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Abstract: Automated storage/retrieval systems (AS/RS) have been increasingly used to support
operations in manufacturing firms, warehouses, and distribution centers. Usually, AS/RSs are expen-
sive. To achieve a good return on investment (ROI), an AS/RS must operate optimally. This research
focuses on solving the crane scheduling problem, which has a great and immediate impact on the per-
formance of an AS/RS. To optimize the design and operations of an AS/RS, many past studies have
applied the simulation approach. However, the simulation and optimization have been often loosely
coupled, resulting in a rigorous and labor-intensive optimization procedure. Using population-
and evolution-based metaheuristics to deal with the crane scheduling problem of an AS/RS is one
of the research trends. However, the whale optimization algorithm (WOA) and its variants have
not been used for this purpose. To address the said gaps, this research first proposes a framework
for coupling the simulation and optimization closely, in which various heuristics/metaheuristics,
including first-come first-serve (FCFS), RANDOM, WOA, genetic algorithms (GAs), particle swarm
optimization (PSO), and especially an improved WOA (IWOA), together with dynamic program-
ming (DP), have been used as alternative sequencing methods. Based on this framework, different
simulation-based optimization approaches have been developed for solving the dual-command
crane scheduling problem in a unit-load double-deep AS/RS. The experimental results show that
IWOA+DP outperforms the others in terms of energy consumption.

Keywords: automated storage and retrieval (AS/RS); metaheuristics; whale optimization
algorithm (WOA); crane scheduling problem

MSC: 68U35; 46N20; 74P05; 78M50

1. Introduction

Since the 1950s, automated storage/retrieval systems (AS/RSs) have been increasingly
used for material handling in manufacturing firms, warehouses, and distribution centers [1].
The popularity of AS/RSs comes from their advantages, such as high throughput, space-
saving ability, high reliability, low inventory cost, and low labor cost [2,3]. An AS/RS is
very useful. It can be used to move and accommodate different stock units (SKUs), such as
raw materials, work-in-process goods, and finished goods. Usually, AS/RSs are expensive.
To have a good return on investment (ROI), an AS/RS must operate optimally.

An AS/RS is composed of hardware and software components that determine the
overall performance. The common hardware components of an AS/RS include racks,
storage bins, cranes, input/output stations (I/O stations), and a computer. However,
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software components such as storage and retrieval rules (S/R rules) and storage allocation
policies are essential for controlling and using the hardware components of an AS/RS.

For an AS/RS to operate optimally, it needs to deal with relevant problems, including
layout, dwell-point location, storage location allocation, batching, and crane scheduling [4].
The first three are long-term problems while the last two are short-term problems. The
layout of an AS/RS has a fundamental impact on the AS/RS, which is difficult to change.
The dwell-point problem, which involves arranging a place for a crane to stay and wait for
the next task, can be considered a part of the layout. Given the layout of an AS/RS, the
allocation of storage positions for stocks is another essential long-term problem. Each kind
of SKU in an AS/RS can have one/multiple dedicated/open storage position(s). In terms of
the short-term problem, the batching problem considers how multiple orders (requests) be
combined into one single tour for a human picker or one command cycle for an automated
picking device (such as the crane). However, a crane usually has few/no batching options
due to limited capacity (one or two shuttles). Another short-term problem, the crane
scheduling problem, considers how the storage and retrieval requests can be arranged for a
crane. It has an immediate impact on an AS/RS. The performance of a crane is also affected
by the command mode used. Single-command and dual-command modes are two common
command modes used by a crane. The single-command mode accomplishes one storage or
retrieval request within one command cycle while the dual-command mode can complete
one storage request and one retrieval request within one cycle. The dual-command mode
is advantageous in terms of travel times [5]. A reduction of about 50% of the travel time or
an increment of 10-15% of the throughput is possible [6]. Thus, the dual-command mode is
focused on in this research. The crane scheduling problem of an AS/RS can be considered
a Chebyshev traveling salesman problem, which is known to be NP-complete [7].

Our literature review shows that analytical models, heuristics, metaheuristics, and
simulation have been commonly used to deal with crane scheduling problems in an AS/RS.
The analytical models have been applied for different kinds of AS/RSs, including unit-load
AS/RSs [8–13], end-of-aisle mini-load AS/RSs [7,14–16], and man-on-board AS/RSs [17].
Heuristics are another commonly used method. Sarker et al. [18] used a simple nearest-
neighbor heuristic and a perimeter heuristic to sequence storage and retrieval requests in a
dual-shuttle AS/RS. Mahajan et al. [19] proposed a nearest-neighbor heuristic to form dual
commands. The heuristic methods were used to solve the crane scheduling problem for
man-on-board AS/RSs [20–22].

Besides the analytical models and heuristics, population- and evolution-based meta-
heuristics have been increasingly used to deal with AS/RS problems. Such metaheuristics
can improve solution quality through the use of a population of agents and an iterative
mechanism. To deal with the crane scheduling problem, Yang et al. [23] used a hybrid
genetic algorithm (HGA) for a multi-shuttle AS/RS. The objective was to minimize the
travel time needed to complete all storage and retrieval operations. Wu et al. [24] sched-
uled retrieval requests for a double-deep AS/RS in a flexible manufacturing system. A
genetic algorithm (GA), immune GA (IGA), and particle swarm optimization (PSO) were
investigated. The objective was to minimize the retrieval time. The IGA was found to be
the best in terms of travel distance while the PSO was the best in terms of computational
cost. Popović et al. [25] used a GA to sequence requests in a triple-shuttle AS/RS, which
used a class-based storage system under a modified sextuple command cycle policy with
a planning horizon that comprises the realization of several successive cycles of the S/R
machine. Brezovnik et al. [26] optimized AS/RS operations by using an ant colony op-
timization (ACO) metaheuristic, taking the factor of inquiry (FOI), product height (PH),
storage space usage (SSU), and path to dispatch (PD) into consideration. Nia et al. [27]
also employed ACO to find a near-optimal solution. The objective was to minimize the
total cost of GHG efficiency for the dual-command crane scheduling problem in a unit-load
multiple-rack AS/RS. ACO was found to be better than the GA. Chen et al. [28] hybridized
ACO with a GA to deal with the routing problem of the crane in a multiple-block warehouse
with ultranarrow aisles and access restrictions. Simulations have been used to evaluate
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12 warehouse layouts. The experimental results show the superiority of the proposed
approach over the dedicated heuristics in terms of solution quality. Cunkas and Ozer [29]
used PSO to optimize location assignments for SKUs in a unit-load dual-shuttle AS/RS.
The quadruple-command cycle was used. PSO was found to outperform the binary-coded
GA (BGA) and real-coded GA (RGA). Tostani et al. [30] proposed a modified coopera-
tive coevolutionary algorithm (MCoBRA) to deal with the dual-shuttle crane scheduling
problem in an AS/RS. A bi-level optimization model considering total cost and energy
consumption was proposed. The upper level determines the locations of SKUs based on a
class-based storage policy. The lower level focuses on solving the crane scheduling problem.
Hojaghani et al. [31] formulated a novel mixed-integer nonlinear program (MINLP) for
online order batching. The aim was to improve the response and idle times. However,
the MINLP was solved by two metaheuristics, ACO and artificial bee colony (ABC), and
due to NP-hard, ACO was found better than the ABC. The above literature shows that
using metaheuristics to solve the crane scheduling problem is a current trend. However,
the whale optimization algorithm (WOA) has never been used for this purpose. Proposed
by Mirjalili and Lewis [32], the WOA is a new swarm-intelligence (SI)-based metaheuristic
that models the hunting behavior of humpback whales. This algorithm is found to have
advantages such as a simple structure, fewer operators, a fast convergence speed, and
balanced exploration and exploitation (Mirjalili and Lewis [32]). However, the standard
WOA cannot move a whale adaptively, in addition to lacking the mutating capability to
increase solution diversity. This kind of metaheuristics has never been used to deal with
the crane scheduling problem in an AS/RS.

Simulation is useful to optimize the design and operations of an AS/RS. However,
a thorough simulation study is usually necessary before achieving optimality. Ashayeri
et al. [33] used simulation for the optimal design of a unit-load automated warehouse for a
large oil company in Belgium. Han et al. [6] applied Monte Carlo simulation to improve the
throughput of a unit-load AS/RS. FCFS is used as the sequencing rule. A nearest-neighbor
sequencing rule was used as an alternative. Azzi et al. [34] also applied Monte Carlo
simulation to estimate the travel time of a unit-load multiple-shuttle AS/RS. Randhawa
and Shroff [35] used simulation to examine the effects of sequencing rules on six layout
configurations of a unit-load AS/RS with different I/O stations, SKU distribution, rack
distribution, etc. Lee [36] used the ARENA simulation software to optimize the number
of rail-guided vehicles (RGVs) deployed. Hachemi et al. [37] used simulation to study
the dual-command crane scheduling problem in a unit-load multiple-rack AS/RS. The
objective was to minimize the travel time. FCFS is used for storage requests while the
retrieval requests are gathered by block. Yang et al. [38] examined the joint optimization of
the crane scheduling problem and storage location assignment problem in a unit-load multi-
shuttle AS/RS. They proposed an effective variable neighborhood search (VNS) algorithm.
However, in past studies, the simulation and optimization have been often loosely coupled,
resulting in a rigorous and labor-intensive solution procedure. A framework for coupling
simulation and optimization closely is thus necessary.

Environmental issues are recent global concerns. Boysen and Stephan [4] highlighted
the need for energy-efficient crane scheduling for an AS/RS. Nia et al. [27] conducted a
unique study that considered the GHG efficiency when dealing with the dual-command
crane scheduling problem. However, there are few such studies, necessitating more research
incorporating the energy consumption issue.

This research deals with the dual-command crane scheduling problem in a unit-load
double-deep AS/RS. A MILP model is firstly formulated after defining this problem.
The objective was to minimize energy consumption. Then, a framework is proposed to
couple the simulation and optimization closely. Based on this, various simulation-based
optimization approaches have been developed, in which various heuristics/metaheuristics,
including FCFS, RANDOM, WOA, GA, PSO, and an improved WOA (IWOA), together
with DP, have been used as sequencing methods. The experimental results show that the
IWOA outperforms the others.
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The contributions of this research are highlighted as follows:

(1) A MILP is formulated for this problem;
(2) A framework is proposed to couple the simulation and optimization closely;
(3) An improved WOA (IWOA) with features of adaptive movement and mutation is

developed for solving discrete problems using discrete operators;
(4) Experiments are conducted to investigate the effectiveness of different simulation-

based optimization approaches;
(5) The successful application of the proposed approaches to solve the dual-command

crane scheduling problem in the unit-load double-deep AS/RS is carried out.

The rest of this paper is organized as follows: Section 2 reviews background informa-
tion on an AS/RS; Section 3 first defines the problem and then formulates a MILP model;
Section 4 proposes a simulation-based optimization framework and develops an improved
WOA (IWOA) as a sequencing method; Section 5 conducts experiments and analyzes the
results; Section 6 presents conclusions and suggestions for the future.

2. Background
2.1. The Common Components of an AS/RS

As shown in Figure 1, an AS/RS includes hardware and software components, which
are introduced as follows.
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(1) Hardware components:

• Rack: a mainframe structure used to create a three-dimension space for the accom-
modation of SKUs. It is the main hardware component of an AS/RS. Each rack is
assigned a rack number for identification. A rack can be designed with single, dual, or
multiple depths.

• Bin: a cell or basic storage unit partitioned from a rack for storing stock items. Each
bin is assigned a bin number for identification or can be identified by a coordinate
denoted as (x, y, z), where the x indicates a column number, y indicates a tier number,
and z indicates a depth number.

• Aisle: a lane used to separate racks and provide moving space for a crane to reach a
target bin position in a rack.

