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Abstract: An explicit method for solving time fractional wave equations with various nonlinearity is
proposed using techniques of Laplace transform and wavelet approximation of functions and their
integrals. To construct this method, a generalized Coiflet with N vanishing moments is adopted
as the basis function, where N can be any positive even number. As has been shown, convergence
order of these approximations can be N. The original fractional wave equation is transformed into
a time Volterra-type integro-differential equation associated with a smooth time kernel and spatial
derivatives of unknown function by using the technique of Laplace transform. Then, an explicit
solution procedure based on the collocation method and the proposed algorithm on integral approxi-
mation is established to solve the transformed nonlinear integro-differential equation. Eventually the
nonlinear fractional wave equation can be readily and accurately solved. As examples, this method
is applied to solve several fractional wave equations with various nonlinearities. Results show that
the proposed method can successfully avoid difficulties in the treatment of singularity associated
with fractional derivatives. Compared with other existing methods, this method not only has the
advantage of high-order accuracy, but it also does not even need to solve the nonlinear spatial system
after time discretization to obtain the numerical solution, which significantly reduces the storage and
computation cost.

Keywords: nonlinear fractional wave equations; wavelet approximation of functions; wavelet
approximation of integrals; wavelet integral collocation method

MSC: 74S99; 65M04; 65R20; 65M30

1. Introduction

In some complex mechanical and physical processes, many empirical formulae are
often expressed in the form of power-law functions, and corresponding relations are
usually not the laws in forms of standard derivatives. These processes sometimes exhibit
obvious properties of memory, heredity, and path dependency. Under such a situation,
when the classical integer-form derivatives are used to quantitatively describe the above
problems, there is often a need to construct complex nonlinear equations and introduce
some artificial empirical parameters and assumptions that are inconsistent with the reality.
These nonlinear models are usually very troublesome in theoretical analysis and numerical
solution. Fractional calculus, including the fractional derivative and integral, becomes one
of the important tools for mathematical modeling of complex mechanical and physical
processes because they can succinctly and accurately describe the historical memory and
spatially nonlocal correlation in these processes.

In the last few decades, applied scientists and engineers have realized that integrating
fractional derivatives on the basis of conventional differential equations can provide an
elegant and natural framework for analyzing various practical problems that need to be
modeled with time memory and spatial nonlocal characteristics. In these applications,
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the corresponding fractional derivatives, unlike the conventional integer-order ones, have
several different definitions, which include the Caputo fractional derivative (CFD), the
Riemann–Liouville fractional derivative (RFD), the Gruenwald–Letnikov fractional deriva-
tive, the Riesz fractional derivative, and several others [1,2]. Among these definitions,
the CFD and the RFD are most commonly used. Noting that the CFD is only suitable
for differentiable functions and the RFD of a constant is not zero, Abu-Shady et al. [3,4]
proposed a generalized fractional derivative (GFD) definition that could well eliminate
these drawbacks.

An exact and unique geometric and physical interpretation of fractional calculus is still
an unsolved open question, although there is a lot of research in this field [5–7]. However,
a common recognition in fractional calculus is that the fractional derivative could give a
power-law approximation of the local behavior of functions, and could be used in science
and engineering to investigate the behavior of objects and systems that are characterized
by the power-law non-locality and power-law long-term memory.

In recent years, fractional calculus has become an important tool to describe com-
plex behaviors in a variety of scientific and engineering fields, although differences in
their definitions exist. Until now, examples of applications have successfully included the
fields of physics science [8–15], biological science [16–18], material science [19], control
techniques [20], environmental science [21], economics [22], photovoltaics [23,24], electro-
chemistry [25], and multidisciplinary engineering [26], etc. Among them, a class of highly
representative and effective applications of fractional derivative models is the fractional
wave equation (FWE) established for the abnormal diffusion and wave problems that exist
widely in the fields of viscoelasticity, quantum physics, and material physics.

In this study, we consider the following nonlinear time-FWE:
ρDα

t u + λDβ
t u = ∆u + f (u) + h(x, y, t), 1 <α ≤ 2, β < α

u(x, y, 0) = g0(x, y), ut(x, y, 0) = g1(x, y), (x, y) ∈ Ω,

u(x, y, t) = q(x, y, t), (x, y) ∈ ∂Ω, t > 0,

(1)

in which Ω = [0, a] × [0, a] is a bounded domain with boundary ∂Ω; α and β are the
parameters describing the derivative of the fractional order with respect to time; ρ, λ, and µ
are positive constants; and h(x, y, t) is a source term. As the CFD definition has been widely
adopted in most engineering applications [8–26], we also consider the CFD for the terms
Dα

t u(x, y, t) and Dβ
t u(x, y, t) in the time-FWE of Equation (1), which is

Dα
t u(x, y, t) =


∂nu(x,y,t)

∂tn α = n, n ∈ N,
1

Γ(n−α)

∫ t
0

∂nu(x,y,s)
∂sn

1
(t−s)α+1−n ds, n− 1 < α < n.

(2)

We note that the initial values of Equation (1) associated with the CFD can be similar
to those of the conventional integer-order differential equations, which make the equation
easier to deal with, and the physical significance and extensive practical applications easier
to understand. Equation (1) can be reduced to several important cases. For example, if we
put λ = 0, f (u) = 0 or u then we obtain the time FWE without or with damping [8–10]. If we set
f (u) = u and β = α/2, then we can have the fractional telegraph equation [11–14]. When λ = 0
and f (u) = sin(u), the time fractional nonlinear sine-Gordon equation is obtained [27]. When
λ = 0 and f (u) =−r1u−r2u2−r3u3, then we get the time fractional nonlinear Klein–Gordon
equation [15,27,28].

