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Abstract: With the rapid development of the online shopping, the pursuit of outfit compatibility
has become a basic requirement for an increasing number of customers. The existing work on
outfit compatibility prediction largely focuses on modeling pairwise item compatibility without
considering modeling the whole outfit directly. To address the problem, in this paper, we propose
a novel hypergraph-based compatibility modeling scheme named OCPHN, which is able to better
model complex relationships among outfits. In OCPHN, we represent the outfit as a hypergraph,
where each hypernode represents a category and each hyperedge represents the interactions between
multiple categories (i.e., they appear in the same outfit). To better predict outfit compatibility, the
hypergraph is transformed into a simple graph, and the message propagation mechanism in the
graph convolution network is used to aggregate the neighbours’ information on the node and update
the node representations. Furthermore, with learned node representations, an attention mechanism
is introduced to compute the outfit compatibility score. Using a benchmark dataset, the experimental
results show that the proposed method is an improvement over the strangest baselines in terms of
accuracy by about 3% and 1% in the fill-in-the-blank and compatibility prediction tasks, respectively.

Keywords: outfit compatibility; hypergraph network; graph convolution network; attention mechanism

MSC: 68T10

1. Introduction

In recent years, online shopping has become more and more important for modern
consumers and has greatly promoted the development of the fashion industry. According
to Statista, the global online fashion market was worth 533 billion dollars in 2018, and it is
predicted to grow to 825 billion dollars by 2022. In 2018, apparel accounted for 65 percent
of the market, followed by footwear (25 percent) and bags and accessories (10 percent).
Additionally, there are several interactive fashion community sites that allow customers
to create their own styles using the image data on the site. The typical industrial sites
are Polyvore (https://www.polyvore.com) (accessed on 20 August 2022), Farfetch (https:
//www.farfetch.cn) (accessed on 20 August 2022) and Dappei (https:/dappei.cn) (accessed
on 20 August 2022). However, not everyone is a natural fashion designer. Therefore, it is
of great significance to establish a reasonable and effective outfit compatibility prediction
model by analyzing the masses of fashion items and outfits.

Outfit compatibility is a complex task, and it is fundamental to a variety of industry
applications such as personalized fashion design [1–3], fashion analysis [4], item recom-
mendation [5,6] and fashion trend forecasting [7,8]. The key to outfit compatibility is to
measure the degree of matching of fashion items in an outfit. Figure 1 shows examples of
compatible and incompatible fashion outfits.
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Figure 1. Example compatible and incompatible outfits.

In fact, a great amount of recent work on fashion matching has been devoted to
addressing the task of predicting fashion compatibility. Previous works [9,10] all relied on
mapping the items to a style space and calculating the distance of the items’ style vectors to
represent the compatibility. The disadvantage of these approaches is that each pair of items
considered is handled independently, which means the final prediction relies on isolated
comparisons between the characteristics of each item. However, the outfit compatibility is
determined by the characteristics of the pairs of items and affected by the characteristics of
other items in the same outfit.

Therefore, the key to solving outfit compatibility modeling is how to represent the
overall outfits properly, rather than just focusing on pairs of items. In recent years, some
studies have used graph deep learning to tackle some complicated relations and inter-
operability problems in outfit compatibility. Although these approaches using GNNs
have achieved successful results in compatibility modeling, they essentially establish the
relationship or connection between two nodes. However, such pairwise connection is not
always appropriate in practical application. In actual situations, the relationships between
multiple nodes are often more complicated than the pairwise connection between two
nodes. For example, outfit compatibility is determined by multiple items and not just pairs
of items.

To solve the limitations, one possible method is to use a hypergraph to describe
such complex relationships. Based on the above statements, in this paper, we focus on
outfit compatibility prediction for fashion matching and propose a novel model (OCPHN)
to better model the relationships between items and outfits. It can better predict the
compatibility of the outfits from the hypergraph.

Our proposed scheme is shown in Figure 2. In OCPHN, we propose a new form of
outfit representation: hypergraph representation. In particular, we construct a fashion
hypergraph based on the Polyvore dataset, where each hypernode represents a category and
each hyperedge represents the interactions between multiple categories (i.e., they appear in
the same outfit). Then, a convolutional neural network is used to extract the visual features
of each item and learn the category features corresponding to each node through the model.
For each hyperedge in the fashion hypergraph, we maximize the total differences among
multiple nodes by combining the visual features and category features of each hypernode,
and then the two nodes with the greatest differences are selected to represent the hyperedge.
The remaining nodes in the hyperedge act as a medium connection with the two selected
nodes to form a simple graph. Benefitting from the message propagation rules in the GNN,
the nodes’ representation can be iteratively updated by aggregating the neighbor nodes’
embeddings. With the learned node representations, an attention mechanism is utilized to
calculate the output of the two selected nodes as the outfit compatibility score.
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Figure 2. Overview of the proposed method. Based on the dataset, we first construct a fashion
hypergraph, where an outfit (e.g., coats, short sleeves, handbags, high heels and skirts) can be
represented as a hyperedge. We then design OCPHN to better model the node interactions in a
hyperedge and refine the node representations. Finally, the compatibility score is calculated by the
attention mechanism to predict the outfit compatibility.