• Crane: also known as storage/retrieval (S/R) machine which is the main device to
transport and store/retrieve SKUs into/from the rack of an AS/RS.

• Shuttles: a mechanical device on a crane for transferring SKUs between the crane and
rack. A crane can have one, dual, or multiple shuttles, which affects the batching
capability of a crane.

• I/O station: a loading/unloading station used to store/retrieve SKUs into/from the
AS/RS. In this research, the I/O station defaults as the dwelling point of the crane.
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• Computer: a device receiving service requests and controlling the operations of the
cranes in the AS/RS.

(2) Software components

Besides the hardware components, the software components are essential for manag-
ing and controlling the hardware of an AS/RS. They include:

• Storage rule: a simple rule which decides the storage position or sequence of an SKU.
For example, FCFS decides that the earliest arriving SKU should be stored first.

• Retrieval rule: a simple rule which decides the retrieval position or sequence of an
SKU. For example, first-in first-out (FIFO) determines that the SKU with the earliest
arrival should be retrieved first.

• Scheduling method: a method used to determine the sequences of requested services
for a crane. A simple storage rule such as FCFS or Random can be used to schedule the
storage requests. However, more comprehensive approaches, such as metaheuristics
and simulation, can be used to achieve a more efficient schedule for a crane.

• Zoning policy: a policy arranging available storage space for various kinds of SKUs
in an AS/RS. The overall storage space of an AS/RS can be classified into different
zones for storing different kinds of SKUs based on their characteristics, such as value
or frequency of usage of the SKUs, etc.

• Command mode: a command mode can affect the behavior of a crane. Single-
command, dual-command, and multiple-command modes are different command
modes of a crane.

• Batching: a method for combining multiple service requests into one tour of service by
a picker or a crane.

2.2. The Classification of AS/RS

To solve an AS/RS problem, one first needs to understand the essence of the AS/RS.
Referring to Roodbergen and Vis [39], Figure 2 shows a classification scheme based on the
attributes of the crane, handling, and rack of AS/RSs. Considering the “shuttle” attribute,
a crane can have one single, dual, or multiple shuttles. Considering the “movement”
attribute, a cane can be “aisle dedicated” or “aisle shareable” between aisles. Considering
the “handling” attribute, an AS/RS can have three types: man-on-board (MOB), end-of-
aisle (EOA), and unit-load (UL). The MOB AS/RS has a man on board to pick up SKUs; the
EOA AS/RS allows SKUs to be picked up at the end of an aisle; the UL AS/RS accesses
the SKUs in pallet or bin units. Considering the “mobility” attribute, a rack can be a
“stationary” or “moveable” one. The stationary rack can be “single-deep” or “double-deep.”
A movable rack can be the “rotate” or “mobile” kind. The former kind allows rotation in
the “horizontal” or “vertical” direction while the latter kind can move in various ways. For
example, Kiva robots are used in the Amazon warehouse to move racks.
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2.3. Operational Time Analysis for a Dual-Command Crane in a Unit-Load Double-Deep AS/RS

Figure 3 shows the moving paths a crane uses to complete a dual command. First,
the crane performs the storage request i by moving from the I/O station to the storage
position S1, (xi, yi, zi) This travel time is denoted as T1. Then, the crane performs the
retrieval request i′ by moving from position S1 to position R1, (xi′ , yi′ , zi′ ). This travel time
is denoted as T2. Finally, the crane moves the retrieved SKU back to the I/O station. The
travel time of the last movement is denoted as T3. The total time to complete this dual
command is formulated as Equation (1).

T(DC)ii′ = T1 + ts + T2 + tr + T3

= Max
{

W·xi
vx

, H·yi
vy

}
+ts + Max

{
W·|xi−xi′ |

vx
,

H·|yi−yi′ |
vy

}
+tr + Max

{
W·xi′

vx
, H·yi′

vy

} c (1)

vx (meter/second) is the moving speed of the crane along the horizontal direction while
vy (meter/second) is the moving speed of the crane along the vertical direction. W and H
indicate the width and height (in the unit of meters) of each storage bin, respectively.
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ts is the time needed for the shuttle to store the SKU on a rack. This time is affected
by the depth of the storage position of the SKU to be stored. Thus, ts is estimated by
Equation (2).

ts =
{

2D/vz, if zi = 1 (first depth)
(2D/vz) ∗ Cs, if zi = 2 (second depth)

(2)

D indicates the depth of a storage position in a rack. vz is the moving speed of the
shutter along the Z direction. Cs is a coefficient for extending the storage time required for
the SKU assigned at the second depth (i.e., zi = 2) in a rack.

tr is the time needed for the shuttle to retrieve an SKU from a rack. Additionally,
this time can be affected by the storage depth of the SKU in the rack. It is estimated by
Equation (3).

tr =
{

2D/vz, if zi′ = 1 (first depth)
(2D/vz) ∗ Cr, if zi′ = 2 (second depth)

(3)

The Cr is a coefficient for extending the retrieval time required for the SKU stored at
the second depth (i.e., zi′ = 2) in a rack.

2.4. Energy Consumption Calculation

Based on Nia et al. [27], the tax cost of energy consumption for the crane is calculated
by Equation (4).

T(E)ii′ = Pc × T(DC)ii′ × fe × Ce (4)

where:
Pc : power consumption of crane (k watts/second);
fe : GHG conversion factor;
Ce : GHG emission cost.
The penalty cost of exceeding GHG emissions and the discount for producing less

GHG emissions than expected are not taken into account in this research.

3. Problem Definition and Mathematical Model Formulation
3.1. Definition of the Dual-Command Crane Scheduling Problem

In this research, dual-command crane scheduling is defined as a problem of forming
the storage and retrieval service requests into dual-commands and sequencing their execu-
tion orders for a crane in a unit-load and double-deep AS/RS. Each crane is dedicated to
serving two racks on both sides of a specific aisle. The racks have double the depth, i.e.,
double-deep racks (as shown in Figure 3). The crane moves in the horizontal and vertical
directions simultaneously, with the moving distance measured by the Chebychev metric.
Based on the classification notation proposed by Boysen and Stephan [4], this problem is
denoted as [

F
∣∣∣ O2 ∣∣Open

∣∣∑ T(E)ii′ ],

where:
F: I/O station at the front end;
Open: any open shelf is a potential location for storage requests;
O2: double commands;
∑ T(E)ii′ : the total cost of energy consumption for the crane using a dual command

(storage request i and retrieval request i′). This is a new objective function.
The objective ∑ T(E)ii′ considers the total energy consumption cost of the crane.
Figure 4 represents a solution to this problem. The SR and RR are the sequences of

storage and retrieval service requests, respectively. The parameter N = 10 indicates the
total number of dual commands of storage and retrieval service requests. In this solution,
the dual command of storage and retrieval requests is executed in the following sequence:
(5,2),(3,6),(4,1),(1,10),(7,7),(2,4),(9,8),(6,5),(8,3),(10,9). If the storage and retrieval requests are
sequenced according to their arrival times, then this is a solution obtained from the FCFS
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rule. Each dual command is executed by the crane with the schedule [Si, Ei′ ], where Si and
Ei′ are the start and end times, respectively.
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3.2. Mathematical Model Formulation

This section focuses on formulating a mathematical model for the dual-command
crane scheduling problem. Before doing this, the required assumptions, indices, sets,
parameters, and decision variables are first defined as follows.

Assumptions:

• Each storage/retrieval request is associated with one SKU.
• The position (x,y,z) of each SKU to be stored/retrieved is specified in each stor-

age/retrieval request.
• The crane moves in the X (horizontal) and Y (vertical) directions simultaneously and

the distance is measured by the Chebychev metric.
• No interruption occurs during the transport, storage, and retrieval operations.
• There are N storage and N retrieval requests to be handled by a specific crane.

The indices, sets, parameters, and decision variables required for the MILP are defined
as follows.

Indices:

i, j
i′, j′

r
x
y
z

a storage request ID; i, j ∈ SR;
a retrieval request ID; i′, j′ ∈ RR;
a rack number; r ∈ R;
a column number on a rack; x ∈ X;
a tier number on a rack; y ∈ Y;
a deep number on a rack; z ∈ Z.

Sets:

SR
RR
R
X
Y
Z

a set of storage requests; SR = {1, . . . , N};
a set of retrieval requests; RR = {1, . . . , N};
a set of rack; R = {1, . . . , ‖R‖};
a set of columns; X = {1, . . . , ‖X‖};
a set of tiers on a rack; Y = {1, . . . , ‖Y‖};
a set of depth numbers; Z = {1, . . . , ‖Z‖}.

Parameters (Input data):

‖R‖ the number of racks served by a crane;
‖X‖ the total number of columns of a rack;
‖Y‖ the total number of tiers of a rack;
‖Z‖ the total number of depths in a rack; ‖Z‖ = 1

(1st depth); ‖Z‖ = 2 (2nd depth)
N the total number of storage/retrieval service

requests
(xi,yi,zi) the storage position of an SKU i in a rack;
(xi′ ,xi′ , xi′ ) the storage position of an SKU i′ in a rack;
vx the moving speed of a crane along the X

horizontal (column) direction;
vy the moving speed of a crane along the Y

vertical (tier) direction;
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vz the moving speed of a shuttle along the Z
(depth) direction;

ts the shuttle time to store an SKU into the
AS/RS;

tr the shuttle time to retrieve an SKU from the
AS/RS;

fe GHG conversion rate;
Ce penalty cost of GHG emissions;
Cs a coefficient extending the storage time

required for the SKU which is to be stored in
the second depth in the rack;

Cr. a coefficient extending the retrieval time
required for an SKU stored in the second depth
in a rack.

Decision variables:

Xij = 1, if the storage request i is performed before
the storage request j;
= 0, otherwise;

Yi′ j′ = 1, if the retrieval request i′ is performed
before the retrieval request j′; = 0, otherwise;

Zii′ = 1, if the storage request i and the retrieval
request i′ is a pair of dual-command; = 0,
otherwise.

A sequence of dual commands of storage and retrieval requests is to be created. The
MILP model for the crane scheduling problem is formulated as follows:

Min Z =
N

∑
i=1

N

∑
i′=1

T(E)ii′ ·Zii′ (5)

s.t.
T(E)ii′ ≥0 ∀ i, i′ ∈ SR (6)

N

∑
i=1

Xij = 1 ∀ j ∈ SR (7)

N

∑
j=1

Xij = 1∀ i ∈ SR (8)

Xij ≤ (N − 1)Xij ∀i, j ∈ SR (9)

N

∑
j=1

Xji =
N

∑
j=1

Xji + 1 ∀ i ∈ SR (10)

N

∑
i′=1

Yi′ j′ = 1 ∀ j′ ∈ RR (11)

N

∑
j′=1

Yij = 1 ∀ i′ ∈ RR (12)

Yi′ j′ ≤ (N − 1)Yi′ j′ ∀ i′, j′ ∈ RR (13)

N

∑
j′=1

Yi′ j′ =
N

∑
j′=1

Yi′ j′ + 1 ∀ i′, j′ ∈ RR (14)

N

∑
i=1

N

∑
i′=1

Zii′ = N (15)
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N

∑
i=1

Zii′ = 1 ∀ i′ ∈ RR (16)

N

∑
i′=1

Zii′ = 1 ∀ i ∈ SR (17)

Xij, Yi′ j′ , Zii′ ∈ {0, 1} ∀ i, j ∈ SR ∀ i′, j′ ∈ RR (18)

Equation (5) is the objective function of minimizing the total cost of energy consump-
tion of the crane. Equations (1)−(4) are also included. Constraint (6) defines the condition
for the variable T(E)ii′ . Constraints (7)−(10) relate to the variables Xij. Constraint (7)
ensures that each storage request has only one predecessor. Constraint (8) ensures each
storage request has only one successor. Constraints (9)−(10) relate to the variable Xij which
assigns a sequence of storage requests from a network view. Constraint (9) states that on
leaving node i, there are no more than N − 1 remaining storage requests to be assigned.
Equation (10) is a conservation constraint for node i. Similarly, constraints (11) and (14)
relate to the variable Yi′ j′ . Constraint (11) ensures that each retrieval request has only
one predecessor. Constraint (12) ensures each retrieval request has only one successor.
Constraints (13)−(14) are associated with the variable Yi′ j′ , which assigns retrieval requests
from a network view. Constraint (13) states that on leaving node i′, there are no more
than N − 1 remaining retrieval requests to be assigned. Equation (14) is a conservation
constraint for node i′. Constraints (15)−(17) are associated with the variable Zii′ . Constraint
(15) ensures there are exactly N pairs of dual commands. Constraint (16) ensures that a
retrieval request is assigned with one storage request only. Constraint (17) ensures that a
storage request is assigned with one retrieval request only. Constraint (18) stipulates that
Xij, Yi′ j′ , and Zii′ are binary variables.

