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Abstract: In this article, we study the problem of the recursive estimator of the expectile regression
of a scalar variable Y given a random variable X that belongs in functional space. We construct a new
estimator and study the asymptotic properties over a general functional time structure. Precisely,
the strong consistency of this estimator is established, considering that the sampled observations are
taken from an ergodic functional process. Next, a simulation experiment is conducted to highlight the
great impact of the constructed estimator as well as the ergodic functional time series data. Finally, a
real data analysis is used to demonstrate the superiority of the constructed estimator.
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1. Introduction

Consider the sequence (Xi, Yi)i=1,...,n of dependent random variables that have taken
values in F × IR. The F is assumed to be a semi-metric space that has a semi-metric d(., .)
and (Xi, Yi)i=1,...,n is strictly stationary. Let Ep(x) be the p-conditional expectile, and for
x ∈ F and p ∈ (0, 1), the Ep(x) is

Ep(x) = arg min
t

IE
[∣∣∣∣p− 1I{

Y−t>0
}∣∣∣∣(Y− t)2 | X = x

]
. (1)

The 1I{
Y−t>0

} is an indicator function and we use the set A to refer to it as 1IA.

Assuming that the observations are strictly stationary ergodic data and based on a
recursive kernel method, we deal, in this study, with the nonparametric estimation problem
in the case of the expectile regression. Comparing the recursive method to the classical
kernel estimation, the first is more informative and has a substantial advantage, which is
the possibility of updating estimates for each additional piece of information. Such a feature
is crucial in financial time series data. Indeed, the observations are obtainable through
real-time monitoring, and each new piece of information has a great impact on risk analysis.
Thus, a real-time update of the estimation of the expectile model as a risk tool is crucial.
The classical estimator fails to do this since it does not allow the renewal of the estimator
for each additional piece of information. Therefore, the recursive estimation of the expectile
regression is more relevant in financial time series. From a bibliographical point of view, the
recursive estimation in the functional area was introduced by Amiri et al. [1], who studied
the recursive estimation of the regression operator. The recursive smoothing method has
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been employed for the conditional mode, as an alternative functional conditional model, by
Ardjoun et al. [2] and the quantile regression by Benziadi et al. [3]. More recent advances
and references in functional nonparametric estimation by recursive techniques can be
found in Slaoui [4,5] or Laksaci et al. [6]. In parallel, the ergodic functional time series
data were started by Laib and Louani [7,8], who proved the complete consistency together
with the normality asymptotic of the kernel estimator of the conditional expectation. The
robust regression was studied by Gheriballah et al. [9], who expressed the consistency
of the kernel estimator of the M-regression. We focus, in this study, on a new regression
model, the so-called expectile regression. The latter has a great impact on the financial
time series. In particular, it is usually used as a risk measure in finance and actuarial
science. For a good description of the background of this model and its applications, we
refer readers to Pratesi et al. [10], Waltrup et al. [11] or Farooq and Steinwart [12] and
Daouia and Paindaveine [13]. While all these works treat the case when the regressor is of
finite dimension and parametric case, our contribution focuses in the general case. Since
the regressors are not necessary for finite dimensions, the model’s observations are not
necessarily independent, and the model is not necessarily linear. Indeed, the literature is
still limited to the nonparametric estimation method in the case of expectile regression. In
particular, the initial results were determined by Mohammedi et al. [14], who derived the
complete consistency of the kernel estimator of the conditional expectile and the asymptotic
normality. We refer to Almanjahie et al. [15] for the uniform consistency of the kNN
estimator of this model. While all the previous results were stated in the independence case,
we treat the dependence case in this paper. Our primary aim is to investigate the complete
convergence (see Ferraty and Vieu [16]) of a functional recursive kernel estimate of Ep(x)
using the structure of ergodicity. It is worth noting that adapting the recursive estimation
approach in the case of ergodic functional time series is very much desirable. Firstly, it is
well known that, in time series analysis, the recursive estimation approach is more relevant
than the standard kernel approach (see Roussas and Tran [17]). Moreover, the recursive
estimator can be viewed as a generalization of the classical kernel approach. On the other
hand, the ergodicity hypothesis, considered here, is an alternative dependence condition for
the strong mixing conditions studied by Almanjahie et al. [18]. Furthermore, the ergodicity
is simpler than the strong mixing condition since the latter is very hard to check in practice.
It should be noted that the ergodicity structure and the expectile regression are beneficial in
financial areas. In particular, the expectile regression is a good risk detector, and functional
ergodicity is the natural correlation structure of financial time series data. Indeed, the
financial data is usually modeled as a GARCH process for which its mixing property is
not trivial. Finally, let us point out that even if the “expectile regression" and “recursive
estimation" are not well known in nonparametric statistics, their combination together
allows to accumulate advantages of both approaches in order to increase the reliability
of the studied nonparametric model as a powerful instrument in risk management. In
particular, it permits profiting from real-time updating or the online feature of the recursive
algorithm to identify the financial risk instantly. The reader interested in the merits of the
recursive estimation may refer to Wolverton and Wagner [19] and Yamato [20] as precursor
works or Bouzebda and Slaoui [21] or Slaoui [22] for recent advances and references. For
more discussion on the importance of the expectile function and its feasibility in practice
we cite Jones [23], Abdous and Rémillard [24], Bellini et al. [25] and Girard et al. [26] for
recent developments and applications.

