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Abstract: In the modern digital economy, optimal decision support systems, as well as machine
learning systems, are becoming an integral part of production processes. Artificial neural network
training as well as other engineering problems generate such problems of high dimension that are
difficult to solve with traditional gradient or conjugate gradient methods. Relaxation subgradient
minimization methods (RSMMs) construct a descent direction that forms an obtuse angle with
all subgradients of the current minimum neighborhood, which reduces to the problem of solving
systems of inequalities. Having formalized the model and taking into account the specific features of
subgradient sets, we reduced the problem of solving a system of inequalities to an approximation
problem and obtained an efficient rapidly converging iterative learning algorithm for finding the
direction of descent, conceptually similar to the iterative least squares method. The new algorithm
is theoretically substantiated, and an estimate of its convergence rate is obtained depending on the
parameters of the subgradient set. On this basis, we have developed and substantiated a new RSMM,
which has the properties of the conjugate gradient method on quadratic functions. We have developed
a practically realizable version of the minimization algorithm that uses a rough one-dimensional
search. A computational experiment on complex functions in a space of high dimension confirms the
effectiveness of the proposed algorithm. In the problems of training neural network models, where it
is required to remove insignificant variables or neurons using methods such as the Tibshirani LASSO,
our new algorithm outperforms known methods.

Keywords: relaxation subgradient methods; space dilation; nonsmooth minimization methods;
machine learning algorithm

MSC: 49M20; 65K10; 68T20

1. Introduction

In this study, which is an extension of previous work [1], a problem of minimiz-
ing a convex, not necessarily differentiable function f (x), x ∈ Rn (where Rn is a finite-
dimensional Euclidean space) is discovered. Such a problem is quite common in the field
of machine learning (ML), where optimization methods, in particular, gradient descent, are
widely used to minimize the loss function during training stage. In the era of the digital
economy, such functions arise in many engineering applications. First of all, training and
regularizing the artificial neural networks of a simple structure (e.g., radial or sigmoidal)
may lead to the application of a loss function in a high-dimensional space, which are
often non-smooth. When working with more complex networks, such functions can be
non-convex.
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While a number of efficient machine learning tools exist to learn smooth functions
with high accuracy from a finite data sample, the accuracy of these approaches becomes
less satisfactory for nonsmooth objective functions [2]. In a machine learning context, it
is quite common to have an objective function with a penalty term that is non-smooth
such as the Lasso [3] or Elastic Net [4] linear regression models. Common loss functions,
such as the hinge loss [5] for binary classification, or more advanced loss functions, such
as the one arising in classification with a reject option, are also nonsmooth [6], as well as
some widely used activation functions (ReLU) [7] in the field of deep learning. Modern
convolutional networks, incorporating rectifiers and max-pooling, are neither smooth nor
convex. However, the absence of differentiability creates serious theoretical difficulties on
different levels (optimality conditions, definition and computation of search directions,
etc.) [8].

Modern literature offers two main approaches to building nonsmooth optimization
methods. The first is based on creating smooth approximations for nonsmooth func-
tions [9–13]. On this basis, various methods intended for solving convex optimization
problems, problems of composite and stochastic composite optimization [9–11,14] were
theoretically substantiated.

The second approach is based on subgradient methods that have their origins in
the works of N. Z. Shor [15] and B.T. Polyak [16], the results of which can be found
in [17]. Initially, relaxation subgradient minimization methods (RSMMs) were considered
in [18–20]. They were later developed into a number of effective approaches such as the
subgradient method with space dilation in the subgradient direction [21,22] that involve
relaxation by distance to the extremum [17,23,24]. The idea of space dilation is to change
the metric of the space at each iteration with a linear transformation and to use the direction
opposite to that of the subgradient in the space with the transformed metric.

Embedding the ideas of machine learning theory [25] into such optimization methods
made it possible to identify the principles of organizing RSMM with space dilation [26–29].
The problem of finding the descent direction in the RSMM can be reduced to the problem
of solving a system of inequalities on subgradient sets, mathematically formulated as a
problem of minimizing a quality functional. This means that a new learning algorithm is
embedded into the basis of some new RSMM algorithm. Thus, the convergence rate of the
minimization method is determined by the properties of the learning algorithm.

Rigorous investigation of the approximation capabilities of various neural networks
has received much research interest [30–36] and is widely applied to problems of system
identification, signal processing, control, pattern recognition and many others [37]. Due
to universal approximation theorem [30], a feedforward network with a single hidden
layer and a sigmoidal activation function can arbitrarily well approximate any continuous
function on a compact set [38]. The studies of learning theory on unbounded sets can be
found in [39–41].

The stability of the neural network solutions can be improved by introducing a regu-
larizing term in the minimized functional [42], which stabilizes the solution using some
auxiliary non-negative function carrying information on the solution obtained earlier (a
priori information). The most common form of a priori information is the assumption of
the function smoothness in the sense that the same input signal corresponds to the same
output. Commonly used regularization types include:

1. Quadratic Tikhonov regularization (or ridge regression, R2). In the case of approxi-
mation by a linear model, the Tikhonov regularizer [42] is used:

R2(U) =
k

∑
i=1

u2
i , (1)

where parameters of the linear part of the model are included, and k is the number of vector
U components. The regularizer R2 is mainly used to suppress large components of the
vector U to prevent overfitting the model.
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2. Modular linear regularization (Tibshirani Lasso, R1). The regularizer proposed
in [3] is mainly used to suppress large and small components of the vector U:

R1(U) =
k

∑
i=1
|ui|. (2)

3. Non-smooth regularization (Rγ) [3,43]:

Rγ(U) =
k

∑
i=1

(|ui|+ ε)γ, ε = 10−6, γ = 0.7. (3)

The use of Rγ led to the suppression of small (“weak”) components of the vector U.
This property of Rγ enables us to reduce to zero weak components that are not essential for
the description of data.

The aim of our work is to outline an approach to accelerating the convergence of learn-
ing algorithms in RSMM with space dilation and to give an example of the implementation
of such an algorithm, confirming the effectiveness of theoretical constructions.

In the RSMM, successive approximations [18–20,26,28,44] are:

xk+1 = xk − γksk+1, γk = arg min
γ

f (xk − γsk+1), (4)

where k is the iteration number, γk is the stepsize, x0 is a given starting point, and the
descent direction sk+1 is a solution of a system of inequalities on s ∈ Rn [20]:

(s, g) > 0, ∀g ∈ G. (5)

Hereinafter, (s, g) is a dot product of vectors, and G is a set of subgradients calculated
on the descent trajectory of the algorithm at a point xk.

Denote as (s, g) a set of solutions to inequality (5), as ∂ f (x) is a subgradient set at
point x. If the function is convex and G = ∂ε f (xk) is an ε-subgradient set at point xk, and
sk+1 is an arbitrary solution of system (5), then the function will be reduced by at least ε
after iteration (4) [20].

Since there is no explicit specification of ε-subgradient sets, the subgradients gk ∈ ∂ f (xk)
are used as elements of the set G, calculated on the descent trajectory of the minimization
algorithm. These vectors must satisfy the condition:

(sk, gk) ≤ 0. (6)

Inequality (6) means that for the vectors used, condition (5) is not satisfied. The choice
of learning vectors is made according to this principle in the perceptron method [25,45],
for instance.

A sequence of vectors gk ∈ ∂ f (xk), k = 0, 1, . . . is not predetermined, but determined
during minimization (4) with a built-in method for finding the vector sk+1 at each iteration
of minimization by a ML algorithm.

Let vector sk+1 be a solution of the system of inequalities (5) for the subgradient set of
some neighborhood of the current minimum xk. Then, as a result of iteration (4), we go
beyond this neighborhood with a simultaneous function decrease, since vector sk+1 forms
an acute angle with each of the subgradients of the set.

In this work, we present a formalized model of subgradient sets, which enables us,
taking into account their specificity, to formulate stronger learning relations and quality
functionals, which leads to acceleration in the convergence rate of learning algorithms
designed to form the direction of descent in the RSMM.

As a result of theoretical analysis, an effective learning algorithm has been developed.
For the proposed ML algorithm, the convergence in a finite number of iterations is proved
when solving problem (5) on separable sets. Based on the learning algorithm, we proposed
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a method for minimizing nonsmooth functions. Its convergence on convex functions was
substantiated. It is shown that on quadratic functions, the minimization method generates
a sequence of minimum approximations identical to the sequence of the conjugate gradient
method. We also proposed a minimization algorithm with a specific one-dimensional
search method. A computational experiment confirmed its effectiveness for problems of
neural network approximations, where the technology of uninformative model component
suppression with regularizers similar to the Tibshirani LASSO was used [46]. The result of
our work is an optimization algorithm applicable for solving neuron network regularization
and other machine learning problems which, in turn, contains an embedded machine
learning algorithm for finding the most promising descent direction. In the problems
used for comparison, the objective function forms an elongated multidimensional ravine.
As with other subgradient algorithms, our new algorithm proved to be efficient for such
problems. Moreover, the new algorithm outperforms known relaxation subgradient and
quasi-Newtonian algorithms.

The rest of this article is organized as follows. In Section 2, we consider a problem of
acceleration of the learning algorithms convergence using relaxation subgradient methods.
In Section 3, we make assumptions regarding the parameters of subgradient sets that affect
the convergence rate of the proposed learning algorithm. In Section 4, we formulate and
justify a machine learning algorithm for finding the descent direction in the subgadient
method. In Section 5, we give a description of the minimization method. In Section 6, we
establish the identity of the sequences generated by the conjugate gradient method and
the relaxation subgradient method with space dilation on the minimization of quadratic
functions. In Sections 7 and 8, we consider a one-dimensional minimization algorithm and
its implementation, respectively. In Sections 9 and 10, we present experimental results for
the considered algorithms. In Section 9, we show a computational experiment on complex
large-sized function minimization. In Section 10, we consider experiments with training
neural network models, where it is required to remove insignificant neurons. Section 11
contains a summary of the work.

2. Acceleration of the Learning Algorithm’s Convergence in Relaxation
Subgradient Methods

To use more efficient learning algorithms, a relation stronger than (5) can be written
for the descent direction. We make an additional assumption about the properties of the
set G.

Assumption 1. Let a convex set G ⊂ Rn belong to a hyperplane; its minimal length vector η is
also the minimal length vector of this hyperplane. Then, a solution of the system (s, g) = 1 ∀g ∈ G
is also a solution of (5) [26]. It can be found as a solution to a system of equations using a sequence
of vectors from G [26]:

(s, gi) = qi = 1, gi ∈ G, i = 0, 1, . . . k. (7)

It is easy to see that the solution to system (7) in s is the vector s∗ = η/||η||2. Figure 1 shows
the subgradient set in the form of a segment lying on a straight line. Equalities (7) can be solved by
a least squares method. For example, using the quadratic quality functional

Qk(s) =
1
2
(1− (s, gk))

2,

it is possible to implement a gradient machine learning algorithm,

sk+1 = sk − βk∇Qk(sk),
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where βk is a gradient method step. Hence, when choosing βk = 1/(gk, gk), we obtain the
well-known Kaczmarz algorithm [47],

sk+1 = sk +
1− (sk, gk)

(gk, gk)
gk. (8)

The found direction sk satisfies the learning equality (sk+1, gk) = 1. To ensure the possibility
of decreasing the function as a result of iteration (4), the new descent direction in the minimization
method must be consistent with the current subgradient, i.e., satisfy inequality (sk+1, gk) > 0.
Process (8) corresponds to this condition.