This problem has a solution space of N!×N!, which tends to become computationally
intractable if the N is big enough. Thus, a simulation-based optimization approach is
proposed as an alternative approach.

4. Simulation-Based Optimization Approaches
4.1. A Simulation-Based Optimization Framework

Due to NP-complete, this section proposes a framework (Figure 5) that couples the sim-
ulation and optimization closely for developing alternative simulation-based optimization
approaches. The main layers/functions of this framework are introduced as follows:

• Input: this is an initial step to creating input data for experiments. Configuration data
of the AS/RS, such as the number of racks, the dimension of a rack, the moving speed
of the crane, and the parameter values of heuristics/metaheuristics, are set manually.
On the other hand, the storage and retrieval requests of SKUs and their target positions
(x,y,z) are generated by a computer automatically. This simulates the randomness of
service requests in the real world.

• Requests sorting layer: this layer sorts out the storage and retrieval service requests
specifically for each crane based on the SKU’s positions. Since the SKUs to be
stored/retrieved are distributed across racks in the AS/RS, it needs first to sort out
the storage and retrieval requests for each crane. As said previously, each crane is
dedicated to serving two specific racks on both sides of an aisle. The sorting is based
on the rack positions of the target SKUs. The storage and retrieval requests specifically
for each crane are inputted to the sequencing layer.

• Sequencing layer: this layer focuses on generating alternative sequences of dual
commands (one storage and one retrieval request) for a crane. Two simple heuris-
tics (Random and FCFS) and four metaheuristics (WOA, IWOA+DP, GA, and PSO)
are used in this research to generate and sequence dual commands. Conversely,
the IWOA+DP uses a two-stage procedure. First, the IWOA finds a sequence of
storage requests, based on which the dynamic programming (DP) method (detailed
in Section 4.4) is used in the second stage to assign each storage request a retrieval
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request to become a dual command. The sequence of dual commands is inputted
into the simulation layer. As each sequence of storage and retrieval requests is NP-
complete, the use of an analytical model to solve this problem optimality tends to
become computationally intractable.

• Simulation layer: with the sequence of dual commands as input, this layer simulates
the crane operations and evaluates the results. The best solution can be identified in
this layer.

• Termination check: a check function is used to check whether the stop condition is
reached. A total number of iterations is used as a stop condition in this research.

• Output: this step outputs the best solution.
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Figure 5. The simulation-based optimization framework.

The framework can be transformed into a workflow diagram with input and output
data flows represented as dotted red arrow lines, as shown in Figure 6. For example, the
Simulation module inputs distance data of each dual command into the Energy calculation
modulem which calculates and returns the energy cost of dual commands.

Mathematics 2021, 10, x FOR PEER REVIEW 11 of 29 
 

 

simulation layer. As each sequence of storage and retrieval requests is NP-complete, 

the use of an analytical model to solve this problem optimality tends to become com-

putationally intractable. 

• Simulation layer: with the sequence of dual commands as input, this layer simulates 

the crane operations and evaluates the results. The best solution can be identified in 

this layer. 

• Termination check: a check function is used to check whether the stop condition is 

reached. A total number of iterations is used as a stop condition in this research. 

• Output: this step outputs the best solution. 

Requests

sorting

Sequencing

(heuristic/metaheuristic+DP)

 Simulation

Terminate

check ?

Constraints

Output

(the best planning result)

Input 

(System configuration, service 

requests, parameter values, etc.)

No

Distance

table

 

Figure 5. The simulation-based optimization framework. 

The framework can be transformed into a workflow diagram with input and output 

data flows represented as dotted red arrow lines, as shown in Figure 6. For example, the 

Simulation module inputs distance data of each dual command into the Energy calcula-

tion modulem which calculates and returns the energy cost of dual commands. 

Requests

sorting

Sequencing

(heuristic/metaheuristic+DP)

Simulation
Energy 

calculation

Service requests

Distance data

Energy cost

Input 
Output 

AS/RS configuration data

Service requests for a 

specific crane

Dual-commands for a 

specific crane

The best 

planning

Service Requests

Algorithm parameter 

values
AS/RS configuration data

Algorithm 

parameter 

values

The best 

planning

 

Figure 6. The workflow diagram of modules with input and output data flows. 

  

Figure 6. The workflow diagram of modules with input and output data flows.



Mathematics 2022, 10, 4018 12 of 30

4.2. Position Scheme

Figure 7 shows the position scheme of whales to search for a solution space. It
includes two segments, each with the dimension N, where N is the total number of stor-
age/retrieval requests.

Mathematics 2021, 10, x FOR PEER REVIEW 12 of 29 
 

 

4.2. Position Scheme 

Figure 7 shows the position scheme of whales to search for a solution space. It in-

cludes two segments, each with the dimension N, where N is the total number of stor-

age/retrieval requests. 

i 𝑖′ 

𝑆1 𝑆2    𝑆𝑁 𝑅1 𝑅2    𝑅𝑁 

Figure 7. The position scheme used by whales. 

The left segment represents the sequence of storage requests, in which 𝑆𝑖 indicates 

the order of the storage request i (i ∈ [1, N]). The right segment indicates the sequence of 

retrieval requests, in which 𝑅𝑖′ indicates the order of the retrieval request 𝑖′ (𝑖′  ∈ [1, N]). 

A series of dual commands are then formed and represented as (𝑆𝑖, 𝑅𝑖′), where i, 𝑖′ ∈ [1, 

N]. 

4.3. WOA and Improved WOA (IWOA) 

The WOA and IWOA are further detailed as follows. 

4.3.1. WOA 

Figure 8 shows the spiral-shaped movement of whales when they are circling and 

attacking their prey. Each whale’s position represents a solution in the solution space. 

Then, the distance between a whale and the prey (fish schools) represents an objective 

function value. The aim is to minimize the distance. The whales change their positions 

continuously during the hunting process, which contains three phases: encircling, prey, 

bubble-net attack (exploitation phase), and the search for prey (exploration phase) [32]. 

(X,Y)

(X*,Y*)

Y

X

Prey (fish schools)

Elliptical path

Humpback Whale

Bubble net

Di

Bubble 

Bubble 

 

Figure 8. The spiral movements of humpback whales when hunting prey. 

(1) Encircling prey 

After noting the prey (school fish), the humpback whales set out to encircle and at-

tack them. However, not knowing the prey’s exact position, it is assumed that the global 

best whale 𝑤∗ is closest to the prey. Equation (19) shows the distance between the whale 

i and the target prey. 

𝐷𝑖
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Figure 7. The position scheme used by whales.

The left segment represents the sequence of storage requests, in which Si indicates
the order of the storage request i (i ∈ [1, N]). The right segment indicates the sequence of
retrieval requests, in which Ri′ indicates the order of the retrieval request i′ (i′ ∈ [1, N]). A
series of dual commands are then formed and represented as (Si, Ri′ ), where i, i′ ∈ [1, N].

4.3. WOA and Improved WOA (IWOA)

The WOA and IWOA are further detailed as follows.

4.3.1. WOA

Figure 8 shows the spiral-shaped movement of whales when they are circling and
attacking their prey. Each whale’s position represents a solution in the solution space. Then,
the distance between a whale and the prey (fish schools) represents an objective function
value. The aim is to minimize the distance. The whales change their positions continuously
during the hunting process, which contains three phases: encircling, prey, bubble-net attack
(exploitation phase), and the search for prey (exploration phase) [32].
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(1) Encircling prey

After noting the prey (school fish), the humpback whales set out to encircle and attack
them. However, not knowing the prey’s exact position, it is assumed that the global best
whale w∗ is closest to the prey. Equation (19) shows the distance between the whale i and
the target prey.

⇀
Di=

∣∣∣∣⇀C · ⇀
Xw∗(t)−

⇀
Xi(t)

∣∣∣∣ (19)
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⇀
Xi(t) and

⇀
Xw∗(t) are position vectors of the whale i and the global best whale w∗,

respectively.
⇀
C is a coefficient vector defined by Equation (20).

⇀
C =2·⇀r (20)

⇀
r ∈ [0,1] is a vector of random numbers. Given the distance

⇀
Di, the next position of

the whale i is determined by Equation (21).

⇀
Xi(t + 1) =

⇀
Xi(t)−

⇀
A·

⇀
Di (21)

⇀
A is a coefficient vector defined by Equation (22).

⇀
A= 2

⇀
a ·⇀r −⇀

a (22)

where the
⇀
a is a linear value decreasing from 2 to 0 iteratively.

(2) Bubble-net attack (exploitation phase)

Equation (23) defines the use of shrinking circle- or spiral-shaped paths for whales
during the exploitation phase.

⇀
Xi(t + 1) =

{ ⇀
Xw∗(t)−

⇀
A·

⇀
Di, if p < 0.5

⇀
Di·ebl · cos(2πl) +

⇀
Xw∗(t), if p ≥ 0.5

(23)

The parameter random number p ∈ [0,1] controls the selection of the shrinking circle-
or spiral-shaped path. If p < 0.5, then the shrinking circle is used; otherwise, the spiral-
shaped path is used. The parameter b (a constant value) defines the shape of the logarithmic
spiral. The parameter l ∈ [0,1] is a random number.

(3) Search for prey (exploration phase)∣∣∣∣⇀A∣∣∣∣ controls the use of either an exploration or exploitation search for a whale. If∣∣∣∣⇀A∣∣∣∣ ≥1, Equations (24) and (25) are used for the exploration search.

⇀
Di=

∣∣∣∣⇀C · ⇀XR(t)−
⇀
Xi(t)

∣∣∣∣ (24)

⇀
Xi(t + 1) =

⇀
XR(t)−

∣∣∣∣⇀A∣∣∣∣·⇀Di (25)

⇀
XR(t) is the position of a randomly selected whale. If

∣∣∣∣⇀A∣∣∣∣ < 1, then replace
⇀
XR(t) in

Equations (24) and (25) with
⇀

Xw∗(t) for the exploitation search.
Figure 9 shows the workflow of Algorithm A1 of the WOA. Appendix A shows the

pseudo-code of the WOA.



Mathematics 2022, 10, 4018 14 of 30
Mathematics 2021, 10, x FOR PEER REVIEW 14 of 29 
 

 

Start

Initialize parameters

(a,A,C,l,P,t,T) and 

positions of whales Xi

Calculate F(Xi) and find

the X*; t=1; i=1

Update parameters

(a,A,C,l,p)

|A|<1

p<0.5

Update Xi using 

Eqs. (19) and (21)

Update Xi using 

Eqs. (24) and (25)

i=i+1

NoYes

Yes

No

Update Xi using 

Eq. (23)

i<P

t<T

Update X* if Xi is better

t=t+1

End

Output X* 

Yes

Yes

No

No

 

Figure 9. The workflow of Algorithm A1 of the WOA. 