The paper outline is as follows. The general framework is introduced in Section 2.
Section 3 presents the asymptotic properties of the constructed recursive kernel estimator.
Some special cases are discussed in Section 4. Section 5 is devoted to computational study
and real data over artificial data. The conclusion is stated in Section 6. Finally, an appendix
is provided detailing the auxiliary results’ proofs.
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2. Methodology
2.1. The Ergodic Functional Data Framework

As pointed out before, the general framework of this contribution is the functional
ergodic time series analysis as a natural area of financial time series data. Note that
the dependence setting is an alternative structure to the strong mixing process, often
considered in functional time series analysis. However, it is well known that handling the
condition of the ergodicity is more manageable than the mixing condition since the latter
requires calculating the supremum over two infinite σ-algebras. Moreover, the ergodicity
condition is less restrictive compared to the mixing assumption. Recall that, in classical
statistics, the ergodicity condition is defined concerning an ergodic transformation. In
the context of functional statistics, we follow Laib and Louani [7]) and consider their
introduced definition. Furthermore, the functional ergodic time series analysis also uses
the concentration property of the functional co-variate over the small ball defined, for
r > 0, by B(x, r) = {x′ ∈ F/ d(x′, x) < r}. In particular, the concentration property in this
dependence setting should take into account the ergodicity assumption. Specifically, our
functional ergodic framework is carried out by the assumptions stated below.

Suppose the σ-fields Fk and Gk, where k = 1, . . . , n are generated, respectively, by
((X1, Y1), . . . (Xk, Yk)) and ((X1, Y1), . . . (Xk, Yk), (Xk+1, Yk+1). Then, the strictly stationary
ergodic process (Xi, Yi)i∈IN∗ satisfies:

(H1) 

(i) The function φx(r) = IP(X ∈ B(x, r)) is such that φx(r) > 0, ∀ r > 0
and ∀s ∈ [0, 1], limr→0 φx(sr)/φx(r) = τx(s) < ∞.

(ii) There exists a nonnegative random sequence (Ci)i such that
∀r > 0 IP(Xi ∈ B(x, r)|Fi−1) = Ciφx(r) + o(φx(r)),

(iii) For all m ≤ 2,
1

nφm
x (hn)

n

∑
i=1

Ciφ
m
x (hi)→ Cm,x > 0, a.co.

We note that this consideration is more general concerning the ergodicity framework
considered by Laib and Louani [7] in the sense that in the present work, it is not required to
assume that the concentration IP(Xi ∈ B(x, r)) or IP(Xi ∈ B(x, r)|Fi−1) as a product resulted
in the contribution of two independent positive functions (in x and r). This gain is very
important because it avoids assuming the existence of the Onsager–Machlup function,
which requires additional assumptions (see Bogachev [27]).

2.2. Model and Estimator

This section details the constructed recursive estimator of the expectile regression
Ep(x) defined by (1). It is important to note that the loss function in (1) generalizes the
least square function of E(Y | X = x). It coincides with this function once p = 0.5. In
spite of that, the score function of (1) is also similar to the conditional pth-quantile of Y
given X = x. Indeed, the difference in the absolute value |Y − t| is replaced by (Y − t)2.
Moreover, similarly to the e regression by quantile, the expectile regression can be explicitly
expressed using some analytical arguments. Precisely, the Ep(x) is the solution w.r.t. t of

p
1− p = G(t; x) := G1(t; x)

G2(t; x) ,

with  G1(t; x) = −IE
[
(Y− t)1I(Y−t)≤0 | X = x

]
,

G2(t; x) = IE
[
(Y− t)1I(Y−t)>0 | X = x

]
.
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Hence, we use the monotony of G(·; x) to conclude that

Ep(x) = inf
{

t ∈ IR : G(t; x) ≥ p
1− p

}
.

The recursive kernel estimator of the function G(·; x) is defined via an index l ∈ [0, 1] by

Ĝ(n, l, t; x) =

−
n

∑
i=1

Wni(x)(Yi − t)1I(Yi−t)≤0

n

∑
i=1

Wni(x)(Yi − t)1I(Yi−t)>0

, for t ∈ IR,

where

Wni(x) =
φ−l

x (hi)K(h−1
i d(x, Xi))

∑n
i=1 φ−l

x (hi)K(h−1
i d(x, Xi))

.

K indicates a kernel and (an)n refers to a sequence of positive real numbers in which
limn→∞ an = 0. Hence, the recursive kernel estimator of Ep(x) denoted by Êp(x) is explic-
itly obtained with

Êp(x) = inf
{

t ∈ IR : Ĝh(l, t; x) ≥ p
1− p

}
. (2)

Observe that the recursive link between different steps of the estimator Êp(x) is
obtained through the recursive property of Ĝ(n, l, t; x), for which we can write

Ĝ(n + 1, l, t; x) =

[
∑n

i=1 φ1−l
x (hi)

]
Ĝ1(l, t; x) +

[
∑n

i=1 φ1−l
x (hi)

]
Yi − t)1I(Yi−t)≤0K̂(n + 1, l, t; x)[

∑n
i=1 φ1−l

x (hi)
]

Ĝ2(l, t; x) +
[
∑n

i=1 φ1−l
x (hi)