S*

(S*,g)=1

O g1

g2

G

g

Figure 1. Set G belongs to a hyperplane.

To propose a faster algorithm, consider the interpretation of process (8). Let Assump-
tion 1 be fulfilled. The step of process (8) is equivalent to the step of one-dimensional
minimization of the function

E(s) =
(s− s∗, s− s∗)

2
from point sk in the direction gk. Let the current approximation sk be obtained using a
vector gk−1 and satisfy the condition (sk, gk−1) = 1. Figure 2 shows the projections of
the current approximation sk and the required vector s∗ on the plane of vectors gk−1, gk.
Straight lines W1 and Z1 are hyperplane projections for vectors s, given by the equalities
(s, gk−1) = 1 and (s, gk) = 1. Vector s1

k+1 is a projection of the approximation obtained from
the iteration (8).

A B

C

S*
S2k+1

Sk

S1k+1

Z1

O gk

gk�1

W1

Figure 2. Projections of approximations sk+1 in the plane of vectors gk, gk−1.

If (gk, gk−1) ≤ 0, then the angle between subgradients is obtuse, and the angle ϕ is
acute (Figure 2). In this case, it is possible to completely extinguish the projection of the
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residual between sk and s∗ in the plane of vectors gk−1, gk, passing from point A to point C
along vector AC, perpendicular to the vector gk−1, i.e., along vector pk:

pk = gk − gk−1
(gk, gk−1)

(gk−1, gk−1)
. (9)

In this case, the iteration has the form

sk+1 = sk + pk
1− (sk, gk)

(gk, pk)
. (10)

In Figure 2, this vector is denoted as s2
k+1. The vector sk+1, obtained by formula (10),

satisfies the equalities (sk+1, gk−1) = 1, (sk+1, gk) = 1 and coincides with the projection
s∗ of the optimum of the function E(s). At small angles φ between the straight lines W1
and Z1, the acceleration of convergence for process (10) becomes essential. In this work,
process (10) will be used to accelerate the convergence in the metric of the iterative least
squares method.

Using learning information (7), one of the possible solutions to the system of inequali-
ties (5) can be found in the form sk+1 = arg mins Fk(s), where

Fk(s) =
k

∑
i=0

wiQi(s) +
1
2

n

∑
i=1

s2
i , Qi(s) =

1
2
(qi − (s, gi))

2.

Such a solution can be obtained by the iterative least squares method (ILS). With
weight factors wi = 1, after the arrival of new data qk, gk, the transition from the previously
found solution sk to a new solution sk+1 in ILS is made as follows:

sk+1 = sk +
Hkgk(qk − (sk, gk))

1 + (Hkgk, gk)
, s0 = 0, (11)

Hk+1 = Hk −
HkgkgT

k HT
k

1 + (gk, Hkgk)
, H0 = I. (12)

Note that, in contrast to the usual ILS, there is a regularizing component ∑n
i=1 s2

i /2 in
Fk(s), which allows us to use transformations (11) and (12) from the initial iteration, setting
s0 = 0 and H0 = I.

In [26], based on ILS (11) and (12), an iterative process is proposed for solving the
system of inequalities (5) using learning information (7):

sk+1 = sk +
Hkgk[1− (sk, gk)]

(gk, Hkgk)
, s0 = 0, (13)

Hk+1 = Hk − (1− 1
α2

k
)

HkgkgT
k HT

k
(gk, Hkgk)

, H0 = I. (14)

Here, αk > 1 is a space dilation parameter.
Consider the rationale for the method of obtaining formulas (13) and (14). Using

processes (11) and (12) for scaled data, we obtain

ĝk = gk[q(gk, Hkgk)]
−0.5, q̂k = qk[q(gk, Hkgk)]

−0.5,

where scaling factor q > 0. The latter is equivalent to introducing the weight factors
wk = 1/[q(gk, Hkgk)] in F(s). Then, after returning to the original data gk, yk, we obtain
the expressions:

sk+1 = sk +
Hkgk[qk − (sk, gk)]

(1 + q)(gk, Hkgk)
, s0 = 0, (15)
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Hk+1 = Hk −
HkgkgT

k HT
k

(1 + q)(gk, Hkgk)
, H0 = I. (16)

The transformation of matrices (16) is practically equivalent to (14) after the appro-
priate choice of the parameter q. For transformation (15), the condition (sk+1, gk) > 0
providing the condition for the possibility of decreasing the function in the course of iter-
ation (4) along the direction sk+1 may not be satisfied. Therefore, the transformation (13)
is used with qk = 1, which ensures equality (sk+1, gk) = 1 > 0. Transformation (13) can
be interpreted as the Kaczmarz algorithm in the corresponding metric. As a result, we
obtain processes (13) and (14). Methods [18–20] of the class under consideration possess
the properties of the conjugate gradient method. The noted properties expand the area of
effective application of such methods.

The higher the convergence rate of processes (13) and (14), the greater the value of
the permissible value αk in (14) [26], which depends on the set G’s characteristics. In
algorithms (13) and (14), we distinguish 2 stages: the correction stage (13). reducing the
residual between the optimal solution s∗ and the current approximation sk, and the space
dilation stage (14), resulting in the increase in the residual in the transformed space without
exceeding its initial value, which limits the magnitude of the space dilation parameter. To
create more efficient algorithms for solving systems of inequalities, we have to choose the
direction of correction in such a way that the reduction of the residual is higher than that of
process (13). The direction of space dilation should be chosen so that it becomes possible to
increase the space dilation parameter value due to this choice.

This paper presents one of the special cases of the implementation of the correction
stage and space dilation stage. It was proposed to use linear combinations of vectors
gk−1, gk in transformation (13) instead of a vector gk when it is appropriate:

pk = gk − gk−1
(gk, Hkgk−1)

(gk−1, Hkgk−1)
, (17)

sk+1 = sk + Hk pk
1− (sk, gk)

(gk, Hk pk)
. (18)

Transformations (17) and (18) are similar to the previously discussed transformations
(9) and (10) carried out in the transformed space.

In the matrix transformation, we use equation (14) instead of vector gk. We also use vec-
tor
yk = gk − gk−1 such that

Hk+1 = Hk − (1− 1
α2

k
)

HkykyT
k HT

k
(yk, Hkyk)

. (19)

As shown below, the discrepancy between the optimal solution s∗ and the current
approximation sk+1 along the vector yk is small, which makes it possible to use large param-
eters of space dilation αk in (19). Iterations (18) and (19) are conducted under the condition:

(gk, Hkgk−1) ≤ 0. (20)

In the next section, assumptions will be made regarding the parameters of subgradient
sets that affect the convergence rate of the proposed learning algorithm and determine
the permissible parameters of space dilation. This allows us to formulate and justify a
machine learning algorithm for finding the descent direction in the subgradient method.
Note that the described parameterization of the sets does not impose any restrictions on the
subgradient sets but is used only for the purpose of developing constraints on the learning
algorithm parameters.
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3. Formalization of the Separable Sets Model

In this section, we will use the following notation (as earlier, vector η is the shortest
vector from G):

(1) ρ = ||η|| is the length of the minimal vector of the set;
(2) R = maxg∈G ||g|| is the length of the maximal vector of the set;
(3) µ = η/ρ is the normalized vector η;
(4) s∗ = µ/ρ is a vector associated with the sought solution of systems (5) and (7) when

analyzing the ML algorithm;
(5) Rs = maxg∈G(µ, g) is an upper-bound value of the set G in the direction µ;
(6) M = Rs/ρ is the ratio of the upper and lower bounds of the set along µ, r = ρ/Rs =

M−1;
(7) V = ρ/R is the ratio of the minimal and maximal vectors of the set.

For some set Q, we will use the noted characteristics indicating the set as an argument;
for example, η(Q), r(Q).

We assume that set G satisfies the assumption:

Assumption 2 ([1]). Set G is convex, closed, limited (R < ∞) and satisfies the separability
condition, i.e., ρ > 0.

Vector s∗ is a solution to the system of inequalities (5), and ρ and Rs describe the thickness of
the set G in the direction µ:

ρ ≤ (µ, g) ≤ Rs, ∀g ∈ G. (21)

Due to (21) and the form of s∗:

1 ≤ (s∗, g) ≤ Rs/ρ = M, ∀g ∈ G. (22)

Rs, according to its definition, satisfies the constraints:

ρ ≤ Rs ≤ ||µ||max
g∈G
||g|| ≤ R.

Figure 3 shows a separable set and its characteristics. The Rs characteristic determines the
thickness of the set G and significantly affects the convergence rate of learning algorithms with space
dilation. When the thickness of the set is equal to zero, Rs = ρ and a flat set takes place (Figure 1).
Set G and its characteristics with boundaries (22) are shown in Figure 3.

For example, consider the function

f (x) =
n

∑
i=1
|xi|ai, ai ≥ 0, i = 1, ..., n, x0 = (b1, ..., bm, 0, ..., 0). (23)

The point x0 is located at the bottom of a multidimensional ravine. Let us study its subgradient
set at point x0. As earlier, g(x0) is subgradient of a function. Components of subgradient vectors
at non-zero values xi are as follows: gi(x) = sign(xi)ai. For zero xi, the components of the
subgradient vectors belong to the set gi(x) ∈ [−ai, ai], where the zero component gi(x) = 0 exists.
Hence, it follows that the subgradient of the minimum length of function (23) at point x0 has
the form

η = g0
min = (sign(b1)a1, . . . , sign(bm)am, 0, . . . , 0).
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G

Z2

s*

(s*,g)=Rs/�

g

�

(s*,g)=1

Z1

Figure 3. The set G and its characteristics.

Maximum length subgradients are specified by a set of subgradients

g0
max ∈ G = {(sign(b1)a1, . . . , sign(bm)am,±am+1, . . . ,±an)}.

It is easy to verify that the projections of arbitrary subgradients at the point x0 onto vector
g0

min are the same. Therefore, the thickness of the subgradient set is zero. In a sufficiently small
neighborhood of the point x0, the union of the subgradient sets of function (23) coincides with the
subgradient set at the point x0. Consequently, the descent direction in the form of a solution to the
system of inequalities (7) enables us to go beyond this neighborhood.

Figure 4 shows a representation of the subgradient set of a two-dimensional piecewise lin-
ear function

f (x) = |x1|+ |x2|a, a > 1, x0 = (b1, 0). (24)

∇

G

�

L4∇

L3∇

L4
L1

L3 L2

b1

x2

x1

Figure 4. Level lines, subgradient set and minimum length vector.

In quadrants, the function has the form

L1(x) = x1 + x2a, L2(x) = x1 − x2a, L3(x) = −x1 − x2a, L4(x) = −x1 + x2a.

Its subgradients at point x0 are given as follows:

g1(x0) = ∇L3(x0) = (−1,−a)T , g2(x0) = ∇L4(x0) = (−1, a)T .