4.3.2. Improved WOA (IWOA) 

The IWOA allows the humpback whales to be guided by a set of elite whales (de-

noted as ES), instead of only the global best whale 𝑤∗. Whale i can develop adaptive steps 

by referring to an elite whale 𝑤′ ∈ ES. 

• Adaptive movement of whales: 

Referring to an elite whale 𝑤′ ∈  ES , whale i develops an adaptive movement 

through the following three steps: 

(1) Determine the Hamming distance: the first step is measuring the Hamming dis-

tance between the whale i and the elite whale 𝑤′, based on their current position vectors. 

The Hamming distance is defined in Equation (26). 

HD(X⃑⃑ , Y⃑⃑ ) = ∑ XOR(𝑋 𝑖
𝐷
𝑖=1 , 𝑌⃑ 𝑖) (26) 

It counts the total number of different elements between the two position vectors X⃑⃑  

and Y⃑⃑ , where the D is a dimension of the vectors. 𝑋 𝑖 and 𝑌⃑ 𝑖 are the i-th elements in X⃑⃑  

and Y⃑⃑ , respectively. The XOR is an operator leading to either 1 ( 𝑋⃑⃑  ⃑𝑖 ≠ 𝑌⃑ 𝑖) or 0 (if 𝑋 𝑖 = 𝑌⃑ 𝑖). 

(2) Determine a change rate (CR): the CR is a change rate controlling the replacement 

of the k-th element in 𝑋 𝑖(t+1) with the k-th element in 𝑋 𝑤′(𝑡), simulating the movement 

toward the 𝑤′. A whale that is farther out requires a bigger CR, as defined in Equation 

(27). 

Figure 9. The workflow of Algorithm A1 of the WOA.

4.3.2. Improved WOA (IWOA)

The IWOA allows the humpback whales to be guided by a set of elite whales (denoted
as ES), instead of only the global best whale w∗. Whale i can develop adaptive steps by
referring to an elite whale w′ ∈ ES.

• Adaptive movement of whales:

Referring to an elite whale w′ ∈ ES, whale i develops an adaptive movement through
the following three steps:

(1) Determine the Hamming distance: the first step is measuring the Hamming
distance between the whale i and the elite whale w′, based on their current position vectors.

The Hamming distance is defined in Equation (26).

HD(
⇀
X,

⇀
Y) =

D

∑
i=1

XOR(
⇀
Xi,

⇀
Y i) (26)

It counts the total number of different elements between the two position vectors
⇀
X

and
⇀
Y, where the D is a dimension of the vectors.

⇀
Xi and

⇀
Y i are the i-th elements in

⇀
X and

⇀
Y, respectively. The XOR is an operator leading to either 1 (

⇀
Xi 6=

⇀
Y i) or 0 (if

⇀
Xi =

⇀
Y i).
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(2) Determine a change rate (CR): the CR is a change rate controlling the replacement

of the k-th element in
⇀
Xi(t+1) with the k-th element in

⇀
Xw′(t), simulating the movement

toward the w′. A whale that is farther out requires a bigger CR, as defined in Equation (27).

CR = HD
(
i, w′

)
/D (27)

(3) Determine the next position of the whale i:
Based on the CR, this step determines the k-th element in the next position of whale i

using Equation (28).

⇀
Xi(t + 1) =


Xw′ ,k(t), if Xi,k(t) 6= Xw′ ,k(t) and Rk < CR

Xi,k(t), otherwise
(28)

Rk ∈ [0, 1] is a random number used for determining the k-th element in
⇀
Xi(t + 1).

Equation (28) provides a whale that is farther out with a higher opportunity to make a
bigger step, while a closer whale is more likely to make a smaller step toward the w′.
However, if Xw′ ,k(t) replaces Xi,k(t) in Xi,k(t + 1), Xi,k(t) will take the place of the original
Xw′ ,k(t) to ensure a feasible solution.

For example, given that Xi(t) = [5,4,3,2,1] and Xw′(t) = [3,4,2,5,1] are the current
positions of the whale i and the elite whale w′, respectively, then we can derive HD(i, w′) =
2, CR = 3/5 = 0.6. Additionally, the next position vector of the whale i will be determined
by Equation (28). Given the random number R1 = 0.5, then Xi,1(t + 1) becomes 3, and
element 5 in Xi(t) will take the position of 3 in Xi(t) and appear in Xi(t + 1). Note that the
derived solution remains feasible.

In addition, the IWOA includes the following features:

• The use of Sobol sequence:

This Sobol sequence enables the IWOA to initialize more uniform-distributed positions
of whales in the solution space through the use of Sobol sequence numbers [40]. One weak-
ness found in many past studies is that the random numbers generated by pseudorandom
number generators embedded in the standard libraries of programming languages are not
uniformly distributed [41].

• Mutation:

Mutation can diversify solutions. It avoids solutions sticking to local optima. Thus,
the IWOA introduces a mutation( ) procedure that includes two kinds of mutations, swap
mutation (SM) and inverse mutation (IM).

(1) Swap mutation (SM): this is a mutation that switches elements at two randomly
selected points (such as p1 and p2) in a vector. For example, given p1 = 2 and p2 = 6, the
position vector [71324586] is mutated to [75324186].

(2) Inverse mutation (IM): this mutation mutates elements in reverse order between
two randomly selected points (p1 and p2) in a vector. The IM can have a higher degree of
mutation. For example, given p1 = 2 and p2 = 6, the position vector [71324586] is mutated
to [75423186]. The IM has a bigger range of mutations.

Based on Hamming distance, a similarity degree (SD), as defined in Equation (29), is
used to determine the use of SM or IM.

SD = HD(
⇀
X,

⇀
Y)/D (29)

HD(
⇀
X,

⇀
Y) is defined in Equation (26).

Figure 10 shows the workflow of Algorithm A2 of the procedure mutation( ).
Appendix B shows the pseudo-code. The mutation happens when the condition, R1
<ω, is true. R1 andω ∈ [0,1], represent a random number and a mutation rate, respectively.
The values of SD and θ control the use of either IM or SM. If SD < θ then the IM is used;
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otherwise, the SM is used. The smaller the θ, the lower the probability of using the IM. A
solution remains feasible after mutation due to a combination of sequence numbers from 1
to N.
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4.4. The Dynamic Programming

The DP works together with the IWOA to form a sequence of dual commands. With
the output obtained from the IWOA in the first stage (i.e., the sequence of storage requests),
the forward DP is used to form a sequence of dual commands by assigning each storage
request with a retrieval service request through the N stages. The DP model contains
Equations (30)–(32).

D1(j) = d1
sj, j ∈ S1 (30)

Dk(j) = min
i∈

..
Sk−1

{
dk

ij + Dk−1(i)
}

, j ∈ Sk, ∀ k = 2, . . . , N − 1 (31)

DN = min
i∈

....
SN−1

{
dN

ij + DN−1(i)
}

, j ∈ SN (32)

At each stage k (k = 1, . . . , N), the DP model assigns each storage request with a
retrieval request at the k order, based on the distance table. In Equation (30), D1(j) indicates
the total retrieval distance at stage 1; d1

sj is the minimum distance at the state j of Stage 1,
transitioned from the state s of the dummy stage 0; S1 is a set of available states at Stage
1. In Equation (31), the Dk(j) indicates the total retrieval distance at Stage k. dk

ij is the
minimum distance at state j of Stage k, transitioned from the state i of Stage k-1, where
2≤ k ≤ N − 1.

..
Sk indicates the set of available states at Stage k. In Equation (32), CN

indicates the total retrieval distance at the final Stage N. cN
ij indicates the total retrieval

distance at state j of the final Stage N transitioned from the state i at the previous Stage
N − 1. The SN indicates the set of available states at Stage N. At each stage k (1≤ k ≤ N),
the DP forms a dual command consisting of one storage and one retrieval request.

4.5. The Main Logic Flow of the IWOA

Figure 11 shows the workflow of Algorithm A3 of the IWOA. Appendix C shows the
pseudo-code. Compared with Algorithm A1, line 3 changes to using a Sobol sequence
generator to initialize positions for whales; lines 8–19 include an additional loop, where
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NE is the number of elites in the elite set ES; line 11, 14, and 17 change to use adaptive
movements for whales; and line 24 adds a mutation procedure, mutation( ). These are new
features in the IWOA.
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4.6. Simulation Model

Figure 12 shows a timed predicate/transition net as a discrete-event simulation model
for dealing with the dual-command crane scheduling problem. The main components of a
timed predicate/transition net include the predicate, transition, and directed arc [42,43].
They are defined as follows:
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• Predicate = {Dual_Command_task, Crane, Using_Crane, Closed_task};
• Transition = {T1,T2};
• Arc = {A1, . . . , A6}.

Each predicate accompanied by a circle symbol asserts a fact. For example, the
Dual_commnd_task predicate asserts the truth/false of the existence of dual-command
task(s). It becomes true once a task token <S_id,R_id,ai> appears in the corresponding circle
symbol. The token’s attributes correspond to the storage_request_id, retrieval_request_id,
and available_time of the request I, respectively. The Crane predicate asserts the truth/false
of the existence of available crane(s). It becomes true once a crane token <C_id,ac> appears
in the corresponding circle symbol. The token’s attributes correspond to the crane_id
and available_time of the crane c, respectively. The predicate Closed_task asserts the
truth/false of the existence of completed task(s). It becomes true whenever a task token
appears in the corresponding circle symbol. T1 and T2 are transitions that are repre-
sented by bar symbols. Transition T1 is “firable” when both the Dual_Command_task
and Crane predicates become true simultaneously. T2 is firable once a combined token
<S_id,R_id,ai>+<C_id,ac> appears in the Using_Crane predicate. T2 is a timed transition as
it takes time to complete the transition. After this transition, the crane token <C_id,ET> is
returned to the Crane predicate; meanwhile, the task token <S_id,R_id,ET) is transitioned
to the Closing_task predicate. When all tokens stay with the Closing_task predicate, the
simulation stops running.

Let ai and ac be the available times of the SKU i (i ∈ T) and the crane c, respectively.
Then, the start time of handling the i-th paired requests (STi) is determined by Equation (33).

STi = Max{ai, ac} (33)

Let T(DC)ii′ be the travel time for this pair of storage and retrieval requests.
Equation (34) is used to estimate the completion time.

ETi′ = STi + T(DC)ii′ = Max{ai, ar}+ T(DC)ii′ (34)

5. Numerical Experiments

This section evaluates the effectiveness of FCFS, RANDOM, GA, PSO, WOA, and
IWOA+DP used as sequencing methods in the simulation-based optimization framework.
First, a small-size instance is used to demonstrate the result. Then, extensive experiments
are used to conduct a thorough evaluation. These experiments were performed on a
computer with Intel PENTIUM CPU 2117U (64 bits and 1.8 GHz) and 4 GB DRAMs. Java
was used as the programming language to implement these approaches.
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5.1. Parameter Value Settings for Experiments

After sorting out the requests, the requests for SKUs to be handled on a specific crane
will be found. For experiments, we set the number of cranes to one and the number of
racks to two (R = {1, 2}, where the R is a set of racks served by the crane). Referring to
Nia et al. [27], vx = 4 (meters/s), vy = 0.9 (meters/s), vz = 4 (meters/s), Pc = 1172 (k W/s),
Ce = 0.1, and fe = 1.508×105 are used. In addition, we set the dimension of each rack to be
(X, Y,Z) = (40,30,2), indicating that there are 40 × 30 × 2 storage bins. The dimensions of
each bin are: W = 1.15 m (width), H = 1.32 m (height), and D = 1.5 m (depth). For the SKUs
at the second depth of a rack, parameter values Cs = Cr = 2.5 are used.