We validated our model in the following two tasks: (1) fill-in-the-blank, where an item
is selected from multiple choices that is compatible with other components in outfits that
have one missing item, and (2) compatibility prediction, where the compatibility scores of
given fashion outfits are predicted. Extensive experiments are conducted on a real-world
dataset to demonstrate the effectiveness of our proposed method compared with state-of-
the-art methods. The code of our work has been released.(https://github.com/outfit-net/
outfit-commpatibility) (accessed on 20 August 2022).

Our main contributions in this work can be summarized as follows:

• To the best of our knowledge, this is the first attempt to introduce the hypergraph for
outfit compatibility prediction. Compared with the existing models using sequence
representation or graph representation for compatibility prediction, our model can
perform more intuitive and sophisticated modeling of complex relationships.

• We propose a novel method, OCPHN, which can model multiple nodes’ interactions
in the hypergraph and learn node representations better. With OCPHN, we can not
only model outfit compatibility from visual features and category features but also
use the attention mechanism to enhance the representation ability of our model.

• By conducting extensive experiments on a real-world dataset (Polyvore dataset), we
demonstrate that our proposed model outperforms the baselines.

2. Related Work

In this section, we introduce the related tasks in our work, namely fashion compatibil-
ity modeling, and explain the proposed approach in relation to existing works briefly.

Fashion Compatibility Modeling

Currently, fashion compatibility prediction [11–14] has attracted increasing atten-
tion because it is the key to fashion recommendation. To measure their compatibili-
ties, McAuley et al. [15] learned a distance metric between clothes with CNN features.
Veit et al. [16] further proposed to learn the distance metric with an end-to-end trained
Siamese network. In addition, Han et al. [17] used multiple layer perception (MLP) to
find a latent space and model the complex interactions between items accurately. Some
other works [18,19] focused on the importance of exploiting multi-modality features in
fashion-related tasks. For instance, Li et al. [20] trained an RNN to predict the popularity
of a fashion set by fusing text and image features. Song et al. [21] proposed a Bayesian
personalized ranking dual autoencoder (BPR-DAE) model to learn a latent compatibility
space by utilizing multiple modalities (e.g., visual and contextual modalities). However,
these works only focused on mapping the pairwise items to the style space and estimating
the compatibility of pairwise items instead of the whole outfit.

https://github.com/outfit-net/outfit-commpatibility
https://github.com/outfit-net/outfit-commpatibility
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In recent years, some work has been devoted to modeling the compatibility of the
whole outfit. For example, Han et al. [22] considered a fashion outfit to be an ordered
sequence of products and exploited bidirectional LSTMs to predict the next item sequen-
tially with and conditionally on previous ones to learn their compatibility relationships.
This method was improved by adding a new type of style embedding for the full out-
fit [23]. Vasileva et al. [9] also used textual information to improve the product embeddings,
along with using conditional similarity networks [24] to produce type-conditioned embed-
dings and learn a metric for compatibility. Following that, Cui et al. [25] utilized category
information to represent the outfit as a graph to model complex relations among items and
introduced an attention mechanism. Cucurull et al. [26] proposed the graph autoencoder
to regard the outfit compatibility problem as an edge prediction problem and improved the
performance of using a graph neural network to predict outfit compatibility by incorpo-
rating context information. However, all the aforementioned studies only considered the
relationship between the pair’s items and ignored the relationships between multiple items.

Therefore, in this work, the hypergraph is introduced to represent the outfit. A hyper-
graph is a generalized concept that can express complex relational networks. It is different
from the traditional graph where edges can only connect two nodes, as the hyperedges
in a hypergraph can connect any number of nodes. In this way, more complicated and
higher-level relationships among nodes can be represented by a hypergraph. We prove that
this method is more effective than sequence representation and graph representation.

3. Technical Background

In this section, we review the technical background on graph neural networks and
hypergraph learning.

3.1. Graph Neural Network

A graph neural network (GNN) is a type of structure to model a set of elements (nodes)
and their relationships (edges). Recently, research analyzing graphs with machine learn-
ing [27–29] has been receiving more and more attention because of the great representation
power of graphs.

