then R1,1,2 ∈ M once the
constant in front of the integral is positive, which is the case for parameters satisfying any of the
conditions (I)–(V) of Theorem 4.
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Example 5. For the ratio R0,2,2(z) according to (26), we obtain l = p = 0, r = 1. Theorem 3 and
definition (27b) yield

B0,2,2P1(t) =
Γ(c)Γ(c + 2)(ct + b− a + 1)

Γ(a)Γ(b + 2)Γ(c− a + 2)Γ(c− b)
.

Next, it is easy to verify using (16) and (21) or directly that

Qa,b,c = lim
z→∞

R0,2,2(z) =

{
0, b ≤ a

c(c + 1)(b− a)(b− a + 1)/[b(b + 1)(c− a)(c− a + 1)], b > a.

Then, according to the case N = 0 of Theorem 5, we obtain

R0,2,2(z) = Qa,b,c +
Γ(c)Γ(c + 2)

Γ(a)Γ(b + 2)Γ(c− a + 2)Γ(c− b)

∫ 1

0

ta+b−1(ct + b− a + 1)(1− t)c−a−bdt
(1− zt)|2F1(a, b; c; 1/t)|2 .

In order for this representation to hold, we need to assume that (a, b, c) ∈ V in Theorem 4.
Under this restriction and except for the degenerate cases ab = 0 and (c− a)(c− b) = 0, the
condition (33) reads

(c− a− b)− − (c− a− b)− > −1

and is trivially satisfied. Here, we need to require that the zero t∗ = (a− b− 1)/c of the polynomial
ct + b− a + 1 lies outside the interval (0, 1) in order that R0,2,2 ∈ M or−R0,2,2 ∈ M (depending
on the signs of the measure and the constant).

Example 6. For the ratio R0,2,0(z) according to (26), we obtain p = 0, l = 2, r = 1. Theorem 3
and definition (27b) yield

B0,2,0P1(t) =
[Γ(c)]2(t(c− 2b− 2) + b + 1− a)

Γ(a)Γ(b + 2)Γ(c− a)Γ(c− b)
.

Next, it is easy to verify using (16) and (21) or directly that

Qa,b = lim
z→∞

R0,2,0(z) =

{
0, b ≤ a

(b− a)(b− a + 1)/[b(b + 1)], b > a.

Then, according to the case N = 0 of Theorem 5, we obtain

R0,2,0(z) = Qa,b +
[Γ(c)]2

Γ(a)Γ(b + 2)Γ(c− a)Γ(c− b)

1∫
0

ta+b−1(b− a + 1 + t(c− 2b− 2))(1− t)c−a−b−2dt
(1− zt)|2F1(a, b; c; 1/t)|2 .

In order for this representation to hold, we need to assume that (a, b, c) ∈ V in Theorem 4.
Under this restriction and except for the degenerate cases ab = 0 and (c− a)(c− b) = 0, the
condition (33) reads

(c− a− b− 2)− − (c− a− b)− > −1

which is easily seen to be equivalent to c > a + b + 1. Similar to the previous example, a necessary
condition for R0,2,0 ∈ M or −R0,2,0 ∈ M is that the zero t∗ = (a− b− 1)/(c− 2b− 2) of the
polynomial b− a + 1 + t(c− 2b− 2) lies outside the interval (0, 1).

Example 7. For the ratio R1,1,0(z) according to (26), we obtain p = 0, l = 2, r = 0. Theorem 3
and definition (27b) yield

B1,1,0P0(t) = −
[Γ(c)]2(c− a− b− 1)

Γ(a + 1)Γ(b + 1)Γ(c− a)Γ(c− b)
.
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Next, it is easy to verify using (16) and (21) or directly that

Qa,b,c = lim
z→∞

R1,1,0(z) = 0.

Then, according to the case N = 0 of Theorem 5, we obtain

R1,1,0(z) = −
[Γ(c)]2(c− a− b− 1)

Γ(a + 1)Γ(b + 1)Γ(c− a)Γ(c− b)

∫ 1

0

ta+b(1− t)c−a−b−2dt
(1− zt)|2F1(a, b; c; 1/t)|2 .

In order for this representation to hold, we need to assume that (a, b, c) ∈ V in Theorem 4.
Under this restriction and except for the degenerate cases ab = 0 and (c− a)(c− b) = 0, the
condition (33) reads

(c− a− b− 2)− − (c− a− b)− > −1

which is easily seen to be equivalent to c > a + b + 1. Now, if the above integral representation
for R1,1,0 holds true, then either −R1,1,0 or R1,1,0 belong to the classM (depending on the sign of
the constant in front of the integral).

