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Abstract: A new life performance index is proposed for evaluating the quality of lifetime products.
The maximum likelihood estimation method and the Bayesian approaches using informative and
non-informative prior distributions are utilized to infer the parameters of the Weibull distribution
and the proposed new life performance index under a Type-I hybrid censoring scheme. Monte
Carlo simulation results show that two Bayesian approaches outperform the maximum likelihood
estimation method in terms of the measures of relative bias, relative mean square error, and coverage
probability for the point and confidence interval estimators, respectively. The Bayesian approach
using a non-informative prior distribution is recommended if the knowledge of setting up the hyper-
parameters in the informative prior distribution is not available. Two real data sets are provided
for illustration.

Keywords: life performance index; maximum likelihood estimation; Bayesian estimation; Monte
Carlo simulation

MSC: 62F10; 62P30

1. Introduction

Process capability analysis is one of the important issues during the statistical quality
control applications. It allows the producer to know whether the product meets the
specification and quality requirements. Process capability index (PCI) is a method to
quantify process capability. The concept of PCI is to measure the degree of the quality
characteristic meeting the requirements of a given specification limit. At present, many
commonly used PCIs have been suggested in the literature to improve product quality,
such as Cp, Cpk, Cpm, and Cpmk (Juran [1], Kane [2], Hsiang and Taguchi [3], Pearn et al. [4]
and Montgomery [5]), which are, respectively, defined as follows,

Cp =
U − L

6σ
, (1)

Cpk = min
{

U − µ

3σ
,

µ− L
3σ

}
, (2)

Cpm =
U − L

6
√

σ2 + (µ− T)2
, (3)

Cpmk = min

{
U − µ

3
√

σ2 + (µ− T)2
,

µ− L
3
√

σ2 + (µ− T)2

}
, (4)

where U, L, T, σ and µ are the upper, lower specification limits, target value, and process
standard deviation and mean, respectively. The aforementioned PCIs have two specification
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limits to quantify the product quality. Practically, producers and customers could only
consider the quality of products to meet above the lower specification limit. Kane [2]
proposed a PCI, named Cpl , which only considers the lower limit of the specification and is
defined by

Cpl =
µ− L

3σ
.

The process performance index based on the version of Cpl is expressed by

CL =
µ− L

σ
. (5)

Readers can refer to the work of Montgomery [5] for more comprehensive discussions. It is
worth noting that the premise of using these traditional PCIs is the normality assumption.
If lifetime data do not follow a normal distribution, reliable results could not be achieved.
For example, measurement data for drilling processes, coating processes, and chemical
processes often follow an asymmetric distribution. For improving the quality of traditional
PCIs for asymmetrically distributed data, Clements [6] proposed to replace the Cp and
Cpk by Cp(q) and Cpk(q), respectively. The two new PCIs for asymmetric distributions are,
respectively, defined by

Cp(q) =
U − L

U0.99865 − L0.00135
(6)

and

Cpk(q) = min
(

U −M
U0.99865 −M

,
M− L

M− L0.00135

)
, (7)

where L0.00135, U0.99865, and M are, respectively, the 0.00135-quantile, 0.99865-quantile,
and median of quality characteristic measurements. Similarly, CL should be modified
for asymmetric distributions. A new modification will be proposed in the study for the
Weibull distribution.

The manufacturing technology advancing has successfully prolonged the lifetime of
products. In order to save the time and cost of life testing, Type-I and Type-II censoring
schemes have been popular for implementing life tests. Type-I censoring uses a time
censoring scheme, and the life test is terminated at the predetermined time T, then the
failure times less than or equal to T are recorded as a type-I censoring sample. Type-II
censoring scheme is also called failed number censoring scheme. r failed lifetimes are
collected as a Type-II censored sample in which the positive integer, r, is predetermined
by engineers before the life test. To make the censoring scheme more flexible, Epstein [7]
introduced a Type-I hybrid censoring scheme. The life test can be terminated at the
minimal termination time of the Type-I and Type-II censoring schemes. When the life test
is terminated at the maximal termination time of the Type-I and Type-II censoring schemes,
the censoring scheme is named Type-II hybrid censoring scheme, see Childs et al. [8].

At present, many researchers have made contributions to the life performance index
for non-normal distribution. For example, the life performance index based on random
sample from Rayleigh distribution by Lee [9], based on type II censored sample from
Pareto distribution by Hong et al. [10], based on progressively type II censored sample
from exponential distribution by Lee et al. [11], and based on progressively type I interval
censored sample from the Weibull distribution by Wu and Lin [12]. Although these studies
have insight contributions into the life performance index for asymmetric distributions, it
still needs to be improved for reflecting the Weibull distribution data with the traditional
life performance index. Hence, a new life performance index is proposed to evaluate the
life quality of the Weibull distribution data. Based on our knowledge, no one has studied
the inference method for the new proposed life performance index using a Type-I hybrid
censoring scheme. In this study, we proposed the maximum likelihood estimation and
Bayesian inference methods to obtain the point estimates of the parameters and the new
proposed life performance index based on Type-I hybrid censored sample from Weibull
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distribution. Because the Type-I hybrid censoring scheme is used for life testing to save
testing time, the Fisher information matrix is difficult to obtain because the number of
failures and stopping time of the life testing are random variables. The facts of the number
of failures and stopping time of the life testing are random variables that also have an impact
on the quality of the observed Fisher information matrix. The second derivatives of the log-
likelihood function based on Type-I hybrid censored samples from the Weibull distribution
are complicated, and the Fisher information matrix exists only if some regular conditions
are true, see Wang and He [13]. Hence, we suggest using a bootstrap method to find a
confidence interval based on the maximum likelihood estimation method. The highest
posterior density interval (HPDI) is used to develop a Bayesian credible interval for the
new proposed life performance index. Some studies have also investigated the parameter
estimation methods based on Type-I hybrid censored samples. For example, Kundu and
Pradhan [14] for the generalized exponential distribution paramters; Lin et al. [15] for the
Weibull distribution with a progressive hybrid censoring scheme; Cho et al. [16] for the
estimate of Weibull distribution entropy with a generalized progressive hybrid censoring
scheme; and Okasha and Mustafa [17] for the E-Bayesian estimation of rate parameter
based on adaptive Type-I progressive hybrid censored sample from the Weibull distribution
assuming the shape parameter as a constant. However, these four works do not deal with
the life performance index.