The notion of a graph neural network was initially outlined by Gori et al. [30] and
further elaborated upon by Scarselli et al. [31] and Gallicchio et al. [32]. A GNN can be
applied on most kinds of graphs, including directed, undirected and cyclic graphs. A GNN
learns a target node’s representation by propagating the neighbouring information in an
iterative manner until a stable fixed point is reached. There have been many variants of
GNNs with various kinds of aggregators and updaters proposed these days. For instance,
Li et al. [33] proposed a gated graph neural network (GGNN) by introducing gated recur-
rent units (GRUs) in the propagation process for updating. The graph convolution network
(GCN) [34] was proposed by Kipf et al. and can perform a convolution on the graph and
aggregate the information derived from all the neighbours to update the node embed-
dings. Distinct from GCNs, Hamilton et al. proposed GraphSAGE [35], which updates
the node embedding by uniformly sampling and aggregating features from its local neigh-
bours. Velickovic et al. proposed the graph attention network (GAT) [36] to incorporate
the attention mechanism into the propagation step to better aggregate the neighbouring
information. Recently, due to convincing performance and high interpretability, the GNN
has been widely used in fashion analysis and fashion recommendation.

3.2. Hypergraph Learning

Because hyperedges can connect different numbers of nodes rather than connect only
two nodes, hypergraphs have been used as generalized representations of conventional
graphs. Due to this flexibility of hypergraphs, the hypergraph structure has been employed
to model high-order correlation among data in many computer vision tasks.

Hypergraph learning was first introduced by Zhou et al. [37] as a label propagation
method for semi-supervised learning. This method aims to minimize the label differences
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among vertices with a stronger connection on a hypergraph. It was shown that hypergraph-
based learning outperformed graph-based learning in several clustering, embedding and
classification tasks. In addition to learning label propagation on hypergraphs, Feng et al.
proposed the hypergraph neural network (HGNN) [38], which introduced hypergraph-
based representation learning into deep learning. The design of HyperGCN [39] was
motivated by the graph convolutional network, which suggested a more efficient and faster
model for the same tasks as in the HGNN. Following that, Jiang et al. proposed the dynamic
hypergraph neural network [40], which uses the K-NN and k-means clustering methods
to construct a hypergraph structure of data without defining the hypergraph structure
explicitly. Deep hypernetwork embedding (DHNE) [41] and HyperSAGNN [42] encode
networks with hypergraphs to represent data with complicated structures.

4. Proposed Method

In this section, we first formulate the problem and then present our method in detail,
which is equipped with three components: (1) model preparation, which extracts the visual
features of the image of items and constructs the fashion hypergraph, (2) hypergraph
convolution, which initializes the node embeddings and refines the node embeddings via a
neural network; that is, it converts the hypergraph into a simple graph and utilizes a GCN
to update the outfit representation by aggregating neighbours’ information, and (3) model
prediction, which outputs the prediction score for outfit compatibility prediction.

4.1. Problem Formulation

To find an appropriate outfit, people are more likely to opt for high-compatibility
clothes, such as a denim bomber jacket, white short sleeves and skinny jeans. Therefore,
outfit compatibility can be considered as a summary after comparing each item with others
in different aspects (e.g., color, texture and style). The key to outfit compatibility prediction
is to model the sophisticated interactions between items and outfits. In this paper, we
focus on tacking the essential problem of compatibility modeling for clothing matching. We
had a set of outfits S = {s1, s2, . . . , sm} in the training set. Given an outfit s consisting of
|s| items in the training set, we aim to calculate the outfit compatibility score and predict
whether the outfit is compatible.

4.2. Model Preparation
4.2.1. Feature Extraction

As shown in Figure 1, the fashion item image contains the most important information
required for outfit composition, and the item image feature is extracted with an advanced
deep convolution neural network (ConvNets). This method has been proven effective in
image representation learning [43,44]. There are many ConvNets architectures to choose
from, and we used the GoogleNet InceptionV3 model for simplicity. In this work, the im-
ages of items are fed into the model, and the visual features are output by a linear layer.
The dimension count of the visual features of each item was 2048. We utilized the extracted
visual features to model the holistic compatibility of the outfit.

4.2.2. Hypergraph Construction

Based on the training dataset, we constructed a fashion hypergraph H = (V , E), where
the category information of items serves as the prior knowledge of items, as shown in
Figure 3. In particular, each circle is assigned only one specific category, and the hyperedge
(i.e., the links of the same color) represents the matching interaction between multiple
categories (i.e., they appear in the same outfit). Therefore, if each item is filled into its
corresponding nodes, then each outfit can be described as a hyperedge of a hypergraph.