]
(Yi − t)1I(Yi−t)>0K̂(n + 1, l, t; x)

(3)

where

Ĝ1(l, t; x) =
1[

∑n
i=1 φ1−l

x (hi)
] n

∑
i=1

Wni(x)(Yi − t)1I(Yi−t)≤0,

Ĝ2(l, t; x) =
1[

∑n
i=1 φ1−l

x (hi)
] n

∑
i=1

Wni(x)(Yi − t)1I(Yi−t)>0

and
K̂(i, l, t; x) =

1

φx(hi)
[
∑i

j=1 φ1−l
x (hi)

]K(h−1
i d(x, Xi))

3. Main Results

To analyze the asymptotic behaviour of the constructed estimator, Êp(x), the follow-
ing conditions are required. In what follows, we use C or C′ to represent some strictly
positive constants.

(A1) G(·; x) is differentiable in R and it satisfies: ∃a > 0, ∀t ∈
[
Ep(x)− a, Ep(x) + a

]
,

∀x1, x2 ∈ F ,∣∣∣Gi(t; x1)− Gi(t; x2)
∣∣∣ ≤ Cdβi (x1, x2), for βi > 0, i ∈ {1, 2}.

(A2) For q ≥ 2 ϕq(Y) = IE
[∣∣∣Y∣∣∣q | X

]
≤ C < ∞, a.s.,

(A3) The kernel K is supported within (0, 1) and has a continuous derivative on (0, 1),
such that

0 < C1I(0,1)(·) ≤ K(·) ≤ C′1I(0,1)(·) and K(1)−
∫ 1

0
K′(s)τx(s)ds > 0. (4)
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(A4) The sequence of the bandwidth parameter (hi)i=1,...n such that

(i) For all m ≤ 2,
1

nφm
x (hn)

n

∑
i=1

φm
x (hi)→ Cm > 0, a.co.

(ii) For l ≤ 1 and a > q + 1 we have ,
n2a/q−1φ2l−1

x (hn)

φ2l
x (h

−
n )

log n→ 0

with h−n = mini=1,...n(hi).

Clearly, condition (A4) is closely linked to our functional ergodic framework, which is
illustrated by condition (H1). It is also linked to the recursivity of the estimator. Neverthe-
less, condition (A4) can be considered as a technical assumption allowing to simplify the
technical results.

Theorem 1. If conditions (A1)–(A4) are fulfilled and suppose that
∂G(t; x)

∂t

∣∣∣
t=Ep(x)

> 0; then,

we have, as n→ ∞,

∣∣∣Êph(x)− Ep(x)
∣∣∣ = Oa.co.

(
h−

min(β1,β2)

n +

√
log n

nφx(hn)

)
.

Proof of the Theorem 1. For some ε0 > 0, we introduce

zn = ε0

(
h−

min(β1,β2)

n +

√
log n

nφx(hn)

)
.

We can see that

∑
n

IP
(
|Êp(x)− Ep(x)| > zn

)
≤∑

n
IP

 sup
t∈[Ep(x)−δ, Ep(x)+δ]

|Ĝ(n, l, t; x)− G(t; x)| ≥ Czn

 < ∞.

Therefore, Theorem 1 is a result of the below statement:

sup
t∈[Ep(x)−δ, Ep(x)+δ]

∣∣∣Ĝ(n, l, t; x)− G(t; x)
∣∣∣ = Oa.co.(zn). (5)

We start by writing

Ĝ(n, l, t; x)− G(t; x) = B̂n(l, t; x) +
R̂n(l, t; x)
ĜD(l, t; x)

+
Q̂n(l, t; x)
ĜD(l, t; x)

where

Q̂n(l, t; x) := (ĜN(l, t; x)− ḠN(l, t; x))− G(t; x)(ĜD(l, t; x)− ḠD(l, t; x)),

B̂n(l, t; x) :=
ḠN(l, t; x)
ḠD(l, t; x)

− G(t; x) and R̂n(l, t; x) := −B̂n(l, t; x)(ĜD(l, t; x)− ḠD(l, t; x))



Mathematics 2022, 10, 3919 6 of 17

with

ĜN(l, t; x) := 1
[∑n

i=1 φ1−l
x (hi)]

n

∑
i=1

φ−l
x (hi)K(h−1

i d(x, Xi))(Yi − t)1I(Yi−t)≤0,

ḠN(l, t; x) :=
1[

∑n
i=1 φ1−l

x (hi)
] n

∑
i=1

φ−l
x (hi)IE

[
K(h−1

i d(x, Xi))(Yi − t)1I(Yi−t)≤0|Gi−1

]
,

ĜD(l, t; x) := 1
[∑n

i=1 φ1−l
x (hi)]

n

∑
i=1

φ−l
x (hi)K(h−1

i d(x, Xi))(Yi − t)1I(Yi−t)>0,

ḠD(l, t; x) := 1
[∑n

i=1 φ1−l
x (hi)]

n

∑
i=1

φ−l
x (hi)IE

[
K(h−1

i d(x, Xi))(Yi − t)1I(Yi−t)>0|Gi−1

]
.

Thus, Theorem 1 is a consequence of the following lemmas, where their proofs appear
in Appendix A.