The rest of this paper is organized as follows. In Section 2, a new life performance
index is proposed and its properties are discussed. Section 3 introduces the parameter
estimation methods based on a Type-I hybrid censored sample from the Weibull distribution
by utilizing the maximum likelihood estimation and Bayesian inference methods. Section 4
reports the results of an intensive simulation study for the evaluation of two proposed
estimation methods. Two real examples are illustrated in Section 5. Finally, some concluding
remarks will be made in Section 6.

2. Proposed Life Performance Index

Let X be an asymmetrically distributed random variable that has a finite second
moment. In this case, the mean, µ = E[X], in Equation (5) is less suitable to be the
center representative for the distribution. A new life performance index is proposed and
expressed by

CLM =
M− L√

E(X−M)2
=

δ√
1 + δ2

+
CL√

1 + δ2
(8)

where M is the median of X and
δ =

M− µ

σ
.

The relationship between the proposed CLM and the CL is stated in Theorem 1.

Theorem 1. For any distribution that has the finite second moment,

(a) If M−L
µ−L <

√
1 + δ2, then CLM − CL < 0.

(b) If M−L
µ−L >

√
1 + δ2, then CLM − CL > 0.

(c) If M−L
µ−L =

√
1 + δ2, then CLM = CL.

The proof of Theorem 1 is addressed in Appendix A. Because the condition of

M− L
µ− L

=
√

1 + δ2

is difficult to hold for an asymmetric distribution, CLM cannot easily be equal to CL. This
fact indicates that when the lifetimes follow an asymmetric distribution, CLM can better
characterize the quality of lifetime products.
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When X has the Weibull distribution with the probability density, cumulative distribu-
tion, survival, and quantile functions that are, respectively, expressed by

f (x; Θ) =
α

λ

( x
λ

)α−1
exp

{
−
( x

λ

)α}
, x > 0, (9)

F(x; Θ) = 1− exp
{
−
( x

λ

)α}
, x > 0, (10)

S(x; Θ) = 1− F(x; Θ) = exp
{
−
( x

λ

)α}
, x > 0, (11)

and
q(u; Θ) = λ(− log (1− u))

1
α , 0 < u < 1, (12)

where Θ = (α, λ), α > 0 is the shape parameter and λ > 0 is scale parameter. With the
wide range of shape parameter, α > 0, the Weibull distribution is a flexible and skewed one
for lifetime modeling. The Weibull distribution has another form, which can be obtained
via using reparameterization of τ = λ−α. The probability density function of the Weibull
distribution with parameters α and τ was represented by Kundu [18] to be

f (x; α, τ) = ατxα−1 exp{−τxα}, x > 0.

It can be shown that the mean, µ, standard deviation, σ, and median, M, of the Weibull
distribution are

µ = λΓ
(

1 +
1
α

)
,

σ = λAα,

and
M = λ(log (2))

1
α ,

where

Aα =

√
Γ
(

1 +
2
α

)
−
(

Γ
(

1 +
1
α

))2
.

Hence, Equation (5) can be represented as

CL =
µ− L

σ
=

Γ
(

1 + 1
α

)
− L

λ

Aα

that implies the life performance index CLM of Equation (8) can also be rewritten by

CLM =
δ√

1 + δ2
+

Γ
(

1 + 1
α

)
− L

λ

Aα

√
1 + δ2

,

and
L
λ
= Γ

(
1 +

1
α

)
− Aα × CL. (13)

Using Equation (13), the product yield can be expressed by

Pr = P(X > L)

= exp
{
−
(

L
λ

)α}
= exp

{
−
(

Γ
(

1 +
1
α

)
− AαCL

)α}
= exp

{
−
(

Γ
(

1 +
1
α

)
− Aα

[
CLM

√
1 + δ2 − δ

])α}
. (14)
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3. Parameter Estimation Methods Based on Hybrid Censored Data

Let {Xi, i = 1, 2, . . . , n} be independent random lifetimes from the Weibull distribution
with the parameter (Θ). Denote {X(1) ≤ X(2) ≤ . . . ≤ X(n)} as the order statistics of
{Xi, i = 1, 2, . . . , n}. The life test stops immediately when the rth ordered failed time is
observed or the predetermined T is up. The realization of the failure time sample can be
presented by {x(1) ≤ x(2) ≤ . . . ≤ x(d)}, where

d =

{
r, x(r) ≤ T,
m, x(r) > T,

(15)

and m is the number of failure times by T. Let

c =
{

x(r), x(r) ≤ T,
T, x(r) > T.

(16)

Then, the Type-I hybrid censored sample can be expressed by D = {x(1), x(2), . . . , x(d), c},
which contains n− d repetitions of c. We only use one c in D for simplification.

