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Abstract: An important tool in the field of topological data analysis is persistent homology (PH),
which is used to encode abstract representations of the homology of data at different resolutions in
the form of persistence barcode (PB). Normally, one will obtain one PB from a digital image when
using a sublevel-set filtration method. In this work, we built more than one PB representation of a
single image based on a landmark selection method, known as local binary patterns (LBP), which
encode different types of local texture from a digital image. Starting from the top-left corner of any
3-by-3 patch selected from an input image, the LBP process starts by subtracting the central pixel
value from its eight neighboring pixel values. Then, each cell is assigned with 1 if the subtraction
outcome is positive, and 0 otherwise, to obtain an 8-bit binary representation. This process will
identify a set of landmark pixels to represent 0-simplices and use Vietoris—Rips filtration to obtain
its corresponding PB. Using LBP, we can construct up to 56 PBs from a single image if we restrict
to only using the binary codes that have two circular transitions between 1 and 0. The information
within these 56 PBs contain detailed local and global topological and geometrical information, which
can be used to design effective machine learning models. We used four different PB vectorizations,
namely, persistence landscapes, persistence images, Betti curves (barcode binning), and PB statistics.
We tested the effectiveness of the proposed landmark-based PH on two publicly available breast
abnormality detection datasets using mammogram scans. The sensitivity and specificity of the
landmark-based PH obtained was over 90% and 85%, respectively, in both datasets for the detection
of abnormal breast scans. Finally, the experimental results provide new insights on using different PB
vectorizations with sublevel set filtrations and landmark-based Vietoris—Rips filtration from digital
mammogram scans.

Keywords: topological data analysis; persistent homology; breast mammogram; persistence diagram
vectorization; medical imaging; local binary patterns

MSC: 55N31

1. Introduction

Topological data analysis (TDA) is a collection of methods from algebraic topology
and geometry to build and extract topological features from data. Persistent homology
(PH), the main tool of TDA, extracts topological summaries from data in the form of
connected components, loops, and cavities using a process known as filtration, which relies
on a nested sequence of simplicial complexes that capture the birth and death of those
topological invariants [1]. A collection of births and deaths of these topological features
are then represented as points in persistence diagram(s) (PD) or equivalently as bars in
persistence barcode(s) (PB). Topological structures represented as PDs are stable with
respect to small perturbations to the input data when the bottleneck or Wasserstein distance
is used to compare PDs [2]. Although mostly used when the input data have the form of a
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point cloud, PH can also be used when the input data to TDA pipeline are images where
they have a grid structure. We demonstrate that one can construct Vietoris—Rips filtration
from digital images based on pixel landmark locations that convey different types of local
textural information. In this paper, we aimed at harnessing the power of PH to differentiate
benign breast tumors from their malignant counterparts using breast mammogram. A
mammogram scan is a special type of X-ray imaging that involves exposing breast tissues to
a small amount of radiation to obtain an inside picture of the breast details for the purpose
of abnormality /mass detection and classification.

Female breast cancer is among the four leading types of cancer in women worldwide.
The World Health Organization (WHO) and its cancer research agencies such as the Ameri-
can Cancer Society and International Agency for Cancer Research reported 19.3 million
new cases of cancer in 2020 with 10 million deaths and estimated that this number could
be increased to 28.4 million new cases by 2040 [3]. Mammogram scans have a number of
advantages to detect early signs of breast cancer in women, among them being their wide
deployment in hospitals, their ease of storage, less time to examine by radiologists, and
low cost. A number of difficulties face radiologists in properly examining mammograms
such as low resolution, size of the lesion within the breast tissue, location of the lesion, and
dense breast tissue in young patients. Therefore, designing sophisticated computer aided
diagnostics (CAD) to assist radiologists in making their final decision is a necessity.

The main contribution of this paper can be summarized as follows. (1) Constructing
56 persistence diagrams from a single mammogram whereby each PD is constructed based
on a set of automatically extracted mammogram pixel locations that convey different
type of textural information. (2) The space of persistence barcodes featurized using four
different methods, namely binning, barcode-statistics, persistence images, and persistence
landscapes to measure the true performance of the proposed approach.