Minimum length vector η = (−1, 0)T .
For large values of the parameter a in (24), the complexity of solving the minimization problem

increases significantly.
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4. Machine Learning Algorithm with Space Dilation for Solving Systems of
Inequalities on Separable Sets

In this section, we briefly introduce an algorithm for solving systems of inequali-
ties from [1] and theoretically justify iterations (18) and (19). Specific operators will be
used for transformations (13), (14) and (17)–(19). Denote by S(s, g, p, H) transformation
(18)’s operator, where the correspondence is used for the eponymous components. Then,
for example, Formula (13) can be represented as sk+1 = S(sk, gk, gk, Hk). Similarly, for
(14) and (19), we introduce the operator H(H, α, g). Formula (19) can be represented as
Hk+1 = H(Hk, αk, yk).

For a chain of approximations sk, we form the residual vector ∆k = s∗ − sk. Until
vector sk is not a solution to (5), for vectors gk selected at step 2 of Algorithm 1, from (6)
and (22), the following inequality holds:

(∆k, gk) = (s∗ − sk, gk) = (s∗, gk)− (sk, gk) ≥ 1− (sk, gk) ≥ 1. (25)

The transformation equation for matrix Ak is as follows [1]:

Ak+1 = Ak + (α2 − 1)
gkgT

k
(gk, Hkgk)

, (26)

Ak+1 = Ak + (α2
k − 1)

ykyT
k

(yk, Hkyk)
, (27)

where Ak = H−1
k . For vectors sk and gk of Algorithm 1:

1 ≤ (∆k, gk)
2 = (∆k, A1/2

k H1/2
k gk)

2 ≤ (∆k, Ak∆k)(gk, Hkgk), (28)

where A1/2 A1/2 = A, and A > 0 is a symmetric, strictly positive, definite matrix.

Algorithm 1 Method for solving systems of inequalities.

1: Set k = 0, s0 = 0, g−1 = 0, H0 = I. Set α > 1 as the limit for choosing the admissible
value of the parameter αk for transformations (13) and (14)

2: Find gk ∈ G, satisfying the condition (6) (sk, gk) ≤ 0
3: If such a vector does not exist, then

solution sk ∈ S(G) is found; stop the algorithm.
end if

4: If k = 0 or condition (20) (gk, Hkgk−1) ≤ 0 is not satisfied, then
go to step 7

end if
5: Compute vector pk = gk − gk−1(gk, Hkgk−1)/(gk−1, Hkgk−1) and perform transforma-

tion (18) sk+1 = S(sk, gk, pk, Hk). Compute the limit of the admissible values of the
space dilation parameter αyk for the combination of transformations (18) and (19)

6: If α2
yk ≥ α2, then

set αk satisfying the inequalities α2 ≤ α2
k ≤ α2

yk and perform transformation (19)
Hk+1 = H(Hk, αk, yk),

else
compute the limit of the admissible values of the space dilation parameter αgk for
the combination of transformations (18), (14); set αk satisfying the inequalities
α2 ≤ α2

k ≤ α2
gk and perform transformation (14) Hk+1 = H(Hk, αk, gk). Go to step 8

end if
7: Set α2

k = α2 and perform transformations (13), (14) sk+1 = S(sk, gk, gk, Hk), Hk+1 =
H(Hk, αk, gk)

8: Increase k by one and go to step 2
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Inequality (28) is essential in justifying the convergence rate of the methods we study
for solving systems of inequalities (5). The main idea of the algorithm formation is the
point that the values of (∆k, Ak∆k) do not increase when the values of (gk, Hkgk) decrease
with a geometric progression speed. In such a case, after a finite number of iterations, the
right side of (28) becomes less than one. The resulting contradiction means that problem (5)
is solved, and there is no more possibility of finding a vector gk satisfying condition (6).

For the decreasing rate of the sequence {τk}, τk = min0≤j≤k−1[(gj, Hjgj)/(gj, gj)], the
following theorem is known [26].

Theorem 1. Let a sequence {Hk} be a transformation (14) result with H0 = I, αk = α > 1 and
arbitrary gk ∈ Rn, gk 6= 0, k = 0, 1, 2, . . . . Then

τk ≤ k(α2 − 1)/n(α2k/n − 1), k ≥ 1. (29)

This theorem does not impose restrictions on the choice of vectors gk. Therefore,
regardless of which of equations (14) or (19) is used to transform the matrices, the result
(29) is valid for a sequence of vectors composed of gk or yk, depending on which one
of them is used to transform the matrices. Let us show that for Algorithm 1 with fixed
values of parameter αk, estimates similar to (29) are valid, and we obtain expressions for
the admissible parameters αk in (14), (19), at which the values (∆k, Ak∆k) do not increase.

In order to obtain the visually analyzed operation of the algorithm, similarly to the
analysis of iterations of the process (9), (10) carried out on the basis of Figure 2, we pass
to the coordinate system ŝ = A1/2

k s. In this new coordinate system, corresponding vectors
and matrices of iterations (13), (14) and (18), (19) are transformed as follows [1]:

ŝ = A1/2
k s, ĝ = H1/2

k g, Âk = H1/2
k Ak H1/2

k = I, Ĥk = A1/2
k Hk A1/2

k = I.

ŝk+1 = ŝk +
ĝk[1− (ŝk, ĝk)]

(ĝk, ĝk)
, (30)

Ĥk+1 = I − (1− 1
α2

k
)

ĝk ĝT
k

(ĝk, ĝk)
, (31)

Âk+1 = I + (α2
k − 1)

ĝk ĝT
k

(ĝk, ĝk)
. (32)

For expressions (17), (18) and (27):

ŝk+1 = ŝk +
p̂k[1− (ŝk, ĝk)]

(ĝk, p̂k)
, (33)

Ĥk+1 = I − (1− 1
α2

k
)

ŷk ŷT
k

(ŷk, ŷk)
, (34)

ŷk = ĝk − ĝk−1, p̂k = ĝk −
ĝk−1(ĝk, ĝk−1)

(ĝk−1, ĝk−1)
, (35)

Âk+1 = I + (α2
k − 1)

ŷk ŷT
k

(ŷk, ŷk)
. (36)

Inequality (22) for new variables is:

1 ≤ (ŝ∗, ĝ) ≤ Rs/ρ = M, ∀ĝ ∈ Ĝ. (37)

In Figure 5, characteristics of set Ĝ in the plane Z formed by the vectors g̃k, g̃k−1
are shown. Straight lines W1 , WM are projections of hyperplanes, i.e., corresponding
inequality (37) boundaries for possible positions of the vector ŝ∗ projections defined by the
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normal g̃k−1. Straight lines Z1 , ZM are boundaries of inequality (37) for vector ŝ∗ possible
projection positions defined by the normal g̃k.

Let ψ be the angle between vectors g̃k and g̃k−1. Since in Figure 5, this angle is obtuse,
then condition (20) holds:

(gk, Hkgk−1) = (g̃k, g̃k−1) ≤ 0.

Consequently, angle ϕ in Figure 5 is acute. Due to the fact that vectors g̃k, g̃k−1 are
normals for the straight lines W1 and Z1, we obtain the relations [1]:

sin2 ϕ = sin2(π − ψ) = sin2 ψ = 1− cos2 ψ, cos2 ϕ = cos2 ψ. (38)

cos2 ϕ = cos2 ψ =
(g̃k, g̃k−1)

2

(g̃k, g̃k)(g̃k−1, g̃k−1)
=

(gk, Hkgk−1)
2

(gk, Hkgk)(gk−1, Hkgk−1)
. (39)

O

A B C

W1

WM

v

�k-1

�k

�k

Z1 ZM

U

�

D Dg

L

E

J

E1

F

Jy

Ey

Lg

ŷk

Figure 5. Characteristics of the set G in the plane of vectors g̃k, g̃k−1.

The following lemmas [1] allow us to estimate the admissible values of space dila-
tion parameters.

Lemma 1. Let the values a, b, c, β satisfy the constraints a ≥ am ≥ 0, b > 0, c > 0 and
0 ≤ β ≤ 1; then:

min
α,β

(
(a + βb)2 − β2b2

β2c2

)
=

a2
m + 2amb

c2 =
(am + b)2 − b2

c2 . (40)

The proofs of Lemmas 1–6, as well as the proofs of Theorems 2–5, can be found in [1].

Lemma 2. Let vectors p1, p2 and g be linked by equalities (p1, g) = a, (p2, g) = b. Let the
difference of vectors p2 − p1 be collinear to the vector p, and let ξ be an angle between vectors p and
g; then:

‖p1 − p2‖2 =
(a− b)2

(g, p)2 ‖p‖2 =
(a− b)2

‖g‖2 cos2 ξ
. (41)

Lemma 3. As a result of transformation (13) at step 7 of Algorithm 1, the following equality holds:

(sk+1, gk) = (ŝk+1, ĝk) = 1, (42)
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and as a result of (18) at step 5, (42) will hold, and the equality is as follows:

(sk+1, gk−1) = (ŝk+1, ĝk−1) = 1. (43)

Lemma 4. Let set G satisfy Assumption 2. Then, the limit α of the admissible parameter value
αk ≤ α in Algorithm 1 providing inequality (∆k+1, Ak+1∆k+1) ≤ (∆k, Ak∆k) in the case of
transformations (13) and (14) is

α2 =
M2

(M− 1)2 =
1

(1− r)2 . (44)

Lemma 5. Let set G satisfy Assumption 2. Then, the limit αgk of the admissible parameter value
αk at step 5 of Algorithm 1, providing inequality (∆k+1, Ak+1∆k+1) ≤ (∆k, Ak∆k) in the case of
transformations (18), (14) is given by the equation:

α2
gk = 1 +

M2 − (M− 1)2

(M− 1)2 sin2 ϕ
= 1 +

2M− 1
(M− 1)2 sin2 ϕ

, (45)

where

sin2 ϕ = 1− (gk, Hkgk−1)
2

(gk, Hkgk)(gk−1, Hkgk−1)
. (46)

Lemma 6. Let set G satisfy Assumption 2. Then, the limit αyk for the admissible value of parameter
αk at step 5 of Algorithm 1 providing inequality (∆k+1, Ak+1∆k+1) ≤ (∆k, Ak∆k) in the case of
transformations (18) and (19) is given as

α2
yk = min{α2

Ek, α2
Jk}, (47)

where

α2
Ek = 1 +

(2M− 1)(yk, Hkyk)

(M− 1)2(gk, Hkgk) sin2 ϕ
, (48)

α2
Jk = 1 +

(yk, Hkyk)

(M− 1)2(gk, Hkgk) sin2 ϕ

(
1 +

2(M− 1)(gk, Hkgk)
1/2 cos ϕ

(gk−1, Hkgk−1)1/2

)
, (49)

The value cos2 ϕ is defined in (39), and sin2 ϕ = 1− cos2 ϕ.

In matrix transformations (14) and (19) of Algorithm 1, vectors gk and yk are used,
which does not allow for directly using estimate (29) of Theorem 1 in the case when
expression τk involves some vector ym, m < k. In the next theorem, an estimate similar to
(29) is obtained directly for subgradients gk generated by Algorithm 1.

Theorem 2. Let set G satisfy Assumption 1 and let the sequence
{πk = min0≤j≤k−1(gj, Hjgj) = (gJk, HJkgJk)} be calculated based on the characteristics of
Algorithm 1 for fixed values of the space dilation parameters α2

k = α2 specified at steps 5 and 6,
where parameter α is specified according to (44). Then:

πk = (gm, Hmgm) ≤
4R2k(α2 − 1)
n[α2k/n − 1]

, k ≥ 1, (50)

where m = arg min0≤j≤k−1(gj, Hjgj).