3.1. Maximum Likelihood Estimation

According to the expression of Kundu [19], the log-likelihood function can be ex-
pressed by

`(Θ) ≡ log(L(Θ|D))

= d log (α)− d log (λ) + (α− 1)
d

∑
i=1

log (x(i))

−d(α− 1) log (λ)−
d

∑
i=1

( x(i)
λ

)α

− (n− d)×
( c

λ

)α
. (17)

The partial derivatives of `(Θ) with respect to λ and α can be derived as follows,

∂`(Θ)

∂λ
=

α

λα+1

{
d

∑
i=1

xα
(i) + (n− d)cα

}
− dα

λ
(18)

and

∂`(Θ)

∂α
=

d
α
− d log(λ) +

d

∑
i=1

log(x(i))−
d

∑
i=1

{ x(i)
λ

}α{
log(x(i))− log(λ)

}
− (n− d)

( c
λ

)α
(log(c)− log(λ)). (19)

Let
∂`(Θ)

∂λ
= 0

and
∂`(Θ)

∂α
= 0

Under the condition of d > 0, the maximum likelihood estimator (MLE), Θ̂ = (α̂, λ̂), of Θ
can be obtained by Equations (20) and (21),

λ̂ =

[
1
d

{
d

∑
i=1

xα̂
(i) + (n− d)cα̂

}]1/α̂

(20)
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and
α̂ =

d(
1

u(α̂)

)[
∑d

i=1 xα̂
(i) log (x(i)) + (n− d)cα̂ log (c)

]
−∑d

i=1 log (x(i))
, (21)

where u(α̂) = λ̂α̂ and

u(α) =
1
d

{
d

∑
i=1

xd
(i) + (n− d)cα

}
.

Since Equations (20) and (21) indicate the MLEs have no closed form, Θ̂ can only be
obtained by using numerical method through R function optim to Equation (17). Replacing
Θ with Θ̂ in Equation (8), the MLE of CLM is given by

ĈLM =
δ̂ + ĈL√

1 + δ̂2
, (22)

where

ĈL =
Γ
(

1 + 1
α̂

)
− L

λ̂

Âα

, (23)

δ̂ =
(log (2))

1
α − Γ

(
1 + 1

α̂

)
Âα

, (24)

and

Âα =

√
Γ
(

1 +
2
α̂

)
−
(

Γ
(

1 +
1
α̂

))2
. (25)

The parametric bootstrap method with the following steps is suggested to obtain an
approximate confidence interval of CLM:

Step 1: Obtain the MLE of Θ̂ =
(

α̂, λ̂
)

via using Equations (20) and (21) based on the
Type-I hybrid censored data D = {x(1), x(2), . . . , x(d), c}. Then, obtain the MLE of
CLM by using Equation (22).

Step 2: Generate a new Type-I hybrid censored data D∗ = {x∗1:n, x∗2:n, . . . , x∗d∗ :n, c∗} from
the Weibull distribution with parameter, (Θ̂), where Θ̂ is MLE of Θ from Step 1.

Step 3: Compute MLEs of Θ and CLM based on Type-I hybrid censored data D∗ and denote
the obtained MLEs by Θ̂∗ and Ĉ∗LM, respectively.

Step 4: Repeat Step 2 to Step 3 B∗ times to obtain the bootstrap sample {Ĉ∗LM,j, j =

1, 2, · · · , B∗}. Denote the empirical distribution based on the obtained bootstrap
sample, {Ĉ∗LM,1, Ĉ∗LM,2, · · · , Ĉ∗LM,B∗}, by Ĝ∗.

Step 5: Given a significance level γ, find the (γ/2)th and (1− γ/2)th empirical quantiles
of Ĝ∗ as the lower and upper limits of the confidence interval of CLM, respectively.

3.2. Bayesian Estimation

Let the prior distribution of λ be the inverse Gamma, denoted by π1(λ), and the prior
distribution of α be a non-informative prior distribution, denoted by π2(α). Thus, the joint
prior distribution of Θ can be expressed by

π(Θ) = π1(λ)× π2(α), α > 0, λ > 0, (26)

where

π1(λ) =
ba

Γ(a)

(
1
λ

)a+1
exp

{
− b

λ

}
, λ > 0, a, b > 0 (27)

and
π2(α) ∝

1
α

, α > 0. (28)
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Then, the joint posterior distribution of Θ can be expressed by

π(Θ|D) ∝ π(Θ)L(Θ|D)

∝

(( α

λ

)d
{

d

∏
i=1

( x(i)
λ

)α−1
}

exp

{
−
{

d

∑
i=1

( x(i)
λ

)α

+ (n− d)×
( c

λ

)α
}})

×
(

ba

Γ(a)

(
1
λ

)a+1
exp

{
− b

λ

})(
1
α

)

∝ αd−1λ−dα−a−1

{
d

∏
i=1

xα
(i)

}
κ(D, α, λ), (29)

where

κ(D, α, λ) = exp

{
−
{

d

∑
i=1

( x(i)
λ

)α

+ (n− d)×
( c

λ

)α
+

b
λ

}}
.

Using Equation (29), we can obtain the conditional posterior distributions of λ given α and
of α given λ, which are presented by

π(λ|D,α) ∝ λ−dα−a−1κ(D, α, λ) (30)

and

π(α|D,λ) ∝ αd−1λ−dα

{
d

∏
i=1

xα
(i)

}
κ(D, α, λ), (31)

respectively. Notably, if we lack knowledge to set up the prior of λ, a non-informative prior
distribution π1(λ) ∝ 1

λ can be used for λ. Then, the joint posterior distribution of Θ can be
given by

πN(Θ|D) ∝

(( α

λ

)d
{

d

∏
i=1

( x(i)
λ

)α−1
}

exp

{
−
{

d

∑
i=1

( x(i)
λ

)α

+ (n− d)×
( c

λ

)α
}})

× 1
αλ

∝ αd−1λ−dα−1

{
d

∏
i=1

xα
(i)

}
κ1(D, α, λ), (32)

where

κ1(D, α, λ) = exp

{
−
{

d

∑
i=1

( x(i)
λ

)α

+ (n− d)×
( c

λ

)α
}}

.