2. Methods

To build PH from digital mammograms, we relied on pixel-based landmarks that
correspond to abnormality in textures. We derived our approach from a texture descriptor
method known as local binary patterns (LBPs) introduced more than two decades ago in [4].
Abnormality is expected to distort the local texture and structure in mammogram scans.
Using LBP, we encoded this change in the local texture and structure of mammograms to
ensemble a set of point clouds as input to the PH pipeline. This method provides a rich
source of persistence topological features for machine learning. Next, we describe our
proposed landmark selection procedure and PH construction.

2.1. Image Patch Local Binary Patterns (IP-LBPs)

Since 1996, LBP has been used successfully in many pattern recognition applications
and different versions of LBP have been proposed and investigated with considerable
success [5-7]. For any grayscale image I, LBP constructs a new grayscale image I by
encoding each pixel p € I with 8-bit binary representation determined by comparing the
central pixel with that of its eight neighbors in a 3-by-3 image-patch, surrounding it in a
clockwise manner. Starting from the top-left corner of any 3-by-3 patch, the LBP process
starts by subtracting the central pixel value from its eight neighboring pixel values. Then,
each cell is assigned with 1 if the subtraction outcome is positive, and 0 otherwise (see
Figure 1 for illustration). This process results in an 8-bit binary code that can then be
converted back to decimal values representing the central pixel (x., y¢) using the following
equation:

i=8 ,
LBP(xc,yc) = ;f (pi — pc) x 2 1)

where p, is the central pixel value; p; is the neighboring gray-value pixels; and the function
f(x) is defined as follows:
1 ifx>0

o ={5 HiZs %)
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Figure 1. The LBP process where 1’s in the binary code is represented by the bold points on the circle.

In total, there are 256 binary codes that one will obtain for any 3-by-3 image patch
following the LBP procedure. In [8], Ojala et al. demonstrated that only 58 binary codes
out of the 256 were enough to represent 90% of textures in natural images. The 58 binary
codes are known as uniform LBP (ULBP) and they experimentally demonstrated that the
histogram of ULBP codes can be used as a discriminating feature for computer vision appli-
cations [7,9]. ULBP codes encode local texture features such as edges, corners, spots, lines,
and flat regions in an image and their binary codes have either 0 or 2 circular transitions
from 0 to 1 or from 1 to 0. There are 56 ULBP codes that have two circular transitions
and only two ULBP codes with O circular transitions in their 8-bit binary representation.
00000000 and 11111111 are the two ULBP codes with 0 transitions. Examples of ULBP
codes with two circular transitions are 11000000 and 00111100, whereas a binary code such
as 10101010 is not a ULBP because there are more than two circular transitions from 1 to
0 or vice versa. We can group the 56 ULBP codes according to the number of 1’s in their
binary representation to form a 7-group geometry G, for A =1,2,...,7 where A refers to
the number of 1’s in each geometry. Furthermore, each G, consists of eight binary codes
that can be obtained from each other by a circular rotation (see Figure 2). Starting from the
top-left corner of the mammograms, we scanned the entire input image by selecting the
central pixel value of 3-by-3 patches as landmarks if its binary representation satisfied one
of the geometrical circles in Figure 2.

@ Rotations of by code puttern

09000000
90000000
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Figure 2. Geometric representation of the ULBP method.

Geometries of ULBP
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We can select one or more of these geometries to select landmarks from digital mam-
mograms to construct PD. Different rows correspond to different types of texture. For
example, the first and the last row correspond to flat and spot texture, row 5 (4 ones in the
binary code) corresponds to edges and row 6 corresponds to corners.

For example, candidate landmarks are central pixel positions of the first rotation of
G1(Ry) if a 3-by-3 patch’s binary code is 00000001 where R refers to rotations of specific
Gyforg=1,2,..., 8 We followed the same strategy to select a set of pixel value locations
for each of the 56 ULBP geometries depicted in Figure 2.

The first two stages of Figure 3 show an example of a set of landmark pixel locations
extracted from a normal and abnormal mammogram and their corresponding PDs. After
selecting a set of mammogram pixel landmarks, we generated a Euclidean distance matrix
D from these pixel value locations, which will then be used as input for the PH generation
pipeline.

