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Abstract: A control system of an autonomous robot produces a control signal based on feedback. This
type of control implies the control of an object according to its state that is mathematically the control
synthesis problem. Today there are no universal analytical methods for solving the general synthesis
problem, and it is solved by certain particular approaches depending on the type of control object. In
this paper, we propose a universal numerical approach to solving the problem of optimal control with
feedback using machine learning methods based on symbolic regression. The approach is universal
and can be applied to various objects. However, the use of machine learning methods imposes two
aspects. First, when using them, it is necessary to reduce the requirements for optimality. In machine
learning, optimization algorithms are used, but strictly optimal solutions are not sought. Secondly,
in machine learning, analytical proofs of the received properties of solutions are not required. In
machine methods, a set of tests is carried out and it is shown that this is sufficient to achieve the
required properties. Thus, in this article, we initially introduce the fundamentals of machine learning
control, introduce the basic concepts, properties and machine criteria for application of this technique.
Then, with regard to the introduced notations, the feedback optimal control problem is considered
and reformulated in order to add to the problem statement that such a property adjusts both the
requirements of stability and optimality. Next, a description of the proposed approach is presented,
theoretical formulations are given, and its efficiency is demonstrated on the computational examples
in mobile robot control tasks.

Keywords: control synthesis; optimal control; stabilization; symbolic regression; machine learning;
evolutionary algorithm; mobile robot

MSC: 49M25; 68T05

1. Introduction

Aiming at the automation of processes, we intend to automate the very process of
control systems development in order to make it fast and generic. This sounds especially
relevant in the context of ever-increasing robotization and the emergence of a variety of
robots as control objects. To reach this goal of all-round automation, it is necessary to
generalize the needed tasks, that is, to formulate them in general mathematical statements,
and then develop universal methods for solving them. However, the problem here is that
despite the extensive theoretical background of control theory, today, there is a wide range
of applied problems that do not have exact analytical solutions. At the same time, there is
an objective need for solving them.

In fact, in robotics, most modern control systems for robots are programmed by hand,
and engineers do not even set the general problems because there are no general ways to
solve them. The developer, based on his experience, sets the structure of the control system,
determines the control channels, types of regulators, and then adjusts the parameters of
the given system so that they meet certain requirements [1]. However, every problem can
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and should be considered an optimal one, defining not only the parameters, but also the
structure of the control system optimally and, again, automatically.

If a robot has to perform rather simple actions, for example, moving from one point to
another and going around some obstacles, then the program of its control system contains
supposedly several hundreds of lines. In more complex control tasks, the programs that
must control robots can include several tens or hundreds of thousands of lines. These
programs will grow as the tasks or the robots structure become more complex. One can
assume that a control system for a robot that repeats the actions of a fly must contain some
millions of lines. It follows from that stated above that the manual creation of the robot
control system is an unpromising direction. It is necessary to automate this process.

Any problem for robots, as well as any other control objects, can be formulated as
a mathematical optimization problem, such as a problem of providing stability, an op-
timal control problem for finding optimal path in current real conditions, a problem of
stabilization of movement along of the optimal path, a problem of avoiding collisions
with static and dynamic obstacles, the problem of interaction with other control objects,
the problem of precise achievement of some given terminal conditions and so on. The most
general problem in robotics is feedback control synthesis. It assumes that a control system
that makes the object reach its goal is designed as a function of the object state optimally
according to given criteria. Even if the optimal control problem is solved and the optimal
path is found, we must further ensure the movement of the object along the obtained
trajectory to compensate for possible ever-existing uncertainties.

The general synthesis problem was formulated back in the early 1960s by Bellman [2,3],
where the continuous-time nonlinear optimal control problem was solved through the
Hamilton–Jacobi–Bellman equation, which is a nonlinear partial differential equation. Even
in simple cases, the HJB equation may not have global analytic solutions. Various numerical
methods based on dynamic programming have been proposed in the literature [4–7],
including the modern adaptive dynamic programming technique [8–10] and reinforcement
learning [11–13]. However, the main drawback of dynamic programming methods today
is still the computational complexity required to describe the value function, which grows
exponentially with the dimension of its domain.