Theorem 3. Let set G satisfy Assumption 1 and let the sequence {(∆k, Ak∆k)} be calculated based
on the characteristics of Algorithm 1. Let dilation parameter α satisfy constraint (44) and let the
admissible value α2

yk be given by (47). Then:

(∆k+1, Ak+1∆k+1) ≤ (∆k, Ak∆k) ≤ (∆0, ∆0) = ρ−2, k = 0, 1, 2... (51)
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For fixed values of the space dilation parameter with respect to the convergence of
Algorithm 1, the following theorem holds.

Theorem 4. Let set G satisfy Assumption 2. Let the values of the space dilation parameters in
Algorithm 1 specified at steps 5 and 6 be fixed as α2

k = α2, and let parameter α be given according to
constraint (44). Then, the solution to system (5) will be found by Algorithm 1 in a finite number of
iterations, which does not exceed K0, the minimum integer number k satisfying the inequality

4kR2(α2 − 1)
nρ2[α2k/n − 1]

=
4k(α2 − 1)

nV2[α2k/n − 1]
< 1. (52)

Herewith, until a solution sk /∈ S(G) is found, and the following inequalities hold:

(gk, Hkgk) ≥ ρ2, (53)

(gk, Hkgk)

(gk, gk)
≥ ρ2

R2 = V2. (54)

According to (21), parameters ρ and Rs characterize the deviation of the component
vectors g ∈ G along the vector µ. If ρ = Rs, there is a set G in plane with normal µ.
Such a structure of the set G allows one to specify large values of the parameter α (44) in
Algorithm 1 and, according to (52), to obtain a solution in a small number of iterations.

In the minimization algorithm (4) on the descent trajectory, due to the exact one-
dimensional search, it is always possible to choose a subgradient from the subgradient
set satisfying condition (6), including at the minimum point. Therefore, we will impose
constraints on the subgradient sets of functions to be minimized, similar to those for the set
G. Due to the biases in the minimization algorithm, we need to define the constraints, taking
into account the union of subgradient sets in the neighborhood of the current minimum
point xk, and use these characteristics based on Theorem 4 results to develop a stopping
criterion for the algorithm for solving systems of inequalities.

5. Minimization Algorithm

Since in the subgradient set at point xk+1 an exact one-dimensional search is per-
formed,there is always a subgradient satisfying condition (6): (sk+1, gk+1) ≤ 0. For ex-
ample, for smooth functions, the equality (sk+1, gk+1) = 0 holds. Therefore, vector gk+1
can be used in Algorithm 1 to find a new descent vector approximation. In the built-in
algorithm for solving systems of inequalities, the dilation parameter is chosen to solve the
system of inequalities for the union of subgradient sets in some neighborhood of current
approximation xk. This allows the minimization algorithm to leave the neighborhood after
a finite number of iterations.

Due to possible significant biases during the operation of the minimization algorithm,
the shell of the subgradient set involved in the learning may contain a zero vector. To
avoid situations when there is no solution similar to (5) for the subgradient set from the
operational area of the algorithm, we introduce an update to the algorithm of solving
systems of inequalities. To track the updates, we used a stopping criterion, formulated
based on Theorem 4’s results.

To accurately determine the parameters of the algorithm involved in the calculation of
the dilation parameters αyk and αgk, we define their calculation in the form of operators.
Denote by AL2

g(M, H, g−1, g) the operator of calculation α2
gk according to (45) and (46) in

Lemma 5, which is α2
gk = AL2

yg(M, Hk, gk−1, gk). For α2
yk’s calculation according to expres-

sions (47)–(49) in Lemma 6, we introduce operator AL2
yg(M, H, g−1, g), where parameters

H, g−1, g correspond to set Hk, gk−1, gk.
A description of the minimization method is given in Algorithm 2.
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Algorithm 2 RA(α).

1: Set x0 ∈ Rn, w0 = x0, k = q = l = 0, s0 = 0, H0 = I. Set σ > 0, parameters M > 0,
r = 1/M and the limit α for the dilation parameter according to equality (44). Compute
g0 ∈ ∂ f (x0).

2: If gk = 0 then
stop the algorithm

end if
3: If (gk, Hkgk)/(gk, gk) < σ then

update q = q + 1, wq = xk, l = 0, Hk = I, sk = 0
end if

4: If l = 0 or (gk, Hkgk−1) > 0 then
go to step 7

end if
5: Compute vector pk = gk − gk−1(gk, Hkgk−1)/(gk−1, Hkgk−1) and perform transforma-

tion (18) sk+1 = S(sk, gk, pk, Hk). Compute the limit of the admissible value of the
dilation parameter α2

yk = AL2
y(M, Hk, gk−1, gk) for the combination of transformations

(18) and (19)
6: If α2

yk ≥ α2 then

set αk satisfying the inequalities α2 ≤ α2
k ≤ α2

yk and perform transformation (19)
Hk+1 = H(Hk, αk, yk)

else
compute the limit of the admissible value of the dilation parameter
α2

gk = AL2
g(M, Hk, gk−1, gk) for the combination of transformations (18) and (14), set

αk satisfying the inequalities α2 ≤ α2
k ≤ α2

gk and perform transformation (14)
Hk+1 = H(Hk, αk, gk). Go to step 8

end if
7: Set α2

k = α2 and perform transformations (13), (14) sk+1 = S(sk, gk, gk, Hk),
Hk+1 = H(Hk, αk, gk)

8: Find a new approximation of the minimum point xk+1 = xk − γksk+1,
γk = arg minγ f (xk − γsk+1)

9: Compute subgradient gk+1 ∈ ∂ f (xk+1), based on the condition (gk+1, sk+1) ≤ 0.
10: Increase k and l by one and go to step 2

At step 9, due to the condition of the exact one-dimensional descent at step 8, the
sought subgradient always exists. This follows from the condition for the extremum of the
one-dimensional function. For the sequence of approximations of the algorithm, due to the
exact one-dimensional descent at step 8, the following lemma holds [20].

Lemma 7. Let function f (x) be strictly convex on Rn, let set D(x0) be limited, and let the sequence
{xk}∞

k=0 be such that f (xk+1) = minγ∈[0,1] f (xk + γ(xk+1 − xk)). Then, limk−→∞ ‖xk+1 −
xk‖ = 0.

Denote D(z) = {x ∈ Rn | f (x) ≤ f (z)}. Let x∗ be a minimum point of function
and let x∗ be limit points of the sequence {wq} generated by Algorithm 2 (RA(α)). The
existence of limit points of a sequence {wq} when the set D(x0) is bounded follows from
wq ∈ D(x0). Concerning the convergence of the algorithm, we formulate the following
theorem [1].

Theorem 5. Let function f (x) be strictly convex on Rn; let set D(x0) be bounded, and for x 6= x∗,

r(∂ f (x)) ≥ r0 > 0, (55)

V(∂ f (x)) ≥ V0 > 0, (56)
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where parameters M, r and α of Algorithm 2 are given according to the equalities

M =
4
3

r0, r =
3
4

r0, α =
1

1− 3r0/4
, (57)

and parameters αk, set at steps 5 and 7, are fixed as αk = α. In this case, if σ = (3V0/4)2, then any
limit point of the sequence {wq} generated by Algorithm 2 (RA(α)) is a minimum point on Rn.

6. Relationship between the Relaxation Subgradient Method and the Conjugate
Gradient Method

Let us establish the identity of the sequences generated by the conjugate gradient
method and the relaxation subgradient method with space dilation on the minimization of
quadratic functions:

f (x) =
1
2
(x, Ax) + (b, x) + c, A ∈ Rn×n, A > 0, b ∈ Rn.

Suppose that the number of iterations without updating the relaxation subgradient method
and the conjugate gradient method is the same and equal to m ≤ n. Denote by ∇ f (x) the
function gradient at point x. Denote by gk = ∇ f (xk) the gradients at the points of the
current minimum approximation xk and denote by x0 ∈ Rn the initial point. Iterations of
the subgradient method for the purposes of its comparison with the conjugate gradient
method are briefly represented in Algorithm 3 (SSG).

As we will see below, metric transformations for establishing the identity of the
approximation sequences of the subgradient method and the method of conjugate gradients
on quadratic functions are not essential. Therefore, in this scheme, there are no details of
the choice of space dilation transformations and their parameters.

Algorithm 3 SSG

1: Set initial point x0 ∈ Rn, s0 = 0, H0 = I.
2: For k = 0, 1, ..., m < n do

2.1 Compute sk+1 as:

sk+1 = sk + Hk pk
1− (sk, gk)

(gk, Hk pk)
, (58)

where

pk =

{
gk, if (k ≥ 1 and (gk−1, Hkgk−1) > 0) or k = 0,

gk −
gk−1(gk ,Hk gk−1)
(gk−1,Hk gk−1)

, otherwise.
(59)

2.2 Perform metric transformation according to one of the formulas (14) or (19)
according to Algorithm 2 (RA(α)):

Hk+1 = Hk − (1− 1
α2

k
)

HkzkzT
k HT

k
(zk, Hkzk)

, (60)

where zk = gk in the case of transformation (14) and zk = gk − gk−1
in the case of transformation (19)

2.3 Execute the descent step: xk+1 = xk − γksk+1, γk = arg minγ f (xk − γsk+1)
endfor

Iterations of the conjugate gradient method are carried out according to the Algo-
rithm 4 scheme (see, for instance, [17]):
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Algorithm 4 SG

1: Set initial point x̄0 ∈ Rn

2: For k = 0, 1, . . . , m < n do
2.1 Compute x̄k+1 = x̄k − γ̄ksk+1, γ̄k = arg minγ̄ f (x̄k − γ̄s̄k+1)

where

s̄k = ḡk + βk s̄k−1, ḡk = ∇ f (x̄k), (61)

βk =

{
0, if k = 0,

(gk ,gk)
(gk−1,gk−1)

, otherwise.

endfor

The following theorem gives conditions for the equivalence of methods for minimizing
quadratic functions:

Theorem 6. Let function f (x) be quadratic, and for the SSG process matrix H0 = I, αk ≥ 1.
Then, if the initial points for the SSG and SG processes coincide, x0 = x̄0, and for any m > k ≥ 0,
until a solution is found, the following sequences coincide:

xk = x̄k (62)

sk =
s̄k

(gk, gk)
, (63)

i.e., both processes generate coincident successive approximations.

Proof. We carry out the proof by induction. With k = 0, Equalities (62) and (63) hold, since,
according to (59), pk = gk, taking into account s0 = 0, we obtain:

s1 = s0 + Ig0
1− (s0, gk)

(g0, Ig0)
=

g0

(g0, g0)
.

According to (61) with β0 = 0, we have s̄0 = ḡ0 = g0.
Assume that equalities (62) and (63) are satisfied for k = 0, 1, . . . , l, where l > 0. Let us

show that they are satisfied for k = l + 1.
Since xl = x̄l , vectors sl and s̄l are collinear, then by virtue of the condition of exact

one-dimensional descent x̄l+1 = xl+1. For the conjugate gradient method, the gradient
vectors calculated during the operation of the algorithm are mutually orthogonal [17].
Therefore, by virtue of (62), all of the vectors g0, g1, . . . , gl will be mutually orthogonal.
Using the recursive transformation of inverse matrices for (60),

Ak+1 = Ak + (α2
k − 1)

zkzT
k

(zk, Hkzk)
,

we obtain an expression for the matrix Al ,

Al = I +
l−1

∑
k=0

(α2
k − 1)

zkzT
k

(zk, Hkzk)
.