Abnormal : '7 : ‘ T {
= B R 1.1
' Y i
o i 56 Setsof  °
—> L AsiE g . — 56 PDs -
Normal Point Cloud > =

Landmark Selection Persistence Dia@
Malignant '
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e

Benign

Barcode Statistics

PD Vectorization

Figure 3. Landmark based PH construction and classification pipeline.

2.2. Persistent Homology of Digital Images

In this section, we introduce Vietoris—Rips simplicial complexes and cubical com-
plexes as two persistent homology approaches to build topological features from breast
mammograms.

2.2.1. Vietoris—Rips Complexes Based on Image Pixel Landmarks

In order to build topological features from data (point cloud or image), the PH relies on
mathematical objects known as simplices, which are building blocks of higher dimensional
objects in space known as the simplicial complex. In this work, we constructed Vietoris—
Rips (VR) simplicial complexes using the pixel-value locations obtained from the ULBP
method. For a set £ of pixel landmarks in R? its VR with parameter €, denoted as VR(L, €),
is the simplicial complex where {lo, I1,15,...,1,} is its vertex set, which spans a 77-simplex
if the Euclidean distance between any two landmark locations is less than or equal to the
chosen value of € (i.e., d(ll-, lj) <eVO0<i,j<rn). As we increase the value of €, so does
the VR of the pixel locations. This process results in producing a nested sequence of VR



Mathematics 2022, 10, 4039

50f11

simplicial complexes known as filtration. In other words, VR(L,e1) € VR(L, €3) ife1 < €.
Homological features born and vanished during the filtration process are then stored as
points in PD.

We direct the interested reader to see [1,10,11] for more mathematical details on
VR construction from a point cloud, PH introduction, and mathematical backgrounds,
respectively.

2.2.2. Cubical Complexes of Digital Images

The cubical analogue of a (VR) simplicial complex is a cubical complex in which the
role of simplices is played by cubes of different dimensions, as shown in Figure 4. A
finite cubical complex in R? is a union of cubes aligned on the grid Z¢, satisfying some
conditions similar to the simplicial complex case [12]. A d-dimensional image is a map
n:1C Z% — R. An element v € [ is called the voxel, or a pixel when d = 2, and 7(v) is
called its greyscale value. There are several ways to represent digital images as cubical
complexes, but the greyscale image comes with a natural filtration and was hence adopted
here. Voxels are represented by vertices and cubes are built between these vertices. We
represent voxels by d-cubes and all of its adjacent lower dimensional cubes are added.
Next, we obtained a function on the resulting cubical complex K by extending the values
of voxels to all of the cubes ¢ € K as follows:

! e .
n'(o) = , fmin T’?(T)

Assume K to be the resulting cubical complex built on the greyscale image I. Let
Ki:={ceK|y(o)<i}

be the i-th sublevel set of K. The set {K;},. 1m(r) defines a filtration of cubical complexes
indexed by the value of greyscale function 7.

2] 1]18]3 21]18]3 nl1]18]3 2] 1[18]3
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Figure 4. A greyscale image patch and its corresponding cubical complex filtration and persistent
barcode representation in dimension zero and one. By and B; represent Betti numbers in dimension
zero and one, respectively.

2.3. Persistence Diagram Vectorization

Topological features summarized by PDs are not amenable to many machine learning
and statistical tasks; for instance, PD’s Fréchet mean is not unique [13]. Hence, many
vectorization approaches have been proposed to transform the data in PDs to resolve
this issue and be able to apply machine learning methods. We used four methods to
vectorize the topological features in PD: persistence images [14], persistence landscapes [15],
binning [16], and barcode statistics. Next, we briefly describe each of these vectorization
approaches.

Persistence landscape (PL). PL is one of the early vectorization methods proposed
to map PDs into a stable and invertible function space using a family of piecewise linear
functions {¥; : R — R}, so that Yy(t) = sup{m >0 |a™ ™ T >k}, where a'/ =
#{P = (p1,p2) € PD | p1 <i < j < pa}. More details of this method can be seen in [15].
Restricting these functions to a closed interval of (4,b) C R and choosing a uniform
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discretization will result in a 2-dimensional feature vector suitable for machine learning
classifiers. In this paper, we set k = 100 to use the 100 largest such functions in our analysis
of mammogram classification.