Example 8. For the ratio R0,0,1(z) according to (26), we obtain p = 1, l = r = 0. Theorem 3 and
definition (27b) yield

B0,0,1P0(t) = −
Γ(c)Γ(c + 1)

Γ(a)Γ(b)Γ(c− a + 1)Γ(c− b + 1)
.

Next, it is easy to verify using (16) and (21) or directly that

Qa,b,c = lim
z→∞

R0,0,1(z) =

{
c/(c− b), b ≤ a

c/(c− a), b > a,

unless c = min(a, b). Then, the case N = 0 of Theorem 5 leads to the representation

R0,0,1(z) = Qa,b,c −
Γ(c)Γ(c + 1)

Γ(a)Γ(b)Γ(c− a + 1)Γ(c− b + 1)

∫ 1

0

ta+b−1(1− t)c−a−bdt
(1− zt)|2F1(a, b; c; 1/t)|2 .

In order for this representation to hold, we need to assume that (a, b, c) ∈ V in Theorem 4.
Under this restriction and except for the degenerate cases ab = 0 and (c− a)(c− b) = 0, the
condition (33) reads

(c− a− b + 1)− − (c− a− b)− > −1

which is easily seen to be satisfied for all real a, b, c. Here, R0,0,1(z)−Qa,b,c or Qa,b,c − R0,0,1(z) is
a Markov function under conditions (I)–(II) or, respectively, (III)–(V) of Theorem 4.

Example 9. For the ratio R0,0,−1(z) according to (26) we obtain l = 1, p = r = 0. Theorem 3 and
definition (27b) then yield

B0,0,−1P0(t) =
Γ(c)Γ(c− 1)

Γ(a)Γ(b)Γ(c− a)Γ(c− b)
.

Next, it is easy to verify using (16) and (21) or directly that

Qa,b,c = lim
z→∞

R0,0,−1(z) =

{
(c− b− 1)/(c− 1), b ≤ a

(c− a− 1)/(c− 1), b > a.

Then, the case N = 0 of Theorem 5 leads to the representation

R0,0,−1(z) = Qa,b,c +
Γ(c)Γ(c− 1)

Γ(a)Γ(b)Γ(c− a)Γ(c− b)

∫ 1

0

ta+b−1(1− t)c−a−b−1dt
(1− zt)|2F1(a, b; c; 1/t)|2 .
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In order for this representation to hold, we need to assume that (a, b, c) ∈ V in Theorem 4.
Under this restriction and except for the degenerate cases ab = 0 and (c− a)(c− b) = 0, the
condition (33) reads

(c− a− b− 1)− − (c− a− b)− > −1

which is easily seen to be equivalent to c > a+ b. All these conditions are satisfied, for example, if (a)
−1 < a < 0 and 0 < b < c− a or (b) 0 < a < c and −1 < b < c− a. Here, the representing
measure is again positive for all values of parameters so that R0,0,−1 ∈ M provided the above
integral representation holds and the constants are positive.

Example 10. For the ratio R0,0,2(z) according to (26), we obtain p = 2, l = 0, r = 1. The
application of Theorem 3 and definition (27b) yields

B0,0,2P1(t) =
Γ(c)Γ(c + 2)[ct + a + b− 2c− 1]
Γ(a)Γ(b)Γ(c− a + 2)Γ(c− b + 2)

.

Next, it is easy to verify using (16) and (21) or directly that

Qa,b,c = lim
z→∞

R0,0,2(z) =

{
c(c + 1)/[(c− b)(c− b + 1)], b ≤ a

c(c + 1)/[(c− a)(c− a + 1)], b > a.

Then, the case N = 0 of Theorem 5 leads to the representation

R0,0,2(z) = Qa,b,c +
Γ(c)Γ(c + 2)

Γ(a)Γ(b)Γ(c− a + 2)Γ(c− b + 2)

∫ 1

0

ta+b−1(ct + a + b− 2c− 1)(1− t)c−a−bdt
(1− zt)|2F1(a, b; c; 1/t)|2 .

In order for this representation to hold, we need to assume that (a, b, c) ∈ V in Theorem 4.
Under this restriction and except for the degenerate cases ab = 0 and (c− a)(c− b) = 0, the
condition (33) reads

(c− a− b + 2)− − (c− a− b)− > −1

which is true for all real a, b, c. The necessary condition for R0,0,2 ∈ M or −R0,0,2 ∈ M is that the
zero t∗ = (2c− a− b + 1)/c of the polynomial ct + a + b− 2c− 1 lies outside the interval (0, 1).
Under this condition, R0,0,2 ∈ M for the values of parameters, making the constants positive.