Lemma 1. Considering conditions (A1)–(A4), we obtain

sup
t∈[Ep(x)−δ, Ep(x)+δ]

∣∣∣ĜD(l, t; x)− ḠD(l, t : x)
∣∣∣ = Oa.co.

(√
log n

nφx(hn)

)

and

sup
t∈[Ep(x)−δ, Ep(x)+δ]

∣∣∣ĜN(l, t; x)− ḠN(l, t; x)
∣∣∣ = Oa.co.

(√
log n

nφx(hn)

)
.

Lemma 2. Using conditions of Lemma 1, we obtain

∃C > 0
∞

∑
n=1

IP

 sup
t∈[Ep(x)−δ, Ep(x)+δ]

∣∣∣ĜD(l, t; x)
∣∣∣ ≤ C

 < ∞.

Lemma 3. Considering conditions (A1)–(A3), we obtain

sup
t∈[Ep(x)−δ, Ep(x)+δ]

|B̂n(l, t; x)| = Oa.co.

(
h−

min(β1,β2)

n

)
.

4. Some Special Cases

This study covers various general cases of functional statistics, and the obtained
convergence rate expression is identifiable from the previous studies. Thus, to highlight
this issue, the complete convergence rate is determined in the following special cases.

• The classical kernel case: Evidently, this case can be viewed as a special case of our
proposed method once hi = hn, for all 1 ≤ i ≤ n. Hence, condition (A4(ii)) is
automatically fulfilled and (H1(iii)) and (A4(ii)) are replaced by

1
n

n

∑
i=1

Ci → C and n2a/q−1φx(hn) log n→ 0. (6)

where the following corollary gives the convergence rate.

Corollary 1. Considering conditions (A1)–(A3) and (6), we obtain

Ẽp(x)− Ep(x) = Oa.co.

(
hmin(β1,β2)

n +

√
log n

nφx(hn)

)
.
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Remark 1. As far as we know, this result is also new in the field of nonparametric func-
tional data analysis. In other words, no work in the literature considers conditional expectile
estimation in the case of functional ergodic data.

• Independence case: When the independent situation is considered, the (H1) condition
can be reduced to the (H1(i)) condition. Therefore, Theorem 1 leads to the following
corollary.

Corollary 2. Considering conditions (A1)–(A4), we obtain

Êp(x)− Ep(x) = Oa.co.

(
hmin(β1,β2)

n +

√
log n

nφx(hn)

)
.

Remark 2. Once again, the above corollary is unique in the field of nonparametric functional
data analysis. Indeed, the recursive estimate of functional expectile regression data has not
been addressed previously in functional statistics.

• The classical regression case: It should be clear to readers that classical regression is
regarded as a special case of the expectile regression. It can be obtained easily by
putting p = 0.5. So, by simple calculation, we prove that

E0.5(x) := IE[Y | X = x] and Ê0.5(x) :=
n

∑
i=1

Wni(x)Yi.

For this functional model, the condition (A2) is reformulated as

∀x1, x2 ∈ F , |E0.5(x1)− E0.5(x2)| ≤ C1da1(x1, x2). (7)

Theorem 1 is now presented as follows.

Corollary 3. Consider conditions (A1), (A3), (A4) and if (7) holds, then, as n→ ∞, we obtain

∣∣∣Ê0.5(x)− E0.5(x)
∣∣∣ = Oa.co.

(
h−

min(β1,β2)

n +

√
log n

nφx(hn)

)
.

Remark 3. Note that Amiri et al. [1] studied the function version of the recursive estimation
method of the conditional expectation. However, they only stated the consistency of the estima-
tor in the i.i.d. case. The novelty of the present paper is the treatment of the functional ergodic
case. Thus, we can say that the result of corollary 3 is new in the context of nonparametric
functional data analysis.

5. A Simulation Study

Our primary aim here is to evaluate the performance of the finite sample of the
constructed estimator. Specifically, our primary purpose is to quantify the impact of the
recursivity on the estimator’s efficiency. Of course, we evaluate this aspect on the precision,
robustness and on-time execution of the estimator. To do that, we generate data from the
functional GARCH model. Noting that the GARCH model is a popular structure for fitting
the financial time series data (see, for instance, Feng et al. [28] or So et al. [29]). Furthermore,
the ergodicity assumption of the GARCH model is easier than the mixing property. Thus,
simulating by functional GARCH model permits the exploration of both axes of this work:
ergodicity and recursivity. Typically, we obtain an artificial financial real-time series by
considering a functional X(t) drown by the code-routine garchSim where the coefficients of
the conditional variance are α = (0.1t2, 0.2t2) and β = (0.05t, 0.01t). The functional X is
discretized in the same grid of t formed by 100 points in [0, 1]. Figure 1 displays a sample
of X(t).
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Figure 1. The functional regressors.

As all artificial nonparametric functional data analysis, the output response variable Y
is drawn from the following regression relationship, for i = 1, . . . , n,

Yi = r(Xi) + εi. (8)

The error term, εi, represents the white noise and is generated independently of Xi. In
this application study, we assume that the regression operator is expressed by

r(x) = 2
∫ 1

0
exp

{
−x2(t)

1 + x2(t)

}
dt.