Using Equation (32), we can derive the conditional post distributions of λ given α and α
given λ by

πN(λ|D,α) ∝ λ−dα−1κ1(D, α, λ) (33)

and

πN(α|D,λ) ∝ αd−1λ−dα

{
d

∏
i=1

xα
(i)

}
κ1(D, α, λ), (34)

respectively. Because the closed form of the marginal posterior distributions π(α|D)
and π(λ|D) (or πN(α|D) and πN(λ|D)) cannot be obtained, the Markov chain Monte
Carlo (MCMC) approach with mixing Gibbs sampling technique and Metropolis–Hastings
algorithm is used to obtain the Bayesian estimators. The implementation steps of the
MCMC approach are presented as follows:

Step 1: Give initial values (λ, α) = (λ(0), α(0)) and propose the transition probability

distributions, q1

(
λ(∗)|λ(t)

)
and q1

(
α(∗)|α(t)

)
, where λ(∗) and α(∗) are the updates

of λ and α for the next step.
Step 2: Implement Step 3 for i = 0, 1, 2, . . . , B, where B is a huge number.
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Step 3: (a) Generate λ(∗) ∼ q1

(
·|λ(i)

)
and u ∼ U(0, 1), where U(0, 1) is the uniform

distribution over the interval (0, 1). Update λ(i+1) according to the condition,

λ(i+1) =

λ(∗) if u ≤ min
{

1,
π(λ(∗) |α(t−1);D)q1(λ(t−1)|λ(∗))

π(λ(t−1) |α(t−1);D)q1(λ(∗)|λ(t−1))

}
,

λ(i), otherwise.

(b) Generate α(∗) ∼ q2(·|α(i)) and u ∼ U(0, 1). Update α(i+1) according to the
condition:

α(i+1) =

α(∗) if u ≤ min
{

1,
π(α(∗) |λ(t);D)q2(α(t−1)|α(∗))

π(α(t−1) |λ(t);D)q2(α(∗)|α(t−1))

}
,

α(i), otherwise.

(c) Replacing (α, λ) with (α(i+1), λ(i+1)) in Equation (8), the updated estimator of
CLM can be obtain by

C(i+1)
LM =

δ(i+1) + C(i+1)
L√

1 +
(
δ(i+1)

)2
,

where

C(i+1)
L =

Γ
(

1 + 1
α(i+1)

)
− L

λ(i+1)

A(i+1)
α

,

δ(i+1) =
(log (2))

1
α(i+1) − Γ

(
1 + 1

α(i+1)

)
A(i+1)

α

,

and

A(i+1)
α =

√
Γ
(

1 +
2

α(i+1)

)
−
(

Γ
(

1 +
1

α(i+1)

))2
.

Step 4: Remove the first N1 Markov chains for the burn-in operation. Re-coding the Markov
chains of {α(i), i = N1 + 1, N1 + 2, ..., B} = {α(i), i = 1, 2, . . . , B1}, {λ(i), i = N1 +

1, N1 + 2, . . . , B} = {λ(i), i = 1, 2, . . . , B1}, and {C(i)
LM, i = N1 + 1, N1 + 2, . . . , B} =

{C(i)
LM, i = 1, 2, . . . , B1}. Considering the squared loss function for Bayesian estima-

tion, the Bayes estimates α̃, λ̃ and C̃LM can be, respectively, obtained by the sample
means of the Markov chains of α(i), λ(i) and C(i)

LM, i = 1, 2, . . . , B1.

The HPDI of CLM can be obtained via using the following steps proposed by Chen
and Shao [20].

Step 1: Sorting {C(j)
LM, j = 1, 2, . . . , B1} to obtain an ordered sequence of C(j)

LM by
{CLM(j), j = 1, 2, . . . , B1}, where CLM(j) ≤ CLM(j+1) for j = 1, 2, . . . (B1 − 1). The or-
dered sequence of {CLM(1), CLM(2), . . . , CLM(B1)

} is used to construct the empirical
distribution of the Bayes estimator C̃LM.

Step 2: Find all 100× (1−γ)% intervals of CLM that are labeled by (CLM(j), CLM(j+[(1−γ)B1])
),

j = 1, 2, . . . , B1 − [(1− γ)B1], where [y] is the largest integer smaller or equal to y.
Step 3: Find the interval that has the shortest length among all intervals in Step 2. The

obtained interval is the HPDI.

Similarly, if we consider that λ follows a non-informative prior distribution, the Bayes
estimators of α, λ and CLM can be obtained through of using the above proposed MCMC
approach with replacing π(·|·; D) by πN(·|·; D). The HPDI of CLM can also be obtained by
using the aforementioned steps proposed by Chen and Shao [20].
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4. Simulation Study

Monte Carlo simulations were carried out to examine the performance of the MLEs
and Bayes estimators of the model parameters and the proposed life performance index.
In practical applications, one often evaluates the quality of lifetime products under a
limited sample resource. It is important to evaluate the quality of the proposed maximum
likelihood estimation method and Bayesian inference approach under small sample cases.
In the simulation study, we consider using r = 20 and 25 for the sample of size n = 30 and
using r = 35 and 40 for the sample of size n = 50. Moreover, we use the parameters of
(α, λ) = (2, 1) and (5, 1) for the Weibull distribution. When (α, λ) = (2, 1), we consider
using T = 1, 1.5, (a, b) = (3, 2) and L = 0.05. When (α, λ) = (5, 1), we consider using
T = 1, 1.15, (a, b) = (4, 5) and L = 0.3. The Type-I hybrid censoring schemes can be
obtained based on the aforementioned parameter information used for the simulation
study. For each combination of parameters mentioned above, simulation study has been
conducted for 5000 runs.