Example 11. For the ratio R0,1,2(z) according to (26), we obtain p = 1, l = 0, r = 1. Theorem 3
and definition (27b) yield

B0,1,2P1(t) = −
Γ(c)Γ(c + 2)(ct + b− c)

Γ(a)Γ(b + 1)Γ(c− a + 2)Γ(c− b + 1)
.

Next, it is easy to verify using (16) and (21) or directly that

Qa,b,c = lim
z→∞

R0,1,2(z) =

{
0, b ≤ a

c(c + 1)(b− a)/[b(c− a)(c− a + 1)], b > a.

Then, the case N = 0 of Theorem 5 leads to the representation

R0,1,2(z) = Qa,b,c −
Γ(c)Γ(c + 2)

Γ(a)Γ(b + 1)Γ(c− a + 2)Γ(c− b + 1)

∫ 1

0

ta+b−1(ct + b− c)(1− t)c−a−bdt
(1− zt)|2F1(a, b; c; 1/t)|2 .

In order for this representation to hold, we need to assume that (a, b, c) ∈ V in Theorem 4.
Under this restriction and except for the degenerate cases ab = 0 and (c− a)(c− b) = 0, the
condition (33) reads

(c− a− b + 1)− − (c− a− b)− > −1



Mathematics 2022, 10, 3903 21 of 26

which is true for all real a, b, c. Similar to the previous example, the additional condition that
t∗ = (c− b)/c /∈ (0, 1) yields Qa,b,c − R0,1,2 ∈ M or R0,1,2 −Qa,b,c ∈ M depending on whether
the constant near the integral is positive or negative.

Example 12. For the ratio R0,−1,0(z) according to (26) we obtain l = 1, p = r = 0. Theorem 3
and definition (27b) yield

B0,−1,0P0(t) = −
[Γ(c)]2

Γ(a)Γ(b)Γ(c− a)Γ(c− b + 1)
.

Using Lemmas 2 and 3 or by direct, albeit tedious calculation, we obtain the following asymptotic ap-
proximations:

(1) If b + 1 < a, then R0,−1,0(z) = Az + B + o(1) as z→ ∞;

(2) If b < a ≤ b + 1, then R0,−1,0(z) = Az + o(z) as z→ ∞;

(3) If b− 1 ≤ a ≤ b, then R0,−1,0(z) = o(z) as z→ ∞;

(4) If a < b− 1, then R0,−1,0(z) = C + o(1) as z→ ∞,
where

A =
b− a
c− b

, B =
b(b + 1)− 2ab + c(a− 1)

(c− b)(a− b− 1)
, C =

b− 1
b− a− 1

.

Hence, if |a− b| > 1, we have R0,−1,0(z) = βz + α + o(1) as z→ ∞, with (β, α) = (A, B)
if a > b + 1 and (β, α) = (0, C) if a < b− 1. Then for |a− b| > 1 we can choose N = 0 in
Theorem 5 leading to the representation

R0,−1,0(z) = α + βz− [Γ(c)]2

Γ(a)Γ(b)Γ(c− a)Γ(c− b + 1)

∫ 1

0

ta+b−2(1− t)c−a−b

(1− zt)|2F1(a, b; c; 1/t)|2 dt. (42)

In addition to the condition |a− b| > 1, we need to assume that (a, b, c) ∈ V in Theorem 4.
Under these restrictions and except for the degenerate cases ab = 0 and (c− a)(c− b) = 0, the
condition (33) reads

(c− a− b + 1)− − (c− a− b)− > −1

which is true for all real a, b, c. If the above representation holds, we see that α + βz− R0,−1,0(z) ∈
M if the constant in front of the integral is positive.