Table 1 shows the parameter values set for different approaches, in which N indicates
the total number of storage/retrieval requests; P indicates the total number of individuals
in the population; I indicates the total number of iterations; V indicates the upper limit
of velocity; V indicates the lower limit of velocity; Rm indicates a mutation rate for GA;
Rc indicates a crossover rate for the GA; ω indicates the mutation rate for the IWOA; θ
indicates the threshold for using IM or SM; NE indicates the number of elites in the elite set
ES; - indicates not used.

Table 1. The parameter setting for different approaches.

Methods
Parameters FCFS RANDOM PSO GA WOA IWOA

N 50, 100,
150

50, 100,
150

50, 100,
150

50, 100,
150

50, 100,
150

50, 100,
150

P - - 60 60 60 60
I 1 500 500 500 500 500
w - - 0.5 - - -
V - - 2 - - -
V - - 2 - - -
Rm - - - 0.3 - -
Rc - - - 0.4 - -
ω - - - - - 0.5
θ - - - - - 0.5
NE - - - - - 3

5.2. Experimental Instance Generation

Based on the parameter value settings, a computer is used to generate random storage
and request services. This simulates the randomness of real operations. A total number of N
storage and retrieval requests of SKUs and the target position of these SKUs are generated.
The problem size is defined as N×N.

5.3. An Example of a Small Instance

A small-sized experimental instance (N × N = 15 × 15) is used to illustrate the
obtained results.

Based on the parameter values (X,Y,Z) = (40,30,2) and RK = {1,2} set in Section A,
experimental instances are automatically generated by the computer for experiments.
Table 2a,b show the storage and retrieval requests automatically generated by the computer,
respectively. In the two tables, S_id indicates a storage request ID; R_id indicates a retrieval
request ID; r indicates a rack number r ∈ R; x indicates a column number; y indicates a tier
number; z indicates a depth number of an SKU.
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Table 2. (a). The storage requests (N = 15). (b). The retrieval requests (N = 15).

(a)

S_id 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

r 1 2 1 1 1 2 2 1 1 1 2 1 1 1 2
x 39 14 26 33 35 10 2 35 19 1 8 24 30 26 19
y 12 5 20 9 19 17 21 10 13 24 10 9 14 30 21
z 1 1 1 2 2 1 1 1 2 1 1 1 1 1 1

(b)

R_id 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

r 1 1 1 2 2 1 2 1 1 1 1 2 2 1 1
x 23 10 6 1 6 39 8 4 23 12 17 9 14 21 14
y 26 8 28 29 6 24 12 17 22 14 26 14 5 30 29
z 1 2 2 1 1 1 2 1 1 2 2 1 1 2 1

Different approaches are then used to find the best solution. Table 3a–f show the
experimental results obtained by (a) FCFS, (b) RANDOM, (c) the WOA, (d) the GA, (e) PSO,
and (f) the IWOA+DP.

Table 3. (a). The best solution found by FCFS (problem size: N × N = 15 × 15). (b). The best solution
found by RANDOM (problem size: N × N = 15 × 15). (c). The best solution found by WOA (problem
size: N × N = 15 × 15). (d). The best solution found by GA (problem size: N × N = 15 × 15). (e). The
best solution found by PSO (problem size: N × N = 15 × 15). (f). The best solution found by the
IWOA+DP (problem size: N × N = 15 × 15).

(a)

S_id 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R_id 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T1 17.6 7.3 29.3 13.2 27.9 24.9 30.8 14.7 19.1 35.2 14.7 13.2 20.5 44 30.8
ts 0.8 0.8 0.8 3.8 3.8 0.8 0.8 0.8 3.8 0.8 0.8 0.8 0.8 0.8 0.8
T2 20.5 4.4 11.7 29.3 19.1 10.3 13.2 10.3 13.2 14.7 23.5 7.3 13.2 1.4 11.7
tr 0.8 3.8 3.8 0.8 0.8 0.8 3.8 0.8 0.8 3.8 3.8 0.8 0.8 3.8 0.8
T3 38.1 11.7 41.1 42.5 8.8 35.2 17.6 24.9 32.3 20.5 38.1 20.5 7.3 44 42.5

T(DC) 77.8 28 86.6 89.6 60.2 71.9 66.1 51.4 69 74.9 80.8 42.6 42.6 93.9 86.6
TPT 77.8 105.7 192.4 281.9 342.2 414.1 480.2 531.5 600.6 675.5 756.2 798.8 841.4 935.3 1021.9

(b)

S_id 1 5 15 6 11 7 10 3 8 13 2 12 14 9 4
R_id 12 8 2 9 1 15 14 4 5 10 7 11 6 13 3
T1 17.6 27.9 30.8 24.9 14.7 30.8 35.2 29.3 14.7 20.5 7.3 13.2 44 19.1 13.2
ts 0.8 3.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 3.8 3.8
T2 8.6 8.9 19.1 7.3 23.5 11.7 8.8 13.2 8.3 5.2 10.3 24.9 8.8 11.7 27.9
tr 0.8 0.8 3.8 0.8 0.8 0.8 3.8 0.8 0.8 3.8 3.8 3.8 0.8 0.8 3.8
T3 20.5 24.9 11.7 32.3 38.1 42.5 44 42.5 8.8 20.5 17.6 38.1 35.2 7.3 41.1

T(DC) 48.3 66.2 66.1 66 77.8 86.6 92.5 86.6 33.3 50.7 39.7 80.8 89.5 42.6 89.6
TPT 48.3 114.5 180.6 246.6 324.4 410.9 503.4 590 623.3 674 713.8 794.5 884 926.6 1016.3

(c)

S_id 8 4 10 2 15 5 14 13 12 1 6 9 11 7 3
R_id 14 12 11 2 8 9 15 7 6 4 13 1 5 10 3
T1 14.7 13.2 35.2 7.3 30.8 27.9 44 20.5 13.2 17.6 24.9 19.1 14.7 30.8 29.3
ts 0.8 3.8 0.8 0.8 0.8 3.8 0.8 0.8 0.8 0.8 0.8 3.8 0.8 0.8 0.8
T2 29.3 7.3 4.6 4.4 5.9 4.4 3.4 6.3 22 24.9 17.6 19.1 5.9 10.3 11.7
tr 3.8 0.8 3.8 3.8 0.8 0.8 0.8 3.8 0.8 0.8 0.8 0.8 0.8 3.8 3.8
T3 44 20.5 38.1 11.7 24.9 32.3 42.5 17.6 35.2 42.5 7.3 38.1 8.8 20.5 41.1

T(DC) 92.5 45.6 82.4 28 63.1 69 91.5 49 71.9 86.6 51.4 80.8 30.8 66.1 86.6
TPT 92.5 138.1 220.5 248.5 311.6 380.6 472.1 521 592.9 679.5 730.9 811.6 842.5 908.6 995.2
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Table 3. Cont.

(d)

S_id 12 11 9 3 10 2 15 13 14 4 6 7 1 5 8
R_id 3 1 7 12 14 8 9 15 11 5 10 6 4 2 13
T1 13.2 14.7 19.1 29.3 35.2 7.3 30.8 20.5 44 13.2 24.9 30.8 17.6 27.9 14.7
ts 0.8 0.8 3.8 0.8 0.8 0.8 0.8 0.8 0.8 3.8 0.8 0.8 0.8 3.8 0.8
T2 27.9 23.5 3.2 8.8 8.8 17.6 1.5 22 5.9 7.8 4.4 10.6 24.9 16.1 7.3
tr 3.8 0.8 3.8 0.8 3.8 0.8 0.8 0.8 3.8 0.8 3.8 0.8 0.8 3.8 0.8
T3 41.1 38.1 17.6 20.5 44 24.9 32.3 42.5 38.1 8.8 20.5 35.2 42.5 11.7 7.3

T(DC) 86.6 77.8 47.3 60.2 92.5 51.4 66 86.6 92.5 34.3 54.4 78.1 86.6 63.2 30.8
TPT 86.6 164.4 211.7 271.9 364.4 415.8 481.8 568.4 660.9 695.1 749.5 827.6 914.2 977.4 1008.3

(e)

S_id 12 8 9 14 11 3 2 6 5 15 13 7 1 10 4
R_id 7 5 4 15 12 6 10 13 3 11 2 1 8 14 9
T1 13.2 14.7 19.1 44 14.7 29.3 7.3 24.9 27.9 30.8 20.5 30.8 17.6 35.2 13.2
ts 0.8 0.8 3.8 0.8 0.8 0.8 0.8 0.8 3.8 0.8 0.8 0.8 0.8 0.8 3.8
T2 4.6 8.3 23.5 3.4 5.9 5.9 13.2 17.6 13.2 7.3 8.8 7.3 10.1 8.8 19.1
tr 3.8 0.8 0.8 0.8 0.8 0.8 3.8 0.8 3.8 3.8 3.8 0.8 0.8 3.8 0.8
T3 17.6 8.8 42.5 42.5 20.5 35.2 20.5 7.3 41.1 38.1 11.7 38.1 24.9 44 32.3

T(DC) 39.9 33.3 89.6 91.5 42.6 71.9 45.6 51.4 89.6 80.8 45.6 77.8 54.1 92.5 69
TPT 39.9 73.2 162.8 254.3 296.8 368.7 414.3 465.7 555.3 636.1 681.6 759.4 813.5 906 975

(f)

S_id 11 2 1 3 13 9 14 10 4 15 8 6 7 5 12
R_id 7 13 6 9 1 10 14 4 2 11 12 8 3 15 5
T1 14.7 7.3 17.6 29.3 20.5 19.1 44 35.2 13.2 30.8 14.7 24.9 30.8 27.9 13.2
ts 0.8 0.8 0.8 0.8 0.8 3.8 0.8 0.8 3.8 0.8 0.8 0.8 0.8 3.8 0.8
T2 2.9 0 17.6 2.9 17.6 2 1.4 7.3 6.6 7.3 7.5 1.7 10.3 14.7 5.2
tr 3.8 0.8 0.8 0.8 0.8 3.8 3.8 0.8 3.8 3.8 0.8 0.8 3.8 0.8 0.8
T3 17.6 7.3 35.2 32.3 38.1 20.5 44 42.5 11.7 38.1 20.5 24.9 41.1 42.5 8.8

T(DC) 39.7 16.2 71.9 66 77.8 49.1 93.9 86.6 39 80.8 44.2 53.1 86.6 89.6 28.7
TPT 39.7 55.9 127.8 193.8 271.6 320.7 414.6 501.2 540.2 621 665.2 718.3 804.9 894.5 923.1

In Table 3(a–f), S_id indicates a storage request ID; R_id indicates a retrieval request
ID; T1 indicates the travel time to the storage location; it indicates the storage shuttle time;
T2 indicates the travel time from the storage location to the retrieval location; tr indicates
the retrieval shuttle time; T3 indicates the travel time from the retrieval location to the I/O
station; T(DC) indicates the total process time of each dual command; TPT indicates the
accumulated total time of this sequence of dual commands.

Table 4 summarizes the experimental results. It is found that the IWOA finds the
best solution with Z = 1.63E+10 at the computation cost of 3.476 s. The WOA finds the
best solution with Z = 1.76E+10 at the computation cost of 2.26 s; the PSO finds the best
solution with Z = 1.72+10 at the computation cost of 2.25 s; the GA finds the solution with
Z = 1.78E+10 at the computation cost of 1.78 s; the Random heuristic finds the best solution
with Z = 1.80E+10 at the computation cost of 1.98 s; the FCFS finds the best solution with
Z = 1.81E+10 at the computation cost of 0.06 s. This case shows that the IWOA outperforms
the others in terms of Z value.
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Table 4. The summary of different approaches.