Mathematics 2022, 10, 3913 6 of 17

Figure 3. An illustration of the fashion hypergraph based on the dataset, where each circle indicates
a category and each hyperedge represents the matching interactions between multiple categories (i.e.,
they appear in an identical outfit).

After constructing the fashion hypergraph, we first converted each hyperedge into
a simple graph by maximizing the differences between multiple nodes. Then, we used
OCPHN to better predict the outfit compatibility from the hypergraph as described in the
next section.

4.3. Hypergraph Convolution
4.3.1. Node Initialization

The input of our model is the visual features ri of items extracted through the neural
network. Meanwhile, taking into account the differences between different categories,
a learning variable ci (i.e., the category features) is set for each category. The visual features
and category features can be used to initialize the state of their corresponding nodes.
In this paper, each item was filled into its corresponding node. Then, the multiple layer
perceptron (MLP) is adopted to map the visual features and category features of each node
to a common style space, and the size of the style space is d. To better represent each
node, the two representations in the style space concatenate as the state representation of
each node. Therefore, the initialization representation of each node in the style space is as
follows:

fi = MLP(ri)‖MLP(ci), (1)

where MLP is a three-layer architecture consisting of a LeakyReLU [45] nonlinear layer
and two tanh nonlinear layers. Aside from that, the size of the node state is twod.

4.3.2. Converting a Hyperedge to a Graph

Different items have different weighted interactions with others in the outfit. To cap-
ture the interactions between different items in an outfit, a given outfit containing |m|
items and their features in the style space can be denoted as a set F = {f1, f2, . . . , fm},
where fi is the feature vector for the ith item in the outfit. The similarities among items can
be represented in matrix form:

R =


r11 r12 · · · r1m
r21 r22 · · · r2m
...

...
. . .

...
rm1 rm2 · · · rmm

, (2)

here, rij is the similarity between the features of the ith item and the features of the jth
item, which is an undirected relationship expressed formally as rij = rji. At the same
time, the diagonal elements in the R matrix represent the items’ self-similarity in the outfit.
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To obtain only the similarity between different items, the R matrix is slightly transformed
to remove the redundant content. The new matrix is represented by

Rd =


r12 r13 · · · r1m
0 r23 · · · r2m
...

...
...

...
0 0 · · · r(m−1)m

 (3)

In our model, the outfit is denoted as a hyperedge Ei = {e1, e2, . . . , em} , where et is
the tth node in the hyperedge. Therefore, the non-zero elements in the Rd matrix can be
regarded as the similarity between different nodes in the hyperedge. We selected the two
nodes with the largest signal characteristics from the hyperedge containing multiple nodes
and represented the whole hyperedge through the link between the two nodes. Therefore,
the two most different nodes obtained by selecting the smallest element in the Rd matrix
are called key nodes, which are expressed as follows:

let
(
ei, ej

)
:= arg min

ei ,ej∈V
|Rd|, (4)

where
(
ei, ej

)
denotes the simple edge connected by the two most different nodes in the hy-

peredge.
In the process of transforming the hyperedge, only two nodes are selected for each

hyperedge to represent the entire hyperedge, which causes a loss of information for other
nodes in the hyperedge. To make full use of all the nodes’ information, the remaining
nodes, which are called mediator nodes, are connected with the key nodes to form a new
simple graph. As shown in Figure 4, each mediator node connects two key nodes.

Figure 4. An illustration of transforming the hyperedge into a simple graph, where the key nodes
ei and ej (i.e., the two nodes with the greatest difference) are selected from the hyperedge, and the
remaining nodes ek in the hyperedge are connected with the key nodes to form a new simple graph.

4.3.3. State Propagation Updates the Node Status

Based on the GGNN, OCPHN is designed to model node interactions on a simple
graph by transforming a hypergraph. It can model the interactions flexibly and explicitly.
In OCPHN, each node has a hidden state vector. Then, the graph convolution network
(GCN) is utilized to learn node representation by smoothing the features on the graph.
The nodes aggregate the state information of neighbours into a new representation by
performing graph convolution iteratively. The representation of nodes is expressed as
follows:

f(k)u = ∑
ei ,eu∈V

A
(

Wf(k−1)
i + b

)
, (5)