For most FWEs, it is usually difficult to obtain their analytical solutions. Even for
numerical solutions, the FWEs seem to be much more difficult to accurately, reliably, and
effectively deal with than those with standard integer orders due to the coupling between
nonlinear and nonlocal effects in Equation (1), which poses significant obstacles to the
development of effective solution methods. Despite these difficulties, it is still very urgent
that we develop high-precision and efficient algorithms to accurately solve these equa-
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tions. Many researchers have tried to propose various numerical methods to solve such
types of nonlinear fractional wave equations. As representative examples, Huang et al. [8]
constructed two types of finite difference schemes to solve the time FWEs and proved
that both of the two schemes are convergent with first-order accuracy in the temporal
direction and second-order accuracy in the spatial direction. Sun and Wu [29] proposed a
fully discrete difference method for the solution of linear fractional diffusion-wave systems
and analyzed the stability and convergence of the method. However, this approach adds
complexity by introducing two new variables to transform the original equation into a
lower-order system of equations. Du et al. [30] proposed another difference method with
improved convergence order for the solution of linear FWEs. As the implementation of
finite difference schemes is relatively simple, research on the use of such methods in solv-
ing FWEs is very rich [31]. However, there inevitably exists a contradiction between the
nonlocal characteristics of the fractional derivatives and the inherent finite precision and
local characteristics of the schemes of finite difference [32]. In order to improve the com-
putational efficiency, Liang et al. [11] suggested a fast high order difference scheme based
on an efficient sum-of-exponentials approximation to solve the time fractional differential
equations. However, this is currently only applicable to some linear problems. There have
also been many attempts at methods other than the difference discretization methodology.
For examples, Bhrawy et al. [9] have proposed a spectral algorithm based on the Jacobi
operational matrix to solve the second- and fourth-order FWEs, and Ghafoor et al. [33]
adopted the wavelet collocation method to discretize spatial operators and only used the
finite difference scheme to approximate the time fractional derivatives for the (1 + 1)- and
(1 + 2)-dimensional time fractional diffusion-wave equations.

Most of the studies mentioned above have only applied to linear problems. For the
solution of nonlinear fractional wave problems, Vong and Wang [28] proposed a high order
finite difference scheme for a two-dimensional fractional Klein–Gordon equation with
Neumann boundary conditions, which realized 4th order convergence for each spatial
dimension. Doha et al. [34] introduced a new approach implementing a shifted Jacobi opera-
tional matrix in combination with the shifted Jacobi collocation technique for the numerical
solution of nonlinear multi-term FWEs. The resulting nonlinear algebraic equations were
solved using Newton’s iterative method. Dehghan et al. [27] proposed a numerical method
for the solution of time fractional nonlinear sine-Gordon equations. Their work showed
that the meshless method based on the radial basis functions and collocation approach
are also suitable for the treatment of the nonlinear FWEs. However, such a method needs
to solve a linear boundary-value problem at each time step during the iterative solution
process, which can be computational expensive for high-dimensional problems. Lyu and
Vong [15] suggested a difference scheme for nonlinear time fractional Klein–Gordon-type
equations with second-order accuracy in time. In their approach, the nonlinearity was dealt
with by a linearized scheme. However, such a treatment may not be valid for problems
with derivative nonlinearity.

Despite the above progresses, there are still some critical issues in the numerical solu-
tion of the nonlinear FWEs. Nonlinearity and nonlocality natures pose major challenges to
the accurate and efficient solution of these problems. More specifically, in the development
of solution methods, it is still very difficult to avoid iterative processes and complicated
inversion of spatial derivative operators at each time step to save computational cost, and
to make the proposed methods valid for problems with stronger nonlinearities, not just
those of the Klein– and sine-Gordon types.

Wavelet theory has mainly been developed in the last few decades, and has aroused
great interest in many research fields of mathematics, physics, computer science, and
engineering [35]. In recent years, researchers have made very effective progresses in using
wavelet theory to solve FWEs. For example, Liu et al. [36] obtained exact solutions of several
types of one-dimensional linear fractional partial differential equations by using an exact
formula of Laplace inversion based on the generalized Coiflet (a class of wavelet) developed
by Wang et al. [37]. Zhou et al. [38] proposed a generalized Coiflet–Galerkin method to solve
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nonlinear fractional vibration, diffusion, and wave differential equations. The efficiency of
this method was justified by numerical solution of one-dimensional nonlinear examples.
These methods [36–38] successfully adopted the quasi-interpolation property of wavelet
approximation, which can expand relevant functions and nonlinear terms to explicit forms
with coefficients being their single-value sampling. This property enables the effective
solution of problems involving convolution integrals and nonlinear terms.

