
Citation: Xiao, G.; Liao, J.; Tan, Z.; Yu,

Y.; Ge, B. Hyperbolic Directed

Hypergraph-Based Reasoning for

Multi-Hop KBQA. Mathematics 2022,

10, 3905. https://doi.org/10.3390/

math10203905

Academic Editors: Di Jin, Liang Yang

and Danilo Costarelli

Received: 6 September 2022

Accepted: 11 October 2022

Published: 21 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Hyperbolic Directed Hypergraph-Based Reasoning for
Multi-Hop KBQA
Guanchen Xiao 1 , Jinzhi Liao 1, Zhen Tan 1,* , Yiqi Yu 2 and Bin Ge 1

1 Science and Technology on Information Systems Engineering Laboratory, National University of Defense
Technology, Changsha 410073, China

2 People’s Liberation Army, Guangzhou 510600, China
* Correspondence: tanzhen08a@nudt.edu.cn

Abstract: The target of the multi-hop knowledge base question-answering task is to find answers of
some factoid questions by reasoning across multiple knowledge triples in the knowledge base. Most of
the existing methods for multi-hop knowledge base question answering based on a general knowledge
graph ignore the semantic relationship between each hop. However, modeling the knowledge base
as a directed hypergraph has the problems of sparse incidence matrices and asymmetric Laplacian
matrices. To make up for the deficiency, we propose a directed hypergraph convolutional network
modeled on hyperbolic space, which can better deal with the sparse structure, and effectively adapt
to the problem of an asymmetric incidence matrix of directed hypergraphs modeled on a knowledge
base. We propose an interpretable KBQA model based on the hyperbolic directed hypergraph
convolutional neural network named HDH-GCN which can update relation semantic information
hop-by-hop and pays attention to different relations at different hops. The model can improve the
accuracy of the multi-hop knowledge base question-answering task, and has application value in
text question answering, human–computer interactions and other fields. Extensive experiments on
benchmarks—PQL, MetaQA—demonstrate the effectiveness and universality of our HDH-GCN
model, leading to state-of-the-art performance.

Keywords: hyperbolic space; directed hypergraph convolutional network; knowledge base QA;
multi-hop reasoning

MSC: 68T07

1. Introduction

Knowledge base question answering (KBQA) has been a hot task in the field of
natural language processing and is very challenging [1]. Several different QA datasets
have been proposed, such as the Stanford Question Answering Dataset (SQuAD) [2,3],
NarrativeQA [4] and CoQA [5], and the kind of reasoning based on these datasets is termed
single-hop reasoning, since it requires reasoning only over a single piece of evidence [6].
For a QA task of single-hop reasoning, the performance of previous work [1,7] has been
improved a lot over the last years.

However, in real-world QA tasks, obtaining answers often requires multi-hop reason-
ing [8], that is, to find a knowledge path consisting of multiple pieces of knowledge in the
knowledge base to deduce the answer. Figure 1 shows a two-hop KBQA example. The rea-
soning path starts from the entity mentioned in the query and consists of the relations at
each hop and the intermediate entities. The methods mentioned above that focus only on
single-hop reasoning lack the ability to deal with multi-hop reasoning QA tasks. To solve a
multi-hop QA task, some work has been proposed recently which can be mainly divided
into two categories. One is the neural network-based methods such as models in [9,10]
and the other is the graph neural network-based methods such as [11]; this has achieved
desirable performance [12].
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When we deal with multi-hop tasks, generally, entities extracted from the query begin
to be retrieved in the knowledge base, go down to the next hop according to the specific
relationship of different hops, repeat this step to form a reasoning path, and finally find the
final answer. In this process, we argue that semantic relational information is crucial for
multi-hop reasoning, while previous studies have not fully exploited semantic relational
information. The work in [13] computes relation-specific transformations by separating
different relations, which does not consider semantic relation information. Ref. [14] does not
require updating relational information during multi-hop reasoning, but exploits relational
information to obtain attention for static graphs.

Child of Deaf Adults

Figure 1. Sketch of an exemplar of multi-hop question answering based on knowledge graph. In the
figure, arrows with different colors represent the relations in two hops that need to be extracted in
order to obtain the reasoning path to the query, and colored dots represent the entities related to the
question in knowledge base.