where f(k)u denotes the state of node eu in the kth propagation step, W ∈ R2d×2d and
b ∈ R2d×1 are the trainable weight matrix and biases matrix, respectively, for distilling
useful information for propagation, and A is the adjacency matrix, which can reflect the
connected relation of nodes, where A is equal to one if node ei has interaction with node eu;
otherwise, it is zero. Apparently, the weight matrix W and the adjacency matrix A decide
the node interactions. The traditional GGNN is unable to model flexible and complex
interactions. Therefore, it is essential to provide a unique weight matrix for each interaction.
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However, if a unique weight matrix and a biases matrix are assigned to each interaction
simply, then they will consume too much parameter space and running time. To remedy
the problem, each node is assigned to an input weight matrix and an input biases matrix,
as well as an output weight matrix and an output biases matrix. When node ei sends its
state information to node eu, the state information will first be transformed by its output
matrix and then be transformed by node eu ’s input matrix before eu receives it. The new
representation of the nodes is expressed as follows:

f(k)u = ∑
ei ,eu∈V

A
(

W2

(
W1f(k−1)

i + b1

)
+ b2

)
, (6)

where W1 ∈ R2d×2d and b1 ∈ R2d×1 denote the output weight matrix and the output biases
matrix, respectively, and W2 ∈ R2d×2d and b2 ∈ R2d×1 denote the input weight matrix and
the input biases matrix, respectively.

After summarizing the state information of the neighbours, each node updates its final
representation via GRUs as follows:

h(k)
u = GRU

(
h(k−1)

u , f(k)u

)
, (7)

where h(k)
u is the final representation of node eu after k instances of propagation.

4.4. Model Prediction

To estimate whether multiple fashion items form good outfits, the outfits’ compatibility
scores were calculated by utilizing the final representations of the items. Since each item
representation was obtained by aggregating the state information of different neighbours,
they had different importance to the outfit. For example, as shown in Figure 1, the white
sweater determined the holistic style of the outfit, so its influence on the outfit was more
important than the bag. As such, we aimed to model the influence of different items on the
outfit compatibility via a self-attention mechanism as follows:

mu = σ
(

W3h(k)
u

)
, (8)

nu = µ
(

W4h(k)
u

)
, (9)

where W3 ∈ R1×2d and W4 ∈ R1×2d are two trainable weight matrices, σ(·) and µ(·) are
set as LeakyReLU and sigmoid activation functions, respectively, nu refers to the attention
weight of item u in the outfit (i.e., the importance of the item to outfit compatibility) and mu
is the compatibility score of item u in the outfit. In OCPHN, we utilize the two most
different items in the outfit to represent the whole outfit. Therefore, the outfit compatibility
score is represented by calculating the sum of the scores of the two most different items.
Finally, we used the inner product to estimate the outfit compatibility score as follows:

Ĉs = mun>u + mon>o , (10)

where Ĉs is the outfit compatibility score by adding the compatibility scores of the two most
different items u and item o. In our work, we mainly discuss the weight matrix learning,
so only a simple interaction function of the inner product was employed. Other more
complicated choices, such as the neural network-based interaction function, were left for
our future work.

4.5. Optimization

In this part, we introduce the objective function for our model and model size.



Mathematics 2022, 10, 3913 9 of 17

4.5.1. Objective Function

To better learn the outfit compatibility, we adopted the Bayesian personalized ranking
(BPR) algorithm [46] for both tasks, which has been used intensively in recommender sys-
tems. Specifically, BPR assumes that the observed outfits are assigned to higher prediction
values than unobserved ones. The objective function is as follows:

Lbpr = ∑
(s,s−)∈Z

− ln η
(
Ĉs − Ĉs−

)
+ λ‖Θ‖2

2, (11)

where Z = {(s, s−)} is the training data for compatibility learning, each pair (s, s−) indi-
cates an observed outfit s (i.e., positive samples) and an unobserved outfit s− (i.e., randomly
generated negative samples), Θ denotes all the trainable model parameters, λ controls the
L2 regularization strength to prevent overfitting and η(·) is the sigmoid function.

4.5.2. Parameter Space

The parameters that need to be learned mainly consist of the parameters correlated to
nodes and the perception network in the attention mechanism. For each node, we first set
a category vector to obtain the key node of the hyperedge by utilizing an MLP network.
Then, we had an input matrix and an output matrix to propagate the state information for
each node. In total, we had (2m + 3dd′) matrices, which was proportional to the number of
nodes m. Aside from that, we had two matrices of a perception network in the attention
mechanism. Overall, there were O(2m + 5dd′) matrices.

5. Experiment

To evaluate the effectiveness of OCPHN, in this section, we conduct extensive experi-
ments. We first introduce the data that are collected and used for our experiment. Then,
we show the experiment settings and the performance of the proposed model in two tasks:
fill-in-the-blank and outfit compatibility prediction, which are then compared with the
state-of-the-art models.