Since in (60), vectors zk = gk or zk = gk − gk−1, then, in this expression, all vectors
zk, k = 0, 1, . . . , l − 1 participating in the formation of matrix Al are orthogonal to vector gl .
Therefore, Al gl = gl . This implies the equality Hl gl = gl . Due to the orthogonality of the
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vectors gl , gl−1, according to (59), equality pl = gl holds. By virtue of the condition of the
exact one-dimensional descent, (sl , gl) = 0. In view of the above, from (58), we obtain:

sl+1 = sl +
Hl gl

(gl , Hl gl)
=

s̄l
(gl−1, gl−1)

+
gl

(gl , gl)
.

Multiplying the last equality by (gl , gl), we obtain a proof of equality (63) for k = l + 1:

sl+1(gl , gl) = s̄l
(gl , gl)

(gl−1, gl−1)
+ gl = s̄l+1.

Note. For an arbitrary initial matrix H0 > 0, one should pass to the coordinate system,
where the initial matrix H̃0 = I, and in the new coordinate system, one should use the
results of Theorem 6.

The presented RSMM with space dilation in an exact one-dimensional search has the
properties of the conjugate gradient method. On a quadratic function, it is equivalent to
the conjugate gradient method.

7. One-Dimensional Search Algorithm

Consider a one-dimensional minimization algorithm for process (4). Computational
experience shows that the one-dimensional search algorithm in relaxation subgradient
methods should have the following properties:

1. An overly accurate one-dimensional search in subgradient methods leads to poor
convergence. The search should be adequately rough.

2. At the iteration of the method, the search step should be large enough to leave a
sufficiently large neighborhood of the current minimum.

3. To ensure the position of the previous paragraph, it should be possible to increase the
search step faster than the possibilities of decreasing it.

4. In PCM, a one-dimensional search should provide over-relaxation, that is, overshoot
the point of a one-dimensional minimum along the direction of descent when imple-
menting iteration (4). This provides condition (6), which is necessary for the learning
process.

5. When implementing one-dimensional descent along the direction at iteration (4), as a
new approximation of the minimum, one can take the points with the smallest value
of the function, and for training, one can take the points that ensure condition (6).

We use the implementation of the one-dimensional minimization procedure proposed
in [26]. The set of input parameters is {x, s, gx, fx, h0}, where x is the current minimum
approximation point, s is the descent direction, h0 is the initial search step, and fx =
f (x), gx ∈ ∂ f (x); moreover, the necessary condition for the possibility of decreasing
the function along the direction (gx, s) > 0 must be satisfied. Its output parameters are
{γm, fm, gm, γ1, g1, h1}. Here, γm is a step to the new minimum approximation point

x+ = x− γms, fm = f (x+), gm ∈ ∂ f (x+),

where γ1 is a step along s, such that at the point z+ = x− γ1s for subgradient g0 ∈ ∂ f (z+),
inequality (g0, s) ≤ 0 holds. This subgradient is used in the learning algorithm. The
output parameter h1 is the initial descent step for the next iteration. Step h1 is adjusted in
order to reduce the number of calls to the procedure for calculating the function and the
subgradient.

In the minimization algorithm, vector g0 ∈ ∂ f (z+) is used to solve the system of
inequalities, and point x+ = x− γms is a new minimum approximation point.

Denote the call to the procedure of one-dimensional minimization as
OM({x, s, gx, fx, h0}; {γm, fm, gm, γ0, g0, h1}). Here is a brief description of it. We introduce



Mathematics 2022, 10, 3959 19 of 33

the one-dimensional function ϕ(β) = f (x− βs). To localize its minimum, we take an in-
creasing sequence β0 = 0 and βih0qi−1

M with i ≥ 1. Here, qM > 1 is step increase parameter.
In most cases, qM = 3 is set. Denote zi = x− βis, ri ∈ ∂ f (zi), i = 0, 1, 2, . . . ; l is the number
i at which the relation (ri, s) = 0 holds. Let us determine the parameters of the localization
segment [γ0, γ1] of the one-dimensional minimum γ0 = βl−1, f0 = f (zl−1), g0 = ri−1,
γ1 = βl , f1 = f (zl), g0 = rl and find the minimum point γ∗ using a cubic approximation of
function [48] on the localization segment using the values of the one-dimensional function
and its derivative. Compute

γm =


0.1γ1, if l = 1 and γ∗ ≤ 0.1γ1,
γ1, if γ1 − γ∗ ≤ 0.2(γ1 − γ0),
γ0, if l > 1 and γ∗ − γ0 ≤ 0.2(γ1 − γ0),
γ∗, otherwise.

The initial descent step for the next iteration is defined by the rule h1 = qmh0(γ1/h0)
1/2.

Here, qm < 1 is the parameter of the descent step decrease, which, in most cases, is given
as qm = 0.8. In the overwhelming majority, when solving applied problems, the set of
parameters {qM = 3, qm = 0.8} is satisfactory. When solving complex problems with a
high degree of level surface elongation, the parameter qm → 1 should be increased.

8. Implementation of the Minimization Algorithm

Algorithm 2 (RA(α)), as a result of updates at step 3, loses information about the
space metric. In the proposed algorithm, the matrix update is replaced by the correction
of the diagonal elements, and exact one-dimensional descent by approximate. Denote
by Sp(H) the matrix H’s trace and denote by εH the limit of admissible decrease in the
matrix H’s trace. The algorithm sets the initial metric matrix H0 = I. Since, as a result of
transformations, the elements of the matrix decrease, then when the trace of the matrix
decreases, Sp(H) ≤ εH , it is corrected using the transformation H+ = nH/Sp(H), where
εH is a lower bound for trace reduction, and n is the space dimension. As an indicator
of matrix degeneracy, we use the cosine of the angle between vectors g and Hg. When
it decreases to a certain value ελ, which can be done by checking (g, Hg) ≤ ελ||g||||Hg||,
transformation H+ = H + 10ελ I is performed. Here, I is the identity matrix and ελ is
the cosine angle limit. To describe the algorithm, we will use the previously introduced
operators.

Let us explain the actions of the algorithm. Since s0 = 0, then at k = 0, condition (6) is
satisfied, and (sk, gk) ≤ 0 and gO

0 = g0. Therefore, at step 8, learning iterations (13) and (14)
will be implemented. According to the algorithm of the OM procedure, the subgradient
gO

k+1 obtained at step 10 of the algorithm satisfies the condition (6): (gO
k+1, sk+1) ≤ 0.

Therefore, at the next iteration, it is used in learning in steps 6–8.
At step 9, an additional correction of the descent direction is made in order to provide

the necessary condition (gk, sk+1) > 0 for the possibility of descent in the direction opposite
to sk+1. From the point of view of solving the system of inequalities, this correction also
improves the descent vector, which can be shown using Figure 5. Here, as under the
conditions of Lemma 4, the movement is made in the direction AB, not from point A,
but from some point of the segment AB, where (s1/2

k+1, gk) < 1. Since the projection of the
optimal solution is in the area between the straight lines Z1, ZM, the shift to point B, where
(sk+1, gk) = 1, reduces the distance to the optimal vector.

An effective set of parameters for the OM in the minimization algorithm is
{qm = 0.8, qM = 3}. The next section presents the results of numerical studies of the
presented Algorithm 5.
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Algorithm 5 RAOM(α)

1: Set x0 ∈ Rn, w0 = x0, k = 0, s0 = 0, H0 = I. Set εH > 0, ελ > 0, M > 0, r = 1/M
and the limit α for the dilation parameter according to equality (44) α2 = M2/(M− 1)2.
Compute fk = f (x0). Set gO

0 = g0, f min
k = f0, xmin

k = x0.
2: If gk = 0 then

stop the algorithm
3: If (gk, Hkgk) ≤ ελ||gk||||Hkgk|| then

Hk = nHk/Sp(Hk)
4: If Sp(Hk) ≤ εH then

Hk = Hk + 10ελ I
5: If k = 0 or (gk, Hkgk−1) > 0 then

go to step 8
6: Perform transformations (17) and (18) for the training system of subgradients: pk =

gO
k − gk−1(gO

k , Hkgk−1)/(gk−1, Hkgk−1), s1/2
k+1 = S(sk, gO

k , pk, Hk). Compute the limit of
the dilation parameter α2

yk = AL2
y(M, Hk, gk−1, gO

k ) for the combination of transforma-
tions (18) and (19)

7: If α2
yk ≥ α2 then

set αk satisfying the inequalities α2 ≤ α2
k ≤ α2

yk and perform transformation (19)

Hk+1 = H(Hk, αk, yk) with yk = gO
k − gk−1

else
compute the limit of the dilation parameter α2

gk = AL2
g(M, Hk, gk−1, gO

k )

for the combination of transformations (18), (14), set αk satisfying the inequalities
α2 ≤ α2

k ≤ α2
gk and perform transformation (14) Hk+1 = H(Hk, αk, gO

k ).
Go to step 9

8: Set α2
k = α2 and perform transformations (13), (14) s1/2

k+1 = S(sk, gO
k , gO

k , Hk),
Hk+1 = H(Hk, αk, gO

k )

9: If (s1/2
k+1, gk) < 1 then

perform transformation sk+1 = S(s1/2
k+1, gk, gk, Hk+1)

else
sk+1 = s1/2

k+1
10: Perform one-dimensional minimization OM({xk, sk, gk+1, fk, hk} ;
{γk+1, fk+1, gk+1, gO

k+1, hk+1}) and compute a new approximation of the minimum
point xk+1 = xk − γk+1sk+1

11: If f min
k > fk+1 then
set f min

k+1 = fk+1, xmin
k+1 = xk+1

else
set f min

k+1 = f min
k , xmin

k+1 = xmin
k

Here, the subgradient gk+1 ∈ ∂ f (xk+1) is obtained in the OM procedure and is used as
the current approximation of the minimum. Subgradient gO

k+1 is also obtained in the
OM procedure. It satisfies condition (6) (gO

k+1, sk+1) ≤ 0 and is further used in training

12: If ||xk+1 − xk|| ≤ εx then
stop the algorithm

else
increase k by one and go to step 2

9. Computational Experiment Results

In this section, we conduct a computational experiment on minimizing test functions
using the following methods: (1) the relaxation method with space dilation in the direction
of the subgradient (RSD) [26]; (2) the r-algorithm (rOM(α)) [22,26]; (3) the quasi-Newtonian
method (QN) implemented with the matrix transformation formula BFGS; (4) algorithm
RA(α) with the fixed parameter (RA(α = const)), where α2 = 6; (5) an algorithm with a
dynamic way to select the space dilation parameter (RA(αk)), where α2 = 6.
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As test functions, we took functions with a high degree of level surface elongation,
which increases with the dimension:

(1) f1(x) = ∑n
i=1 x2

i i6, x0 = (10/1, 10/2, . . . , 10/n), ε = 10−10 ;
(2) f2(x) = ∑n

i=1 x2
i (n/i)6, x0 = (10/1, 10/2, . . . , 10/n), ε = 10−10;

(3) f3(x) = (∑n
i=1 x2

i i)r, x0 = (1, 1, . . . , 1), r = 2, ε = 10−10;
(4) f4(x) = ∑n

i=1 |xi|i3, x0 = (10/1, 10/2, . . . , 10/n), ε = 10−4 ;
(5) f5(x) = max1≤i≤n(|xi|i3), x0 = (10/1, 10/2, . . . , 10/n), ε = 10−4.