In addition, the pairwise connections between nodes based on a graph network (GNN)
are insufficient with respect to fully representing the higher-order relationships between re-
lationships and entities in the knowledge graph. Recently, some main works on hypergraph
convolutional networks (HGNN) have been proposed. HGNN uses hyperedges to connect
more than two nodes at the same time, which is conducive to imitating human reasoning
and accurately locating a group of entities connected by the same relationship, rather than
reasoning entity by entity. The disadvantage is that HGNN is aimed at undirected hyper-
graphs, while knowledge graphs are directed, and each triplet has a specific directional
meaning. HGNN collects potential learning relationships from connected entities, but does
not reveal and further utilize them.

Based on the study in the hypergraph neural network introduced above, a directed
hypergraph convolutional network-based model for multi-hop KBQA (2HR-DR) was
proposed [15]. 2HR-DR models the entities extracted from questions and their related
relationships and entities in the knowledge base into directed hypergraphs, and then uses
Directed Hypergraph Convolutional Networks (DHGCN) [15] to predict relations hop-by-
hop and form a sequential relation path to make the reasoning interpretable. 2HR-DR can
explicitly learn and update relation information and dynamically concentrate on different
relations at different hops.

Although 2HR-DR can better solve some of the challenges mentioned above, it still has
some disadvantages. First, using directed hypergraphs to model entities and relationships
may lead to a situation in which an entity can be related to many entities based on some re-
lations while it may be related to a few entities based on some other relations. For example,
as shown in Figure 1, when constructing a hypergraph of the query, the number of entities
(actors) related to “Child_of_Deaf_Adults” can be very small based on some relations such
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as “Staring_in” while a large number of entities (actors) do “Act_in” this movie. This results
in a large difference in the number of nodes contained by each hyperedge in the modeled
directed hypergraph. In that case, the incidence matrices of constructed hypergraphs will
be much sparser, and that will have a bad effect on the training efficiency and accuracy of
the model. Second, 2HR-DR used the directed hypergraph convolution network, which
needs the eigenvalue decomposition of Laplacion matrices when calculating the spectrum
convolution of hypergraphs, and that requires that the Laplacian matrices are real symmet-
ric matrices (we are not able to ensure that non-symmetric matrices can certainly perform
eigenvalue decomposition). However, as for directed hypergraph convolution networks,
since each hyperedge has a direction, the degree of each node is supposed to be divided
into in degree and out degree, which are different in most cases; this leads to the fact that
Laplacian matrices are often asymmetric matrices.

To solve the problems mentioned above, we firstly propose a Hyperbolic Directed
Hypergraph Convolutional Network (HDH-GCN) for a directed hypergraph to take the
direction of information transmission into account. We investigate hyperbolic embedding
spaces [16] and manage to map the sparse data points and hypergraph to the hyper-
boloid manifold directly. The rationale is that hyperbolic space has a stronger ability
than Euclidean space to accommodate networks with long-tailed distributions and sparse
structures [17], which is also verified in our experiments. On that basis, we propose a Hy-
perbolic Directed Hypergraph Convolutional Network (HDH-GCN)-based framework for
multi-hop QA. This framework explicitly updates the relation information and dynamically
focuses on specific relations at every hop of the query. In addition, we record the semantic
representation of the relationship in each hop, and the representation of the relationship
in every hop is influenced by the representation of the relationship in the previous hops,
which makes the QA task interpretable to a large extent.

In summary, we make the following contributions:

• For solving the problem of sparse incidence matrices of directed hypergraphs modeled
on a knowledge base, we design a method of modeling a directed hypergraph in
hyperbolic space.

• Based on the hyperbolic directed hypergraph, we propose a Hyperbolic Directed
Hypergraph Convolutional Network (HDH-GCN) for a directed hypergraph and
design a framework on this basis that can handle multi-hop knowledge base question-
answering tasks well.

• The modules constitute a new model, namely, HDH-GCN for handling the multi-hop
knowledge base question-answering task. Through the experiments on several real-
world datasets, we confirm the superiority of HDH-GCN over state-of-the-art models.