By noting the potential advantages of Coiflet-type basis function in solving nonlinear
FWEs, we will adopt the Coiflet-based solution strategy to solve Equation (1). First,
Equation (1) is transformed into a time Volterra-type integro-differential equation associated
with a smooth time kernel to effectively avoid the treatment of any singular integral
kernels. Then, by denoting various spatial derivatives of the unknown function as new
functions, the integral relations between these new functions are applied in terms of wavelet
approximation of multiple integrals [39–41], so that the original equation with spatial
derivatives of various orders can be converted to a system of time-integral equations with
discrete spatial nodal values of the highest-order spatial derivative. Since the error order of
the adopted scheme of integral approximation based on wavelet theory is independent of
the order of the integral, the error order caused by the whole discretization process becomes
consistent with the error order of the direct approximation of a function, and, interestingly,
irrelevant to the equation order [39–41]. By transforming the original equation into the
integral-differential equation with a smooth integral kernel, we use the wavelet expansion
in Equation (8) to approximate the convolution integral on time. On one hand, due to
the excellent performance of the wavelet-based approach, the integral approximation still
maintains a high convergence rate. On the other hand, we expect that the smooth kernel
function has the property of being zero at time zero, which can eliminate the nodal values
at the present time during the wavelet approximation of the convolution integral according
to a previous study [32]. Finally, an explicit solution procedure based on the collocation
method and the proposed algorithm on integral approximation can be established to solve
the transformed nonlinear integro-differential equation.

The outline of the paper is as follows. In Section 2, we introduce the scheme of wavelet
approximation for interval-bounded functions and their multiple integrals. In Section 3,
we describe how the wavelet solution method of Equation (1) is established, and some nu-
merical examples are examined to demonstrate the computational efficiency and accuracy
of the proposed method in Section 4. Finally, Section 5 presents the concluding remarks.

2. Wavelet Approximation of Multiple Integrals in a Bounded Domain

Following our previous research [39–43], we consider the Coiflet approximation of
f (x)∈L2([0, a]) as follows:

f (x) ≈ Pm f (x) =
am

∑
k=0

f (k/2m)Φm,k(x), x ∈ [0, a] (3)

in which m is the resolution level and am = [2ma] is the integer part of 2ma and the modified
Coiflet basis

Φm,k(x) =



ϕ(2mx + M1 − k) +
−1
∑

j=−α2

TL,k(
j

2m )ϕ(2mx + M1 − j), 0 ≤ k ≤ α1

ϕ(2mx + M1 − k), α1 + 1 ≤ k ≤ am − α2 − 1

ϕ(2mx + M1 − k) +
am+α1

∑
j=am+1

TR,am−k(
j

2m )ϕ(2mx + M1 − j), am − α2 ≤ k ≤ am

(4)

where M1 =
∫ ∞
−∞ xϕ(x)dx and [0, 3N − 1] are the first-order moment and compact support

of the generalized Coiflet-type orthogonal scaling function ϕ(x), respectively. The scaling
function ϕ(x) with N = 6 and M1 = 7 is adopted in this study. This scaling function and its
corresponding wavelet function are shown in Figure 1.
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In addition, in Equation (4), the parameters α1 = M1 − 1 and α2 = 3N − 2−M1, the
functions:

TL,j(x) =
N−1

∑
i=0

2im ζ0,i,j

i!
(x)i and TR,j(x) =

N−1

∑
i=0

2im ζ1,i,j

i!
(x− 2−mam)

i (5)

in which the coefficients
{

ζ0,i,k
}

and
{

ζ1,i,k
}

can be obtained through the relations
P0 =

{
ζ0,i,k

}
= (I− B0)

−1A0, P1 =
{

ζ1,i,k
}
= (I− B1)

−1A1 together with the matrices

A0 =
{

ϕ(i)(M1 − k)
}

, A1 =
{

ϕ(i)(k + M1)
}

,

B0 =

{
−1
∑

l=−α1

1
i! l

i ϕ(j)(−l + M1)

}
, B1 =

{
M1−1

∑
l=1

1
j! l

j ϕ(i)(−l + M1)

}
.

(6)

The function values of the scaling function ϕ(x) and its derivatives ϕ(i)(x) (i = 1, 2, . . . ,
N − 1) can be exactly obtained [42].

We define the nth order integral of the function f (x) as

f (−n)(x) =
∫ x

0

∫ ξn

0
. . .
∫ ξ2

0
f (ξ1)dξ1dξ2 . . . dξn. (7)

Performing n-order integration to Equation (3) yields

f (−n)(x) ≈
am

∑
k=0

f (k/2m)Φ(−n)
m,k (x), x ∈ [0, a] (8)

where

Φ(−n)
m,k (x) =



ϕ
(−n)
m,k−M1

(x) +
−1
∑

j=−α2

TL,k(
j

2m )ϕ
(−n)
m,j−M1

(x), 0 ≤ k ≤ α1

ϕ
(−n)
m,k−M1

(x), α1 + 1 ≤ k ≤ am − α2 − 1

ϕ
(−n)
m,k−M1

(x) +
am+α1

∑
j=am+1

TR,am−k(
j

2m )ϕ
(−n)
m,j−M1

(x). am − α2 ≤ k ≤ am

(9)

The nth order integral of the scaling function basis can be defined as

ϕ
(−n)
m,k (x) =

∫ x

0

∫ ξn

0
. . .
∫ ξ2

0
ϕ(2mx− k)dξ1dξ2 . . . dξn =

1
2mn

(
ϕ(−n)(2mx− k)−

n

∑
l=1

(2mx)n−l

(n− l)!
ϕ(−l)(−k)

)
(10)

in which values of ϕ(−n)(x) can be exactly calculated by the method in [41].
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For a function f (x) to be smooth enough, the accuracy of the approximation (8) has
been estimated as [41]

‖ f (−n)(x)− f (−n)
Pm

(x)‖
L2[0,a]

≤ P0,L2−mN (11)

in which P0,L is a constant independent of the resolution level m. From Equation (11), we
can see that the convergence order is always N, independent of the integration order.