When testing the methods, the values of the function and the subgradient were
computed simultaneously. Parameter ε for quadratic functions was chosen as a sufficiently
small value (10−10); for non-smooth functions, it was chosen so that the accuracies in terms
of variables are approximately the same for different types of functions. Tables 1–6 show
the number of calculations of the function values and the subgradient values necessary
for achieving the required accuracy for the function f (xk)− f ∗ ≤ ε. The initial point of
minimization x0 and the value ε are given in the description of the function.

The test case contains quadratic and piecewise linear functions. Due to their simplicity
and unambiguity, an analysis of the level surface elongation can be carried out easily. This
choice of functions is due to the fact that, during minimization, the local representation in the
current minimization area, as a rule, has either a quadratic or piecewise linear representation.

Functions 1 and 2 are quadratic, where the ratio of the minimum to maximum eigen-
value is 1/n6. The ratio of the level surface range along the coordinate axes of the minimum
to the maximum is equal to 1/n3. Function 2, in comparison with function 1, has a higher
density of eigenvalues in the region of small values. Function 3 is smooth with a low
degree of variation of the level surface elongation. Its complexity is due to the degree
above quadratic. Functions 4 and 5 are piecewise. For these functions, the ratio of the level
surface range along the coordinate axes of the minimum to the maximum is equal to 1/n3.
the same as for quadratic functions 1 and 2. It is of interest to compare the complexity
of minimizing smooth and nonsmooth functions by nonsmooth optimization methods
provided that their ratios of the surface range are identical.

None of problems 1, 2, 4 and 5 can be solved by the multistep minimization method [24]
for n ≥ 100, which emphasizes the relevance of methods with a change in the space met-
ric, in particular, space dilation minimization algorithms capable of solving nonsmooth
minimization problems with a high degree of level surface elongation.

In order to identify the least costly one-dimensional search in the quasi-Newtonian
method, it was implemented in various ways when specifying the initial unit step. Due to
the high degree of condition number for functions 1 and 2, for the best of them, the costs of
localizing a one-dimensional minimum when minimizing function 1 include about 2–4 steps.
This, together with the final iteration of the approximation and finding the minimum on the
localized segment, adds up to 3–5 calculations of the function and the gradient. For function
2, the total iteration costs are 5–10 calculations of the function and the gradient. Tables 1–3
for the QN method show only the number of iterations required to solve the problem.

Table 1. Function f1(x) minimization results.

n RA(αk) RA(α = const) RSD rOM(α) QN

100 1494 1834 2127 2333 107
200 3474 3896 4585 5244 216
300 5507 6317 7117 8480 324
400 7690 8548 9791 11,773 432
500 9760 11,510 12,366 15,281 542
600 12,133 13,889 15,537 19,073 650
700 13,933 16,394 18,450 22,500 757
800 16,492 18,721 21,387 26,096 867
900 17,774 21,606 24,671 30,233 975

1000 20,324 24,206 27,447 34,702 1084
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Table 2. Function f2(x) minimization results.

n RA(αk) RA(α = const) RSD rOM(α) QN

100 304 381 480 482 124
200 525 621 788 852 239
300 715 842 1063 1223 336
400 869 1015 1307 1587 423
500 1065 1241 1497 1900 504
600 1217 1368 1742 2188 582
700 1366 1527 1898 2512 658
800 1465 1721 2095 2829 733
900 1602 1885 2293 3101 855

1000 1791 2019 2555 3300 1022

According to the results of Tables 1 and 2, the RA(α = const) algorithm outperforms
the RSD and rOM(α) methods on smooth functions. Therefore, the changes in the directions
of correction and space dilation have a positive effect on the convergence rate of the new
algorithm. In the RA(αk) algorithm, compared to RA(α = const), an additional factor of
convergence acceleration is involved due to an increase in the space dilation parameter,
which, according to the results of Tables 1 and 2, led to an increase in the RA(α = const)
algorithm’s convergence rate.

For function 2, the eigenvalues of the Hessian are shifted to the small values area,
which has a positive effect on the convergence rate of subgradient methods. Here, the
quasi-Newtonian method QN, taking into account the costs of localizing the minimum
in a one-dimensional search, required a larger number of calculations of the function
and gradient.

Table 3. Function f3(x) minimization results.

n RA(αk) RA(α = const) RSD rOM(α) QN

200 159 148 365 295 440
400 221 200 395 505 638
600 258 248 409 702 833
800 295 280 421 900 1030

1000 336 317 433 1094 1205

For function 3, the number of iterations of the quasi-Newtonian method turned
out to be higher than the number of calculations of the function and the gradient of
subgradient methods. Based on the results of minimizing functions 1–3, we can conclude
that subgradient methods with space dilation can also be useful in minimizing smooth
functions. New methods RA(αk) and RA(α = const) show better results here than other
algorithms with space dilation.

Table 4. Function f4(x) minimization results.

n RA(αk) RA(α = const) RSD rOM(α)

100 2248 2714 4214 3505
200 4988 6010 9087 8826
300 7680 9301 11,144 14,018
400 10,625 12,808 23,687 19,549
500 13,490 16,656 28,037 24,865
600 16,466 20,207 39,703 31,502
700 20,122 22,850 44,573 38,796
800 23,016 27,653 52,380 44,200
900 25,913 31,982 61,631 43,502

1000 28,962 35,792 72,175 49,050
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Table 5. Function f4(x) minimization results with subgradient distortion.

n RA(αk) RA(α = const) RSD rOM(α)

100 2505 3135 5739 4777
200 5538 7393 13,364 10,665
300 9033 11,646 20,589 16,889
400 12,886 18,705 30,132 23,397
500 18,490 22,059 35,544 30.015
600 20,742 29,976 47,664 36,749
700 25,524 39,258 54,768 43,589
800 30,462 43,961 68,944 50,737
900 33,570 44,089 78,697 57,817

1000 39,764 49,772 82,490 64,777

According to the ratio of the level surface range along the coordinate axes, functions 1,
2, and 4 are similar. Function 4 is difficult to minimize by subgradient methods. Comparing
the results of Tables 1 and 4, we can note insignificant differences in the convergence rate
of subgradient methods on these functions, which is additional evidence of the method’s
effectiveness in solving nonsmooth optimization problems.

To simulate the presence of the thickness of the subgradient set when minimizing
function 4, the subgradients g(x) ∈ ∂ f (x) in the process of minimization were generated
with interference according to the g(x) ∈ (1 + ξ)∂ f (x), where ξ ∈ [0, 1] is a uniformly
distributed random number. The interference negatively affects both the quality of the
one-dimensional search and the quality of the descent direction. The results are shown
in Table 5. Here, the maximum possible value of the characteristic of a subgradient set
M = Rs/ρ = 2. Due to the random nature of the quantities ξ ∈ [0, 1], the value of M for
a set of subgradients on a certain time interval of minimization may have smaller values.
According to the results of Lemma 4, the admissible value is α2 = M2/(M− 1)2 = 4. The
calculations were carried out at large values of the space dilation parameter α2 = 6. The
proposed methods also show significantly better results here.

The ratios of the level surface range along the coordinate axes for functions 5 and 1
are similar. The results for function 5 are shown in Table 6. Here, the RSD method has an
advantage due to the fact that the function is separable and all of its subgradients calculated
in the minimization procedure are directed along the coordinate axes. Space dilations occur
along the coordinate axes, which does not change the eigenvectors of the metric matrix
directed along the coordinate axes.

Table 6. Function f5(x) minimization results.

n RA(αk) RA(α = const) RSD rOM(α)

200 3401 3551 3151 6906
400 7483 7707 6431 14,596
600 11,678 11,851 10,280 22,853
800 15,868 16,088 14,020 31,259

1000 19,893 20,867 17,707 39,275

To simulate the presence of the thickness of the subgradient set when minimizing
function 5, the subgradients g(x) ∈ ∂ f (x) in the process of minimization were generated with
interference according to the g(x) ∈ (1 + ξ)∂ f (x), where ξ ∈ [0, 1] is uniformly distributed
random number. The results for function 5 with subgraduient distortion are shown in Table 7.
Here, the maximum possible value of the characteristic of a subgradient set M = Rs/ρ = 2.
The proposed methods show better results here than the RSD and rOM(α) methods.
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Table 7. Function f5(x) minimization results with subgradient distortion.

n RA(αk) RA(α = const) RSD rOM(α)

200 3773 3816 6805 7463
400 7976 8370 16,188 15,246
600 12,654 13,548 24,873 24,542
800 17,286 18,411 35,251 33,600

1000 22,344 23,559 46,873 41,773

A number of conclusions can be drawn regarding the convergence rate of the pre-
sented methods:

1. Functions 1, 2, 4, 5 have a significant degree of level surface elongation. The problems
of minimizing these functions could not be solved by the multistep minimization
methods investigated in [24], which emphasize the relevance of developing methods
with a change in the space metric, in particular, space dilation minimization algorithms
capable of solving nonsmooth minimization problems with a high degree of level
surface elongation.

2. Based on the results of minimizing smooth functions 1–3, we can conclude that
subgradient methods with space dilation can also be useful in minimizing smooth
functions. At the same time, the new algorithms RA(αk) and RA(α = const) also
show significantly better results on smooth functions than other subgradient RSD
and rOM(α) methods.

3. The new methods RA(αk) and RA(α = const) significantly outperform the RSD and
rOM(α) methods when minimizing nonsmooth functions. In the RA(αk) algorithm,
in comparison with the RA(α = const) algorithm, an additional factor of convergence
acceleration is involved due to an increase in the space dilation parameter, which also
leads to a significant increase in the convergence rate.

10. Computational Experiment Results in Approximation by Neural Networks

The purpose of this section is to demonstrate the usefulness of applying the methods
of nonsmooth regularization (for example, the “Tibshirani lasso” [3]) to the problems of the
elimination of uninformative variables when constructing mathematical models, where
a necessary element of the technology is rapidly converging nonsmooth optimization
methods applicable to minimize nonsmooth nonconvex functions. In this section, we
will give several examples of approximation by artificial neural networks (ANN) using
nonsmooth regularization to remove uninformative neurons. To assess the quality of this
approximation technology using nonsmooth regularization, the obtained approximation
results are compared with the previously known results. In each of the examples, a study
of the effectiveness of the presented nonsmooth optimization methods will be carried out.

Consider the approximation problem

w∗ = arg min
w

E(α, w, D), (64)

E(α, w, D) = ∑
x,y∈D

(y− f (x, w))2 + αRi(w),

where D = {(xi, yi)|xi ∈ Rp, yi ∈ R1}, i = 1, . . . , N are observational data, Ri(w) are
different kinds of regularizers, α are regularization parameters, f (x, w) is an approximating
function, x ∈ Rp is a data vector, w ∈ Rn is a vector of the tunable parameters, and p and n
are their dimensions. Formulas (1)–(3) can be used as regularizers.