Persistence image (PI). PI is one of the popular vectorization methods used to trans-
form the topological information contained in PDs into a vector. To construct PI, first
rotate PD by 71/4 then turn the rotated PD into a persistent surface via ® : R> — R and
a Gaussian distribution @, so that ®(PD) = Y, cpp w(p) Pyu(z), where w is a piecewise
linear weight function. Finally, the persistent surface ® is discretized by taking samples
over a regular grid.

Persistence binning (P-binning). This approach is one of the simple vectorization
methods that relies on counting the number of bars in PBs that intersect with each vertical
lineV =0,1,2,...,w. In this paper, we set w = 30 equidistance vertical lines. Thus, a
topological feature vector of size w was obtained for different dimensions of PBs.

Barcode statistics (P-statistics). The simplest approach to vectorize the space of PBs is
to extract statistics directly from PBs. We collected only 10 statistics: average and standard
deviation of birth, death and lifespan of bars, median of birth, death and lifespan of
bars, and finally the number of bars. The statistics of birth of topological features in the
dimension zero of PBs can be ignored as they returned zero by default.

3. Dataset Description and Evaluation Scheme

Two widely used mammogram databases were utilized to test the performance
of landmark-based PH for mammogram abnormality classification, which are publicly
available. The two datasets are known as Digital Database for Screening Mammogram
(DDSM) [17] and Mini Mammographic Image Analysis Society (Mini-MIAS) [18]. Mini-
MIAS dataset contains 113 abnormal and 209 normal mammograms of women breasts,
which include fatty, granular, calcification, architectural symmetry, and dense cases. DDSM
constitutes 2620 mammograms in total, in which 512 mammograms were randomly se-
lected in our experiments with 302 normal cases and 257 abnormal cases. Images in both
datasets were cropped region of interest (ROI) images with the size 128-by-128. A number
of benchmarking mammographic datasets are available for experimental purposes in which
they vary according to certain pre-defined criteria such as type and structure of the digital
mammogram, dense, fatty or glandular tissues, noise level in the images, and the number
of benign and malignant cases in these datasets. We opted to use Mini-MIAS and DDSM
due to the fact that images in both datasets were captured in uncontrolled conditions, so
the images contained sufficient noise and low-resolution images. Examples of images from
the Mini-MIAS and DDSM datasets can be seen in Figure 5.

Two evaluation metrics that were used are sensitivity (SE), the proportion of breast
cancer cases correctly classified as patients having malignant tumors, and specificity (SP),
which corresponds to the number of normal breast mammogram cases correctly classified
as normal. The accuracy and Fl-score is the harmonic mean of precision and recall.

The formula for both sensitivity and specificity is defined as follows:

True positive
sitive + False negative

Sensitivity = True po
u

where true positive (TP) refers to cancer patients truly identified as patients having ab-
normal breast mammograms, and false negative (FN) refers to breast cancer patients
misclassified as negative of having breast cancers.

True negative
gative + False positive

Specificity = True ne

where the true negative (TN) refers to the number of truly classified women clear of breast
cancer, and false positive (FP) means the number of cases wrongly classified as breast
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cancer positive, which in fact are clear of having cancer. The formula for both accuracy and
Fl-score can be stated as follows:

_ TN+ TP

Accuracy = TN TPIFPTEN-
_ _ 2xTP

Fl —score = o rp) ppren

The support vector machine (SVM) classifier used to differentiate abnormal mammo-
grams from their normal counterparts optimized all hyperparameters of SVM with a 5-fold
cross validation setting.

DDSM

MiniMIAS

o

NORMAL

ABNORMAL
(Mass)

Figure 5. Examples of ROI for normal and abnormal cases from the Mini-MIAS and DDSM datasets.