2. Related Work
2.1. Multi-Hop Question Answering

The multi-hop KBQA model can be basically divided into two types. The first is to
apply the neural network mentioned earlier. These models use the previous single-hop
question-answering method [18–20] for multi-hop question-answering tasks. Xu et al. im-
proved KVMemNet to achieve better results across multiple triples [10]. Zhong et al. used
coarse-grained modules and fine-grained modules [21]. Part of the method introduces an
end-to-end framework, which is explicitly designed to simulate the step-by-step reasoning
process involved in multi-hop QA and MRC. Kundu et al.’s [22] model constructed a path
connecting questions and candidate answers, and then scored them through the neural
architecture. Jiang et al. [23] also constructed a proposer to propose an answer from each
root to leaf path in the reasoning tree, extract a key sentence containing the proposed
answer from each path and finally combine them to predict the final answer. However,
these methods lack consideration of graph structure information.

The other kind of method is based on graph neural networks. Sun et al. learnt
what to retrieve from the KB and corpus and then reasoned over the built graph [24].
Tu et al. employed GCN to reason over heterogeneous graphs [25]. Xiong et al. achieved
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better performance by applying graph attention networks [14]. Cao et al. proposed
a bi-directional attention entity graph convolutional network [26]. These models use r-
GCN [13], which does not consider the semantic relation information, or use graph attention
networks to assign static weights. Different from these models, ref. [15] proposes a dynamic
relation strategy, which dynamically updates relation states during the reasoning process.
Documents unrelated to the complex query may affect the accuracy of the model. In the
“select, answer, and explain” (SAE) model proposed by Tu et al. [27], BERT [28] acts as the
encoder in the selection module. Then a sentence extractor is applied to the output of BERT
to obtain the sequential output of each sentence with precalculated sentence start and end
indices, to filter out answer-unrelated documents and thus reduce the amount of distraction
information. The selected answer-related documents are then input to a model, which
jointly predicts the answer and supporting sentences. Concurrently to the SAE model,
Bhargav et al. [29] used a two-stage BERT-based architecture to first select the supporting
sentence and then used the filtered supporting sentence to predict the answer. The upstream
side of Jiang et al.’s [23] proposed model is the Document Explorer to iteratively address
relevant documents. Han et al. [15] proposed two-phase hypergraph-based reasoning with
dynamic relations which explicitly learns and updates relation information and dynamically
concentrates on different relations at different hops.

2.2. Hypergraph Convolutional Networks

Feng et al. [30] proposed a hypergraph neural network, which replaces the general
graph with a hypergraph structure, effectively encoding the higher-order data correlation.
Bai et al. [31] further enhanced the representational learning ability by using attention
modules. Yadati, N. et al. [32] proposed a new method of training a GCN on a hypergraph
using tools from the spectral theory of hypergraphs and applying the method to the prob-
lems of SSL (hypergraph-based semi-supervised learning) and combinatorial optimization
on real-world hypergraphs. Zhang et al. [33] developed a new self-attention-based graph
neural network applicable to homogeneous and heterogeneous hypergraphs with variable
hyperlink sizes. Han et al. [15] proposed a directed hypergraph convolutional network that
incorporates direction information into HGNN to deal with a directed knowledge graph.

2.3. Hyperbolic Neural Networks

Hyperbolic space has always been a popular research domain in mathematics. Some
works have been conducted to explore the treelike structure of graphs [34,35] and the
relations between hyperbolic space and hierarchical data such as languages and complex
networks [36,37]. Such works have demonstrated the consistency between real-world
scale-free and hierarchical data and the hyperbolic space, providing a theoretical basis for
recent works which apply hyperbolic space to various tasks including link prediction, node
classification and recommendation. Some researchers apply hyperbolic space to traditional
metric learning approaches such as HyperBPR [38] and HyperML [39]. Some try to adopt
hyperbolic space to neural networks and define hyperbolic neural network operations,
producing powerful models such as hyperbolic neural networks [40], hyperbolic graph
neural networks [41] and hyperbolic convolutional neural networks [17]. Meanwhile,
ref. [42] provides a scalable hyperbolic recommender system for industry use. Ref. [43]
applies hyperbolic space to heterogeneous networks for link prediction tasks. Ref. [44]
applies hyperbolic space to next-POI recommendation. Ref. [45] proposes a path-based
recommendation approach with hyperbolic embeddings, etc.