For each simulation run, the numbers of B = 10,000 and N1 = 1000 are used to imple-
ment the MCMC for the Bayesian posterior distribution approximation and the number of
B∗ = 1000 is used for the bootstrap sampling distribution approximation of MLE estimator.
Two HPDIs of CLM for both Bayesian credible intervals and the bootstrap approximated
confidence interval of CLM for MLE are obtained at the confidence level of 0.95; that is,
γ = 0.05. The Baysian point estimate is obtained by using the posterior mean under the
squared error loss, and the MLE is obtained via a procedure described in Section 3.

The measures of relative bias (rBias) and relative mean squared error (rMSE) will be
used to measure the accuracies of MLE and two Bayesian estimators. Assume the target
parameter is θ and its estimator is θ̂, the rBias and rMSE can be defined, respectively, by

rBias =
1
θ
× Bias

and
rMSE =

1
θ2 ×MSE,

where Bias and MSE can be evaluated based on 5000 estimates, θ̂j, j = 1, 2, . . . , 5000, by

Bias =

(
1

5000

5000

∑
j=1

θ̂j

)
− θ

and

MSE =
1

5000

5000

∑
j=1

(θ̂j − θ)2,

respectively. Please note that the rBias and rMSE are scale-free measures. Meanwhile the
coverage probability (coverage) of 95% confidence or credible interval is evaluated as the
percentage of intervals covering the true parameter based on 5000 simulation runs. All ob-
tained simulation results of coverage listed in the most right side columns of Tables 1 and 2
are for all the interval estimators of CLM under study and the next three left columns contain
rMSE and rBias for each point estimator, respectively. The symbols “Non-info.” and “Info.”
in the tables denote the Bayesian estimation results through using a non-informative and
informative prior distributions, respectively.

Table 1. The rBias and rMSE (in parentheses) for (α, λ) = (2, 1) and L = 0.05.

(n, T) r Estimation α λ CLM Coverage

(30, 1) 20 MLE 0.117 (0.013) −0.022 (0.001) 0.118 (0.014) 0.864
Non-info. 0.063 (0.004) 0.025 (0.001) 0.051 (0.002) 0.945

Info. 0.074 (0.005) <0.001 (<0.001) 0.062 (0.003) 0.945
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Table 1. Cont.

(n, T) r Estimation α λ CLM Coverage

25 MLE 0.108 (0.011) −0.023 (0.001) 0.108 (0.011) 0.862
Non-info. 0.056 (0.003) 0.022 (0.001) 0.043 (0.001) 0.948

Info. 0.066 (0.004) −0.002 (<0.001) 0.054 (0.002) 0.949

(30, 1.5) 20 MLE 0.084 (0.007) −0.011 (<0.001) 0.084 (0.007) 0.895
Non-info. 0.037 (0.001) 0.022 (0.001) 0.025 (0.002) 0.950

Info. 0.043 (0.001) 0.004 (<0.001) 0.031 (0.001) 0.950

25 MLE 0.070 (0.005) −0.010 (<0.001) 0.072 (0.005) 0.899
Non-info. 0.035 (0.001) 0.006 (<0.001) 0.027 (<0.001) 0.948

Info. 0.034 (0.001) −0.005 (<0.001) 0.025 (0.001) 0.944

(50, 1) 35 MLE 0.065(0.004) −0.015 (<0.001) 0.066 (0.004) 0.893
Non-info. 0.035 (0.001) 0.008 (<0.001) 0.028 (0.001) 0.949

Info. 0.040 (0.001) −0.002 (<0.001) 0.033 (0.001) 0.949

40 MLE 0.064 (0.004) −0.013 (<0.001) 0.065 (0.004) 0.892
Non-info. 0.035 (0.001) 0.010 (<0.001) 0.028 (0.001) 0.948

Info. 0.040 (0.002) <−0.001 (<0.001) 0.033 (0.001) 0.950

(50, 1.5) 35 MLE 0.047 (0.002) −0.006 (<0.001) 0.048 (0.002) 0.905
Non-info. 0.022 (0.001) 0.009 (<0.001) 0.015 (<0.001) 0.947

Info. 0.024 (0.001) 0.001 (<0.001) 0.017 (<0.001) 0.948

40 MLE 0.041 (0.001) −0.003 (<0.001) 0.042 (0.001) 0.913
Non-info. 0.020 (<0.001) 0.007 (<0.001) 0.015 (<0.001) 0.949

Info. 0.020 (<0.001) <0.001 (<0.001) 0.014 (<0.001) 0.945

Table 2. The rBias and rMSE (in parentheses) for (α, λ) = (5, 1) and L = 0.3.

(n, T) r Estimation α λ CLM Coverage

(30, 1) 20 MLE 0.113 (0.012) −0.012 (<0.001) 0.097 (0.009) 0.874
Non-info. 0.059 (0.003) 0.002 (<0.001) 0.047 (0.002) 0.951

Info. 0.057 (0.003) 0.005 (<0.001) 0.046 (0.002) 0.953

25 MLE 0.113 (0.012) −0.011 (<0.001) 0.097 (0.009) 0.864
Non-info. 0.060 (0.003) 0.003 (<0.001) 0.049 (0.002) 0.953

Info. 0.058 (0.003) 0.006 (<0.001) 0.048 (0.002) 0.953

(30, 1.15) 20 MLE 0.090 (0.008) −0.006 (<0.001) 0.078 (0.006) 0.883
Non-info. 0.043 (0.001) 0.004 (<0.001) 0.035 (0.001) 0.946