4. Reproducibility and Implementation Details

In all experiments, we extracted 0-dimensional and 1-dimensional PDs using the
Ripser package in python (https:/ /pypi.org/project/ripser/ (accessed on 20 August 2022)).
The PI of a resolution 30-by-30, linear weighting function, and the rest of the parameters
in default setting were generated using GUDHI library in python (https://pypi.org/
project/gudhi/ (accessed on 20 August 2022)). PL was generated with k = 100 and
the rest of the other parameters with default setting from the GUDHI library. Cubical
complex filtration and its corresponding PD was constructed using the GUDHI library
in python. SVM classification was performed in MATLAB with standardization and
tuning for the optimal hyperparameters. In other words, in each fold, we search for
the best kernel among the four kernel options available in MATLAB, which are linear,
Gaussian, radial basis function, and polynomial. This means that a linear kernel for the
first fold may not be good in the second fold and we may have a case of four different
kernels in a 5-fold cross validation. ULBP was implemented from scratch in python
to select landmarks. A padding of zero was performed during the process of ULBP
landmark selection during 3-by-3 patch scanning of mammograms with an overlap value
of 2 between two consecutive patches. The code to reproduce results can be found in the
GitHub repository (https:/ /github.com/dashtiali/mammogram-classification (accessed
on 1 October 2022)). Full details on how to properly use the code can be found in the
GitHub link provided above. A MATLAB version of landmark selection and PH generation
and visualization can be found in [19].


https://pypi.org/project/ripser/
https://pypi.org/project/gudhi/
https://pypi.org/project/gudhi/
https://github.com/dashtiali/mammogram-classification
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5. Experimental Results

In order to classify the mammogram scans, the SVM classifier was trained in a 5-fold
cross validation setting based on the topological features. For each image, there was 56 PDs
built on 56 point-clouds extracted from the ULBP landmark selection method. There are
many approaches in which one can train and test the machine learning classifier for the
56 vectorized PDs generated. We first concatenated the topological features following
the seven geometrical groups in ULBP. In other words, features of the eight rotations of
each ULBP geometry concatenated for each PD vectorization method. In addition to the
seven feature vectors obtained, the PH features extracted in dimension zero and one, which
corresponded to the connected components and 1-dimensional cycles. The experimental
results obtained from combining topological features in dimension zero and one were
better than using either dimension alone.

In Tables 1 and 2, we report on the sensitivity and specificity of the best performing
ULBP geometry obtained from the best performing dimension of the PH features and the
four PD vectorization methods. Out of the seven ULBP geometries, none of the geometries
performance was consistent in both datasets using either of the four vectorization methods
utilized. PL with G3 performed better than the other ULBP geometries on DDSM while
P-Binning and G7 performed the best on the Mini-MIAS dataset. Combined PH features of
dimension zero and one for all 56 ULBP geometries with PL provided 92% sensitivity and
86% specificity for DDSM (see Table 3). The results reported here can be partially compared
with that reported in [20], where ULBP and PH were used for mammogram abnormality
classification.

The authors in [20] only used binning to vectorize PD with the KNN classifier and
they reported the best classification performance of a sensitivity of 86% and specificity of
98% for Mini-MIAS together with an 82% sensitivity and 75% specificity for DDSM. Our
results outperformed these results in both datasets.

Finally, in Tables 4 and 5, we report the classification performance of SVM using
the cubical complex filtration approach where we used all grayscale pixel values of the
mammograms to construct one PD and then the four vectorization methods.

Table 1. The top performing ULBP geometries and PH dimension and all PD vectorizations for
DDSM. Avg = average, Std = standard deviation for 5-fold cross-validation using SVM.

Feature Type Classification Metrics Avg + Std

. o Sensitivity 85.02 £ 7.5
PD-dim0, 1, P-Binning, and G5 Specificity 774+ 07

Accuracy 81.57 + 4.6

F1-Score 83.18 4.8

. - Sensitivity 85.1+4.9
PD-dim1, P-Statistics, and G3 Specificity 797 + 6.6

Accuracy 82.64 2.7

F1-Score 84.11+2.4

. Sensitivity 764 +94
PD-dim0, 1, PI, and G3 Specificity 669 +73
Accuracy 72.1 £2.8

F1-Score 74.53 + 4.3

. Sensitivity 86.06 £ 4.8

PD-dim0, 1, PL, and G3 Specificity 80.9 + 4.4
Accuracy 83.7+4

F1-Score 85.07 &+ 3.7
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Table 2. The top performing ULBP geometries and all PD vectorizations for Mini-MIAS.