For arbitrary a, b, we obtain R0,−1,0(z) = βz + o(z) as z → ∞, with β = A if b < a and
β = 0 if a ≤ b. Hence, we can remove the restriction |a− b| > 1 by taking N = 1 in Theorem 5,
which leads to

R0,−1,0(z) = 1 + βz− z[Γ(c)]2

Γ(a)Γ(b)Γ(c− a)Γ(c− b + 1)

∫ 1

0

ta+b−1(1− t)c−a−b

(1− zt)|2F1(a, b; c; 1/t)|2 dt, (43)

or, by taking N = 2, we obtain

R0,−1,0(z) = 1− ac
c2 z− z2[Γ(c)]2

Γ(a)Γ(b)Γ(c− a)Γ(c− b + 1)

∫ 1

0

ta+b(1− t)c−a−b

(1− zt)|2F1(a, b; c; 1/t)|2 dt. (44)

Example 13. For the ratio R−1,−1,0(z) according to (26), we obtain p = 2, l = r = 0. Theorem 3
and definition (27b) yields

B−1,−1,0P0(t) = −
[Γ(c)]2(c− a− b + 1)

Γ(a)Γ(b)Γ(c− a + 1)Γ(c− b + 1)
.

Using Lemmas 2 and 3 or by direct, albeit tedious, calculation, we obtain the asymptotic approximations

(1) If a > b + 1, then R−1,−1,0(z) = B(a, b)z + A(a, b) + o(1) as z→ ∞;

(2) If b ≤ a ≤ b + 1, then R−1,−1,0(z) = B(a, b)z + o(z) as z→ ∞;
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(3) If b− 1 ≤ a ≤ b, then R−1,−1,0(z) = B(b, a)z + o(z) as z→ ∞;

(4) If a < b− 1, then R1,−1,0(z) = B(b, a)z + A(b, a) + o(1) as z→ ∞,

where

B(a, b) =
a− 1
b− c

, A(a, b) =
(a− 1)(2b− c)

(c− b)(1 + b− a)
.

Hence, if |a − b| > 1, then R1,−1,0(z) = βz + α + o(1) as z → ∞, where (β, α) =
(B(a, b), A(a, b)) if a > b+ 1 and (β, α) = (B(b, a), A(b, a)) if a < b− 1. Hence, for |a− b| > 1,
the N = 1 case of Theorem 5 leads to the representation

R−1,−1,0(z) = α + βz− [Γ(c)]2(c− a− b + 1)
Γ(a)Γ(b)Γ(c− a + 1)Γ(c− b + 1)

∫ 1

0

ta+b−2(1− t)c−a−b

|2F1(a, b; c; 1/t)|2(1− zt)
dt. (45)

In addition to the condition |a− b| > 1, we need to assume that (a, b, c) ∈ V in Theorem 4.
Under these restrictions and except for the degenerate cases ab = 0 and (c− a)(c− b) = 0 the
condition (33) reads

(c− a− b + 2)− − (c− a− b)− > −1,

which is true for all real a, b, c. The above representation implies that α + βz− R−1,−1,0(z) ∈ M
if the constant in front of the integral is positive.

As R−1,−1,0(z) = βz + o(z) as z → ∞, where β = B(a, b) if a ≥ b and β = B(b, a) if
a ≥ b, we can lift the restriction |a− b| > 1 by taking N = 1 in Theorem 5, which leads to

R−1,−1,0(z) = 1 + βz− z[Γ(c)]2(c− a− b + 1)
Γ(a)Γ(b)Γ(c− a + 1)Γ(c− b + 1)

∫ 1

0

ta+b−1(1− t)c−a−b

|2F1(a, b; c; 1/t)|2(1− zt)
dt, (46)

or, by taking N = 2, we obtain

R−1,−1,0(z) = 1 +
(a + b− 1)c

c2 z− z2[Γ(c)]2(c− a− b + 1)
Γ(a)Γ(b)Γ(c− a + 1)Γ(c− b + 1)

∫ 1

0

ta+b(1− t)c−a−b

|2F1(a, b; c; 1/t)|2(1− zt)
dt. (47)

Example 14. For the ratio R−1,1,0(z) according to (26), we obtain p = l = r = 0. Theorem 3 and
definition (27b) yield:

B−1,1,0P0 =
[Γ(c)]2(a− b− 1)

Γ(a)Γ(b + 1)Γ(c− a + 1)Γ(c− b)
.

The asymptotic behavior of R−1,1,0(z) as z → ∞ is rather complicated and depends on the
relation between a and b. The application of Lemmas 2 and 3 yields the following:

(1) If b + 1 < a, then R−1,1,0(z) = o(1) as z→ ∞;

(2) If b ≤ a ≤ b + 1, then R−1,1,0(z) = o(z) as z→ ∞;

(3) If b− 1 ≤ a < b, then R−1,1,0(z) = Bz + o(z) as z→ ∞;

(4) If a < b− 1, then R−1,1,0(z) = Bz + C + o(1) as z→ ∞,

where

B =
(b− a)(b− a + 1)

b(a− c)
, C =

(b− a)(b− a + 1)(c(a + b− 1)− 2ab)
b(c− a)(a− b− 1)(a− b + 1)

.