Info. 0.041 (0.001) 0.007 (<0.001) 0.034 (0.001) 0.943

25 MLE 0.073 (0.005) −0.004 (<0.001) 0.065 (0.004) 0.896
Non-info. 0.037 (0.001) 0.001 (<0.001) 0.031 (0.001) 0.947

Info. 0.038 (0.001) 0.002 (<0.001) 0.033 (0.001) 0.950

(50, 1) 35 MLE 0.066 (0.004) −0.005 (<0.001) 0.057 (0.003) 0.900
Non-info. 0.036 (0.001) 0.002 (<0.001) 0.030 (0.001) 0.951

Bayes2 0.035 (0.001) 0.003 (<0.001) 0.029 (0.001) 0.949

40 MLE 0.064 (0.004) −0.006 (<0.001) 0.055 (0.003) 0.896
Non-info. 0.035 (0.001) 0.001 (<0.001) 0.028 (0.001) 0.946

Info. 0.034 (0.001) 0.002 (<0.001) 0.027 (0.001) 0.947

(50, 1.15) 35 MLE 0.050 (0.003) −0.003 (<0.001) 0.044 (0.002) 0.910
Non-info. 0.025 (0.001) 0.003 (<0.001) 0.020 (<0.001) 0.946

Info. 0.024 (0.001) 0.003 (<0.001) 0.020 (<0.001) 0.948

40 MLE 0.039 (0.002) −0.003 (<0.001) 0.034 (0.001) 0.919
Non-info. 0.017 (<0.001) 0.001 (<0.001) 0.014 (<0.001) 0.948

Info. 0.017 (<0.001) 0.002 (<0.001) 0.014 (<0.001) 0.951
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In scan of Tables 1 and 2, we find that the rBias and rMSE for all parameters are
decreased when the sample size and the number of failed products are increased. We also
find that the values of rBias and rMSE of the MLE of CLM are larger than those of the two
Bayes estimators. The Bayesian approach outperforms the maximum likelihood estimation
method in terms of rBias and rMSE. In summary, we can also find that the Bayesian ap-
proach using an informative prior distribution performs better than the Bayesian inference
approach using a non-informative prior distribution. However, the users could not have
knowledge to set up the hyper-parameters of the prior distribution. In practical applica-
tions, the Bayesian approach with an non-informative prior distribution can be used to
infer the life performance index of CLM for the Weibull distribution with a Type-I hybrid
censoring scheme if the users do not have knowledge to set up the hyper-parameters of the
prior distribution.

5. Examples

In this section, two examples from the literature will be provided for the illustrative
purpose. Because no goodness-of-fit method is available for model fitting based on a Type-I
hybrid censored sample. The data sets in two examples are complete samples. Firstly,
we use Kolmogorov–Smirnov (K-S) testing method to confirm that these two data sets
follow Weibull distributions. Then, reducing these two data sets into two Type-I hybrid
censored samples to illustrate the applications of the proposed methods. The Type-I hybrid
censoring scheme is a generalized scheme that includes the Type-I censoring and Type-II
censoring schemes as special cases. Many lifetime applications, using a Type-I censoring
scheme or Type-II censoring scheme to generate censored sample from a complete random
one published, can be found in the literature. For example, Bain and Engelhardt [21]
and Joarder et al. [22] presented data analysis based on a Type-I censored sample about
22 remission times of leukemia. The data set was collected through an experiment for
210 days scheme on a complete random sample published. Dodson [23] and Balakrishnan
and Kateri [24] presented data analysis based on a Type-II censored sample about grinders
testing, in which twenty grinders were tested and twelve failure times were observed.
The Type-I hybrid censoring scheme can be a more efficient scheme for life testing to save
testing time.

Example 1. The example regarding the endurance of deep groove bearings in the life test is con-
sidered for illustrating the applications of the proposed estimation methods. This data set contains
millions of revolutions before the failure of 23 ball bearings in the life test and is reported in Lieblein
and Zelen [25] and listed in Table 3. Fatigue is a key factor which is highly related to the life of ball
bearings. The experience of ball bearing manufacturers had led to relating the fatigue life L to the
number of balls, ball diameter, number of rows, constant angle, and bearing load. L is the number of
million revolutions that a specified percentage of bearing will fail to survive on account of fatigue
causes. Using this complete random sample and K-S test to check the Weibull distribution modeling,
the MLEs by utilizing R function optim is α̂ = 2 and λ̂ = 80, and the K-S test statistic for the
data set is 0.17391. The corresponding p-value = 0.8775. The K-S testing results indicate that the
Weibull distribution with α = 2 and λ = 80 can well characterize this complete sample. Figure 1 is
the quantile-to-quantile plot based on the complete sample of Example 1. In view of Figure 1, we see
that the points form a line that is roughly straight. The quantile-to-quantile plot also shows that the
Weibull distribution can well model the complete sample of Example 1.

The manufacturer wants to ensure the endurance yield of the deep groove ball bearing
is 0.9975 with L = 4, and the target process performance index is CLM = 1.67. Assume
that the manufacturer would like to save the test time and budget of the life testing, the
Type-I hybrid censoring scheme can be a good option. Firstly, we can convert the current
complete random sample to a Type-I hybrid censored sample. In this example, let T = 87
and r = 10, 16 and 23. The hyper-parameters of a = 3 and b = 160 are used to set up the
informative-prior Bayesian approaches. We would like to compare the estimation results
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based on the obtained Type-I hybrid censored sample via our proposed methods and
based on the complete sample in Table 3 via the typical maximum likelihood estimation
method. The estimation results by using the maximum likelihood estimation method with
the complete sample can be a reference for performance comparison. If the likelihood
function is complicated, it is known that the Bayesian estimation method outperforms
typical maximum likelihood estimation method for small sample cases, the proposed
Bayesian estimation method for the case of r = n can be anther reference method because
the sample is a Type-I censored sample.