The main advantage of this sampling data is the possibility of identifying explicitly
the conditional law of Y | X = x. The latter is obtained by shifting the distribution of εi
by r(x). Therefore, the theoretical expectile regression Ep(x) is identifiable with the law
of εi. This simulation example deals with three types of white noise εi. The first one is
log-normal distribution (Lognormal(0, 1)) which is heavy-tailed distribution; the second
one is the normal distribution N(0, 1) as light-tailed distribution and the third one is the
exponential distribution. Of course, these situations cover the most important cases in
functional time series data. Recall that the expectile regression is an alternative financial risk
descriptor to the quantile function. It allows to identify the lower and/or the higher regions
of the financial time series data using the least square error. Such a consideration makes
its statistical inference more sensitive to outliers, which is very beneficial for financial risk
management. Furthermore, the new estimator proposed in this work increases the potential
impact of this estimator in practice, namely in the financial area. Such a conclusion is drawn
because the new estimator has an important feature, the recursivity property, which allows
one to prompt the estimator’s computational time using Equation (3). So, the recursive
bandwidth sequence (hi)i constitutes a fundamental parameter in this new estimator (NE).
Combining the ideas of Amiri et al. [1] with those of Ferraty and Vieu [16], we consider
a bandwidth sequence defined by hi = Qυ(D)i−κ where Qυ(D) is the υ-quantile of the
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vector distance D = (d(x, Xi))i=1...,n. The parameters (υ, κ) are chosen using the following
leave-out-one-curve cross-validation procedure,

arg min
(υ,κ)

=
n

∑
j=1

(Yj − Ê0.5
−j
(Xj))

2,

where Ê0.5
−j

is the leave-out-one version of Ê0.5. Typically, the scalars (υ, κ) are selected
from the subset {0.1, 0.25, 0.5, 0.75, 0.9} × {1, 1

2 , 1
4 , 1

6 , 1
8 , 1

10}. Furthermore, the classical kernel
estimator (CKE) is computed by taking hi = hn = Qυ(D)n−κ , ∀i. It is worth noting that, as
with all kernel smoothing, the selection of the bandwidth parameter has a great impact on the
estimation quality. Although the cross-validation rule, used in the simulation experiment, is a
common approach to solving this crucial issue, this problem remains an open question for
the future. Of course a challenge will be the establishment of the asymptotic optimality of
the cross-validation selector. Finally, we indicate that for both estimators, we considered the
quadratic kernel on (0, 1) and L2 metric associated with the PCA definition with m = 3 (see
Ferraty and Vieu [16])). This simulation experiment is performed using R software.

The estimation performance of both procedures is evaluated using the average absolute
error (ASE), by,

ASE =
1
n

n

∑
i=1

∣∣∣Êp(Xi)− Ep(Xi)
∣∣∣.

The significant results are summarized in Table 1. Note that this simulation study’s
results are obtained using 100 independent replications for three values of p = 0.1, 0.5, 0.9
and three values of l.

Table 1. ASE results.

Distribution p NE (l = 0) NE (l = 0.5) NE (l = 1) CKE

Log-normal
distribution 0.1 0.14 0.12 0.18 0.69

0.1 0.14 0.12 0.18 0.69
0.5 0.09 0.05 0.08 0.23
0.9 0.17 0.15 0.16 0.57

Normal
distribution 0.1 0.19 0.22 0.24 0.87

0.5 0.04 0.1 0.08 0.75
0.9 0.23 0.28 0.21 0.96

Exponential
distribution 0.1 0.12 0.17 0.13 0.45

0.5 0.02 0.09 0.06 0.39
0.9 0.17 0.25 0.24 0.77

The results of Table 1 show that the recursive estimator performs better than the
classical kernel approach in the sense that the ASE value decreases more substantially in
the recursive one than in the classical kernel method. Moreover, the recursive method is
more robust because the variability of ASE values for the recursive case is small compared
to the classical kernel method. Furthermore, the accuracy is also affected by the choice of
the scalar l, even if this effect is not strongly significant. Finally, let us point out also that
there is a substantial difference in the computational time between the estimators. The
recursive approach is faster than the classical kernel approach. Of course, the gain in the
execution time is strongly linked to the computer characteristics.

Real Data Example

Our main aim is to show how it is very easy to implant the established estimator in
practice. Of course, as with all kernel smoothing methods in nonparametric statistics, the
main challenge of the computation ability of the proposed estimator is the selection of
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the bandwidth parameter hi. Such an issue is more important in this recursive context
because the bandwidth hi is strongly linked to the observation (Xi, Yi). Thus, to highlight
this aspect, we keep the same definition hi of the previous section and use three selection
methods to choose the parameters (υ, κ).

Selector 1: arg min
(υ,κ)

=
n

∑
j=1

(Yj − Ê0.5
−j
(Xj))

2,

Selector 2: arg min
(υ,κ)

=
n

∑
j=1

(Yj − Êp
−j
(Xj))

2(p− 1I
[(Yj−Êp

−j
(Xj))<0]

)

Selector 3: arg min
(υ,κ)

=
n

∑
j=1

(Yj − Êp
−j
(Xj))(p− 1I

[(Yj−Êp
−j
(Xj))<0]

).