Hence, if |a− b| > 1 we have R−1,1,0(z) = βz + α + o(1) as z→ ∞, where (β, α) = (0, 0)
when a > b + 1 and (β, α) = (B, C) when a < b− 1. Then, for |a− b| > 1 the N = 0 case of
Theorem 5 leads to the representation

R−1,1,0(z) = α + βz +
[Γ(c)]2(a− b− 1)

Γ(a)Γ(b + 1)Γ(c− a + 1)Γ(c− b)

∫ 1

0

ta+b−2(1− t)c−a−b

|2F1(a, b; c; 1/t)|2(1− zt)
dt. (48)
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In addition to the condition |a− b| > 1, we need to assume that (a, b, c) ∈ V in Theorem 4.
Under these restrictions and except for the degenerate cases ab = 0 and (c− a)(c− b) = 0 the
condition (33) reads

(c− a− b)− − (c− a− b)− > −1,

which is true for all real a, b, c. Here, R−1,1,0(z)− α− βz ∈ M provided that the above representa-
tion holds and the constant in front of the integral is positive.

For arbitrary values of a, b, we have R−1,1,0(z) = βz + o(z) as z → ∞, where β = 0 when
a ≥ b and β = B when a < b. Hence, we can use representation (35) with N = 1 yielding

R−1,1,0(z) = 1 + βz +
z[Γ(c)]2(a− b− 1)

Γ(a)Γ(b + 1)Γ(c− a + 1)Γ(c− b)

∫ 1

0

ta+b−1(1− t)c−a−b

|2F1(a, b; c; 1/t)|2(1− zt)
dt

(49)
or with N = 2 yielding

R−1,1,0(z) = 1 +
(a− b− 1)c

c2 z +
z2[Γ(c)]2(a− b− 1)

Γ(a)Γ(b + 1)Γ(c− a + 1)Γ(c− b)

∫ 1

0

ta+b(1− t)c−a−b

|2F1(a, b; c; 1/t)|2(1− zt)
dt. (50)

Example 15. For the ratio R−2,−2,0(z) according to (26), we obtain p = 4, l = 0, r = 1.
Theorem 3 and definition (27b) yield

B−2,−2,0P1(t) = −
[Γ(c)]2(c− a− b + 2)(ρ0 + ρ1t)

Γ(a)Γ(b)Γ(c− a + 2)Γ(c− b + 2)
,

where ρ0 = a2 + b2 − (c + 2)(a + b) + 3c + 1, ρ1 = c(c − a − b + 1) + 2(ab − a − b + 1).
Using Lemmas 2 and 3 or by direct, albeit tedious, calculation, we obtain the following asymptotic
approximations:

(1) If a > b + 2, then R−2,−2,0(z) = γa,b,cz2 + βa,b,cz + αa,b,c + o(1) as z→ ∞;

(2) If b + 1 < a ≤ b + 2, then R−2,−2,0(z) = γa,b,cz2 + βa,b,cz + o(z) as z→ ∞;

(3) If b ≤ a ≤ b + 1, then R−2,−2,0(z) = γa,b,cz2 + o(z2) as z→ ∞;

(4) If b− 1 ≤ a ≤ b, then R−2,−2,0(z) = γb,a,cz2 + o(z2) as z→ ∞;

(5) If b− 2 ≤ a < b− 1, then R−2,−2,0(z) = γb,a,cz2 + βb,a,cz + o(z) as z→ ∞;

(6) If a < b− 2, then R−2,−2,0(z) = γb,a,cz2 + βb,a,cz + αb,a,c + o(1) as z→ ∞,
where

γa,b,c =
(a− 2)(a− 1)

(c− b)(c− b + 1)
, βa,b,c =

2(a− 2)(a− 1)(c + 1− 2b)
(c− b)(c− b + 1)(b− a + 1)

,

αa,b,c = γa,b,c
c(c + 1)(a− 1) + 2b2(a + 4c− 3b)− 2ab(c + 2)− b(3c2 − c− 6)

(a− b− 2)(a− b− 1)2 .