A different way to construct a feedback optimal control is firstly to solve an optimal
control problem by direct methods of nonlinear programming or by the indirect approach of
the Pontryagin maximum principle and then to synthesize a feedback stabilization system
in order to supply movement along the received optimal trajectory. For example, in [14],
points are placed on the trajectory, and the object is stabilized at these points. This is the
most popular practical approach to feedback optimal control system design.

However, concerning the optimality criterion, this approach is not correct since it
turns out that the optimal path is considered for one control object, and the introduced
stabilization system changes the object so that the calculated path may not be optimal
for the modified object model. In addition, when approaching a given point on the path,
the system slows down, so it is necessary to carry out additional estimates in each specific
task, according to the optimal moments of points switching.

In this work, we propose an inverse approach to feedback optimal control system
synthesis. The general idea is the following. We firstly stabilize an object according
to some point in the state space by solving the stabilization system synthesis problem.
Note that this problem is computationally easier than the general synthesis problem.
The stabilization task can be solved by a plain variety of methods depending on the
complexity of the object model, particularly analytical methods of backstepping [15,16] or
the analytical design of aggregated controllers [17], or synthesis based on the application
of the Lyapunov function [18,19], as well as any classical methods for liner systems, such
as modal control [20], differently tuned PID controllers [21], and fuzzy [22] and neural
network [23] controllers. In the overwhelming majority of cases, the control synthesis
problem is solved analytically or technically by taking into account the specific properties
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of the mathematical model. Today, modern numerical machine learning methods can be
applied to find a solution for generic dynamic objects [24].

This new paradigm of machine learning control [25,26] allows to find some good
near optimal solutions in a limited amount of time. However, due to the novelty of
these methods, it becomes necessary to substantiate the results obtained by machine
learning. In this paper, we introduce definitions of some machine properties of the system.
We introduce the definition of machine learning control from our point of view, give
machine proof of the existence of a specific property in some mathematical model, refine
the definition of the feasibility property of the mathematical model of the control object
and present the extended statement of the optimal control problem.

The addition of the stabilization system into the object model gives it a new property:
at each moment of time, the object has a point of equilibrium. Thus, in the synthesized
optimal control approach, the uncertainty in the right parts is compensated by the stability
of the system relative to a point in the state space. Near the equilibrium point, all solutions
converge. Now, we can solve the problem of optimal control through the optimal position
of the equilibrium point. The found synthesized optimal control can be realized in the real
object directly without additional feedback stabilization loops.

The paper is structured in the following order. After the introduction, the theoretical
base of machine learning control is presented in Section 2, introducing the main definitions
and machine criteria for justification of the results received by machine numerical methods.
Next, in Section 3, we formulate the mathematical statement of the problem of feedback
machine learning control, extending the optimal control problem statement with additional
requirements. Then in Section 4, the paper proposes a synthesized approach to the solution
of the stated feedback optimal control problem. Algorithms for its solution are considered
in Sections 5 and 6, and computational examples of solving control problems for mobile
robots are presented in Section 7. In the experimental part, the computational examples
of synthesized control application for solving feedback control problems in the class of
feasible controls for mobile robots are presented.

2. Theoretical Base of Machine Learning Control

Summarizing various definitions of machine learning [27–29], we can conclude that
machine learning is an inexact numerical solution of some mathematical optimization
problem, that is, the solution obtained by machine learning differs from the exact one by
some known value but satisfies the researcher, and it can be improved with continuing
learning. In all cases, different optimization algorithms are used for machine learning,
but for these algorithms, it is enough to find a near optimal solution.

Let us introduce some definitions.

Definition 1. The machine learning problem is a search of an unknown function.

y = α(x, q), (1)

where y is a vector of function values, y ∈ Rr, x is a vector of arguments, x ∈ Rn, q is a
vector of constant parameters, q ∈ Q ⊆ Rp,

α(x, q) : Rn ×Rp → Rr. (2)

This function during training approximates some data set, which is called the train-
ing sample:

J =
N

∑
i=0
‖ŷi − α(xi, q)‖, (3)

where Ŷ = {ŷ1, . . . , ŷN} is a training sample.
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With unsupervised learning, this function is used for the minimization of some functional

J =

t f∫
0

f0(x(t), α(x(t), q))dt, (4)

where t f is the goal achievement time.