Figure 1. The quantile-to-quantile plot based on the complete sample of Example 1.

Table 3. The endurance life of deep groove ball bearings (in million revolutions) will fail to survive.

17.88 28.92 33.00 41.52 42.12 45.60
48.48 51.84 51.96 54.12 55.56 67.80
68.64 68.64 68.88 84.12 93.12 98.64
105.12 105.84 127.92 128.04 173.40

The MLEs, Bayes estimates, and 95% confidence intervals of the model parameters
and process performance index were obtained and given in Table 4. The MLEs based
on complete sample are α̂ = 2.1015 and λ̂ = 81.8743, and ĈLM = 1.7771. The Bayes
estimates using non-informative prior distribution based on the Type-I censored sample
are α̃ = 2.3638, λ̃ = 77.6118, and C̃LM = 1.9954. The Bayes estimates using informative
prior distribution based on the Type-I censored sample are α̃ = 2.2771, λ̃ = 79.1921, and
C̃LM = 1.9138. Moreover, it shows that the confidence interval widths obtained using the
two proposed Bayesian methods in Table 4 are shorter than that based on the maximum
likelihood estimation method. The HPDI with informative prior distribution has the
shortest width among three confidence intervals. Overall, we conclude that the endurance
quality of the produced deep groove ball bearings could not satisfy the requirement due to
the lower bounds in two HPDIs are smaller than 1.67.

Example 2. The data of the waiting time (in minutes) of 100 customers before receiving the service
in the bank is used as second example. This data is the complete sample data with sample size
n = 100 shown in Table 5, see Ghitany et al. [26]. The K-S test statistic with the MLEs α̂ = 2 and
λ̂ = 11 is 0.11. The corresponding p-value = 0.5806. The goodness-of-fit based on the K-S test
indicates that the Weibull distribution with α = 2 and λ = 11 can well model this complete sample.
The quantile-to-quantile plot based on the complete sample of Example 2 is displayed by Figure 2.
In view of Figure 2, we can find that Weibull distribution can well model the complete sample of
Example 2.
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Table 4. Estimation results based on Example 1 (n = 23 ball bearings and T = 87 in million
revolutions).

r Estimation α λ CLM Confidence Interval or HPDI

MLE (Complete data) 2.1015 81.8743 1.7771 (1.1403, 3.2407)

10 MLE 3.6093 63.7012 3.0302 (1.9612, 6.5553)
Non-Info. 3.2989 66.8305 2.7601 (1.0169, 4.8253)
Info. 3.2638 68.3120 2.7290 (1.1303, 4.4750)

16 MLE 2.4692 76.7007 2.1059 (1.4421, 3.6492)
Non-Info. 2.3351 79.3218 1.9704 (0.8488, 3.1089)
Info. 2.3948 77.1740 2.0229 (0.9891, 3.0498)

23 MLE 2.1059 76.7007 2.4692 (1.4518, 3.7428)
Non-Info. 2.3638 77.6118 1.9954 (0.9942, 2.9651)
Info. 2.2771 79.1921 1.9138 (0.9167, 2.9240)

Figure 2. The quantile-to-quantile plot based on the complete sample of Example 2.

Table 5. Waiting time data of customers before receiving service in the bank (in minutes).

0.8 0.8 1.3 1.5 1.8 1.9 1.9 2.1 2.6 2.7
2.9 3.1 3.2 3.3 3.5 3.6 4.0 4.1 4.2 4.2
4.3 4.3 4.4 4.4 4.6 4.7 4.7 4.8 4.9 4.9
5.0 5.3 5.5 5.7 5.7 6.1 6.2 6.2 6.2 6.3
6.7 6.9 7.1 7.1 7.1 7.1 7.4 7.6 7.7 8.0
8.2 8.6 8.6 8.6 8.8 8.8 8.9 8.9 9.5 9.6
9.7 9.8 10.7 10.9 11.0 11.0 11.1 11.2 11.2 11.5
11.9 12.4 12.5 12.9 13.0 13.1 13.3 13.6 13.7 13.9
14.1 15.4 15.4 17.3 17.3 18.1 18.2 18.4 18.9 19.0
19.9 20.6 21.3 21.4 21.9 23.0 27.0 31.6 33.1 38.5

Let L = 0.5. For the Weibull distribution with α = 2 and λ = 11, we can obtain
CLM = 1.6877 as the target process performance index. Following the similar data trans-
formation method for Example 1 to convert the complete sample in Table 5 into a Type-I
hybrid censored sample with T = 11, and r = 35, 70, and 100. The Type-I hybrid censored
sample with r = n = 100 is a Type-I censored sample. The hyper-parameters of a = 11 and
b = 110 are considered for the informative prior distribution. The confidence level is set up
at 95% for interval estimation.

The obtained estimation results are reported in Table 6. From Table 6, we can see
that the MLEs based on the complete sample in Table 5 are α̂ = 1.4618, λ̂ = 10.9768, and
ĈLM = 1.1403. Because the sample size is large, the maximum likelihood estimation results
based on the complete sample in Table 5 can be the benchmark, and we can find that the
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estimation results of the MLE and two proposed Bayesian methods based on the Type-I
censoring sample (the case of r = n = 100) are close to their benchmarks. When r = 70,
the estimation results in Table 6 are close to that based on the case of r = 100. In view of
the Type-I censoring scheme in the last row of Table 6, we can find that the point estimates
based on two Bayesian methods are more close to their benchmarks than the maximum
likelihood estimation results. Moreover, the widths of two HDPIs are shorter than the
width of the corresponding confidence interval based on the maximum likelihood method.
The Bayesian estimation results outperform the estimation results via using the maximum
likelihood estimation method. Hence, the Type-I hybrid censoring scheme can help to
save testing time, and the proposed Bayesian estimation methods can provide reliable
estimation results.