Hence, for |a− b| > 2, we have R−2,−2,0(z) = γz2 + βz + α + o(1) as z→ ∞, where (γ, β, α) =
(γa,b,c, βa,b,c, αa,b,c) when a > b + 2 and (γ, β, α) = (γb,a,c, βb,a,c, αb,a,c) when a < b− 2. Then,
for |a− b| > 2, the case N = 0 of Theorem 5 leads to the representation

R−2,−2,0(z) = γz2 + βz + α− [Γ(c)]2(c− a− b + 2)
Γ(a)Γ(b)Γ(c− a + 2)Γ(c− b + 2)

∫ 1

0

(ρ0 + ρ1t)ta+b−3(1− t)c−a−b

|2F1(a, b; c; 1/t)|2(1− zt)
dt. (51)

In addition to condition |a − b| > 2, we need to assume that (a, b, c) ∈ V in Theorem 4.
Under these restrictions and except for the degenerate cases ab = 0 and (c− a)(c− b) = 0, the
condition (33) reads

(c− a− b + 4)− − (c− a− b)− > −1,

which is true for all real a, b, c. The above integral representation implies that either γz2 + βz +
α − R−2,−2,0(z) ∈ M or R−2,−2,0(z) − γz2 − βz − α ∈ M if the zero t∗ = −ρ0/ρ1 of the
polynomial ρ0 + ρ1t lies outside of the interval (0, 1).
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If 1 < |a− b| ≤ 2, we see that the asymptotics takes the form R−2,−2,0(z) = γz2 + βz + o(z)
as z → ∞, where (γ, β) = (γa,b,c, βa,b,c) when a > b + 1 and (γ, β) = (γb,a,c, βb,a,c) when
a < b− 1. Hence, for 1 < |a− b| according to (35) with N = 1, we obtain

R−2,−2,0(z) = γz2 + βz + 1− z[Γ(c)]2(c− a− b + 2)
Γ(a)Γ(b)Γ(c− a + 2)Γ(c− b + 2)

∫ 1

0

(ρ0 + ρ1t)ta+b−2(1− t)c−a−b

|2F1(a, b; c; 1/t)|2(1− zt)
dt. (52)

Similarly, for |a− b| ≤ 1, the asymptotics takes the form R−2,−2,0(z) = γz2 + o(z2), where
γ = γa,b,c when a ≥ b and γ = γb,a,c when a ≤ b. Hence, without additional restrictions
according to (35) with N = 2, we obtain

R−2,−2,0(z) = 1 +
2(2− a− b)

c2 z + γz2

− z2[Γ(c)]2(c− a− b + 2)
Γ(a)Γ(b)Γ(c− a + 2)Γ(c− b + 2)

∫ 1

0

(ρ0 + ρ1t)ta+b−1(1− t)c−a−b

|2F1(a, b; c; 1/t)|2(1− zt)
dt (53)

under the condition (a, b, c) ∈ V from Theorem 4, but without any other restrictions.

4. Concluding Remarks

It turns out that our results may help in finding integral representations of elementary
and special functions. For instance, Formulas (43) and (44) with a = b = 1 and c = 2 yield
the following curious identity:

z
Log(1 + z)

= 1 + z
∞∫

1

dx
(log2(x− 1) + π2)(x + z)

= 1 +
z
2
− z2

∞∫
1

dx
(log2(x− 1) + π2)(x + z)x

.

The first equality here after division by z corrects the representation [30] (Formula (34)).
This identity may be easily generalized by applying (37) with arbitrary N ∈ N, a = b = 1
and c = 2 to the results of Example 12:

z
Log(1 + z)

=
N−1

∑
k=0

Ckzk

k!
− (−z)N

∞∫
1

dx
(log2(x− 1) + π2)(x + z)xN−1

,

where N = 1, 2, 3, . . . and Ck is the kth Cauchy number [24] (p. 294).
Moreover, Theorem 5, in view of Remark 8, gives a way for calculating the “generalized

beta integrals” of the form

Ia,b(j, k) :=
∫ 1

0

ta+b+j(1− t)c−a−b−k

|2F1(a, b; c; 1/t)|2 dt.