Definition 2. Machine learning is finding a solution of the optimization problem in the given ∆
neighborhood of the optimal solution.

The peculiarity of machine learning is that learning does not require the exact achieve-
ment of minimum criterion (3) or (4):

J1 ≤ min J + ∆∗, (5)

where ∆∗ is a given positive value determining a functional value achievable during
learning. For criterion (3), a minimum value is equal to zero. For criterion (4), the minimal
value can be unknown. Then, the limit minimum value can be used instead:

J1 = J− + ∆∗, (6)

where J− ≤ min J.
If, as a result of learning, the found function (1) must acquire some properties, then

the proof of the presence of these properties is confirmed by simulation.

J2 =
K

∑
i=0

ϑ(φ(α(xi, q))), (7)

where ϑ(z) is the Heaviside function

ϑ(z) =

{
1, if z > 0
0, otherwise

, (8)

φ(x, q) is a condition that determines whether a function property exists

φ(x, q) ≤ 0, (9)

where K is a number of consecutive experiments performed with a positive result (9), set to
prove the presence of a property.

Definition 3. Machine learning control is a search of control function.

Machine learning searches for a function that, for some sets of arguments, returns the
required values. Note that there can be many such functions, and all they can have various
structures and parameter values.

According to the introduced Definitions 1–3, an optimization problem of the control
function search must be formulated for machine learning control. A solution of this problem
is not optimal, as the found function gives a value of the quality criterion close to optimal
one. On the one hand, this might reduce the importance of the solution found, but on the
other hand, it allows for solving very complex problems.

Let us be given a mathematical model of a control object. This model can be derived
from physical laws or identified by some machine learning technique [30,31]. Generally,
this model is described by a system of ordinary differential equations with a free control
vector in the right-hand side:
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ẋ = f(x, u), (10)

where x is a state vector, u is a control vector,

x = [x1 . . . xn]T ,
u = [u1 . . . um]T , m ≤ n,

f(x, u) = [ f1(x, u) . . . fn(x, u)]T .
(11)

The problem of control, including machine learning control, is to find a control function
instead of the control vector

u = h(x), (12)

to make the differential equation system

ẋ = f(x, h(x)), (13)

acquire some new properties. For example, these can be such properties as stability, the
optimality of solutions, and others.

In machine learning, the control function of these new properties of the control object
has to be checked by a computer as well.

When the control function is derived analytically, then the system is guaranteed to
have the desired property. In the case of machine learning control, events occur when
the system does not have the desired property. Let us call them bad events. For example,
the robot reaches the terminal position from almost all initial conditions, but does not
reach it from some other initial condition. Although such events are rare with good
training, they can occur, and the probability of its occurrence is not known. We also need
to introduce some estimate when we can consider that the probability of the bad event
is small, and we can consider learning to be successful, i.e., assume that the system has
obtained the desired property.

The appearance of bad events is due to the presence of various uncertainties and
disturbances in the system. According to Lyapunov [32], the existing uncertainties can be
considered uncertainties in the initial conditions.

Let us formulate a machine criterion of obtaining some property by a differential
equation system. To define the property of the whole system (13), it is enough to set a
quantity K of partial solutions that obtain this property.

Definition 4. If D experiments are carried out and in every i experiment, Ki partial solutions of
the differential equation perform the required property from any Mi ≥ Ki randomly selected initial
conditions from the initial domain, and

lim
D→∞

D

∑
i=1

Ki
Mi
→ 1, (14)

the existence of this property for the differential equation in this domain is proven by machine.

In other words, as the number of experiments increases, the probability of such a
bad event, when the system does not have the desired property, tends to zero. From a
mathematical point of view, this means that all private solutions for the domain of initial
conditions have this property, except solutions for a subset of a zero measure.

Now we can redefine some properties of differential equations into appropriate ma-
chine properties.