5.1. Dataset

The existing Polyvore dataset was collected from a popular fashion website Polyvore.com,
which allows their members to create fashion outfits from different items or like and save
outfits created by others. It contains 164,379 items that make up 21,899 different outfits.
These outfits were split into 17,316 for training, 1497 for validation and 3076 for testing.
Meanwhile, we used a graph segmentation algorithm to ensure there were no overlapping
items between the three splits. Each item contained rich information, such as image
information, text descriptions, and categories (e.g., sweaters or skirts). We only used the
image information of the items in this paper.

The Polyvore-N [25] dataset was generated from the original Polyvore dataset. In this
dataset, the categories that appear less frequently (such as lipstick and furniture) in the orig-
inal dataset were removed, and only the categories which appeared more than 100 times
remained, totaling 120. Meanwhile, to ensure the integrity of the outfits, the outfits consist-
ing of less than three items were filtered out.

Based on the Polyvore-N dataset, we generated a new dataset: Polyvore-N1. We found
that some categories were repeated in the Polyvore-N dataset, such as boots appearing
twice, so we built a new dataset to ensure the unity of the dataset by removing the categories
that were repeated. Meanwhile, we also found that if the number of items in an outfit
exceeds eight, then this meant that the outfit contained many duplicate items. To ensure the
non-repeatability of the items, we removed outfits with more than eight items. The statistics
of the filtered dataset are shown in Table 1.

For each dataset, we randomly split them using the ratio 8:1:1 and divided them into
a training set, validation set and testing set. For the training set, we adopted a negative
sampling strategy to create the triplets for parameter optimization. The validation set and
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testing set were applied to tune the hyperparameters and evaluate the performance in the
experiments, respectively.

Table 1. Statistics of the datasets.

Dateset Training Validation Testing Items Outfits Categories

Polyvore-N 16,983 1294 2697 130,901 20,871 120
Polyvore-N1 16,233 1239 2594 122,708 20,066 100

5.2. Experiment Settings

We implemented our OCPHN model in Tensorflow. We performed a grid search
strategy to tune the hyperparameters for our model and baselines [47,48]. We searched for
the batch size and style space dimension in {8, 12, 16, 20, 24}, searched for the propagation
step in {0, 1, 2, 3} and tuned the L2 regularization in {0.01, 0.001, 0.0001} and learning rate
in {0.001, 0.0005, 0.0001, 0.00005}. Moreover, we adopted the Adam optimizer to optimize
the prediction model and update the model parameters. Additionally, the optimization
of the model parameters used the gradients of the loss function. All the experiments
were trained on a server equipped with a Quadro M4000 graphics processor. The training
stopped until the objective functions converged or until the maximum number of epochs
was reached.

5.3. Tasks

The performance of our model was evaluated in two tasks: fill-in-the-blank accuracy
and outfit compatibility prediction, expressed by the AUC.

5.3.1. Fill in the Blank (FITB)

The fill-in-the-blank task is a standard test conducted extensively in fashion compati-
bility research. The task aims to select an item from multiple choices that is compatible with
other items to fill in the vacancies in an outfit, as Figure 5 shows. For each outfit in the test
dataset, we selected one item randomly and masked it with a blank before selecting three
items from other outfits randomly along with the masked item to form a multiple-choice
set. We set the masked item as the ground truth, and the masked item was more compatible
than the randomly selected one. The performance of this task is evaluated by the accuracy
of selecting the right items from the four candidates (FITB accuracy), which is 25% by
random selection.

5.3.2. Compatibility Prediction

The compatibility prediction task is used to predict whether an outfit is compatible
or not. To evaluate the performance, we first built the compatible outfit set based on the
dataset. Then, we produced the same number of incompatible outfits as the compatible
outfits for a balanced test set by selecting fashion items randomly from the compatible outfit
set. In this task, an outfit was scored for whether its constituting items were compatible
with each other. Moreover, we adopted the area under the ROC curve (AUC) metric, which
is widely used to evaluate performance.
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Figure 5. Comparison of our model and two baselines (i.e., NGNN and Bi-LSTM) for fill-in-the-blank
task. Green font represents the right answer, and red font represents the wrong answer.

5.4. Baseline

To demonstrate the effectiveness, we compared our proposed OCPHN with the fol-
lowing methods:

• Random: A model based on random guesses.
• Bi-LSTM [22]: Bi-LSTM regards an outfit as an ordered sequence, and it applies a bidi-

rectional LSTM to predict the next item and learn the outfit compatibility. The method
only focuses on visual information. The experimental results are influenced by the
memory limitation of the graphics card.

• VCP [26]: VCP is a method that predicts compatibility between two items based
on their visual features and context. They define context as the products that are
known to be compatible with each of these items. The method only focuses on visual
information.

• GGNN [33]: A GGNN uses a graph neural network to model the relationships be-
tween outfits and items and calculate the outfit compatibility.