Suppose that in the problem of approximation by a feedforward network, it is required
to train a two-layer sigmoidal neural network of the following form using data D (i.e.,
evaluate its unknown parameters w)
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f (x, w) = w(2)
0 +

m

∑
i=1

w(2)
i ϕ(si), ϕ(s) = 1/(1 + e−s). (65)

For the sigmoidal network

si = w(1)
i0 +

p

∑
j=1

xjw
(1)
ij , i = 1, 2, . . . , m, (66)

where xj are components of vector x ∈ Rp, w = ((w(2)
i , i = 0, . . . , m), (w(1)

ij , j = 0, . . . , p,
i = 1, . . . , n)) is a set of parameters, the total number of which is denoted by n, ϕ(s) is a
neuron activation function, and m is the number of neurons. The unknown parameters w
must be estimated by the least squares method (64) using one of the regularizers Ri(w). To
solve problem (64), we use subgradient methods.

In a radial basis function (RBF) network, we will use the following representation of
a neuron

si =
p

∑
j=1

(w(1)
ij (xj − cij))

2, i = 1, 2, ..., m, (67)

where xj are components of vector x ∈ Rp, and the network parameters will be as follows:

w = ((w(2)
i , i = 0, . . . , m), (w(1)

ij , j = 0, . . . , p, i = 1, . . . , m), (w(0)
ij = cij, j = 0, . . . , p, i = 1, . . . , m)).

One of the goals of our study is to compare the effectiveness of subgradient methods
in solving the problem of approximating a two-layer sigmoidal ANN under conditions of
reducing the number of excess neurons using various regularization functionals. To assess
the quality of the solution, we will use the value of the root-mean-square error:

S(D, f ) = ∑
x,y∈D

(y− f (x, w))2/N

on a test sample of data D = DT10.000 uniformly distributed in Ω.
In the algorithm we use (Algorithm 6), at the initial stage, an approximation of the

ANN is found with a fixed position of the neurons’ working areas using the specified
centers ci ∈ Rp, i = 1, 2, . . . , m in the approximation area defined by the data. By neuron
working area, we mean the area of significant changes in the neuron activation function.
The need for fixation arises due to the possible displacement of the working areas of
neurons outside the data area. As a result, the neuron in the data area turns into a constant.
For the RBF networks (65) and (67), this is easy to do, since the parameters of the centers
are present in expression (67). For RBF networks (65) and (66), instead of (66), the following
expression will be used:

si =
p

∑
j=1

(xj − cij)w
(1)
ij , i = 1, 2, . . . , m, (68)

where vector w components do not contain free members. In this case, some center ci is
located on the central hyperplane of the working band of a sigmoidal neuron. Centers ci
inside the data area can be found by some data clustering algorithm xi ∈ Rp, i = 1, . . . , N,
which will ensure that neurons are located in areas with high data density. We use the
maximin algorithm [45] in which two data points that are maximally distant from each other
are selected as the first two centers. Each new center is obtained by choosing data point
xi, the distance from which to the nearest known center is at its maximum. The resulting
centers are mainly located on the edges of the data area. Computational experience shows
that the use of the k-means method turns out to be ineffective, or effective with a small
number of iterations.
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Algorithm 6 Training Algorithm

1: On the data D, using the maximin algorithm, form the centers ci ∈ Rp, i = 1, 2, . . . , m,
where m is the initial number of neurons. Set the regularization parameter α and the
type of regularizer Ri(w). Using a generator of uniformly distributed random numbers
for each neuron, determine the initial parameters of the ANN.

2: Solve the problem of estimating the parameters W of the neural network (64) for an
ANN at fixed centers ci ∈ Rp, i = 1, 2, . . . , m with a regularizer Ri(w). Create an
initial set of parameters for solving the problem of estimating network parameters (64)
without fixing the centers of neurons. The resulting set of parameters is denoted by W0.

3: For k = 0, 1, . . . do
3.1 Set S0 = S(D, f k), where f k is a neural network obtained as a result of solving
problem (64) at the current iteration. Perform sequential removal of all neurons

for
which, after removal, inequality S(D, f̃ k) ≤ (1 + εps)S0 is satisfied, where εps =

0.1,
f̃ k is a neural network with removed neurons. If none of the neurons could be

removed,
then the neuron is removed, leading to the smallest increase in the value S(D, f̃ k).
3.2 If the number of neurons is less than three, then

stop the algorithm
endif

3.3 Using the neural network parameters for the remaining neurons as initial
values, obtain

a new approximation Wk+1, solving problem (64) for the ANN with regularizer
Ri(w)
endfor

Initially, problem (64) is solved with an excess number of neurons at fixed centers
ci ∈ Rp, i = 1, . . . , m for the RBF network in the forms (65) and (67) or for a sigmoidal
network in the forms (65) and (68). Regularization even with an excessive number of
parameters in comparison with the amount of data allows, at this stage, to obtain an
acceptable solution.

After solving problem (4) with fixed centers, it is necessary to return to the original
description for the sigmoidal network in the forms (65) and (66). This can be done through
the formation of a free member of the neuron

w(1)
i0 = −

p

∑
j=1

cijw
(1)
ij , i = 1, 2, . . . , m,

while leaving the other parameters unchanged. Such an algorithm for finding the initial
approximation of the sigmoidal ANN guarantees that the data area will be covered by the
working areas of neurons.

Here is a brief description of the algorithm for constructing an ANN. The algorithm
first finds the initial approximation for fixed working areas of neurons and then iterates the
removal of insignificant neurons, which is followed by training the trimmed network.

With a limited number of data, ANN f (x, Wk) with a number of parameters n not
exceeding N and the smallest value of Sk = S(D, f k) is selected as the final approxima-
tion model.

Consider examples of solving approximation problems. Tables 8–10 show the value
of S(DT10.000, f ) calculated during the operation of the network learning algorithm with the
sequential removal of insignificant neurons after network training at step 3.3. The first row of
each table contains the function fi(x) to be approximated, the initial number of neurons m0,
number of training data N0, the type of regularizer, the regularization parameter α, and the
index deduced by rows. The first two columns indicate the number of neurons and the number
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of ANN parameters. The remaining columns show the values of the index for the tested
methods. The values of the index with the limiting order of accuracy are highlighted in bold.
This allows one to see a segment of maintaining a high quality of the network with a decrease
in the number of neurons for each of the presented minimization algorithms. For some of the
tables, the last row contains the minimum value of the maximum network deviation for the
constructed models on the test data ∆min. The dimensions of problems where the number of
model variables exceeds the number of data are underlined. Standard least squares practice
recommends having more data than the parameters to be estimated. Good values of the index
for this case emphasize the role of regularization in approximation by neural networks.

In [49], in the domain Ω = [−1, 1]× [−1, 1] the function

f6(x) = sin(πx2
1) sin(2πx2)/2

was approximated by the cascade correlation method using data uniformly distributed at
N = 500. The maximum deviation of the ANN obtained in [49] with the number of neurons
m = 41 on the test sample of 1000 data was ∆ ≈ 0.15. Such a result is practically very difficult
to obtain using the standard ANN learning apparatus. The authors in [49] did not succeed in
obtaining such a result without first fixing the position of the working areas of neurons at
the initial stage of the approximation algorithm. In our work, we obtained a series of ANN
models with a smaller number of network training data N = 150 and with an assessment
of the results on a test sample DT10.000 consisting of 10.000 data with good approximation
quality (∆ < 0.09 for selected index values). For example, for some of the constructed models,
∆ ≈ 0.02, which is almost an order of magnitude less than the result from [49].

Table 8 shows the results of the approximation of the function f6(x) using a smooth reg-
ularizer R2(w). The quasi-Newtonian method (QN) was also used here. Using the RA(αk),
RA(α = const) and RSD methods, it is possible to obtain a better quality approximation
with a smaller number of neurons. The QN method is inferior in approximation quality to
subgradient methods. Note that in some cases, the number of network parameters exceeds
the number of data. At the same time, the network quality index is not worse than in the
area with m < 38. For the methods rOM(α) and QN, the best indexes are in the m > 37 area.

Table 8. Results of function f6(x) approximation by a sigmoidal ANN with a regularizer R2(w),
m0 = 50, N0 = 150, α = 10−7, S(DT10.000, f ). The values with the limiting order of accuracy are given
in bold. The dimensions of problems where the number of variables exceeds the number of data are
given in underline.

m n RA(αk) RA(α = const) rOM(α) RSD QN

50 151 0.000271 0.000807 0.000446 0.000389 0.00126
49 197 0.0000228 0.0000699 0.0000153 0.0000601 0.000259
48 193 0.0000171 0.000057 0.0000106 0.0000242 0.00014
47 189 0.00002 0.0000188 0.0000148 0.0000274 0.000129
46 185 0.0000190 0.0000268 0.0000173 0.0000194 0.000693
45 181 0.0000166 0.0000253 0.0000477 0.0000158 0.000774
44 177 0.0000142 0.0000201 0.0000796 0.0000222 0.00442
43 173 0.0000158 0.0000213 0.0000556 0.0000275 0.0038
42 169 0.0000158 0.0000260 0.0000966 0.0000260 0.064
41 165 0.0000168E 0.0000183 0.00022 0.0000384 0.0906
40 161 0.0000289 0.0000673 0.000107 0.00127 0.039
39 157 0.00006 0.0000507 0.000367 0.0000249 0.0597
38 153 0.000036 0.0000656 0.00114 0.0000461 0.0544
37 149 0.0000305 0.0000298 0.000261 0.0000298 0,437
36 145 0.000037 0.0000794 0.00203 0.0000323 0,16
35 141 0.0000437 0.0000294 0.00115 0.0000366 0,256
34 137 0.0000171 0.0000315 0.000965 0.00012 1,82
33 133 0.0000655 0.0000239 0.000547 0.0000886 0,459
32 129 0.000468 0.000014 0.00315 0.000882 2,91
31 125 0.000215 0.000153 0.0115 0.00051 2,22
30 121 0.000175 0.0000624 0.00139 0.003 14,7

∆min 0.0234 0.0236 0.0263 0.0287 0,9
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Table 9 shows the results of approximating function f6(x) by the sigmoidal ANN
using a nonsmooth regularizer R1(w) (“Tibshirani lasso” technique [3]). Here, the trend
in the relative efficiency of the methods continues. Using the RA(αk), RA(α = const) and
RSD methods, it is possible to obtain a better-quality approximation with a smaller number
of neurons.

Table 9. Results of function f6(x) approximation by a sigmoidal ANN with a regularizer R1(w),
m0 = 50, N0 = 150, α = 10−7, S(DT10000, f ). The values with the limiting order of accuracy are given
in bold. The dimensions of problems where the number of variables exceeds the number of data are
given in underline.

m n RA(αk) RA(α = const) rOM(α) RSD

50 151 0.000271 0.000807 0.000446 0.000389
49 197 0.0000214 0.0000158 0.0000182 0.0000315
48 193 0.0000339 0.0000057 0.0000307 0.0000211
47 189 0.0000287 0.00000842 0.0000547 0.0000368
46 185 0.0000139 0.0000106 0.0000341 0.0000443
45 181 0.0000161 0.0000372 0.000103 0.0000371
44 177 0.0000142 0.000008 0.000263 0.0000226
43 173 0.0000232 0.0000139 0.000455 0.0000389
42 169 0.0000317 0.0000348 0.00127 0.0000154
41 165 0.0000259 0.0000657 0.00127 0.000183
40 161 0.0000179 0.0000593 0.00357 0.0000189
39 157 0.0000209 0.000784 0.00163 0.00148
38 153 0.0000239 0.000977 0.000139 0.00537
37 149 0.0000245 0.000478 0.000404 0.000232
36 145 0.0000157 0.000605 0.00042 0.00189
35 141 0.0000148 0.000272 0.00415 0.000476
34 137 0.0000168 0.000353 0.00362 0.000549
33 133 0.0000162 0.00185 0.00246 0.00324
32 129 0.00024 0.000263 0.0019 0.00498
31 125 0.0000891 0.000844 0.000925 0.0134

∆min 0.02 0.025 0.0373 0.03

Table 10 shows the results of approximating function f6(x) by the sigmoidal ANN us-
ing a nonsmooth regularizer Rγ(w). Using the RA(αk), RA(α = const) and RSD methods,
it is possible to obtain a better quality approximation with a smaller number of neurons.
When using a nonsmooth regularizer to approximate a function, it is possible to obtain an
ANN with good approximation quality characteristics with a smaller number of neurons.