Let the computer check the new properties in terminal time interval, (0; t+).
Let, in the state space of differential equation system (13), a manifold of the dimension

n− s be defined by
φi(x) = 0, i = 1, . . . , s. (15)
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Definition 5. In some domain X ∈ Rn, the following properties are performed: for given quantity
K of initial conditions x0,i ∈ X, i = 1, . . . , K for the partial solution x(t, x0,i) of differential
Equation (13) ∃t′, 0 < t′ ≤ t+. Then,

‖φ(x(t′, x0,i))‖ ≤ ∆, i = 1, . . . , K, (16)

where φ(x) = [φ1(x) . . . φs(x)]T , and ∀t′ < t ≤ t+

‖φ(x(t, x0,i))‖ < ∆, i = 1, . . . , K. (17)

Then, differential equation system (13) is machine stable on a bound time interval (0; t+) relative to
the manifold (15).

If a dimension of the manifold equals to 0, then a machine stable equilibrium point
is obtained. Coordinates of this point in the state space are determined from solving the
algebraic equation system,

φi(x) = 0, i = 1, . . . , n. (18)

The definition of machine stability uses a manifold (15) that can be expressed from the
partial solution. Let x(t, x0) be a partial solution of differential Equation (13):

x(t, x0) = [x̃1(t) . . . x̃n(t)]T . (19)

Let us solve one component (19) relative to t. Let it be the last component:

t = ω(x̃n). (20)

After inserting Equation (20) in solution (19), a one-dimensional manifold is received:

xi(ω(x̃n), x0)− x̃i(ω(x̃n)) = 0, i = 1, . . . , n− 1. (21)

Machine stability relative to the manifold (21) is the machine stability of solution (19)
of differential Equation (13).

Now consider the equilibrium points of some generic differential equation:

ẋ = w(x), (22)

where x ∈ Rn, w(x) : Rn → Rn.
Analytically, the equilibrium points are defined as solutions of the system of algebraic

equations:
w(x) = 0. (23)

Machine-determined equilibrium points x̃1, . . . , x̃K are the points that satisfy the fol-
lowing condition:

‖w(x̃i)‖ ≤ ε1 (24)

and ∀x̃i, x̃j, i 6= j,
‖x̃i − x̃j‖ > ε1, i, j ∈ {1, . . . , K}, (25)

where ε1 is a given small positive number.

Definition 6. An equilibrium point x̃ ∈ Rn of differential Equation (22) is stable if there is a
domain X0 ⊆ Rn, x̃ ⊂ X0 such that it contains a sphere S

n

∑
i=1

(xi − x̃i)
2 = r2, (26)
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where r > ε1 is located completely in this domain X0 S ⊂ X0, and ∀x0 ∈ S, a partial solution
x(t, x0) of differential Equation (22), will reach the point x ∈ S for limited time

‖x(t f , x0)− x̃‖ ≤ ε1, (27)

where t f < t+ < ∞.

The sphere is introduced here in order to guarantee that the equilibrium point is inside
the region and exclude it from falling on the boundary.

The introduced machine interpretations of the known properties of objects eliminate
the need to analytically prove the existence of these properties for an object since this
is often very laborious or completely impossible. This allows further solving complex
technical problems by machine methods and checking the achievement of the required
properties by machine.

3. Machine Learning Feedback Control

Recall our goal. We want to automate the design of an automatic control system.
For this purpose, it is necessary to formulate for the computer the control problem and
make the computer solve it automatically and design a control system for a control object
without human.

To do this, let us formulate the problem in a general mathematical setting of
optimal control.

The mathematical model of the control object is given in the form of differential
equation system (10).

The initial condition is given:

x(0) = x0 ∈ Rn. (28)

Given the terminal position as a goal,

x f = [x f
1 . . . x f

n]
T . (29)

The quality criterion is given in the form of an integral functional:

J1 =

t f∫
0

f0(x, u)dt→ min . (30)

It is necessary to find a control function in the form

u = g(x, t). (31)

where g(x, t) = [g1(x, 1) . . . gm(x, t)]T , which makes object (10) achieve given goal (29) with
the optimal value of quality criterion (30). A found control function (31) has to satisfy
the boundaries:

u−i ≤ gi(x, t) ≤ u+
i , i = 1, . . . , m. (32)

We are looking for control as a function of the state of the object, which corresponds
to the principle of feedback control. It is generally accepted that this type of control is
implemented in real systems since it allows leveling the inaccuracies of the model.