This comparison study is carried out by employing an experiment over real financial
data. More precisely, we consider the log daily return of the Dow Jones Industrial stock
index between 1 January 2013 to 31 August 2022. Specifically, we proceed with the process
Z(t) = −100 log

(
r(t)

r(t−1)

)
. The data of this real example can be accessed through the

website https://fred.stlouisfed.org/series/DJIA (accessed on 14 September 2022). After
prior analysis, we observe that the considered financial data exhibit the fundamental
features of financial time series data, such as skewness, excess kurtosis, and high volatility.
In Figure 2, we plot the initial data without transformation.
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Figure 2. The Log daily return of the Dow Jones Industrial stock index.

It is well known the continuous time process is the principal source of functional
statistics. We can easily construct the functional variable by cutting the trajectory of this
process over small intervals. We employ this idea and take the functional regressor X(·)
equal to the values of Z (over one month) and its associated real interest variable Y is equal
to Z (at the last day of the month).

Now, we compute the efficiency of the recursive estimator by computing the percent-
age of the violation cases corresponding to the situation when the process z(t) exceeds the
estimator. Let us clarify that the computation ability of the estimator is also affected by
the choice of the distance d. However, the metric choice depends on the regularity and
on the smoothness of the regressor curves. Therefore, in this heteroscedastic, when the
regressor curves are discontinuous, the PCA metric is more adequate than the functional
spline metric. This is our principal motivation to compute our estimator using this metric.

https://fred.stlouisfed.org/series/DJIA
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Finally, we note that we used the quadratic kernel on (0, 1), and therefore we have split the
data into 70% of observations in the learning sample and 30% of observations. We plot the
true values of the process at the testing observation versus its estimated values using the
three selector procedures (see Figure 3).

Selector 1

Time

0 100 200 300 400 500

−
3

0
2

Selector 2

Time

0 100 200 300 400 500

−
3

0
2

Selector 3

Time

0 100 200 300 400 500

−
3

0
2

Figure 3. Comparison between the three selectors of the recursive estimator of the conditional
expectile for order p = 0.01.

It is clear that the choice of the smoothing parameters (hi)i has a great impact on the
performance of the estimator Êp(x). This statement is confirmed by the high variability of
the percentage of the violation cases with respect to the selection method. In particular,
selector 1 gives 4.3% of violation cases while percentages equal to 2.5% and 3.8% are
obtained by selector 2 and selector 3, respectively. Among the three selector algorithms, it
appears that the procedure of selector 2 is more preferred than the other algorithm. Finally,
we can say that the recursive estimator is very easy to implant in practice, and its efficiency,
without surprise, is strongly affected by the determination of the smoothing parameter hi.

6. Conclusions

We consider, in this work, functional ergodic time series and construct a recursive
estimator for the conditional expectile. The asymptotic property of the established estimator
is proved using standard conditions covering the principal structures of this work, such as
the functional ergodicity assumption, the recursivity, and the nonparametric aspect of the
model. The applicability of this estimator and its feasibility are evaluated using artificial and
real data. This computational part emphasizes the importance of this estimator in practice
as a fast estimator allowing the update of the results for each new piece of information.
Such a feature is the principal gain of the recursive property of our estimator. In addition
to these results, we have particularized our study to some special cases. Thus, we can say
that the generality of our approach is also an essential feature of the proposed estimator.
In addition, the present contribution also opens some interesting paths for the future.
For example, it will be interesting to construct the asymptotic normality of our proposed
recursive estimator to extend the obtained result to incomplete data, including missing,
censored, or truncated data. Another possible future track is treating more complicated
dependence structures such as the ergodic spatial dependence or the quasi-association
functional random fields.
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Appendix A

Proof of Lemma 1.
The compactness of [Ep(x) − δ, Ep(x) + δ] permits to have

[Ep(x)− δ, Ep(x) + δ] ⊂ ⋃dn
j=1

(
yj − `n, yj + `n

)
with `n = n−1/2 and dn = O

(
n1/2

)
. Let

Gn =
{

yj − `n, yj + `n, 1 ≤ j ≤ dn
}

.

The monotony of ĜN(l, ·; x) and ḠN(l, ·; x) gives, for all 1 ≤ j ≤ dn,

ĜN(l, (yj − `n); x) ≤ sup
y∈(yj−`n ,yj+`n)

ĜN(l, (yj − `n); x) ≤ ĜN(l, (yj − `n); x)

and

ḠN(l, (yj − `n); x) ≤ sup
y∈(yj−`n ,yj+`n)

ḠN(l, (yj − `n); x) ≤ ḠN(l, (yj − `n); x).

Using (A2) and by the same arguments as in Lemma 3, we deduce that, for y1, y2 ∈
[Ep(x)− δ, Ep(x) + δ],

∣∣ḠN(l, (yj − `n); x)− ḠN(l, (yj − `n); x)
∣∣ ≤ C|y1 − y2|

1[
∑n

i=1 φ1−l
x (hi)

] n

∑
i=1

Ciφ
1−l
x (hi),

and hence,
sup

y∈[Ep(x)−δ, Ep(x)+δ]

∣∣∣ĜN(l, (yj − `n); x)− ḠN(l, (yj − `n); x)
∣∣∣

≤ max
1≤j≤dn

max
z∈{yj−`n ,yj+`n}

∣∣∣ĜN(l, z; x)− ḠN(l, z; x)
∣∣∣+ 2C`n almost completely.

Observe that, under (A4)

`n = o

(√
log n

nφx(hn)

)
.