For the approximation of integrals of a two-dimensional function f (x,y)∈L2([0, a]2),
Wang et al. [39,40] have suggested that

f (−n1,−n2)(x, y) =
am

∑
k=0

am

∑
l=0

f (
k

2m ,
l

2m )Φ(−n1)
m,k (x)Φ(−n2)

m,l (y) + O(2−mN) (12)

3. Solution Procedure

In this section, we establish a wavelet-integral-collocation method (WICM) to solve
the nonlinear FWEs.

Noting that the integral is unlike its derivative, its wavelet-based approximation can
ensure a constant high convergence order. Due to this interesting fact, we will first consider
using Laplace transform to convert Equation (1) into a time-integral equation. To do so, we
denote U(x, y, s) as the time Laplace transform of u(x, y, t), i.e., L[u(x, y, t)] = U(x, y, s), where
L[·] is the operator representing the time Laplace transform. For the fractional derivative
of u(x, y, t), we have

L[Dα
t u(x, y, t)] = saU(x, y, s)−

[α]

∑
i=0

sα−1−igi(x, y) (13)

where [α] represents the maximal integer less than α.
Applying the time Laplace transform to Equation (1), we have [38]

U(x, y, s)− R(s)L[p(x, y, t)] = G(x, y, s) (14)

in which
p(x, y, t) = ∆u + f (u) + h(x, y, t),

R(s) = 1/
(
ρsα + λsβ

)
,

G(x, y, s) = R(s)

(
ρ
[α]

∑
i=0

sα−1−igi(x, y) + λ
[β]

∑
i=0

sβ−1−igi(x, y)

)
.

(15)

Applying inverse time Laplace transform to Equation (14), we have

u(x, y, t)−
∫ t

0 r(t− τ)p(x, y, τ)dτ = g(x, y, t),

r(t) = L−1[R(s)] = 1
ρ tα−1Eα−β,α

(
− λ

ρ tα−β
)

,

g(x, y, t) = L−1[G(x, y, s)] =
[α]

∑
i=0

tiEα−β,1+i

(
− λ

ρ tα−β
)

gi(x, y)

+ λ
ρ

[β]

∑
i=0

tiEα−β,1+i

(
− λ

ρ tα−β
)

gi(x, y).

(16)

in which we have assumed α > β, Ea,b(z) is the generalized Mittag–Leffler-type function [44,45]

defined as Ea,b(z) =
∞
∑

k=0
zk/Γ(ak + b). The function g(x, y, t) can be obtained by the initial

conditions in Equation (1), and Γ(·) is the Gamma function. We note that interesting
behaviors of Mittag–Leffler-type functions associated with the fractional calculus have been
studied in-depth in [45]. It can be easy to verify that the integral kernel, r(t), has a very
useful property of r(0) = 0.
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Further we can have the following integro-differential equation{
u(x, y, t)−

∫ t
0 r(t− τ)(∆u + f (u) + h(x, y, τ))dτ = g(x, y, t),

u(x, y, t) = q(x, y, t), (x, y) ∈ ∂Ω, t > 0.
(17a)

When using numerical methods to solve this equation, it usually needs to numerically
approximate spatial derivatives in the equation, which will inevitably reduce the accu-
racy of the solution, especially for the cases with high-order derivatives and high spatial
dimensions. In order to avoid such a situation, we consider the following treatment [39,40].

We first define uij = ∂i+ju/∂xi∂yj (i, j = 0, 1, 2) as new functions. Then, Equation
(17a) can be rewritten as{

u(x, y, t)−
∫ t

0 r(t− τ)(u20 + u02 + f (u) + h(x, y, τ))dτ = g(x, y, t),
u(x, y, t) = q(x, y, t), (x, y) ∈ ∂Ω, t > 0.

(17b)

For the two functions u20 and u02 in Equation (17b), applying Equation (12), we obtain

u20 ≈
am

∑
k=0

am

∑
l=0

u20(
k

2m ,
l

2m , t)Φm,k(x)Φm,l(y) (18a)

u02 ≈
am

∑
k=0

am

∑
l=0

u02(
k

2m ,
l

2m , t)Φm,k(x)Φm,l(y) (18b)

Performing integration to Equation (18) one and two times with respect to x, we have

u10 ≈
am

∑
k=0

am

∑
l=0

u20(
k

2m ,
l

2m , t)Φ(−1)
m,k (x)Φm,l(y) + u10(0, y, t) (19a)

u01 ≈
am

∑
k=0

am

∑
l=0

u02(
k

2m ,
l

2m , t)Φm,k(x)Φ(−1)
m,l (y) + u01(x, 0, t) (19b)

and

u ≈
am

∑
k=0

am

∑
l=0

u20(
k

2m ,
l

2m , t)Φ(−2)
m,k (x)Φm,l(y) + xu10(0, y, t) + q(0, y, t), (20a)

u ≈
am

∑
k=0

am

∑
l=0

u02(
k

2m ,
l

2m , t)Φm,k(x)Φ(−2)
m,l (y) + yu01(x, 0, t) + q(x, 0, t). (20b)