Definition 7. For a mathematical model to correspond to a dynamic real object, it is necessary and
sufficient that the mathematical estimation error of the real object state does not increase over time.
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That is, the introduction of the feedback control to the differential equation system
gives the system some property that allows the object to achieve the goal with the optimal
quality value, that is, to be feasible. The question is, what is this property?

It is clear that not all control systems are feasible. For example, optimal but open-loop
control systems do not have the feasibility property. Conversely, Lyapunov-stable systems
are feasible. However, there are examples when the solution is not Lyapunov stable but at
the same time it is feasible [32]. For example, when moving through points, the movement
itself to a point is Lyapunov stable, but movement along a trajectory consisting of points is
not Lyapunov stable, but this control is now most often implemented. Thus, it becomes
necessary to formulate a property that makes it possible to determine the feasibility of
the system.

In fact, by introducing a feedback system, we change the differential equations of the
system so that a certain area appears around some particular solution of the system (the
optimal trajectory) such that other trajectories that fall into this area will not leave it.

This trajectory is a partial solution of differential equation

ẋ = f(x, g(x, t)) (33)

for the found optimal control.

Definition 8. The partial solution x(t, x0) of differential Equation (22) has a compressibility
property if, for any other partial solution x(t, x∗), the following conditions are performed.

If
‖x(t′, x0)− x(t′, x∗)‖ ≤ σ, (34)

where t′ > 0, σ > 0, then ∃α > 0 such, that for any ε+ > 0

‖x(t′ + α, x0)− x(t′ + α, x∗)‖ ≤ ε+. (35)

Hypothesis 1. To realize the found optimal control function (31) in the real control object, the
optimal trajectory must compressibility properties (34) and (35).

Obviously, if a control function provides performing properties (34) and (35), then this
control function according to Definition 8 can be realized in the real object directly. Accord-
ing to Definition 8, an unstable differential equation cannot be realized. Highly unstable
systems exist, but they cannot be described by unstable differential equations because these
differential equations cannot estimate the state of unstable objects in time. Any small error
in the initial conditions for the unstable differential equation of a mathematical model will
be increasing over time. To estimate the state of an unstable object, it is necessary to use a
stable differential equation.

Thus, to solve the stated feedback optimal control problem, it is necessary to construct
such a control function (31) that makes the object (10) achieve given goal (29) with the
optimal value of quality criterion (30) and obtain required properties (34) and (35).

4. Synthesized Optimal Control Approach for the Solution of the Stated Problem

In this section, we propose our synthesized optimal control approach [33] that com-
pletely satisfies requirements (34) and (35) in the construction of optimal control (31).

The idea of the approach consists in providing the object with the existence of some
equilibrium point in the state space and then constructing such a control function that
controls the position of the equilibrium point in order to make the object reach the goal
with the optimal value of the quality criterion.

Initially, the control synthesis problem is solved to provide the existence of the equilib-
rium point. As a result, the control function in the following form is found:
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u = h(x∗ − x), (36)

where x∗ in each fixed moment of time is some point in the state space that affects the
position of the equilibrium point of the differential equation:

ẋ = f(x, h(x∗ − x)), (37)

h(x∗ − x) = [h1(x∗ − x) . . . hm(x∗ − x)]T . (38)

The control function (38) must satisfy restrictions for any position of the point x∗

u−i ≤ hi(x∗ − x) ≤ u+
i , i = 1, . . . , m. (39)

For any value x∗, the differential equation system (37) has an equilibrium point x̃(x∗):

f(x̃(x∗), h(x∗ − x̃(x∗))) = 0. (40)

A matrix of Jacobi

A(x∗) =
∂f(x, x∗ − x)

∂x
, (41)

computed in the equilibrium point x̃(x∗) has all eigenvalues in the left part of the com-
plex plane.

det(A(x∗)− λE) =
n

∏
i=1

(λ− λj) = 0, (42)

where
λj = αj + iβ j, (43)

αj < 0, j = 1, . . . , n, i =
√
−1.