3. Methods
3.1. Hyperbolic Directed Hypergraph Convolutional Networks

In this section, we are going to introduce the directed hypergraph convolutional
network constructed on hyperbolic space. Definitions of notations used in the text are
shown in the Table 1.
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3.1.1. Undirected Hypergraph Convolutional Network

We first introduce undirected hypergraph convolutional neural networks. Different
from simple graphs, hyperedges in a hypergraph may contain two or more vertices. A hy-
pergraph can be defined as $ = (V, E, W), which includes a vertex set V, a hyperedge set
E and each hyperedge is assigned with a weight by W which is a diagonal matrix whose
diagonal lines are the weights of each hyperedge. We use a |V| × |E| incidence matrix H to
denote a hypergraph $, and H can be concretely expressed as:

h(v, e) =

{
1 v ∈ e

0 v /∈ e
(1)

For every vertex v ∈ V, the degree can be defined as d(v) = Σe∈Eω(e)h(v, e), For
every hyperedge e ∈ E, the degree can be defined as d(e) = Σv∈Vω(v)h(v, e), De and Dv
denote the diagonal matrices of the hyperedge degrees and the vertex degrees. We let Θ =

D
1
2
v HWD−1

e HT D
1
2
v and ∆ = I −Θ is defined as the hypergraph Laplacian [46], according to

the Laplacian expression form, it can be known that it is a symmetric semidefinite matrix. It
can be obtained by eigenvalue decomposition of symmetric positive semidefinite matrices
that ∆ = ΦΛΦT ; [30] use the eigen vectors as the Fourier bases and the eigenvalues as
frequencies to express the spectral convolution as:

g ∗ X = Φ((ΦT g)⊗ (ΦTX)) = Φg(∆)ΦTX (2)

Ref. [30] then approximate the above equation by Chebyshev polynomials, modify inside
parameters appropriately and finally formulate hyperedge convolution as:

X(l+1) = D−1
v HWD−1

e HTX(l)P (3)

where X(l) is the node feature of the hyperedge at layer l, and P is the learnable parameter.

3.1.2. Hyperbolic Directed Hypergraph Convolutional Neural Network

As shown in Section 3.1.1, the derivation process of hyperedge convolution is based on
the eigenvalue decomposition of the Laplacian matrix of the hypergraph. In an undirected
hypergraph, the Laplacian matrix is a symmetric positive semidefinite matrix because the
degree matrices of its vertices and hyperedges are unique, so the eigenvalue decomposition
always works. However, for directed hypergraphs, due to hyperedges having direction,
the degree matrices of vertices and hyperedges should be divided into out-degree matrix
and in-degree matrix, and according to the random walk explanation of spectral hyper-
graph partitioning [46], the specific representation of the Laplacian matrix of a directed
hypergraph should be as follows:

∆ = I −Θ = I − Dtail−1

v HtailWDhead−1

e HheadT
(4)

where Dtail
v and Dhead

e are the diagonal matrices of tail degrees of nodes and head degrees
of hyperedges, Htail and Hhead stand for the tail and head incidence matrices.

Htail(i, j) =

1 vi ∈ etail
j

0 vi /∈ etail
j

(5)

Hhead(i, j) =

1 vi ∈ ehead
j

0 vi /∈ ehead
j

(6)

Since the two incidence matrices are generally different in a directed hypergraph,
the Laplacian matrix is often not a symmetric matrix; as a result, the directed hypergraph
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modeled on the knowledge base may not be able to derive the hyperedge convolution as
the undirected hypergraph shown in Section 3.1.1, and this will produce calculation error
to some extent.

Aiming at solving the problem above and the sparsity issue in hypergraphs modeled
on a knowledge base, we apply the variant forms of GCN on the hyperbolic space [17] to
the directed hypergraph and obtain the matrix form of the directed hypergraph convolution
network on the hyperbolic space. The directed hypergraph convolution operations on
hyperbolic spaces aggregate each representation vector individually in vector dimensions,
without the aforementioned problem of symmetry of the Laplacian matrix of directed
hypergraphs. The specific process is as follows:

We first transform the initial item features from Euclidean space to hyperbolic space
HK, and then we feed the initial hyperbolic item embeddings to learn item embeddings.
For the hyperbolic space, we set α := {

√
K, 0, 0, . . . , 0} ∈ HK as the north pole in HK,

and the negative curvature of the hyperboloid manifold is − 1
K . Then the initial item

features in hyperbolic space can be deduced from Euclidean space as follows:

x(0,H) = expK
α ((0, x(0,E))) = (

√
Kcosh(

‖x(0,E)‖2√
K

),
√

Ksinh(
‖x(0,E)‖2√

K
)

x(0,E)