Feature Type Classification Metrics Avg + Std

. - Sensitivity 97.6 = 1.5
PD-dim0, P-Binning, and Gy Specificity 95.5 4+ 3.2
Accuracy 96.92 + 1.5

F1-Score 9763 £1.1

. - Accuracy 98.6 2.9
PD-dimO0, 1, P-Statistics, and G5 Specificity 946438
Accuracy 9727 £2.1

F1-Score 979+ 17

. Sensitivity 98.1+1.0
PD-dim0, 1, PL and G; Specificity 94.6 + 2.1
Accuracy 96.89 £ 1.1

F1-Score 97.62+ 0.9

. Sensitivity 97.6 £0.1
PD-dim0, 1, PL, and Gy Specificity 92.8 +6.1
Accuracy 9594 +2.2

F1-Score 96.92 + 1.6

Table 3. Concatenation of all ULBP geometries together with dimension 0 and 1 of the PD for DDSM
classification using the top three PD vectorization.

Feature Type Classification Metrics Avg + Std
. Sensitivity 923+ 4
PD-dim0, 1, and PL Specificity 86.5+ 3
Accuracy 89.62 £ 1.4
F1-Score 90.56 + 1.4
. L Sensitivity 85.1+6
PD-dim0, 1, and P-Binning Specificity 86+ 4
Accuracy 83.57 + 4.3
F1-Score 84.73 £ 4.2
. - Sensitivity 87.6 £4
PD-dim0, 1, and P-Statistics Specificity 823+ 4
Accuracy 84.62 + 1.5
F1-Score 8593 + 1.6

Table 4. Cubical complex performance results for the Mini-MIAS dataset using four different vector-
ization methods and three homology dimensions.

Feature Type Sensitivity Specificity Accuracy F1-Score
(Avg = STD) (Avg+STD) (Avg+STD) (Avg =+ STD)
P-Binning and PD-dim0 99.02 £2.18 2.51 £ 3.65 65.17 £ 1.3 78.68 £ 0.9
P-Binning and PD-dim1 99.02 £+ 1.34 0.91 + 2.03 64.6 + 0.7 7841 £ 0.5
P-Binning and PD-dim0, 1 98.54 +2.18 2.51 +3.65 64.86 = 1.5 7845+ 1
P-Statistics and PD-dim0 98.54 +1.34 92.15 £ 3.25 96.29 £ 0.8 97.18 £ 0.6
P-Statistics and PD-dim1 98.09 4 1.07 96.47 £ 1.99 97.52 4 0.8 98.09 £ 0.6
P-Statistics and PD-dim0, 1 98.58 + 1.3 94.76 + 1.54 97.24 + 1.2 97.88 0.9
PI and PD-dim0 88.68 £ 5.53 78.04 +13.48 84.95 + 6.2 88.46 £ 4.7
PI and PD-dim1 90.95 + 4.55 84.98 + 3.81 88.86 £ 3.6 9134 £29
PI and PD-dim0,1 93.83 +2.53 91.24 + 2.67 9292 +2 9449+ 1.6
PL and PD-dim0 93.39 £3.23 69.96 £ 12.29 85.17 £ 5.8 89.16 £ 4.2
PL and PD-dim1 89.7 £ 8.78 78.51 &+ 8.56 85.81 £5.3 88.99 £ 4.6
PL and PD-dim0, 1 95.43 + 6.23 80.22 + 11.68 90.13 + 3.8 9259 £29
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Table 5. Cubical complex performance results for the DDSM dataset using four different vectorization

methods and three homology dimensions.