In particular, Examples 1–4, 7–9 and 12 lead immediately to explicit evaluations in
terms of gamma functions of the integral Ia,b(j, k) for the following pairs (j, k): (−2,−1),
(−2, 0), (−1,−2), (−1,−1), (−1, 0), (0,−3), (0,−2), (0,−1), (0, 0), (1,−3), (1,−2), (1,−1).
This list can be extended by invoking Examples 6 and 15 with the following pairs: (−3,−1),
(−3, 0), (−1,−3). For instance, for j ∈ {−1, 0} and k ∈ {0, 1} we get:

Ia,b(j, k) =
Γ(a + 1 + j)Γ(b + 1)Γ(c− a + 1− k)Γ(c− b + n)

Γ(c + n)Γ(c + 2 + j− k)
, where n = min(1 + j, 1− k) ∈ {0, 1},

provided that a ≥ b; the case a ≤ b follows by exchanging a↔ b. Further examples are

Ia,b(0, 2) =
Γ(a + 1)Γ(b + 1)Γ(c− a)Γ(c− b)

[Γ(c)]2(a + b− c + 1)
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and, if a > b + 1,

Ia,b(−2, 0) =
Γ(a)Γ(b + 1)Γ(c− a + 1)Γ(c− b)

(a− b− 1)Γ2(c)
.

Note that the value of j in the above 15 pairs (j, k) may be increased by any positive
integer (and hence made as large as desired) by choosing larger values of N ∈ N0 in (37).
A natural limitation of the above integral evaluations is that the hypergeometric function
in the denominator has to be non-vanishing in C \ [1, ∞) and on the branch cut, which can
be verified via Theorem 4. For a general pair of integers (j, k), we can use formulae (26) to
choose the corresponding shifts n1, n2, m and use Remark 8 to calculate the corresponding
integral. The details of this algorithm will be elaborated in a separate publication.

Author Contributions: Conceptualization, A.D. and D.K.; Investigation, A.D. and D.K.; Methodology,
A.D. and D.K. All authors contributed equally to this work. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gauss, C.F. Disquisitiones generales circa seriem infinitam. Comment. Soc. Regiae Sci. Gottingensis Recent. 1812, 2, 1–46; reprint in

Gauß, C.F. Werke, Band III; Königliche Gesellschaft der Wissenschaften zu Göttingen: Göttingen, Germany, 1876; pp. 123–162.
2. Erdélyi, A. Higher Transcendental Functions; Volume I, Bateman Manuscript Project; Mc Graw-Hill Book Company, Inc.: New York,

NY, USA, 1953.
3. Olver, F.W.J.; Olde Daalhuis, A.B.; Lozier, D.W.; Schneider, B.I.; Boisvert, R.F.; Clark, C.W.; Miller, B.R.; Saunders, B.V.; Cohl,

H.S.; McClain, M.A.; et al. NIST Digital Library of Mathematical Functions. Release 1.1.6 of 2022-06-30. Available online:
http://dlmf.nist.gov/ (accessed on 30 August 2022).

4. Ebisu, A.; Iwasaki, K. Three-term relations for 3F2(1). J. Math. Anal. Appl. 2018, 463, 593–610. [CrossRef]
5. Wall, H.S. Analytic Theory of Continued Fractions; Chelsea Publishing Company: New York, NY, USA, 1948.
6. Perron, O. Die Lehre von den Kettenbrüchen; Band II, Dritte, verbesserte und erweiterte Aufl., B.G. Teubner Verlagsgesellschaft:

Stuttgart, Germany, 1957.
7. Stieltjes, T.J. Recherches sur les fractions continues. Ann. Fac. Sci. Toulouse 1894, 8, J1–J122. [CrossRef]
8. Runckel, H.-J. On the zeros of the hypergeometric function. Math. Ann. 1971, 191, 53–58. [CrossRef]
9. Pétréolle, M.; Sokal, A.D.; Zhu, B.-X. Lattice paths and branched continued fractions: An infinite sequence of generalizations of

the Stieltjes–Rogers and Thron–Rogers polynomials, with coefficientwise Hankel-total positivity. arXiv 2018, arXiv:1807.03271.
10. Küstner, R. Mapping properties of hypergeometric functions and convolutions of starlike or convex functions of order α. Comput.

Methods Funct. Theor. 2002, 2, 597–610. [CrossRef]
11. Belevitch, V. The Gauss hypergeometric ratio as a positive real function. SIAM J. Math. Anal. 1982, 13, 1024–1040. [CrossRef]
12. Wimp, J. Explicit Formulas for the Associated Jacobi Polynomials and Some Applications. Can. J. Math. 1987, 39, 983–1000.

[CrossRef]
13. Dyachenko, A.; Karp, D. Ratios of the Gauss hypergeometric functions with parameters shifted by integers: Part I, Preprint. arXiv

2021, arXiv:2103.13312.
14. Dyachenko, A.; Karp, D. Ratios of the Gauss hypergeometric functions with parameters shifted by integers: More on integral

representations. Lobachevskii J. Math. 2021, 42, 2764–2776. [CrossRef]
15. Ismail, M.E.H.; Kelker, D.H. Special Functions, Stieltjes Transfroms and Infinite Divisibility. Sima J. Math. Anal. 1979, 10, 5.