‖x(0,E)‖2
) (7)

where x(0,H) and x(0,E) are the initial hyperbolic embedding and the initial Euclidean em-
bedding, respectively. For the directed hypergraph convolutional network, when updating
entity representation through the convolutional layer, we first aggregate the head entities in
directed hyperedges to obtain the representation of relations, and then accumulate relation
representation containing the same tail entity to obtain the representation of the tail entity
so as to continuously update the representation of entities. The representation can be
aggregated via the following convolutional operation in hyperbolic space:

rL,H
i = expK

α ( ∑
j∈eihead

MijlogK
α (xL,H

j )) (8)

where rL,H
i is the hyperbolic hidden embedding of relation ei in the L-th layer after aggrega-

tion, the node j’s hyperbolic embedding is transformed to Euclidean embedding via logK
α ,

so the Euclidean-based sum and add operations are available. expK
α aims to transform the

Euclidean-based embedding to hyperbolic embedding. Mij is the projecting weight defined
as follows:

Mij = so f tmaxj∈ei
H
head

(MLP(logK
α (xL,H

i )||logK
α (xL,H

j ))) (9)

Accordingly, we can write an expression that evaluates the tail entity representation:

xL+1,H
t = expK

α ( ∑
s∈ettail

MtslogK
α (r

L,H
s )) (10)

where xL,H
t is the hyperbolic embedding of tail entity xt in the L-th layer, ettail stands for the

directed hyperedge containing the tail entity xt.
Because expK

α and logK
α are the inverse of each other, the total convolution is as follows:

xL+1,H
t = expK

α ( ∑
s∈ettail

MtswL
r ( ∑

j∈eihead

MijlogK
α (xL,H

j ))) (11)

The formula cancels out the adjacent inverse operation expK
α and logK

α , and applies max
pooling to obtain weights for each relation,

wL
r = so f tmax(MaxPooling(RL,H

i )) (12)
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To facilitate the formulation of the model, we rewrite it in matrix form:

XL+1,H = expK
α (MtailWMheadlogK

α (XL,H)) (13)

where XL+1,H and X(L,H) are the entity representation matrix in the L + 1-th and L-th layer,
respectively. W stands for a diagonal matrix of hyperedge weights, Mhead and Mtail are the
aggregate matrices of the head part and tail part of directed hyperedges.

3.2. Model

In this section, we are going to introduce the concrete model for the multi-hop knowl-
edge base QA task. The overview of how the model works is shwon in Figure 2.

Table 1. Descriptions of notations used in the following parts.

Symbol Definition

H a |V| × |E| incidence matrix
De a diagonal matrices of the hyperedge degrees
Dv a diagonal matrices of the vertex degrees
∆ the hypergraph Laplacian
Φ the eigenvectors of the hypergraph Laplacian
⊗ the element-wise Hadamard product

HK a hyperboloid manifold which negative curvature is − 1
K

α the north pole in HK

expK
α the exponential map of the hyperboloid model

logα the logarithmic map of the hyperboloid model
cosh hyperbolic cosine function
sinh hyperbolic sine function

Mhead the aggregate matrix of the head-part of directed hyperedges
Mtail the aggregate matrix of the tail-part of directed hyperedges

Figure 2. An overview of how the model works.

3.2.1. Query-Aware Entity Encoder

The query-aware entity encoder encodes entities and relations in questions and their
potential related entities in knowledge base to vector representation. Let Lq, Le and Lr
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respectively denote the embedding matrices of question, entities and relations; we begin by
encoding each question using bidirectional Gated Recurrent Units (GRUs) [47].

Eq = BiGRU(tanh(WqLq + bq)) (14)

We then follow the work of [21]; we employ co-attention to learn query-aware entity
representation,

Aeq = Le(HT
q ) (15)

Ce = so f tmax(Aeq)Eq (16)

Cq = so f tmax(AT
eq)Le (17)

De = BiGRU(so f tmax(Aeq)Cq) (18)

Eattn = fc([Ce; De]) (19)

where so f tmax stands for column-wise normalization, fc is a linear network which converts
2h dimension to h dimension.