Based on the results of Tables 8–10, it can be concluded that the use of regularizers
makes it possible to obtain a qualitative approximation in the case when the number of
parameters of the neural network function exceeds the number of data.

In [49], on the data at N = 625, formed in the domain Ω = [−3, 3] × [−3, 3], the
generator of uniform random numbers approximated the function:

f7(x1, x2) = 3(1− x1)
2e−x2

1−(x2+1) − 10(
x1

5
− x3

1 − x5
2)e

x2
1−x2

2 − e−(x1+1)−x2
2

3
.

The maximum deviation of the ANN constructed in [49], based on RBF, on a test
sample of 1000 data was ∆1000 = 0.06. Function f3 is a typical example of a convenient
radial basis function for approximating a network. In this work, we obtained a series of
ANN models based on RBF with a smaller number of network training data N = 150 and
with an assessment of the results on the test sample DT10.000 consisting of 10.000 data, with
good quality of approximation. For example, several of the constructed models give a
value that is an order of magnitude smaller: ∆10.000 = 0.0024 (see Table 11).

Table 11 shows the value of the index S(DT10.000, f ) calculated during the operation of
the network learning algorithm with the sequential removal of insignificant neurons after
training the network at step 3.3. The initial number of neurons is 36. The first two columns
indicate the number of neurons and the number of ANN parameters. The last row of the
tables shows the maximum deviation of the network for the constructed models on the test
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data ∆min. On this function, the methods RA(αk), RA(α = const) and RSD turned out to
be equivalent in quality of approximation.

Table 10. Results of function f6(x) approximation by a sigmoidal ANN with a regularizer Rγ(w),
m0 = 50, N0 = 150, α = 10−7, S(DT10.000, f ). The values with the limiting order of accuracy are given
in bold. The dimensions of problems where the number of variables exceeds the number of data are
given in underline.

m n RA(αk) RA(α = const) rOM(α) RSD

50 151 0.000271 0.000807 0.000446 0.0000389
49 197 0.0000195 0.0000263 0.0000327 0.0000108
48 193 0.0000292 0.0000272 0.0000207 0.000023
47 189 0.0000257 0.0000134 0.0000981 0.0000355
46 185 0.0000294 0.0000146 0.000906 0.0000502
45 181 0.0000264 0.0000227 0.00031 0.0000761
44 177 0.000032 0.0000331 0.0000578 0.0000773
43 173 0.0000332 0.0000335 0.000986 0.000079
42 169 0.0000307 0.000044 0.000887 0.000079
41 165 0.0000307 0.000044 0.00174 0.000079
40 161 0.000042 0.000044 0.00174 0.000079
39 157 0.0000406 0.000044 0.00126 0.000079
38 153 0.0000241 0.0000466 0.000242 0.0000778
37 149 0.0000477 0.0000407 0.000169 0.0000596
36 145 0.0000267 0.0000571 0.00115 0.0000455
35 141 0.0000297 0.0000286 0.000335 0.0000588
34 137 0.0000185 0.0000192 0.000689 0.000057
33 133 0.0000177 0.000018 0.000598 0.0000593
32 129 0.0000142 0.0000129 0.000795 0.0000464
31 125 0.0000171 0.0000319 0.000402 0.0000608
30 121 0.0000153 0.000168 0.000669 0.0000681
29 117 0.0000138 0.000312 0.00301 0.0000502
28 113 0.0000384 0.000106 0.00117 0.0000405
27 109 0.0000346 0.001 0.00255 0.0000519
26 105 0.0000288 0.000487 0.00374 0.0000674

∆min 0.02 0.026 0.036 0.028

Table 11. Results of function f7(x) approximation by RBF ANN with a regularizer Rγ(w), m0 = 36,
N0 = 150, α = 10−7, S(DT10.000, f ). The values with the limiting order of accuracy are given in bold.
The dimensions of problems where the number of variables exceeds the number of data are given
in underline.

m n RA(αk) RA(α = const) rOM(α) RSD

36 109 0.0706 0.037 0,244 0.0596
35 176 0.000196 0.00214 0.000304 0.000165
34 171 0.00000852 0.000000616 0.0000287 0.00000127
33 166 0.000000445 0.000000128 0.00000736 0.0000000735
32 161 0.000000601 0.000000169 0.00000929 0.000000192
31 156 0.000000229 0.00000017 0.00000491 0.000000193
30 151 0.000000323 0.000000168 0.00000208 0.000000191
29 146 0.000000304 0.000000167 0.00000219 0.00000019
28 136 0.000000273 0.000000168 0.00000102 0.000000192
27 136 0.000000273 0.000000168 0.000000523 0.000000193
26 131 0.000000558 0.000000168 0.000000518 0.000000291
25 126 0.000000187 0.000000166 0.00000046 0.000000291
24 121 0.000000523 0.000000324 0.000000502 0.000000293
23 116 0.000000397 0.000000323 0.00000052 0.000000288
22 116 0.000000397 0.000000319 0.00000052 0.000000214
21 116 0.000000397 0.000000325 0.00000035 0.000000205
20 116 0.000000397 0.000000192 0.000000496 0.000000203
19 96 0.000000521 0.000000195 0.000000529 0.000000161
18 91 0.000000613 0.0000000755 0.000000596 0.000000148
17 86 0.000000747 0.000000103 0.000000392 0.000000138
16 81 0.000000152 0.000000163 0.000181 0.00000014
15 76 0.000000124 0.00000017 0.0000167 0.000000144

∆min 0.0024 0.0024 0.005 0.0025
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In [50], for testing purposes, an RBF ANN was built on data uniformly distributed in
the domain Ω = [−3, 3]× [−3, 3] for function

f8(x1, x2) = x2
1 + x2

2

with the number of data N = 100. In this case, the achieved value of the root-mean-
square error on the training sample is S(D100, f ) = 10−6 [50]. We have built a number of
sigmoidal ANNs with several orders of magnitude lower value of the quality index on a
test sample. The values of the index S(D10.000, f ) = 10−6 on the test sample, depending
on the number of neurons in the ANN, are given in Table 12. Here, as earlier, algorithms
RA(αk) and RA(α = const) manage to obtain a longer series of ANN models with good
quality of approximation.

Table 12. Results of function f8(x) approximation by a sigmoidal ANN with a regularizer Rγ(w),
m0 = 30, N0 = 100, α = 10−7, S(DT10.000, f ). The values with the limiting order of accuracy are given
in bold. The dimensions of problems where the number of variables exceeds the number of data are
given in underline.

m n RA(αk) RA(α = const) rOM(α) RSD

30 91 0.000378 0.00135 0.000179 0.000464
29 117 0.000000041 0.000000437 0.00000121 0.0000112
28 113 0.000000041 0.00000000794 0.00000000707 0.000000866
27 109 0.000000000862 0.00000000343 0.00000000372 0.000000089
26 105 0.000000000711 0.00000000152 0.00000000105 0.00000018
25 101 0.000000000685 0.00000000115 0.00000000341 0.00000000607
24 97 0.00000000567 0.000000000798 0.00000000154 0.00000000091
23 93 0.00000000156 0.000000000717 0.00000000315 0.000000000333
22 89 0.00000000378 0.000000000572 0.00000000435 0.00000000128
21 85 0.00000000272 0.000000000291 0.00000000847 0.00000000127
20 81 0.0000000026 0.000000000246 0.000000108 0.00000000162
19 77 0.000000000888 0.000000000612 0.000000396 0.00000000775
18 73 0.0000000345 0.0000000326 0.0000000162 0.0000000136
17 69 0.00000000114 0.00000000296 0.000000105 0.0000000181
16 65 0.00000000413 0.00000000747 0.000000113 0.000000168
15 61 0.0000000395 0.0000000982 0.0000000495 0.000000054
14 57 0.00000000245 0.0000000221 0.000000328 0.0000000475

∆min 0.000244 0.000293 0.000331 0.000301

In this section, the ANN training technology was presented, where nonsmooth opti-
mization methods are its integral component. A specific feature of the ANN approximation
problems is the absence of convexity of the minimized functions. The fastest methods
RA(αk) and RA(α = const) turn out to be more effective in solving problems of ANN
approximation and make it possible to obtain models with a smaller number of neurons.
Nevertheless, the experience of solving similar problems of approximation suggests that
when solving an applied problem, it is better to have several alternatives for choosing a
minimization method.

11. Conclusions

The statement of the problem consisted in the construction of a rapidly converging
algorithm for finding the descent direction in the minimization method, which forms an
obtuse angle with all subgradients of some neighborhood of the current minimum, forming
a separable set. Minimization along such a direction allows the algorithm to go beyond
this neighborhood. This is the problem of constructing a separating hyperplane between
the origin and a separable set, the normal of which is the desired direction. As a result,
we have a problem of solving a system of inequalities, for the solution of which learning
algorithms can be applied, for example, the perceptron learning algorithm [45].

Formalization of the subgradient sets model made it possible to reduce the problem of
solving a system of inequalities to an approximation problem, for the solution of which an
algorithm with space dilation was proposed, which is ideologically close to the iterative
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least squares method. Taking into account the peculiarities of subgradient sets makes it
possible to improve the standard ILS scheme and obtain an effective rapidly converging
iterative method for finding the descent direction in the minimization method based on
subgradients obtained in the process of the one-dimensional search.

The new algorithm for solving inequalities was theoretically substantiated, and an esti-
mate of its convergence rate was obtained depending on the parameters of the subgradient
set. On this basis, a new subgradient minimization method was developed and justified.
On quadratic functions, the proposed method has the properties of the conjugate gradient
method. The outlined approach to creating learning algorithms can be used to develop
new learning algorithms with space dilation for relaxation subgradient minimization.

A practically implementable version of the minimization algorithm has been de-
veloped, which uses a rough one-dimensional search. The performed computational
experiment on complex large-sized functions confirms the effectiveness of the proposed
relaxation subgradient minimization method.

The possibility of using the relaxation subgradient minimization method in solving
nonsmooth non-convex optimization problems makes it possible to use it in problems of
neural network training, where it is required to remove insignificant variables or neurons
by methods similar to the Tibshirani lasso. Algorithms of this type are of great practical
importance due to their high convergence rate and the possibility of using them to mini-
mize non-convex functions, for example, when estimating the parameters of mathematical
models under conditions of nonsmooth regularization, used for the purpose of model
feature reduction [3,29,46]. The effectiveness of using the proposed relaxation subgra-
dient minimization method in one of these technologies has been demonstrated in the
present work.
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