Therefore, to finalize this lemma proof, it is be sufficient to show that

max
1≤j≤dn

max
z∈{yj−`n ,yj+`n}

∣∣∣ĜN(l, z; x)− ḠN(l, z; x)
∣∣∣ = Oa.co.

(√
log n

nφx(hn)

)
.

https://fred.stlouisfed.org/series/DJIA
https://fred.stlouisfed.org/series/DJIA
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To accomplish that, it is sufficient to consider the fact that

IP
(

max
z∈Gn

∣∣∣ĜN(l, z; x)− ḠN(l, z; x)
∣∣∣ > ε

)
≤ ∑

z∈Gn

IP
(∣∣∣ĜN(l, z; x)− ḠN(l, z; x)

∣∣∣ > ε
)

.

Because Y does not have to be bounded, a truncation procedure is used by introducing
the function:

Ĝ∗N(l, z; x) =
1[

∑n
i=1 φ1−l

x (hi)
] n

∑
i=1

1
φl

x(hi)
Ki(x)Y−∗i

Ḡ∗N(l, z; x) =
1[

∑n
i=1 φ1−l

x (hi)
] n

∑
i=1

1
φl

x(hi)
IE
[
Ki(x)Y−∗i |Gi−1

]
,

where
Y−∗i = Y−i 1I{|Y− |<γn},

with γn = na/q. Hence, the following three results accomplish the above claimed result:

dn max
z∈Gn

∣∣Ḡ∗N(l, z; x)− ḠN(l, z; x)
∣∣ = Oa.co.

(√
log n

nφx(hn)

)
, (A1)

dn max
z∈Gn

∣∣∣ĜN(l, z; x)− Ĝ∗N(l, z; x)
∣∣∣ = Oa.co.

(√
log n

nφx(hn)

)
(A2)

and

dn max
z∈Gn

∣∣∣Ĝ∗N(l, z; x)(x, z)− Ḡ∗N(l, z; x)
∣∣∣ = Oa.co.

(√
log n

nφx(hn)

)
. (A3)

Let us consider the statement (A1). We have, for all z ∈ Gn,

∣∣Ḡ∗N(l, z; x)− ḠN(l, z; x)
∣∣ ≤ C

1[
∑n

i=1 φ1−l
x (hi)

]
n

∑
i=1

1
φl

x(hi)
IE
[∣∣Y−i ∣∣1I{|Y−i |≥γn}K(h

−1
i d(x, Xi)) | |Gi−1

]
.

Apply Hölder inequality, for α = p
2 with β such that

1
α
+

1
β
= 1.

Use (A1) and (A5) to show that, for all z ∈ Gn,

IE
[∣∣Y−i ∣∣1I{|Y−i |≥γn}K(h

−1
i d(x, Xi)) | |Gi−1

]
≤ IE1/α

[∣∣Yα
i

∣∣1I{|Y−i |≥γn} | |Gi−1

]
IE1/β

[
Kβ

i (x) | |Gi−1

]
≤ γ−1

n IE1/α
[∣∣∣Y2α

i

∣∣∣ | |Gi−1

]
IE1/β

[
Kβ

i (x) | |Gi−1

]
≤ γ−1

n IE1/α[|Yp| | |Gi−1]IE1/β
[
Kβ

i (x) | |Gi−1

]
≤ Cγ−1

n φ
1/β
i (x, hi)

≤ Ciγ
−1
n φ

1/β
x (hi).

Hence, we obtain under (A4)

dn max
z∈Gn

∣∣Ḡ∗N(l, z; x)− ḠN(l, z; x)
∣∣ ≤ Cn1/2−a/qφ

(1−β)/β
x (hn).
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Using the fact that a > p/2, we obtain the statement (A1). Next, Markov’s inequality is
used to prove (A2), that, ∀z ∈ Gn, ∀ε > 0,

IP
(∣∣∣ĜN(l, z; x)− Ĝ∗N(l, z; x)

∣∣∣ > ε
)
≤

n

∑
i=1

IP
(
|Y−i | > na/q

)
≤ nIP

(
|Y−i | > na/q

)
≤ n1−aIE[Yp].

Because of (A4) and the fact that a > 3, we have

dn max
z∈Gn

IP

(∣∣∣Ĝ∗N(l, z; x)(x, z)− Ḡ∗N(l, z; x)
∣∣∣ > ε0

(√
log n

nφx(hn)

))
≤ n3/2−a < Cn−1−ν for ν > 0.

We now prove (A3). To this end, we define, for all z ∈ Gn,
Now, for any z ∈ Gn set

Λi(l, z; x) =
1

φl
x(hi)

(
Ki(x)Y−∗i − IE

[
Ki(x)Y−∗i |Gi−1

])
.

The rest of the proof is based on the same exponential inequality used in previous
Lemma 1. As

|Λi(l, z; x)| ≤ Cγn

φl
x(h
−
n )

So all it remains to evaluate asymptotically the conditional variance of Λi(l, z; x).

IE
[∣∣KiY−i

∣∣2|Gi−1

]
= IE

[
IE
[∣∣∣Ki

∣∣∣2∣∣∣Y−i ∣∣∣2|X]|Gi−1

]
= IE

[
IE
[∣∣∣Y−i ∣∣∣2|X]K2

i | |Gi−1

]
= CIE

[
K2

i | |Gi−1

]
,

By using the assumptions (H2), (H3) we obtain

IE
[∣∣KiY−i

∣∣2|Gi−1

]
≤ Cφi(x, hi) ≤ Ciφx(hi).