3.2.2. Reasoning over Hypergraph

According to the property that relation embedding can be obtained in the interme-
diate processes of hyperbolic directed hypergraph convolutional networks, we separate
the hyperbolic directed hypergraph convolutional networks into two steps. Specifically,
the model first collects the features of nodes onto the connected hyperedges and explicitly
represents the learning relationship. Then, it dynamically assigns the weight of the rela-
tionship according to the similarity between the problem and the relationship, and predicts
the current relation. Finally, the node status is updated through the connection relationship
information. The specific process is as follows.

Firstly, assuming that the current hop is l, we use a linear network to concatenate the
node status obtained by the previous l − 1 layer and the input entity representation of the
current hop, and then map it onto the hyperbolic space.

Ul,H
e = expK

α ( fin([E(l−1); Eattn])) (20)

where operator [ ; ] is column-wise concatenation. Then the model learns the relation
representation Rl,H by aggregating the connected head entity feature.

Ul,H
r = MheadlogK

α (U
l,H
e )Pr (21)

where Pr is the relation-specific learnable parameter, we then use a linear network to
concatenate the relation representation obtained by the previous l − 1 layer and Ul,H

r to
obtain a representation of relations at hop l.

Rl,H = fr([R(l−1),H ; Ul,H
r ]) (22)

After that, we apply wL
r in (12) to obtain weights for each relation and the diagonal

matrix W of edge weights is W = diag(wL
r ). The weight of the dynamic allocation relation

depends on the updated relation representation hop-by-hop. This model predicts the
current relation based on the relation weight.

Finally, the model adaptively updates entity states by accumulating connected rela-
tion feature

El = expK
α (MtailWRl,H Pe) (23)

where Pe is the entity-specific learnable parameter.
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3.3. Training

For an L hop question, we sum the entity representation of each layer to obtain the
final representation and use a liner layer fans to predict the answer distribution.

P = σ( fans(
L

∑
l=1

E(l))) (24)

where σ is the sigmoid function.
Since the model needs to predict both the answer to the question and the reasoning

path, the loss function consists of two parts, one is binary cross-entropy loss of the final
answer prediction, the other is the negative log likelihood of the intermediate prediction of
the reasoning path. The specific expression of the loss function is as follows:

L = −
n

∑
i=1

(yilog(pi) + (1− yi)log(1− pi)) + λ×
L+1

∑
l=1

(−log(wl
r(r
∗
l ))) (25)

where yi is the golden distribution over entities. r∗l is the golden relation index at hop L. λ
is a hyper parameter to balance the two terms.

4. Experiment

This section reports the experiments.

4.1. Experiment Setup

We detail the adopted datasets, evaluation metrics, parameters and baselines.

4.1.1. Datasets

We use two single answer KBQA datasets and two large-scale multi-answer KBQA
datasets for the multi-hop KBQA task. We briefly outline these datasets in Table 2.

Table 2. Statistics of the hypergraph datasets used in the experiments.

Datasets PQL-2H PQL-3H MetaQA-1H MetaQA-2H

Number of
Questions 1594 1031 116,049 148,724

Number of
Entities in

knowledge base
5034 5034 40,128 40,128

Number of
Relations in

knowledge base
364 364 9 9

• PQL-2H [48]: PQL-2H is a single answer KBQA dataset, which includes a knowledge
base containing 5035 entities and 364 relationships, and a two-hop question set con-
taining 1594 two-hop questions. These questions can be answered by following the
reasoning path consisting of several relations and intermediate entities. The path has
been given.

• PQL-3H [48]: PQL-3H is a single-answer KBQA dataset, which includes the same
knowledge base with 5035 entities and 364 relations as PQL-2H, and a three-hop
question set with 1031 three-hop questions. The characteristics of questions and the
reasoning path are the same as PQL-2H.

• MetaQA-1H [49]: MetaQA-1H contains 116,045 questions for single-hop reasoning
QA and the knowledge base in the dataset contains 40,128 entities and nine relations.
To test QA systems in more realistic (and more difficult) scenarios, MetaQA-1H also
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provides neural-translation-model-paraphrased datasets, and text-to-speech-based
audio datasets.

• MetaQA-2H [49]: MetaQA-2H contains 148,724 questions for two-hop reasoning and
the knowledge base in the dataset contains 40,128 entities and nine relations. MetaQA-
2H provides neural-translation-model-paraphrased datasets, and text-to-speech-based
audio datasets just like MetaQA-1H.