FCFS Random GA WOA PSO IWOA

CPU 0.06 1.98 1.78 2.226 2.25 3.476
TPT 1021.9 1016.3 1008.3 995.0 975 923.1

Z 1.81E+10 1.80E+10 1.78E+10 1.76E+10 1.72E+10 1.63E+10

5.4. Extensive Experiments using Different Problem Sizes

Extensive experiments using different problem sizes have been further conducted
to investigate the effectiveness of different approaches. Table 5 shows the experimental
results, which are summarized are follows:

Table 5. The results obtained from different approaches using different problem sizes.

FCFS RANDOM GA WOA PSO IWOA+DP
50 × 50 Z T G Z T G Z T G Z T G Z T G Z T

1 5.67E+10 0.1 24.75% 5.20E+10 16.8 14.54% 5.30E+10 3.3 16.68% 5.22E+10 7.3 14.91% 5.19E+10 0.8 14.31% 4.54E+10 63.0
2 5.79E+10 0.1 25.38% 5.46E+10 16.4 18.32% 5.36E+10 3.4 16.17% 5.43E+10 7.3 17.57% 5.40E+10 0.76 16.84% 4.62E+10 63.5
3 5.98E+10 0.1 24.96% 5.56E+10 17.5 16.19% 5.59E+10 3.6 16.68% 5.61E+10 7.3 17.21% 5.57E+10 0.799 16.29% 4.79E+10 67.7
4 5.77E+10 0.1 13.59% 5.99E+10 16.5 17.79% 5.66E+10 3.4 11.43% 5.65E+10 7.3 11.22% 5.61E+10 0.821 10.34% 5.08E+10 62.3
5 5.66E+10 0.1 23.17% 5.38E+10 16.6 17.02% 5.41E+10 3.5 17.67% 5.34E+10 7.2 16.14% 5.34E+10 0.827 16.09% 4.60E+10 64.8
6 5.93E+10 0.1 20.13% 5.72E+10 16.6 15.85% 5.70E+10 3.5 15.48% 5.72E+10 7.2 15.73% 5.72E+10 0.81 15.88% 4.94E+10 60.4
7 5.53E+10 0.1 17.39% 5.40E+10 16.5 14.72% 5.50E+10 3.3 16.68% 5.33E+10 7.4 13.23% 5.34E+10 0.952 13.46% 4.71E+10 64.6
8 5.62E+10 0.1 19.12% 5.41E+10 16.3 14.51% 5.47E+10 3.4 15.90% 5.41E+10 7.3 14.58% 5.47E+10 0.805 15.83% 4.72E+10 61.8
9 5.87E+10 0.1 17.79% 5.69E+10 16.6 14.07% 5.62E+10 3.3 12.78% 5.72E+10 7.1 14.77% 5.74E+10 0.777 15.12% 4.99E+10 71.2
10 6.02E+10 0.1 21.15% 5.73E+10 16.6 15.23% 5.67E+10 3.4 14.05% 5.75E+10 7.1 15.71% 5.70E+10 0.862 14.68% 4.97E+10 61.0

Avg. 5.79E+10 0.1 20.65% 5.55E+10 16.6 15.83% 5.53E+10 3.4 15.35% 5.52E+10 7.2 15.11% 5.51E+10 0.8213 14.88% 4.80E+10 64.0
Min 5.53E+10 0.1 13.59% 5.20E+10 16.3 14.07% 5.30E+10 3.3 11.43% 5.22E+10 7.1 11.22% 5.19E+10 0.76 10.34% 4.54E+10 60.4
Max 6.02E+10 0.1 25.38% 5.99E+10 17.5 18.32% 5.70E+10 3.6 17.67% 5.75E+10 7.4 17.57% 5.74E+10 0.952 16.84% 5.08E+10 71.2

100 × 100
1 1.09E+11 0.2 24.86% 1.06E+11 38.8 21.13% 1.05E+11 6.0 20.19% 1.05E+11 13.4 19.73% 1.05E+11 1.225 20.55% 8.74E+10 154.1
2 1.11E+11 0.2 18.30% 1.11E+11 38.9 18.94% 1.09E+11 5.9 16.42% 1.10E+11 13.8 17.72% 1.11E+11 1.225 18.17% 9.37E+10 149.9
3 1.16E+11 0.2 23.51% 1.11E+11 38.1 18.29% 1.10E+11 6.3 17.40% 1.10E+11 13.5 16.91% 1.12E+11 1.262 19.35% 9.41E+10 148.2
4 1.18E+11 0.2 20.48% 1.13E+11 38.8 16.26% 1.15E+11 6.1 17.65% 1.14E+11 13.4 16.77% 1.14E+11 1.226 16.74% 9.76E+10 147.0
5 1.12E+11 0.2 21.41% 1.08E+11 39.0 16.61% 1.09E+11 6.1 18.42% 1.09E+11 13.7 18.08% 1.09E+11 1.229 17.58% 9.24E+10 142.6
6 1.13E+11 0.2 23.43% 1.10E+11 38.7 20.19% 1.10E+11 6.3 19.96% 1.10E+11 14.7 19.81% 1.02E+11 1.236 11.59% 9.14E+10 147.6
7 1.17E+11 0.2 22.55% 1.18E+11 40.3 24.08% 1.12E+11 6.3 17.85% 1.13E+11 13.6 18.90% 1.13E+11 1.29 18.72% 9.52E+10 161.6
8 1.09E+11 0.2 21.08% 1.06E+11 40.1 18.51% 1.08E+11 6.1 20.45% 1.07E+11 14.0 18.76% 1.08E+11 1.246 20.33% 8.98E+10 160.9
9 1.14E+11 0.2 21.76% 1.12E+11 40.4 19.61% 1.11E+11 6.1 18.39% 1.13E+11 13.9 20.05% 1.12E+11 1.231 19.65% 9.39E+10 164.9
10 1.10E+11 0.2 20.21% 1.06E+11 47.5 16.48% 1.05E+11 6.2 15.24% 1.05E+11 13.9 15.34% 1.05E+11 1.234 15.38% 9.12E+10 170.0

Avg. 1.13E+11 0.2 21.76% 1.10E+11 40.0 19.00% 1.10E+11 6.1 18.20% 1.10E+11 13.8 18.21% 1.09E+11 1.2 17.81% 9.27E+10 154.7
Min 1.09E+11 0.2 18.30% 1.06E+11 38.1 16.26% 1.05E+11 5.9 15.24% 1.05E+11 13.4 15.34% 1.02E+11 1.225 11.59% 8.74E+10 142.6
Max 1.18E+11 0.2 24.86% 1.18E+11 47.5 24.08% 1.15E+11 6.3 20.45% 1.14E+11 14.7 20.05% 1.14E+11 1.3 20.55% 9.76E+10 170.0

150 × 150
1 1.63E+11 0.3 23.92% 1.57E+11 66.2 19.18% 1.59E+11 8.9 20.90% 1.58E+11 21.2 20.49% 1.57E+11 1.774 19.42% 1.32E+11 290.7
2 1.73E+11 0.4 22.75% 1.69E+11 62.9 19.59% 1.68E+11 8.9 19.46% 1.70E+11 21.4 20.50% 1.69E+11 1.756 19.96% 1.41E+11 282.6
3 1.75E+11 0.3 22.30% 1.71E+11 63.8 19.24% 1.71E+11 9.2 19.64% 1.70E+11 22.3 18.86% 1.71E+11 1.77 19.58% 1.43E+11 266.3
4 1.62E+11 0.4 22.07% 1.59E+11 63.0 19.52% 1.59E+11 8.9 19.37% 1.56E+11 21.2 17.82% 1.58E+11 1.775 19.16% 1.33E+11 248.9
5 1.67E+11 0.3 21.06% 1.65E+11 67.1 19.64% 1.65E+11 8.8 19.32% 1.65E+11 21.1 19.22% 1.65E+11 1.834 19.78% 1.38E+11 288.1
6 1.72E+11 0.5 23.57% 1.70E+11 72.5 21.87% 1.68E+11 12.8 20.44% 1.67E+11 25.9 19.81% 1.67E+11 2.518 19.80% 1.39E+11 574.1
7 1.71E+11 0.3 20.29% 1.69E+11 65.0 18.99% 1.68E+11 9.1 18.46% 1.68E+11 20.1 18.29% 1.68E+11 1.78 18.51% 1.42E+11 250.9
8 1.62E+11 0.3 19.26% 1.62E+11 62.3 19.22% 1.61E+11 8.9 18.31% 1.62E+11 20.3 18.71% 1.61E+11 1.733 18.56% 1.36E+11 243.6
9 1.74E+11 0.4 22.81% 1.70E+11 63.2 19.90% 1.68E+11 8.7 18.95% 1.69E+11 24.4 19.23% 1.69E+11 1.803 19.68% 1.42E+11 251.7
10 1.67E+11 0.3 23.90% 1.64E+11 65.9 21.98% 1.64E+11 9.5 21.92% 1.65E+11 21.4 22.78% 1.63E+11 1.76 21.43% 1.35E+11 243.3

Avg. 1.69E+11 0.4 22.19% 1.66E+11 65.2 19.91% 1.65E+11 9.4 19.68% 1.65E+11 21.9 19.57% 1.65E+11 1.85 19.59% 1.38E+11 294.0
Min 1.62E+11 0.3 19.26% 1.57E+11 62.3 18.99% 1.59E+11 8.7 18.31% 1.56E+11 20.1 17.82% 1.57E+11 1.73 18.51% 1.32E+11 243.3
Max 1.75E+11 0.5 23.92% 1.71E+11 72.5 21.98% 1.71E+11 12.8 21.92% 1.70E+11 25.9 22.78% 1.71E+11 2.52 21.43% 1.43E+11 574.1

Z: the objective function value; T: time (s); G: gap to the IWOA+DP.

• At the problem size 50 × 50, the IWOA+DP has average edges of 16.84%, 17.57%,
17.67%, 18.32%, and 25.38% over the PSO, WOA, GA, RANDOM, and FCFS, respec-
tively. Figure 13 shows the box-whisker plot of the Z values of the problem size
50 × 50 obtained using different approaches.
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• At the problem size 100 × 100, the IWOA+DP has average edges of 20.55%, 20.05%,
20.45%, 24.08%, and 24.86% over the PSO, WOA, GA, RANDOM, and FCFS, respec-
tively. Figure 14 shows the box-whisker plot of the Z values of the problem size
100 × 100 obtained using different approaches.
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• At the problem size 150 × 150, the IWOA+DP has average edges of 21.43%, 22.78%,
21.92%, 21.98%, and 23.92% over the PSO, WOA, GA, RANDOM, and FCFS, respec-
tively. Figure 15 shows the box-whisker plot of the Z values of the problem size
150 × 150 obtained using different approaches.
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• Experiments with different problem sizes consistently show that IWOA+DP outper-
forms the other approaches.

5.5. Statistical Tests

At the significance level of α = 0.05, the statistical t-test is used to test Hypotheses H0
and H1, where the H0 assumes that the average Z values of comparing approaches have
no significant difference; H1 assumes that these average Z values are different.

Table 6 shows the t-test results of each approach compared to the IWOA. The symbol
“+” indicates that the IWOA is better; the symbol “−” indicates that the IWOA is inferior;
the symbol “N” indicates no difference. The p-values of these comparisons are found to be
less than 0.005. For example, at the problem size N = 100, the p-values of RANDOM, FCFS,
the GA, PSO, and the WOA are 2.13695E-11, 1.48414E-09, 2.07195E-11, 5.69295E-09, and
2.08357E-11, respectively. The results lead to the rejection of H0 and the acceptance of H1.
Thus, IWOA is confirmed to outperform the others in terms of the statistical t-test.

Table 6. Results of t-test for different approaches at different problem sizes.