• NGNN [25]: An NGNN utilizes the category information to represent the outfit as
a graph and updates the node status information through the graph conventional
network and the GRU unit. An NGNN uses the attention mechanism to calculate the
graph-level output as an outfit compatibility score. We only focused on the visual
features of this method in our experiment.

5.5. Model Comparison
5.5.1. Performance Comparison

We evaluated the performance of OCPHN by conducting comparison experiments
with the fill-in-the-blank and compatibility prediction tasks. The results are shown in
Table 2. Then, we analyzed the results of FITB accuracy and compatibility, expressed by
the AUC.
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• FITB Accuracy: FITB is a difficult task because replacing only one part of the outfit
may have little effect on the overall estimation. The comparison between our model
and other alternative models in the FITB task is shown in the middle two columns of
Table 2. From this table, we can make the following observations: (1) Compared with
other existing methods, the performance of Bi-LSTM was poor, which demonstrates
that only modeling the items as a sequence is insufficient to infer whether the outfit is
compatible. (2) The performance of VCP was better than that of Bi-LSTM, although it
also calculates outfit compatibility by averaging the pairwise compatibility. The im-
provement might be attributed to the introduced context knowledge, which verifies
the importance of context information in modeling compatibility. (3) The GGNN
and NGNN achieved better performance than the other methods, indicating that the
graph structure can model complex interactions among items better. The results show
that the graph representation can model the outfit compatibility better than sequence
representation and pairwise representation. (4) It is obvious that OCPHN achieved the
best performance. OCPHN is capable of modeling complex interactions among items
within the same outfit thanks to the hypergraph structure and message propagation
across items. Compared with other methods, we selected two key items to represent
the outfit and then enhanced the key items embedding representation by aggregating
the compatibility information of the neighbours. At the same time, an attention mech-
anism was utilized to estimate the compatibility of an outfit, which can better capture
potential compatibility knowledge and further improve the performance of the model.

• Compatibility Prediction (AUC): Compatibility prediction is useful, since users may
create their own outfits and wish to determine if they are compatible and trendy.
The last two columns in Table 2 show the performance comparison between our
model and other models in the compatibility prediction task. Similar to the FITB
task, our model achieved the best performance, indicating that the introduction of a
hypergraph can better reflect the relationships between outfits and items. The graph-
based approaches (NGNN and GGNN) still showed good performance, indicating
that graphs can indeed model relationships between nodes well. The performance of
VCP with a context message was slightly worse than that of the graph representation,
which shows the importance of the context message in outfit compatibility modeling.
Although the Bi-LSTM model based on sequence representation can use a sequence
directly to predict suite compatibility, it still performed poorly. The results observed
in the compatibility prediction task can also be explained by analysis of the FITB
accuracy. The performance of OCPHN demonstrated the rationality and effectiveness
of hypergraph representation in the compatibility prediction task.

Table 2. The performance of models evaluated by fill-in-the-blank accuracy and compatibility
prediction expressed as the AUC.

Method
Accuracy (FITB) AUC (Compatibility Prediction)

Polyvore-N Polyvore-N1 Polyvore-N Polyvore-N1

Random 24.97% 25.01% 50.24% 50.12%
Bi-LSTM 46.26% 43.79% 77.11% 75.69%

VCP 60.59% 58.28% 93.82% 90.13%
GGNN 74.19% 73.93% 94.77% 95.15%
NGNN 75.30% 75.52% 96.03% 96.45%

OCPHN 79.24% 77.29% 97.89% 96.67%

5.5.2. Ablation Study

To demonstrate the effectiveness of different component modules on the performance
of OCPHN, we conducted an ablation study by disabling each component module and
comparing the performance.
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To test the hypergraph in our proposed model, we devised a variant, termed OCPHN(-
H), by removing the hypergraph structure from our proposed model. That aside, we
also discarded the attention mechanism module and designed a variant OCPHN(-W) to
justify the explicit correlation modeling between the items within one outfit. Moreover, we
removed the two designs (i.e., OCPHN(-W-H)) to construct a reference situation for the
ablation study. If it is not stated specifically, then we used the Polyvore-N dataset for the
experiment. It can be observed that OCPHN(-H-W) lacking two modules at the same time
was the most inefficient method, which proves the necessity and importance of the two
components in our model. When observing the results of OCPHN(-H) listed in Table 3,
we found that after removing the hypergraph, the performance significantly dropped
compared with that of our proposed model. This demonstrates the effectiveness and
rationality of the hypergraph in our model. We attribute this to the hypergraph structure
treating the items within the same outfit as a whole and explicitly constructing their complex
relation. It is capable of supercharging the representation learning of outfits and further
optimizing the outfit compatibility measurement. The OCPHN(-W) without the attention
mechanism module was second only to OCPHN in performance, which confirms that the
attention mechanism module can better predict outfit compatibility by distinguishing the
importance of different items in the outfit.