4.1.2. Metrics and Parameters

We test the effectiveness of the model in four datasets. The total questions in datasets
are divided into three parts: 70% for training, 10% for validation and 20% for testing. We
evaluate the experiment results via two standard metrics: F1 and Hits@1. The F1 value is
an overall evaluation of the precision and recall, which can evaluate the performance of
the model well, while Hits@1 measures the proportion of top 1 rankings. The aim of the
training is to achieve high F1 and Hits@1.

The reported results are given for the best set of hyper-parameters evaluated on the
validation set for each model after grid search on the following values: embedding size
∈ {100, 200, 300, 400, 500}, learning rate ∈ {1, 0.1, 0.01, 0.001}, λ and dropout are set to 1
and 0.4.

4.1.3. Baselines

We compare HDH-GCN with the following baselines:

• KVMemNet [50]: This is an end-to-end memory network which divides the memory
into two parts, the key memory stores the head entity and relation, and the value
memory stores the tail entity.

• IRN [48]: This is an interpretable reasoning network, which uses a hop-by-hop rea-
soning process and answers questions based on knowledge maps.

• VRN [49]: An end-to-end variational learning algorithm is proposed, which can
effectively solve the multi hop reasoning problem and simultaneously deal with the
noise in the problem

• GraftNet [12]: Text information and entities are introduced to construct a graph,
and GCN is applied to reasoning.

• SGReader [14]: This also combines the unstructured text and knowledge graph to
figure out the incompleteness of the knowledge graph. The model employs graph
attention to reason effectively.

• 2HR-DR [15]: This models the entities extracted from questions and their related
relationships and entities in the knowledge base into directed hypergraphs, then uses
Directed Hypergraph Convolutional Networks to predict relations hop-by-hop and
form a sequential relation path to make the reasoning interpretable.

4.2. Results of Main Experiment

Tables 3 and 4 show the main experiment results for two kinds of multi-hop KBQA
datasets. The highest scores are in bold. As shown in Table 3, we can find out that our
proposed HDH-GCN can achieve optimal results under Hit@1 measurement standards
(there is only one answer for each question in PQL datasets, so we only adopt Hits@1
for evaluation). For the rest of the datasets, except for the F1 value of HDH-GCN on the
MetaQA-1H dataset, which does not exceed the baseline model, other evaluation indexes
have been improved to some extent, as shown in Table 4. Specifically, HDH-GCN achieves
an improvement for PQL-2H which is 0.9% higher than the second best model. It also
obtains good result on PQL-3H, 1.2% higher than the second best one. Table 4 demonstrates
the performance of the baseline methods and HDH-GCN on the MetaQA-1H dataset;
our model improves Hits@1 by 1.8% and obtains competitive F1. For MetaQA2-Hop, we
improve Hits@1 and F1 by 0.3% and 0.8%, respectively.
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Table 3. Results of Hit@1 on PQL-2H and PQL-3H.

Model PQL-2H PQL-3H

KVMemNet 0.690 0.617
IRN 0.725 0.710

GraftNet 0.707 0.910
SGReader 0.719 0.893
2HR-DR 0.755 0.921

HDH-GCN 0.764 0.933

Table 4. Results of Hit@1 and F1 on MetaQA-1H and MetaQA-2H.

Model MetaQA-1H MetaQA-2H
Hit@1 F1 Hit@1 F1

KVMemNet 0.958 - 0.251 -
VRN 0.975 - 0.898 -

GraftNet 0.970 0.910 0.948 0.727
SGReader 0.967 0.960 0.807 0.798
2HR-DR 0.988 0.973 0.937 0.814

HDH-GCN 0.990 0.968 0.951 0.822

First of all, compared with models based on a knowledge base modeled on a simple
graph, our model reconstructs the knowledge graph to hypergraph structure which fully
considers the high-order data correlation. Meanwhile, we dynamically concentrate on
relation information at different hops by performing loop operations for each hop of
inference to guide the model to follow the golden relation path and select the final answers,
so we can introduce the information of the intermediate reasoning path into our model to
supervise the model focus on the dynamic relations at different hops.