[CrossRef]
16. Lima, H.; Loureiro, A. Multiple orthogonal polynomials with respect to Gauss’ hypergeometric function. Stud. Appl. Math. 2021,

1–32. [CrossRef]
17. Karp, D.B.; Prilepkina, E.G. Hypergeometric functions as generalized Stieltjes transforms. J. Math. Anal. Appl. 2012, 393, 348–359.

[CrossRef]
18. Karp, D.B.; Prilepkina, E.G. Applications of the Stieltjes and Laplace transform representations of the hypergeometric functions.

Integral Transform. Spec. Funct. 2017, 28, 710–731. [CrossRef]
19. Driver, K.; Jordaan, K.H.; Mbuyi, N. Interlacing of the zeros of Jacobi polynomials with different parameters. Num. Alg. 2008, 49,

143–152. [CrossRef]
20. Long, B.-Y.; Sugawa, T.; Wang, Q.-H. Completely monotone sequences and harmonic mappings. Ann. Fenn. Math. 2021 47,

237–250. [CrossRef]

http://dlmf.nist.gov/
http://doi.org/10.1016/j.jmaa.2018.03.034
http://dx.doi.org/10.5802/afst.108
http://dx.doi.org/10.1007/BF01433471
http://dx.doi.org/10.1007/BF03321867
http://dx.doi.org/10.1137/0513073
http://dx.doi.org/10.4153/CJM-1987-050-4
http://dx.doi.org/10.1134/S1995080221120118
http://dx.doi.org/10.1137/0510083
http://dx.doi.org/10.1111/sapm.12437
http://dx.doi.org/10.1016/j.jmaa.2012.03.044
http://dx.doi.org/10.1080/10652469.2017.1351964
http://dx.doi.org/10.1007/s11075-008-9162-2
http://dx.doi.org/10.54330/afm.113314


Mathematics 2022, 10, 3903 26 of 26

21. Agrawal, S.; Sahoo, S.K. Geometric properties of basic hypergeometric functions. J. Differ. Equ. Appl. 2014, 20, 1502–1522.
[CrossRef]

22. Baricz, Á.; Swaminathan, A. Mapping properties of basic hypergeometric functions. J. Class. Anal. 2014, 5, 115–128. [CrossRef]
23. Andrews, G.E.; Askey, R.; Roy, R. Special Functions; Cambridge University Press: Cambridge, UK, 1999.
24. Comtet, L. Advanced Combinatorics; D. Reidel Publishing Company: Dordrecht, The Netherlands; Boston, MA, USA, 1974.
25. Karp, D.; Kuznetsov, A. A new identity for a sum of products of the generalized hypergeometric functions. Proc. Amer. Math. Soc.

2021, 149, 2861–2870. [CrossRef]
26. Ebisu, A. Three Term Relations for the Hypergeometric Series. Funkcial. Ekvac. 2012, 55, 255–283. [CrossRef]
27. Çetinkaya, A.; Karp, D.; Prilepkina, E. Hypergeometric Functions at Unit Argument: Simple Derivation of Old and New Identities.

SIGMA 2021, 17, 098. [CrossRef]
28. Yamaguchi, Y. Three-term relations for basic hypergeometric series. J. Math. Anal. Appl. 2018, 464, 662–678. [CrossRef]
29. Askitis, D. Geometric Function Theory, Completely Monotone Sequences and Applications in Special Functions. Master’s Thesis,

Copenhagen, Denmark, 2015.
30. Berg, C.; Pedersen, H.L. A one-parameter family of Pick functions defined by the gamma function and related to the volume of

the unit ball in n-space. Proc. Am. Math. Soc. 2011, 139, 2121–2132. [CrossRef]

http://dx.doi.org/10.1080/10236198.2014.946501
http://dx.doi.org/10.7153/jca-05-10
http://dx.doi.org/10.1090/proc/14803
http://dx.doi.org/10.1619/fesi.55.255
http://dx.doi.org/10.3842/SIGMA.2021.098
http://dx.doi.org/10.1016/j.jmaa.2018.04.021
http://dx.doi.org/10.1090/S0002-9939-2010-10636-6

	Introduction
	Main Results
	Asymptotic Behavior
	Boundary Values
	Integral Representation

	Examples
	Concluding Remarks
	References