Table 3. The performance of our proposed method with different component modules.

Method Accuracy (FITB) AUC (Compatibility Prediction)

OCPHN(-W-H) 76.71% 96.42%
OCPHN(-H) 77.01% 96.51%
OCPHN(-W) 77.31% 96.76%

OCPHN 79.24% 97.89%

5.5.3. Case Study

In Figure 5, we selected several outfits randomly as test cases for the FITB task and com-
pared our model with a strong baseline (i.e., the NGNN and Bi-LSTM). From the first
example, it can be seen that all models inferred that the query outfit lacked a pair of shoes
and chose the correct answer. In example 2, all the three models chose the right category,
while Bi-LSTM chose the wrong answer. This might be because Bi-LSTM only considers
simple category information and cannot distinguish fine-grained category information (i.e.,
the differences between sandals and pumps). From example 3, it can be seen that only
OCPHN chose the item most compatible with the query outfit. This may be attributed to
our model being able to model the overall outfit and better simulate the complex relation-
ships between the items in the outfit. These examples prove the superiority of our model in
FITB tasks.

In Figure 6, we visualized several test examples randomly in the compatibility predic-
tion task to show our model’s performance. From the figure, it can be seen that OCPHN
can estimate whether a set of fashionable items will form a compatible outfit. For instance,
the items in the first example had complementary styles and similar colors, so they had
a higher compatibility score. In the second example, although the categories of the items
were complementary, the color of each item was different, so the compatibility score was
not too high. The low compatibility scores in the third and fourth examples were mainly
due to the repeated category of items. It is obvious that there were two pairs of shoes in the
third example, and the last one contained three dresses.
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Figure 6. Results of our method in the fashion outfit compatibility prediction task. To be more
intuitive, scores are normalized to be between 0 and 1.

5.6. Study of OCPHN

In this section, we will study how different hyperparameter settings (e.g., style space
dimension, the propagation layers and the learning rate) affect the performance of OCPHN.

5.6.1. Effect of the Style Space Dimension

To investigate whether OCPHN can benefit from different style space dimensions,
we varied the model size. In particular, we varied the model size from 8 to 24 with an
interval of 4. The performance of our model in different dimensions is shown in Figure 7.
It can be seen from Figure 7 that when the dimension d was 16, the FITB accuracy and
compatibility (expressed as the AUC) performance reached their highest points. When
d exceeded 16, the performance dropped rapidly, which shows that few parameters are
needed to represent the node status.

Figure 7. Test performance in different dimensions.

5.6.2. Effect of the Propagation Layer

To investigate how the propagation (i.e., graph convolution) layer affected the per-
formance, we used different layers. In particular, we searched the layers in the range of
{0, 1, 2, 3}. The results of our model in different propagation layers are shown in Figure 8.
The performance was optimal when the number of propagation layers was one, indicating
that the nodes in the model fully interacted with other nodes at this time. However, when
the number of propagation layers was more than one, the performance would decline, indi-
cating that when the number of layers is too high, the redundant information propagation
will cause disorder in the nodes.
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Figure 8. Test performance in different propagation layers.

5.6.3. Effect of the Learning Rate

To investigate whether the learning rate had an effect on model performance by changing
the size of learning rate, we search the layers in the range of {0.001, 0.0005, 0.0001, 0.00005}
in particular. We show the results in Figure 9. The performance was optimal when the
learning rate was 0.0001. The results show that the learning rate cannot be set too high or
too low. Too high a rate will cause the model to fail to converge, while too low a rate will
cause the model to converge very slowly and even reach a local extreme point.

Figure 9. Test performance at different learning rates.

6. Conclusions

In this work, we incorporated a hypergraph explicitly into the overall compatibility
prediction of outfits. The hyperedge in the hypergraph can represent an outfit completely,
and the complex relationships between different items in the outfit can be better captured by
transforming the hyperedge into a simple graph. In order to better infer whether the outfit
is compatible from the hypergraph, we propose a new framework OCPHN to solve the
problem of outfit compatibility modeling. The model can better model complex interactions
between nodes and learn better node representations. We conducted experiments on differ-
ent types of fashion-matching tasks using a real-world dataset (Polyvore dataset), and the
results demonstrate that our model can learn the compatibility of fashion outfits effectively
and outperform the state-of-the-art methods. Since fashion compatibility is a complex task
and might vary from one person to another, modeling user-specific compatibility and style
preferences is one of our future research directions.
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