Substituting x = a and y = a into Equation (20) we can derive

u10(0, y, t) ≈ 1/a

(
q(a, y, t)− q(0, y, t)−

am

∑
k=0

am

∑
l=0

u20(
k

2m ,
l

2m , t)Φ(−2)
m,k (a)Φm,l(y)

)
(21a)

u01(x, 0, t) ≈ 1/a

(
q(x, a, t)− q(x, 0, t)−

am

∑
k=0

am

∑
l=0

u02(
k

2m ,
l

2m , t)Φm,l(x)Φ(−2)
m,l (a)

)
. (21b)

Substituting Equations (18)–(21) into Equation (17b) and then considering the collo-
cation method by taking x = k′/2m = k′∆h and y = l′/2m = l′∆h for k′, l′ = 0, 1, . . . , am,
where ∆h represent grid size in both of the x and y directions, the integral Equation (17b)
can finally be discretized as

Au20−
∫ t

0
r(t− τ)(u02 + u20 + f (u20) + h(τ))dτ ≈ g(t)− q1(t), (22)
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in which u02= Cu20+B−1(q1(t)− q2(t)), f (u20) indicates that the nonlinear term acts on
each coordinate of the vector u20, and the matrices C = B−1A with

A =
{

aop = Φ(−2)
m,k

(
k′
2m

)
Φm,l

(
l′

2m

)
− k′

2ma Φ(−2)
m,k (a)Φm,l

(
l′

2m

)}
,

B =
{

bop = Φm,k

(
k′
2m

)
Φ(−2)

m,l

(
l′

2m

)
− l′

2ma Φm,k

(
k′
2m

)
Φ(−2)

m,l (a)
}

.
(23)

The vectors u20 =
{

u20p = u20(k/2m, l/2m)
}T

, g =
{

gp = g(k/2m, l/2m)
}T

, h ={
hp = h(k/2m, l/2m)

}T, and

q1(t) =
{

q1,o =
k′

2ma

(
q
(

a, l′
2m , t

)
− q
(

0, l′
2m , t

))
+ q
(

0, l′
2m , t

)}T
,

q2(t) =
{

q2,o =
l′

2ma

(
q
(

k′
2m , a, t

)
− q
(

k′
2m , 0, t

))
+ q
(

k′
2m , 0, t

)}T
,

(24)

and the subscripts o = (am + 1)k′ + l′, p = (am + 1)k + l, and k, l, k′, l′ = 0, 1, . . . , am.
Letting K(t) = Cu20 + u20 + f (u20) + B−1(q1(t) − q2(t)) + h(t), we have

Au20−
∫ t

0
r(t− τ)K(τ)dτ ≈ g(t)− q1(t), (25)

Treating r(t− τ)K(τ) as a function of τ in the interval [0, t], applying Equation (8) to
approximate the convolution integral of this function,

∫ t
0 r(t− τ)K(τ)dτ, we can have

∫ t

0
r(t− τ)K(τ)dτ ≈

[t2j ]

∑
k=0

r
(

t[t2j ]−k

)
K(tk)Φ

(−1)
j,k (t).

Setting t = ti = i/2j = i∆t, we can obtain

u20(ti) ≈ A−1
i−1

∑
k=0

r(ti−k)K(tk)Φ
(−1)
m,k (ti) + A−1(g(ti)− q1(ti)). (26)

in which the property r(0)=0 has been considered. It can be seen from Equation (26) that
the solution u20 can be directly obtained step-by-step as the index i increases. Then the
unknown function u can be reconstructed by the relation u = Au20 + q1(t).

4. Numerical Results

In this section, we study the accuracy and stability of the proposed method by solving
some examples of nonlinear wave equations. Error norms are defined as follows:

L∞(t) = max
1≤i≤N

|ei|, L2(t) =

√√√√ N

∑
i=1

∣∣∣(ei)
2
∣∣∣, RMS(t) = L2(t)/

√
Θ (27)

in which ei = (uexact)i −
(
uapprox

)
i, uapprox and uexact are exact and approximated solutions,

respectively, and Θ the total number of grids in space.

Example 1. We first consider the following time fractional diffusion-wave equation [8]

∂αu(x,t)
∂tα = ∂2u

∂x2 + sin(πx), x ∈ [0, 1]
u(x, 0) = 0, ut(x, 0) = 0,
(0, t) = u(1, t) = 0.

(28)

The exact solution of this fractional differential equation is u(x, t) = 1
π2

[
1− Eα,1

(
−π2tα

)]
sin(πx).
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We take ∆h = 1/16 and ∆t = 1/1024 to solve Equation (28). Comparison between the
exact and approximate solutions of Equation (28) with different α are shown in Figure 2.
From this figure, one can see that the numerical solution is consistent with the exact solution.
Table 1 shows the error norms of the numerical solutions obtained by the WICM and two
finite difference schemes [8] named as Schemes 1 and 2. The standard backward Euler was
used in the time discretization of the Schemes 1 and 2, while the central difference and
Crank–Nicolson technique were used in the spatial discretization [8]. From Table 1, one
can see that solutions obtained by using the present wavelet method with much coarser
space–time meshes can have a much better numerical accuracy than those achieved from
the finite difference.
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Table 1. Error norms of numerical solutions at t=1 for Example 1 with different α.