We therefore obtain, under (A4) that

n

∑
i=1

IE
[
Λ2

i (l, z; x)
]
= O

(
φ1−2l

x (hn)
)

. (A4)

Hence, use the martingale-difference inequality of (see Laib and Louani [8], p. 365) to
fulfill this proof. Therefore, we obtain, for all η > 0 and for all z ∈ Gn,

IP

(∣∣∣ĜN(l, z; x)− ḠN(l, z; x)
∣∣∣ > η

√
log n

nφx(hn)

)

≤ IP

(∣∣∣∣∣ n

∑
i=1

Λi(l, z; x)

∣∣∣∣∣ > η

[
n

∑
i=1

φ1−l
x (hi)

]√
log n

nφx(hn)

)
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≤ 2 exp

−
1
2

 η2
[
∑n

i=1 φ1−l
x (hi)

]2
log n

nφx(hn)

(
C
[
∑n

i=1 φ1−2l
x (hi)

]
+

γn[∑n
i=1 φ1−l

x (hi)]
φl

x(h−n )

√
log n

nφx(hn)

)

.

≤ 2 exp

−
C
2

 η2
[
nφ1−l

x (hn)
]2

log n

nφx(hn)

(
C
[
nφ1−2l

x (hn)
]
+

γn[nφ1−l
x (hn)]

φl
x(h−n )

√
log n

nφx(hn)

)

.

≤ 2 exp

−
C
2

 η2
[
nφ1−l

x (hn)
]2

log n

n2φ2−2l
x (hn)

(
C +

γn[φl
x(hn)]

φl
x(h−n )

√
log n

nφx(hn)

)

.

≤ 2 exp

−
C
2

 η2 log n(
C +

γn[φl
x(hn)]

φl
x(h−n )

√
log n

nφx(hn)

)

.

Then, as dn ≤ C`−1
n , we have

∑
z∈Gn

IP

(∣∣∣ĜN(l, z; x)− ḠN(l, z; x)
∣∣∣ > η

√
log n

nφx(hn)

)

≤ 2dn max
z∈Gn

IP

(∣∣∣ĜN(l, z; x)− ḠN(l, z; x)
∣∣∣ > η

√
log n

nφx(hn)

)
≤ C′n−Cη2+1/2.

Thus, a suitable choice of η leads to the proof of the first statement of this lemma. The
second one is obtained by a similar way.

Proof of Lemma 2.
Using the same ideas of Ferraty et al. (2007) to prove, under (H1) (iii) and (H3), there

exists Ct,x > C > 0 such that

sup
t∈[Ep(x)−δ, Ep(x)+δ]

∣∣ḠD(l, t; x)− Ct,x
∣∣ = oa.co.(1). (A5)

It is easy to see that,

inf
t∈[Ep(x)−δ, Ep(x)+δ]

ḠD(l, t; x) ≤ Ct,x

2

⇒ ∃t0 ∈ [Ep(x)− δ, Ep(x) + δ], such that Ct0,x − ḠD(l, t0; x) >
Ct0,x

2

⇒ sup
t∈[Ep(x)−δ, Ep(x)+δ]

|Ct,x − ḠD(l, t; x)| > Ct,x

2
.

We deduce from Equation (A5) that

P

(
inf

t∈[Ep(x)−δ, Ep(x)+δ]
ḠD(l, t; x) ≤ Ct,x

2

)
≤ P

 sup
t∈[Ep(x)−δ, Ep(x)+δ]

|Ct,x − ḠD(l, t; x)| > Ct,x

2

.

Consequently,
∞

∑
i=1

(
inf

t∈[Ep(x)−δ, Ep(x)+δ]
ḠD(l, t; x) ≤ Ct,x

2

)
< ∞.
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Proof of Lemma 3. Clearly

B̂n(t; x) ≤ 1

ḠD(l, t; x)
[
∑n

i=1 φ1−l
x (hi)

] n

∑
i=1

φ−l
x (hi)IE[Ki(x)|G1(t; Xi)− G2(t; Xi)G(t; x)||Gi−1].

It is clear that

|G1(t; Xi)− G2(t; Xi)G(t; x)| ≤ |G1(t; Xi)− G1(t; x)|+ |G(t; x)||G2(t; Xi)− G2(t; x)|

using (H2), we obtain, for all t ∈ [Ep(x)− δ, Ep(x) + δ]

1I{B(x,hi)}(Xi)|G1(t; Xi)− G1(t; x)| ≤ Chβ1
i .

and
1I{B(x,hi)}(Xi)|G2(t; Xi)− G2(t; x)| ≤ Chβ2

i .

Combining these approximations with the statement with the Lemma 2 to write that

sup
t∈[Ep(x)−δ, Ep(x)+δ]

|B̂n(t; x)| ≤ C

(
1

∑n
i=1 φ1−l

x (hi)

n

∑
i=1

Ci

(
(hβ1

i + hβ2
i )φ1−l

x (hi)
))

Hence, we conclude that

sup
t∈[Ep(x)−δ, Ep(x)+δ]

|B̂n(t; x)| = Oa.co.

(
h−

min(β1,β2)

n

)
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