Problem
Size

FCFS RANDOM GA WOA PSO IWOA
Avg. Z t-Test Avg. Z t-Test Avg. Z t-Test Avg. Z t-Test Avg. Z t-Test Avg. Z

N = 50 5.79E+10 + 5.55E+10 + 5.53E+10 + 5.52E+10 + 5.51E+10 + 4.80E+10
N = 100 1.13E+11 + 1.10E+11 + 1.10E+11 + 1.10E+11 + 1.09E+11 + 9.27E+10
N = 150 1.69E+11 + 1.66E+11 + 1.65E+11 + 1.65E+11 + 1.65E+11 + 1.38E+11
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5.6. Analysis and Discussion

1. The experiments demonstrate the feasibility of using closely coupled simulation-based
optimization approaches to deal with the dual-command crane scheduling problem in
a unit-load and double-deep AS/RS. The use of dual commands to operate an AS/RS
is not difficult, especially in a busy AS/RS environment. For a high-workload AS/RS,
we can set a higher value for N. For a low-workload AS/RS, we can lower the value
for the N. The use of dual-command operation is advantageous for a crane.

2. On average, metaheuristics have a better performance than simple heuristics (Random
and FCFS) in terms of solution quality due to the use of a guided search, instead of a
random search.

3. In general, the greater the N, the higher the advantage for the IWOA+DP.
4. Though other metaheuristics such as GAs, PSO, and FAs are also population- and

evolution-based metaheuristics, they cannot outperform the IWOA+DP.
5. Metaheuristics in general can achieve a better solution than the heuristics (RANDOM

and FCFS) due to the use of an informed search. In contrast, RANDOM uses a kind of
random search.

6. In this research, the RANDOM outperforms FCFS due to being empowered with
an iterative mechanism that gives RANDOM more chances to find a better solution.
FCFS is one special case of the RANDOM search. However, the two heuristics cannot
outperform the other metaheuristics.

7. Though the standard WOA provides an exploration mechanism when |A| ≥ 1, this
exploration scope is still affected by the whales in the swarm. In the IWOA, a global
mutation capability is additionally provided by the mutation( ) procedure. In addition,
the IWOA uses an adaptive movement, in addition to working with DP.

8. In this research, the GA, WOA, and PSO generate positions for a population with real
numbers, and then the ROV technique is used to transform the positions into solutions
in the discrete domain of sequence numbers. The transformation procedure is used by
these approaches during the whole solution process. However, the IWOA is different.
After transforming the initial positions of the whales from the continuous domain to
the discrete domain by using the ROV technique, the following evolutions of solutions
are based on the discrete operator, as stated in Equations (26)−(28). The use of
discrete operators appears to result in a better result as the crane scheduling problem
is in essence in the discrete domain. Though the ROV transformation procedure
is necessary to develop a feasible solution, the use of discrete operators to evolve
solutions in a discrete domain appears to lead to a better result.

9. Szczepanski et al. [44] highlighted two common ways of handling constraints. One
is the inclusion of the penalty function into the objective function and another is
the separation of the objective function and constraints. The former decreases the
fitness of an infeasible solution so as to find a feasible solution. However, in this
research, we use the ROV technique, and this technique can always return feasible
solutions to our focused scheduling problem. Thus, there is no need to use the penalty
function for constraints in the objective function. The solutions transformed by the
ROV techniques are always subject to the constraints described in Section 3.2.

10. Several intelligent algorithms have been proposed by researchers to deal with mul-
tiple objective optimization problems (MOPs), such as in [45–47]. Fountas et al. [45]
proposed a virus-evolutionary genetic algorithm (GA) to optimize the tool path param-
eters in the sculptured surface. This algorithm is a variant of the standard GA. Rahman
et al. [46] proposed a multi-objective learner performance-based behavior (MOLPB)
algorithm for dealing with real-world engineering optimization problems. Zhang
et al. [47] proposed an SDNSGA-III algorithm to deal with the dynamic multi-objective
optimization problems (DMOPs) that have dynamic objectives and constraints in a
changing environment. Our preliminary survey shows that there is a possibility of
comparing the three algorithms with the IWOA proposed in this research if the ROV
technique is applied to the three algorithms. This can be treated as a future research
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direction. In addition, these studies show that a multi-objective function can be used
as a performance measurement of a crane in future research.

6. Conclusions

The crane scheduling problem affects the performance of an AS/RS considerably. This
research first defines the dual-command crane scheduling problem in a unit-load double-
deep AS/RS. Following this, a MILP is formulated for this problem, with the objective of
minimizing energy consumption. To couple the simulation and optimization closely, we
have proposed a framework for developing simulation-based optimization approaches
in which heuristics/metaheuristics, including FCFS, RANDOM, an IWOA, an WOA, a
GA, and PSO, have been used as alternative sequencing methods. Experiments have been
conducted to investigate their effectiveness. The experimental results show that the IWOA
outperforms other heuristics/metaheuristics.

The contributions of this research are summarized as follows: (1) a MILP is formulated
for this problem; (2) a framework is proposed to couple the simulation and optimization
closely; (3) an improved WOA (IWOA) with features of adaptive movement and mutation
is developed for solving discrete problems using a discrete operator; (4) experiments
were conducted to investigate the effectiveness of different simulation-based optimization
approaches; (5) the successful application of the proposed approaches to solve the dual-
command crane scheduling problem in a unit-load double-deep AS/RS.

Future research can focus on the following directions. First, the assumption of the same
number of storage and retrieval requests made in this research can be relaxed. Second, other
metaheuristics, such as those proposed in [45–47], can be compared with multi-objective
functions. Third, the allocation policies can be incorporated. Fourth, this approach can
be applied to other kinds of AS/RSs. Lee [36] highlighted that AS/RSs are only used as
an alternative to traditional systems but are also a part of the manufacturing system to
support manufacturing.

Author Contributions: Conceptualization, H.-P.H.; Data curation, H.-P.H.; Formal analysis, C.-N.W.;
Funding acquisition, H.-P.H.; Investigation, C.-N.W.; Methodology, H.-P.H.; Project administration,
C.-N.W.; Software, H.-P.H.; Validation, T.-T.D.; Writing—original draft, H.-P.H.; Writing—review and
editing, T.-T.D. All authors have read and agreed to the published version of the manuscript.

Funding: The authors received no specific funding for this study.

Data Availability Statement: Not applicable.

Acknowledgments: The authors appreciate the support from the National Kaohsiung University of
Science and Technology, Taiwan; and Hong Bang International University, Vietnam.

Conflicts of Interest: The authors declare no conflict of interest.



Mathematics 2022, 10, 4018 27 of 30

Appendix A

Algorithm A1. The psudo-code of the WOA

Define the problem // for a minimize problem
Define the objective function F(X)
Set parameter T (total number of iterations) P, and b
Initialize the a, A, C, and l
Initialize the positions Xi of whales i (i = 1, 2, 3, . . . , P)
Calculate the F(Xi) for each whale i
Find the X*
REPEAT1 while (t<=T) or (stop criterion)

Update a,
∣∣∣∣⇀A∣∣∣∣, ⇀C , l, and p

REPEAT2 while (i<P)
IF (p < 0.5) // shrinking circle movement
IF (|A| < 1) // exploition
Update the Xi using Equations (19) and (21)
ELSE (|A| ≥ 1) // exploration
Select a random XR from the whale group
Update the Xi using Equations (24) and (25)
ENE IF
ELSE // spirial-shaped movement
Update the Xi using Equation (23)
END IF
END REPEAT2 (until I > P)
Check if any whale is out of the search space and amend it
Evaluate F(Xi) for each whale i

Update the
⇀

Xw∗ (t) if better
END REPEAT1 (until t>T)
Output X*

Appendix B

Algorithm A2. The psudo-code of the mutation( )

Set the mutation rateω
Set the mutation rate θ // threshold
Generate the random variable R1 and R2
If R1 < ω // perform mutation
If SD< θ

Use IM
ELSE
Use SM
ELSE
No mutation
END IF
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Appendix C

Algorithm A3. The pseudo-code of the IWOA

1 Define the objective function F(X) of the problem
2 Set parameter T (the total number of iterations); a, A, C, l, and p
3 Initialize the positions Xi of whales (i = 1, 2, 3, . . . , N) using Sobol sequence generator

4 Calculate the F(Xi) for each whale i; and find the
⇀

Xw′ (t) w′ ∈ ES
5 REPEAT1 while (t<=T) or (stop criterion)

6 Update parameters a,
∣∣∣∣⇀A∣∣∣∣, ⇀C , l, and p

7 REPEAT2 while (i<=N)
8 REPEAT3 while (j<=NE)
9 IF (p < 0.5)
10 IF (|A| < 1) // Exploitation
11 Update the Xi using Equations (26)−(32)
12 ELSE (|A| ≥ 1) // Exploration
13 Select a random whale XR from the whale group
14 Update the Xi using Equations (26)−(32)
15 ENE IF
16 ELSE
17 Update the Xi using Equations (26)−(32)
18 END IF
19 END REPEAT3 (until j > NE)
20 END REPEAT2 (until i >N)
21 Check and amend the whales out of the search space
22 Evaluate F(Xi) for each whale i;

23 Update the
⇀

Xw∗ (t) if better
24 Mutation ( )
25 END REPEAT1 (until t >T)
26 Output X*

References
1. Eynan, A.; Rosenblatt, M.J. Establishing Zones In Single-Command Class-Based Rectangular As/Rs. IIE Trans. 1994, 26, 38–46.

[CrossRef]
2. Rosenblatt, M.J.; Roll, Y.; Vered Zyser, D. A Combined Optimization And Simulation Approach For Designing Automated

Storage/Retrieval Systems. IIE Trans. 1993, 25, 40–50. [CrossRef]
3. Hu, Y.-H.; Huang, S.Y.; Chen, C.; Hsu, W.-J.; Toh, A.C.; Loh, C.K.; Song, T. Travel Time Analysis of a New Automated Storage and

Retrieval System. Comput. Oper. Res. 2005, 32, 1515–1544. [CrossRef]
4. Boysen, N.; Stephan, K. A Survey on Single Crane Scheduling in Automated Storage/Retrieval Systems. Eur. J. Oper. Res. 2016,

254, 691–704. [CrossRef]
5. Graves, S.C.; Hausman, W.H.; Schwarz, L.B. Storage-Retrieval Interleaving in Automatic Warehousing Systems. Manag. Sci. 1977,

23, 935–945. [CrossRef]
6. Han, M.-H.; McGinnis, L.F.; Shieh, J.S.; White, J.A. On Sequencing Retrievals In An Automated Storage/Retrieval System. IIE

Trans. 1987, 19, 56–66. [CrossRef]
7. Bozer, Y.A.; White, J.A. Design and Performance Models for End-of-Aisle Order Picking Systems. Manag. Sci. 1990, 36, 852–866.

[CrossRef]
8. Karasawa, Y.; Nakayama, H.; Dohi, S. Trade-off Analysis for Optimal Design of Automated Warehouses. Int. J. Syst. Sci. 1980,

11, 567–576. [CrossRef]
9. Zollinger, H.A. Planning, February, Evaluating, and Estimating Storage Systems; 1982.
10. Ashayeri, J.; Gelders, L.; van Wassenhove, L. A Microcomputer-Based Optimization Model for the Design of Automated

Warehouses. Int. J. Prod. Res. 1985, 23, 825–839. [CrossRef]
11. Chang, D.-T.; Wen, U.-P. The Impact on Rack Configuration on the Speed Profile of the Storage and Retrieval Machine. IIE Trans.