α
Scheme 1 [8]

(∆h = 1/20 ∆t = 1/10,000)
Scheme 2 [8]

(∆h = 1/20 ∆t = 1/10,000)
Scheme 1 [8]

(∆h = 1/10,000 ∆t = 1/1280)
Scheme 2 [8]

(∆h = 1/10,000 ∆t = 1/1280)
WICM

(∆h = 1/16 ∆t ≈ 1/1000)

1.3 1.7 × 10−4 1.7 × 10−4 1.4 × 10−5 3.9 × 10−6 3.2 × 10−6

1.5 2.3 × 10−4 2.3 × 10−4 1.8 × 10−5 1.2 × 10−5 2.2 × 10−6

1.8 3.2 × 10−4 3.2 × 10−4 1.6 × 10−4 6.0 × 10−5 1.8 × 10−7

Example 2. We consider the following FWE with damping [9,10]

∂αu(x, t)
∂tα

+
∂u(x, t)

∂t
=

∂2u(x, t)
∂x2 + q(x, t), x ∈ [0, 1], (29)

whose exact solution is u(x, t) = t2x(1− x)with the homogenous initial and boundary conditions
and q(x, t) = 2x(1−x)

Γ(3−α)
t2−α + 2tx(1− x) + 2t2.

This problem is solved by the WICM with ∆h = 1/16 and ∆t = 1/1024. The approximate
solution and its absolute error for α=1.3 are shown in Figure 3. We can see that the numerical
solution obtained by the WICM is in good agreement with the analytical solution. The
absolute errors of the approximate solutions for different α are shown in Table 2. From
Figure 3 and Table 2, one finds that the WICM is very efficient and accurate in solving
this problem.



Mathematics 2022, 10, 4011 10 of 14

Mathematics 2022, 10, x FOR PEER REVIEW 10 of 15 
 

 

Table 1. Error norms of numerical solutions at t=1 for Example 1 with different α. 

α 
Scheme 1 [8] 

(Δh = 1/20 Δt = 
1/10,000) 

Scheme 2 [8] 
(Δh = 1/20 Δt = 

1/10,000) 

Scheme 1 [8] 
(Δh = 1/10000 Δt = 

1/1280) 

Scheme 2 [8] 
(Δh = 1/10000 Δt = 

1/1280) 

WICM 
(Δh = 1/16 Δt ≈ 

1/1000) 
1.3 1.7 × 10−4 1.7 × 10−4 1.4 × 10−5 3.9 × 10−6 3.2 × 10−6 
1.5 2.3 × 10−4 2.3 × 10−4 1.8 × 10−5 1.2 × 10−5 2.2 × 10−6 
1.8 3.2 × 10−4 3.2 × 10−4 1.6 × 10−4 6.0 × 10−5 1.8 × 10−7 

Example 2. We consider the following FWE with damping [9,10] 

( ) ( ) ( ) ( ) [ ]
2

2

, , ,
, , 0,1 ,

u x t u x t u x t
q x t x

tt x

α

α

∂ ∂ ∂
+ = + ∈

∂∂ ∂
  (29)

whose exact solution is ( ) ( )2, 1u x t t x x= −  with the homogenous initial and boundary conditions 

and ( ) ( )
( ) ( )2 22 1

, 2 1 2 .
3

-x x
q x t t tx x tα

α
−

= + − +
Γ −

 

This problem is solved by the WICM with Δh = 1/16 and Δt = 1/1024. The approximate 
solution and its absolute error for α=1.3 are shown in Figure 3. We can see that the numer-
ical solution obtained by the WICM is in good agreement with the analytical solution. The 
absolute errors of the approximate solutions for different α are shown in Table 2. From 
Figure 3 and Table 2, one finds that the WICM is very efficient and accurate in solving this 
problem. 

 
Figure 3. Wavelet solution (Left) and its absolute error (Right) under spatial mesh size ∆h = 1/16 
and time step ∆t = 1/210 for the Example 2 with α = 1.3. 

Table 2. The absolute errors of wavelet solution of Example 2 for different α. 

(x, t) α = 1.1 α = 1.3 α = 1.5 α = 1.7 α = 1.9 
(1/8, 1/8) 6.0 × 10−6 2.1 × 10−6 6.5 × 10−7 8.9 × 10−7 3.7 × 10−6 
(2/8, 2/8) 1.6 × 10−5 5.1 × 10−6 1.4 × 10−6 1.9 × 10−6 1.0 × 10−5 
(3/8, 3/8) 2.4 × 10−5 7.0 × 10−6 1.7 × 10−6 2.3 × 10−6 1.5 × 10−5 
(4/8, 4/8) 2.8 × 10−5 7.5 × 10−6 1.6 × 10−6 1.9 × 10−6 1.5 × 10−5 
(5/8, 5/8) 2.6 × 10−5 6.5 × 10−6 1.2 × 10−6 1.1 × 10−6 1.1 × 10−5 
(6/8, 6/8) 2.0 × 10−5 4.7 × 10−6 7.5 × 10−7 3.9 × 10−7 5.3 × 10−5 
(7/8, 7/8) 1.1 × 10−5 2.4 × 10−6 3.3 × 10−7 1.8 × 10−8 1.1 × 10−6 

  

0
1

0.1

1

0.2

0.5 0.5
0 0

A
bs

ol
ut

e 
er

ro
r

Figure 3. Wavelet solution (Left) and its absolute error (Right) under spatial mesh size ∆h = 1/16
and time step ∆t = 1/210 for the Example 2 with α = 1.3.

Table 2. The absolute errors of wavelet solution of Example 2 for different α.