Table 6. The estimation results of Example 2 (n = 100 waiting times and T = 11 in minutes).

r Estimation α λ CLM Confidence Interval or HPDI

MLE (Complete data) 1.4618 10.9768 1.1403 (0.8396, 1.5746)

35 MLE 1.9736 8.7390 1.6373 (1.2207, 2.3970)
Non-Info. 1.9363 9.0463 1.5946 (1.0437, 2.1372)
Info. 1.9062 9.1863 1.5673 (1.0496, 2.1682)

70 MLE 1.6717 10.2163 1.3551 (0.9573, 2.0706)
Non-Info. 1.6539 10.3201 1.3338 (0.9873, 1.6867)
Info. 1.6632 10.2737 1.3432 (1.0167, 1.6850)

100 MLE 1.6426 10.3574 1.3263 (1.0244, 1.7854)
Non-Info. 1.6274 10.4279 1.3081 (1.0028, 1.6236)
Info. 1.6232 10.3746 1.3031 (0.9690, 1.6093)

6. Conclusions and Remarks

A new life performance index CLM for the Weibull distribution has been proposed, and
the maximum likelihood estimation and Bayesian estimation methods have been applied
to develop estimation procedures for CLM based on Type-I hybrid censored samples. Point
and interval estimation results have been obtained. The proposed life performance index
was developed from the traditional life performance index by replacing the population
mean with the population median, so that the proposed life performance index can also be
applied to the lifetime data that follow a symmetric or asymmetric distribution.

Because no closed form available for the MLEs of the Weibull distribution parameters
can be found under a Type-I hybrid censoring scheme. A numerical iterative procedure
must be applied to obtained the MLEs for the model parameters and the proposed life
performance index. The convergence of iterative procedure is sensitive to the initial inputs
of two parameters. The Fisher information matrix under a Type-I hybrid censoring scheme
is difficult to obtain due to the number of failures and the stopping time are random
variables with unknown probability distribution. The observed Fisher information matrix
is also less reliable. Therefore, a bootstrap procedure is proposed to find confidence interval
for the MLE of the new life performance index.

The inverse Gamma distribution is used to obtain a conjugate informative prior for
the scale parameter λ of Weibull distribution. However, there is no conjugate prior for the
shape parameter α that can be found. Therefore, a non-informative prior distribution is
suggested for α in this study. Two types of joint priors for α and λ have been considered
to implement Bayesian inference. Due to the analytic form of the posterior distribution
of the model parameter is difficult to developed, the MCMC approach via using a hybrid
Metropolis–Hastings algorithm and Gibbs sampling is established to draw sample from
the posterior distribution to update parameter in the numerical computation procedure.

Three different estimators, the MLE and two Bayes estimators, for the target param-
eters have been evaluated, and the performance of the maximum likelihood estimation
method and two Bayesian approaches has been evaluated through using Monte Carlo
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simulation method. Simulation results show that two Bayesian approaches outperform
the maximum likelihood estimation method in terms of the performance metrics of rBias
and rMSE. Moreover, the coverage probability of HPDI based on using two proposed
Bayesian approaches outperforms the one obtained based on using the maximum likeli-
hood estimation method and bootstrapping procedure. If users lack knowledge to set up
the hyper-parameters in the prior distribution of the parameters, a non-informative prior
distribution has been suggested to implement the Bayesian approach.

The Type-I hybrid censoring scheme could not produce any lifetime observation, d = 0,
for highly reliable products. Hence, the maximum likelihood estimation results could not
exist when no failure observed during the life testing. The proposed life performance
index for the Weibull distribution could also be applied to any other widely used lifetime
distributions. The current study focused on using the Type-I hybrid censoring scheme
to save testing time and cost. The approximate confidence interval for the proposed
life performance index by using Fisher information matrix could be available for other
censoring competitive scheme. Meanwhile, the current proposed performance index could
be improved by using nonparametric methods. All these topics are interesting and would
be worth to investigate in the future.
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Appendix A. The Proof of Theorem 1

(a) Based on the condition of
M− L
µ− L

<
√

1 + δ2, (A1)

we can obtain the inequality of

M− L <
√

1 + δ2(µ− L). (A2)

Minus (µ− L) at the two sides of Inequality (A2), we obtain

M− L− (µ− L) <
√

1 + δ2(µ− L)− (µ− L). (A3)

Inequality (A3) can be represented by

M− µ√
1 + δ2 − 1

< µ− L. (A4)
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Dividing σ at the two sides of Inequality (A4), we can show that

CL >
δ√

1 + δ2 − 1
. (A5)

Then we can obtain the condition of(
δ + CL − CL

√
1 + δ2

)
< 0. (A6)

Thus,

CLM − CL =
δ√

1 + δ2
+

CL√
1 + δ2

− CL

=
1√

1 + δ2
×
(

δ + CL − CL

√
1 + δ2

)
. (A7)

Using (A6) for Equation (A7), we can show that CLM − CL < 0.
(b) Based on similar inference procedures as (a), it is easy to show that(

δ + CL − CL

√
1 + δ2

)
> 0. (A8)

Thus,

CLM − CL =
1√

1 + δ2
×
(

δ + CL − CL

√
1 + δ2

)
. (A9)

Using (A8) for Equation (A9), we can show that CLM − CL > 0.
(c) Based on similar inference procedures as (a), it is easy to show that(

δ + CL − CL

√
1 + δ2

)
= 0. (A10)

Thus,

CLM − CL =
1√

1 + δ2
×
(

δ + CL − CL

√
1 + δ2

)
. (A11)

Using (A10) for Equation (A11), we can show that CLM = CL.
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