1997, 29, 525–531. [CrossRef]
12. Hwang, H.; Ko, C.S. A Study on Multi-Aisle System Served by a Single Storage/Retrieval Machine. Int. J. Prod. Res. 1988,

26, 1727–1737. [CrossRef]
13. Lee, Y.H.; Hwan Lee, M.; Hur, S. Optimal Design of Rack Structure with Modular Cell in AS/RS. Int. J. Prod. Econ. 2005,

98, 172–178. [CrossRef]

http://doi.org/10.1080/07408179408966583
http://doi.org/10.1080/07408179308964264
http://doi.org/10.1016/j.cor.2003.11.020
http://doi.org/10.1016/j.ejor.2016.04.008
http://doi.org/10.1287/mnsc.23.9.935
http://doi.org/10.1080/07408178708975370
http://doi.org/10.1287/mnsc.36.7.852
http://doi.org/10.1080/00207728008967037
http://doi.org/10.1080/00207548508904750
http://doi.org/10.1080/07408179708966363
http://doi.org/10.1080/00207548808947987
http://doi.org/10.1016/j.ijpe.2004.05.018


Mathematics 2022, 10, 4018 29 of 30

14. Bozer, Y.A.; White, J.A. A Generalized Design and Performance Analysis Model for End-of-Aisle Order-Picking Systems. IIE
Trans. 1996, 28, 271–280. [CrossRef]

15. Park, B.C. Optimal Dwell Point Policies for Automated Storage/Retrieval Systems with Dedicated Storage. IIE Trans. 1999,
31, 1011–1113. [CrossRef]

16. Koh, S.-G.; Kwon, H.-M.; Kim, Y.-J. An Analysis of the End-of-Aisle Order Picking System: Multi-Aisle Served by a Single Order
Picker. Int. J. Prod. Econ. 2005, 98, 162–171. [CrossRef]

17. van Oudheusden, D.L.; Zhu, W. Storage Layout of AS/RS Racks Based on Recurrent Orders. Eur. J. Oper. Res. 1992, 58, 48–56.
[CrossRef]

18. Sarker, B.R.; Mann, L.; Leal Dos Santos, J.R.G. Evaluation of a Class-Based Storage Scheduling Technique Applied to Dual-Shuttle
Automated Storage and Retrieval Systems. Prod. Plan. Control 1994, 5, 442–449. [CrossRef]

19. Mahajan, S.; Rao, B.V.; Peters, B.A. A Retrieval Sequencing Heuristic for Miniload End-of-Aisle Automated Storage/Retrieval
Systems. Int. J. Prod. Res. 1998, 36, 1715–1731. [CrossRef]

20. van Oudheusden, D.L.; Tzen, Y.-J.J.; Ko, H.-T. Improving Storage and Order Picking in a Person-on-Board as/r System: A Case
Study. Eng. Costs Prod. Econ. 1988, 13, 273–283. [CrossRef]

21. Goetschalckx, M.; Donald Ratliff, H. Optimal Lane Depths for Single and Multiple Products in Block Stacking Storage Systems.
IIE Trans. 1991, 23, 245–258. [CrossRef]

22. Hwang, H.; Song, J.Y. Sequencing Picking Operation and Travel Time Models for Man-on-Board Storage and Retrieval Warehous-
ing System. Int. J. Prod. Econ. 1993, 29, 75–88. [CrossRef]

23. Yang, P.; Miao, L.-X.; Qi, M. Slotting Optimization in a Multi-Shuttle Automated Storage and Retrieval System. Comput. Integr.
Manuf. Syst. 2011, 17, 1050–1055.

24. Wu, K.-Y.; Xu, S.S.-D.; Wu, T.-C. Optimal Scheduling for Retrieval Jobs in Double-Deep AS/RS by Evolutionary Algorithms.
Abstr. Appl. Anal. 2013, 2013, 634812. [CrossRef]
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26. Brezovnik, S.; Gotlih, J.; Balič, J.; Gotlih, K.; Brezočnik, M. Optimization of an Automated Storage and Retrieval Systems by
Swarm Intelligence. Procedia Eng. 2015, 100, 1309–1318. [CrossRef]

27. Roozbeh Nia, A.; Haleh, H.; Saghaei, A. Dual Command Cycle Dynamic Sequencing Method to Consider GHG Efficiency in
Unit-Load Multiple-Rack Automated Storage and Retrieval Systems. Comput. Ind. Eng. 2017, 111, 89–108. [CrossRef]

28. Chen, F.; Xu, G.; Wei, Y. An Integrated Metaheuristic Routing Method for Multiple-Block Warehouses with Ultranarrow Aisles
and Access Restriction. Complexity 2019, 2019, 1–14. [CrossRef]

29. Cunkas, M.; Ozer, O. Optimization of Location Assignment for Unit-Load AS/RS with a DualShuttle. Int. J. Intell. Syst. Appl. Eng.
2019, 7, 66–71. [CrossRef]

30. Habibi Tostani, H.; Haleh, H.; Hadji Molana, S.M.; Sobhani, F.M. A Bi-Level Bi-Objective Optimization Model for the Integrated
Storage Classes and Dual Shuttle Cranes Scheduling in AS/RS with Energy Consumption, Workload Balance and Time Windows.
J. Clean. Prod. 2020, 257, 120409. [CrossRef]

31. Hojaghania, L.; Nematian, J.; Shojaiea, A.A.; Javadi, M. Metaheuristics for A New MINLP Model with Reduced Response Time
for On-Line Order Batching. Sci. Iran. 2019, 28, 2789–2811. [CrossRef]

32. Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [CrossRef]
33. Ashayeri, J.; Gelders, L.F. Warehouse Design Optimization. Eur. J. Oper. Res. 1985, 21, 285–294. [CrossRef]
34. Azzi, A.; Battini, D.; Faccio, M.; Persona, A.; Sgarbossa, F. Innovative Travel Time Model for Dual-Shuttle Automated Stor-

age/Retrieval Systems. Comput. Ind. Eng. 2011, 61, 600–607. [CrossRef]
35. Randhawa, S.U.; Shroff, R. Simulation-Based Design Evaluation of Unit Load Automated Storage/Retrieval Systems. Comput.

Ind. Eng. 1995, 28, 71–79. [CrossRef]
36. Lee, H.F. Performance Analysis for Automated Storage and Retrieval Systems. IIE Trans. 1997, 29, 15–28. [CrossRef]
37. Hachemi, K.; Sari, Z.; Ghouali, N. A Step-by-Step Dual Cycle Sequencing Method for Unit-Load Automated Storage and Retrieval

Systems. Comput. Ind. Eng. 2012, 63, 980–984. [CrossRef]
38. Yang, P.; Miao, L.; Xue, Z.; Ye, B. Variable Neighborhood Search Heuristic for Storage Location Assignment and Storage/Retrieval

Scheduling under Shared Storage in Multi-Shuttle Automated Storage/Retrieval Systems. Transp. Res. E Logist. Transp. Rev. 2015,
79, 164–177. [CrossRef]

39. Roodbergen, K.J.; Vis, I.F.A. A Survey of Literature on Automated Storage and Retrieval Systems. Eur. J. Oper. Res. 2009,
194, 343–362. [CrossRef]

40. Rajasekhar, A.; Lynn, N.; Das, S.; Suganthan, P.N. Computing with the Collective Intelligence of Honey Bees—A Survey. Swarm.
Evol. Comput. 2017, 32, 25–48. [CrossRef]

41. Hsu, H.-P.; Yang, S.-W. Optimization of Component Sequencing and Feeder Assignment for a Chip Shooter Machine Using
Shuffled Frog-Leaping Algorithm. IEEE Trans. Autom. Sci. Eng. 2020, 17, 56–71. [CrossRef]

42. Hsu, H.-P. A Fuzzy Knowledge-Based Disassembly Process Planning System Based on Fuzzy Attributed and Timed Predi-
cate/Transition Net. IEEE Trans. Syst. Man Cybern. Syst. 2017, 47, 1800–1813. [CrossRef]

43. Hsu, H.-P.; Wang, C.-N.; Chou, C.-C.; Lee, Y.; Wen, Y.-F. Modeling and Solving the Three Seaside Operational Problems Using an
Object-Oriented and Timed Predicate/Transition Net. Appl. Sci. 2017, 7, 218. [CrossRef]

http://doi.org/10.1080/07408179608966275
http://doi.org/10.1080/07408179908969901
http://doi.org/10.1016/j.ijpe.2004.05.021
http://doi.org/10.1016/0377-2217(92)90234-Z
http://doi.org/10.1080/09537289408919516
http://doi.org/10.1080/002075498193246
http://doi.org/10.1016/0167-188X(88)90013-4
http://doi.org/10.1080/07408179108963859
http://doi.org/10.1016/0925-5273(93)90025-G
http://doi.org/10.1155/2013/634812
http://doi.org/10.1007/s10696-012-9139-2
http://doi.org/10.1016/j.proeng.2015.01.498
http://doi.org/10.1016/j.cie.2017.07.007
http://doi.org/10.1155/2019/1280285
http://doi.org/10.18201/ijisae.2019252783
http://doi.org/10.1016/j.jclepro.2020.120409
http://doi.org/10.24200/sci.2019.51452.2185
http://doi.org/10.1016/j.advengsoft.2016.01.008
http://doi.org/10.1016/0377-2217(85)90149-3
http://doi.org/10.1016/j.cie.2011.04.015
http://doi.org/10.1016/0360-8352(94)00027-K
http://doi.org/10.1080/07408179708966308
http://doi.org/10.1016/j.cie.2012.06.009
http://doi.org/10.1016/j.tre.2015.04.009
http://doi.org/10.1016/j.ejor.2008.01.038
http://doi.org/10.1016/j.swevo.2016.06.001
http://doi.org/10.1109/TASE.2019.2916925
http://doi.org/10.1109/TSMC.2016.2531659
http://doi.org/10.3390/app7030218


Mathematics 2022, 10, 4018 30 of 30

44. Szczepanski, R.; Tarczewski, T.; Erwinski, K.; Grzesiak, L.M. Comparison of Constraint-handling Techniques Used in Artificial B
Auto-Tuning of State Feedback Speed Controller for PMSM. In Proceedings of the 15th International Conference on Informatics in
Control, Automation and Robotics (ICINCO 2018), Porto, Portugal, 29–31 July 2018; Volume 1, pp. 269–276.

45. Fountas, N.A.; Benhadj-Djilali, R.; Stergiou, C.I.; Vaxevanidis, N.M. An integrated framework for optimizing sculptured surface
CNC tool paths based on direct software object evaluation and viral intelligence. J. Intell. Manuf. 2019, 30, 1581–1599. [CrossRef]

46. Rahman, C.M.; Rashid, T.A.; Ahmed, A.M.; Mirjalili, S. Multi-objective learner performance-based behavior algorithm with five
multi-objective real-world engineering problems. Neural Comput. Appl. 2022, 34, 6307–6329. [CrossRef]

47. Zhang, H.; Wang, G.-G.; Dong, J.; Gandomi, A.H. Improved NSGA-III with Second-Order Difference Random Strategy for
Dynamic Multi-Objective Optimization. Processes 2021, 9, 911. [CrossRef]

http://doi.org/10.1007/s10845-017-1338-y
http://doi.org/10.1007/s00521-021-06811-z
http://doi.org/10.3390/pr9060911

	Introduction 
	Background 
	The Common Components of an AS/RS 
	The Classification of AS/RS 
	Operational Time Analysis for a Dual-Command Crane in a Unit-Load Double-Deep AS/RS 
	Energy Consumption Calculation 

	Problem Definition and Mathematical Model Formulation 
	Definition of the Dual-Command Crane Scheduling Problem 
	Mathematical Model Formulation 

	Simulation-Based Optimization Approaches 
	A Simulation-Based Optimization Framework 
	Position Scheme 
	WOA and Improved WOA (IWOA) 
	WOA 
	Improved WOA (IWOA) 

	The Dynamic Programming 
	The Main Logic Flow of the IWOA 
	Simulation Model 

	Numerical Experiments 
	Parameter Value Settings for Experiments 
	Experimental Instance Generation 
	An Example of a Small Instance 
	Extensive Experiments using Different Problem Sizes 
	Statistical Tests 
	Analysis and Discussion 

	Conclusions 
	Appendix A
	Appendix B
	Appendix C
	References