When comparing with the directed hypergraph-based model 2HR-DR, the improve-
ment of both evaluation values on the two PQL datasets is more obvious than on the
other datasets. The reasons why our method performs better include: (1) The directed
hypergraph is modeled on hyperbolic space, which effectively reduces the sparsity of the
incidence matrix of the directed hypergraph; this will reduce the scale of matrix calculation
during training and reduce the inadequacy of training. This also explains why the results
on the two PQL datasets are better than on MetaQA-1H and MetaQA-2H, the number
of relationships in PQL is much higher than in MetaQA, which leads to more obvious
matrix sparsity problems (the number of relations in MetaQA is small, and each relation
can relate to many entities). (2) In the convolutional network of a directed hypergraph,
there is a computational process of eigenvalue decomposition of the asymmetric Laplacian
matrix, but the asymmetric matrix may not be able to carry out the eigenvalue decom-
position, which leads to the forced eigenvalue decomposition of the matrix that cannot
be diagonalized similarly in the training process, and the training error is always caused.
The problem can be solved effectively by deforming the Laplace matrix in hyperbolic space.
This problem is evident in the single-answer QA task, while the multi-answer QA task will
dilute the influence of this problem to a certain extent when calculating the F1 value, which
also explains why the F1 value of HDH-GCN is not improved in MetaQA-1H.

4.3. Parameter Analysis

Embedding size is a significant factor in KBQA models, determining the performance
of the model to a large extent. Hence, we will analyze the results obtained by the model
on PQL-2H in different embedding sizes to investigate its impact. First, according to the
Figure 3a, HDH-GCN outperforms other methods when the dimension is {100, 200, 300,
400}. The Hit@1 of HDH-GCN increases sharply with the early stage of increasing the
embedding size and becomes smooth after the embedding size increases to 400. The Hit@1
of 2HR-DR is almost identical to TF-DHP’s from the start; however, because the sparsity
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issue becomes intense as the dimension increases, it cannot remain smooth like HDH-GCN
when the embedding size increases. After the embedding size increases to a certain extent,
2HR-DR’s Hit@1 will decrease slightly. For other methods, since the knowledge base is not
modeled on the hypergraph, the sparsity issue has no obvious effect on the training results
of higher dimensions; however, due to the reasons mentioned above, its results in each
dimension are not as superior as HDH-GCN. We also count the Hit@1 results on PQL-2H
of each training session. In the Figure 3b, we compare the Hit@1 between HDH-GCN and
2HR-DR on model training. 2HR-DR is stopped early around 35 epochs because of not
updating Hit@1 for 10 epochs, so the line is not complete. HDH-GCN always achieves
better performance, and is still updating until around 34 epochs.

(a)

(b)

Figure 3. (a) Hit@1 over different embedding sizes of knowledge base QA models, evaluated on
PQL-2H. (b) Hit@1 over different training epochs, evaluated on PQL-2H.

4.4. Approximate Training Time Comparison

On the two kinds of datasets PQL and MetaQA, HDH-GCN takes around 75 min and
3 h, respectively, of training time, while 2HR-DR takes around 2 h and 3 h, respectively. All
were run on a GeForce GTX 1080 super GPU machine with Python 3.
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4.5. Case Study

As Figure 4 shows, we give an exemplar question from PQL-2H and its corresponding
reasoning path and triples in KB. It is clear that HDH-GCN has the ability to predict
relations hop-by-hop and stop reasoning automatically. For question “Who is the singer
of the theme song of the movie “Titanic”?”, the model firstly detects the relation “theme
song”, then “singer” successively and finally meets <STOP> to end the reasoning process.
From the “path” in Figure 4, we can observe our model’s predicted relation path (Theme
song → Singer → <STOP>).

Query: Titanic

Answer:  

Path: Titanic Theme Song My_Heart_Will_Go_On Singer

Celine Dion <Stop>

KBs:

Figure 4. An exemplar of a two-hop query in a KBQA dataset; the figure shows the reasoning path
and triples related to entities in the query, and graphically shows how the model reaches the answer
to the question through the reasoning path.

5. Conclusions and Future Work

In this paper, we introduce HDH-GCN, a novel model for multi-hop KBQA tasks.
We model the directed hypergraph convolutional network in hyperbolic space, which
effectively reduces the influence of the sparsity issue on the model effect. Our model can
improve the accuracy of the multi-hop knowledge base question-answering task, and has
application value in text question answering, human–computer interactions and other
fields. The experimental results verify the advantages of HDH-GCN in both single-answer
questions and multi-answer question datasets.

In the future, we will study the multi-hop knowledge base question-answering task
in multi-modal data, study the possibility of modeling a multi-modal knowledge base by
directed hypergraph and explore the possible application prospect.
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