Feature Type Sensitivity Specificity Accuracy F1-Score
(Avg £ STD) (Avg £STD) (Avg+STD) (Avg =+ STD)

P-Binning and PD-dim0 57.08 £15.13 62.94 £ 10 59.78 £5.5 59.69 £9.7
P-Binning and PD-dim1 68.6 = 17.5 62.26 £+ 12.89 65.69 £ 4.2 6744 £83
P-Binning and PD-dim0,1  69.16 =£19.52  51.14 £ 22.9 60.87 £7.5 64.72 £ 8.8
P-Statistics and PD-dim0 82.08 £ 7.57 80.57 £5.58 81.38 + 44 8255+ 4.4
P-Statistics and PD-dim1 80.13 £8.5 87.19 +3.88 83.37 £55 83.73 £5.9
P-Statistics and PD-dim0, 1 86.03 = 8 81.72 £ 4.89 84.05 4 4.2 85.23 4.3
PI and PD-dim0 61.01 +£9 81.69 +£7.85 7052+ 6 68.89 £7.2
PI and PD-dim1 71.62 +10.01 78.19 £ 5.35 74.65 £ 6.2 75.07 £7.2
PI and PD-dim0, 1 73.19 £ 6.18 73.95 + 6.48 73.54 £4.2 74.87 £ 4.2
PL and PD-dim0 74.46 £ 7.17 71.54 +7.86 73.12+53 74.89 £5.1

PL and PD-dim1 81.13 + 6.06 73.53 £7.34 77.63 £5.5 79.66 £5
PL and PD-dim0, 1 83.74 £4.72 77.01 £5.03 80.65 £ 4.7 8237 £43

It can be seen that by using cubical complexes, we can obtain 98% and 94% for sensitiv-
ity and specificity, respectively, for the Mini-MIAS dataset and up to 86% of sensitivity and
81% specificity for DDSM. P-Statistics performed better than the other three vectorization
methods using cubical complexes, which was not the case using landmark-based VR filtra-
tion. Using our proposed landmark based approach, one geometry alone (G7) achieved
roughly the same performance for Mini-MIAS where we only used a small portion of the
mammogram scan pixel values. For DDSM, we outperformed the cubical complexes if we
concatenated the topological features from all geometries and obtained almost the same
performance using one geometry (i.e., G3).

6. Discussion and Future Work

This study introduced a distributed method of constructing 56 PDs based on automat-
ically extracted landmarks from breast mammograms. In general, we found that a small
set of pixel landmarks was enough to detect abnormality in breast mammograms such as
G3 in DDSM and G7 in the Mini-MIAS dataset. Computing the 56 PDs can be conducted
in a distributed manner, which is crucial for large scale datasets. Instead of building one
PD using cubical complexes, our approach provides a localized PD representation that
conveys topological features linked to different types of mammogram texture distribution.
Different PD vectorizations were examined where we found that it was good practice to try
more than one method, as a single approach may not consistently perform well on different
datasets. This work is the first step toward a more comprehensive study for different
approaches of PD vectorization in medical imaging because we concluded that different
types of vectorization methods affect the performance greatly, as can be seen from Table 1
to Table 5. Until now, to the best of our knowledge, there is no comprehensive analysis or a
roadmap to select suitable vectorization method(s) for medical image analysis or any other
image modalities. On the other hand, it is not an easy task to search the rich literature of PH
vectorizations and pick the correct method suitable for the problem at hand. Nonetheless,
based on the findings in this work, at this stage, we are not advising the use of a single
vectorization method, as this could lead to misleading performances.

Furthermore, our analysis showed that the proposed landmark based PH could out-
perform classical approaches of building topology from digital images such as cubical
complexes. This points to the fact that a small set of pixel value landmarks that correspond
to different type of textures can be used to differentiate malignant mammogram scans from
benign scans. This is particularly useful when the medical image dimensions (number of
rows and columns) are very high, and using the entire pixel values is time consuming, or
downsampling may result in the loss of critical medical information.

The only limitation of this work is the increase in the dimensions of feature vectors
when combining more than one ULBP geometry, as was the case when we concatenated all
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ULBP geometries to boost the classification performance for the DDSM dataset in Table 3.
Aggregating PDs before vectorization is one approach to address this limitation in fu-
ture. Future work will also focus on using other texture methods as landmark selection
procedures such as center-symmetric LBP or small image patches of high density. Further-
more, testing the proposed ULBP based PH on other medical image modalities such as
ultrasounds and other types of disease is included in our list of future works.
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