(x, t) α = 1.1 α = 1.3 α = 1.5 α = 1.7 α = 1.9

(1/8, 1/8) 6.0 × 10−6 2.1 × 10−6 6.5 × 10−7 8.9 × 10−7 3.7 × 10−6

(2/8, 2/8) 1.6 × 10−5 5.1 × 10−6 1.4 × 10−6 1.9 × 10−6 1.0 × 10−5

(3/8, 3/8) 2.4 × 10−5 7.0 × 10−6 1.7 × 10−6 2.3 × 10−6 1.5 × 10−5

(4/8, 4/8) 2.8 × 10−5 7.5 × 10−6 1.6 × 10−6 1.9 × 10−6 1.5 × 10−5

(5/8, 5/8) 2.6 × 10−5 6.5 × 10−6 1.2 × 10−6 1.1 × 10−6 1.1 × 10−5

(6/8, 6/8) 2.0 × 10−5 4.7 × 10−6 7.5 × 10−7 3.9 × 10−7 5.3 × 10−5

(7/8, 7/8) 1.1 × 10−5 2.4 × 10−6 3.3 × 10−7 1.8 × 10−8 1.1 × 10−6

Example 3. We consider the 1D time fractional telegraph equation [11–14]

∂2αu(x,t)
∂t2α + ∂αu(x,t)

∂tα + u(x, t) = ∂2u(x,t)
∂x2 + f (x, t), x ∈ [0, 1]

u(x, t)|t=0 = ∂u(x,t)
∂t |t=0 = 0,

(30)

with the Dirichlet boundary conditions extracted from the exact solution u(x, t) = t2 sin(x).

Figure 4 shows the comparison between the exact solution and the present wavelet
solution with ∆h = 1/16 and ∆t = 1/1024 for α = 0.9. In addition, Table 3 gives the error
norms of the wavelet solutions at several times for α = 0.7 and 0.9, respectively.
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ible with the exact solution u(x, t) = sin(πx)(t4 + 1). 
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Figure 4. The present solution at t = 1 for Example 3 with α = 0.9.
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Table 3. Error norms of wavelet solution at different times t for Example 3.

t
α = 0.7 α = 0.9

L∞ RMS L∞ RMS

0.25 6.4 × 10−6 1.8 × 10−5 1.6 × 10−5 4.1 × 10−5

0.5 5.7 × 10−6 1.6 × 10−5 1.2 × 10−5 3.1 × 10−5

0.75 5.0 × 10−6 1.4 × 10−5 2.5 × 10−6 7.0 × 10−6

1 2.1 × 10−5 4.5 × 10−5 4.3 × 10−6 1.2 × 10−5

Example 4. We consider the 1D time fractional Klein–Gordon and sine-Gordon equations [15]:

∂αu(x,t)
∂tα = ∂2u

∂x2 − f (u) + P(x, t), x ∈ [0, 1]
u(x, 0) = g1(x), ut(x, 0) = g2(x),

(31)

with two types of nonlinear term f(u)

case1 f (u(x, t)) = 2u3 (Klein−Gordon),
case2 f (u(x, t)) = sin(u) (sin−Gordon).

(32)

The initial and Dirichlet boundary conditions, as well as the source item P(x, t) are compatible
with the exact solution u(x, t) = sin(πx)(t4 + 1).

The error norms of the numerical solutions obtained, respectively, by the proposed
WICM and linearized finite difference method (L-FDM) and the classical one (C-FDM) [15]
are presented in Tables 4 and 5. The second-order and fourth-order difference schemes in
spatial discretization are used in the L-FDM and C-FDM, respectively [15]. As shown in
Table 4, when the time step is ∆t ≈ 0.001, the WICM with much coarser spatial grid can
achieve even better accuracy than both of the L-FDM and C-FDM. Moreover, when the
spatial grid sizes are ∆h = 1/16 for the WICM and 1/20 for the L-FDM and C-FDM, the
former also can use a much larger time step to obtain a better accuracy compared with the
latter, as shown in Table 5.

Table 4. Error norms of numerical solutions with similar time step for Example 4 with different α.

α

Case 1 Case 2

L-FDM [15]
∆h = 1/80
∆t = 0.001

C-FDM [15]
∆h= 1/160
∆t = 0.001

WICM
∆h = 1/16

∆t ≈ 0.001

L-FDM [15]
∆h = 1/80
∆t = 0.001

C-FDM [15]
∆h = 1/160
∆t = 0.001

WICM
∆h = 1/16

∆t ≈ 0.001

1.2 6.7 × 10−5 1.7 × 10−5 4.0 × 10−5 1.5 × 10−4 3.5 × 10−5 2.6 × 10−5

1.5 8.1 × 10−5 2.0 × 10−5 7.9 × 10−5 1.4 × 10−4 3.3 × 10−5 1.1 × 10−5

1.8 1.0 × 10−4 2.5 × 10−5 1.2 × 10−5 1.6 × 10−4 4.0 × 10−5 1.5 × 10−5

Table 5. Error norms of numerical solutions with similar spatial grid for Example 4 with different α.

α

Case 1 Case 2

L-FDM [15]
∆t = 1/1000
∆h = 1/20

C-FDM [15]
∆t = 1/5000
∆h = 1/20

WICM
∆t = 1/512
∆h = 1/16

WICM
∆t = 1/4096
∆h = 1/16

L-FDM [15]
∆t = 1/1000
∆h = 1/20

C-FDM [15]
∆t = 1/5000
∆h = 1/20

WICM
∆t = 1/512
∆h = 1/16

WICM
∆t = 1/4096
∆h = 1/16

1.2 1.1 × 10−3 3.3 × 10−6 8.9 × 10−5 2.2 × 10−6 2.4 × 10−3 7.1 × 10−6 5.9 × 10−5 4.8 × 10−6

1.5 1.3 × 10−3 3.9 × 10−6 2.2 × 10−5 8.9 × 10−7 2.3 × 10−3 6.8 × 10−6 1.8 × 10−6 8.4 × 10−8

1.8 1.7 × 10−3 5.0 × 10−6 4.3 × 10−5 1.0 × 10−7 2.7 × 10−3 8.0 × 10−6 1.9 × 10−6 4.3 × 10−8
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Example 5. We consider the 2D time fractional Klein–Gordon and sine-Gordon equations [27,46]:{
∂αu(x,y,t)

∂tα = ∂2u
∂x2 +

∂2u
∂y2 − f (u) + P(x, y, t), (x, y) ∈ [0, 1]2,

u(x, y, 0) = 0, ut(x, y, 0) = 0,
(33)

where we consider two cases

Case 1 : f (u) = u3 , P(x, y, t) =
[

2
Γ(3−α)

t2−α + 2t2
]

sin(x + y) +
[
t2 sin(x + y)

]3;

Case 2 : f (u) = sin(u) , P(x, y, t) =
[

2
Γ(3−α)

t2−α + 2t2
]

sin(x + y) + sin
[
t2 sin(x + y)

]
.

(34)

From Equations (33) and (34), we can easily to verify that these two cases have the
same exact solution

u(x, t) = t2sin(x + y). (35)

The first case refers to the Klein–Gordon equation, and the second case refers to that
of the sine-Gordon equation.

Tables 6 and 7 show the relationships between the error norms of the proposed wavelet
solutions and the grid sizes. It can be seen that the error decreases rapidly as the spatial grid
size or the time step decreases, implying good properties in convergence and stability of the
WICM. Tables 6 and 7 also demonstrate that the proposed WICM can have better accuracy
than several existing methods under the more coarse grid. For example, the maximum
absolute error of the wavelet solution with ∆h = 1/16 and ∆t = 1/256 is L∞ = 2.6 × 10−4 for
the Klein–Gordon problem with α = 1.25, which is much smaller than L∞=1.4288 × 10−3

and 6.1192 × 10−4 for the RBF meshless approach [27] and local meshless method [46] with
∆h = 1/21 and ∆t = 1/320, respectively.

Table 6. Error norms of the wavelet solution at t = 1 with various time steps for Example 6.

∆t(∆h = 1/16)
α = 1.25 α = 1.75

L∞ RMS L∞ RMS

Case 1 1/28 2.6 × 10−4 1.9 × 10−4 6.9 × 10−5 4.0 × 10−5

1/210 4.7 × 10−5 3.4 × 10−5 1.1 × 10−5 6.2 × 10−6

1/212 8.5 × 10−6 6.0 × 10−6 1.8 × 10−6 1.0 × 10−6

Case 2 1/28 2.6 × 10−4 1.9 × 10−4 7.4 × 10−5 4.3 × 10−5

1/210 4.7 × 10−5 3.4 × 10−5 1.2 × 10−5 6.7 × 10−5

1/212 8.5 × 10−6 6.0 × 10−6 1.9 × 10−6 1.1 × 10−6

Table 7. Error norms of the wavelet solution at t = 1 with various spatial grid sizes for Example 6.

∆h
α = 1.3 α = 1.5 α = 1.7 α = 1.9

L∞ L∞ L∞ L∞

Case 1 1/16 2.0 × 10−4 6.9 × 10−5 5.9 × 10−5 1.4 × 10−4

1/32 3.4 × 10−5 8.6 × 10−6 8.1 × 10−6 2.9 × 10−5

1/64 5.7 × 10−6 1.1 × 10−6 1.2 × 10−6 6.4 × 10−6

Case 2 1/16 2.0 × 10−4 6.9 × 10−5 5.5 × 10−5 1.4 × 10−4

1/32 3.4 × 10−5 8.6 × 10−6 7.6 × 10−6 2.2 × 10−5

1/64 5.7 × 10−6 1.1 × 10−6 1.1 × 10−6 4.8 × 10−6

5. Conclusions

An efficient WICM method based on the generalized Coiflet wavelet is proposed
to solve the time FWEs with various nonlinearities. By using the Laplace transform, the
original FWE is first transformed into the time Volterra-type integro-differential equation.
Then, the WICM is developed to solve the resulting integro-differential equation. Such an
approach has successfully avoided the difficulty in the treatment of singularity associated
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with the fractional derivatives, and the time-consuming task of solving the nonlinear
spatial system at each time step. Numerical results of five benchmark examples show
that, compared with several existing methods, the proposed wavelet method can obtain
more accurate solutions in the case of using a coarser grid, which reflects the excellent
characteristics of the WICM in terms of convergence and stability.

For possible future studies, we can consider the applicability of the proposed WICM in
the solution of nonlinear wave equations with fractional derivatives under different defini-
tions. We can also combine the wavelet approximation algorithm of functions bounded on
irregular domains [47,48] into the WICM to solve real engineering problems with irregular
spatial shapes/domains.
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