In many cases, the equilibrium point x̃ coincides with the point x∗, but in some cases, it
is impossible. For example, if the differential equation system includes an equation ẋk = xl ,
then the component xk of the equilibrium point will have only value 0 for any values of
components x∗k .

Note that when this control synthesis problem is solved by some machine learning
method, conditions (41) and (42) cannot be checked for each mathematical expression
h(x∗ − x) of the control function because these are very time-consuming procedures. In ma-
chine learning control, to prove the stability in an equilibrium point, Definition 6 is used.

To synthesize control function (36), it is necessary to determine domain X ∈ Rn

and then to determine equilibrium point x̃. If the equilibrium point is equal to point x∗,
then the control function is searched in the form of (36), where x∗ = x̃.

Computationally, to provide a stable property of equilibrium point x̃, the synthesis
problem (10)–(12) is solved with the terminal point x f = x̃, the initial domain X0 ⊂ X, and
the quality criterion

J = max{t f ,1, . . . , t f ,K}+ a1

K

∑
i=1

∆ f ,i → min, (44)

where a1 is the weight coefficient,

∆ f ,i =
∥∥∥x f − x(t f ,i, x0,i)

∥∥∥, (45)

where t f ,i is the time of achievement of the terminal position (29) from the initial condition
x0,i of the set of initial conditions X0 = {x0,1, . . . , x0,K}, i ∈ {1, . . . , K},
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t f ,i =

{
t, if t < t+ and ∆ f ,i ≤ ε

t+ otherwise
, (46)

where t+ and ε are given positive values, x(t, x0,i) is a partial solution of the system

ẋ = f(x, h(x f − x)), (47)

for initial conditions x(t0) = x0,i, i ∈ {1, . . . , K},

∥∥∥x f − x
∥∥∥ =

√
n

∑
i=1

(x f
i − xi)2. (48)

In the second stage, the following optimal control problem is solved. The mathematical
model of the control object is given in the form of (37), and the initial conditions are given
as (28). It is necessary to find control as a function of time:

x∗ = v∗(t), (49)

in order to minimize the functional

J2 =

t f∫
0

f0(x, x∗ − x)dt→ min
x∗∈X

. (50)

The obtained control
u = g(x, t) = h(v∗(t)− x) (51)

allows performing conditions (34) and (35); therefore, it can be realized in the real object.
Further in the paper, we discuss the machine learning methods appropriate to solve

the described problems and show the examples of applying the proposed approach to the
solution of two different robotic tasks.

5. Symbolic Regression for Machine Learning

According to the introduced Definitions 1, 2 and 3, the task of searching for the needed
control function (36) in the first step is to be considered a machine learning task.

A search of an unknown function consists in searching for the structure and parameters
of this function. Usually structures of the functions are set by a researcher on the base of
data analysis, experience, or intuition. Today different universal structures become popular
such as various mathematical series and artificial neural networks. If a structure of the
needed function is set, then machine learning searches for the optimal values of parameters
according to some criterion [34].

An ML technique such as symbolic regression allows to look for the optimal structure
of the needed function and parameters as well [35].

Symbolic regression methods have made huge strides over the past decade and
recently, the importance of interpretable machine learning has been recognized by the
wider scientific community. However, to a greater extent, symbolic regression methods are
used for so-called supervised machine learning, when there are some data that need to be
approximated [36–39].

The considered problem of machine learning for control does not have a training set,
and the search for a control function must be based on minimizing the quality criterion. This
approach, in conventional terminology, refers to unsupervised learning. In this direction,
there are much fewer examples due to the complexity of the search. In [40–42], the control
functions are searched as linear combinations of basic functions, and mainly smooth
functions are used as basic functions. We perform the control function search [43,44] in the
form of function nesting, which allows to obtain more complex mathematical expressions,
and also use a wider set of basic functions, including discontinuous functions.
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All symbolic regression methods code the searched mathematical expression in the
form of special code and search for the optimal solutionon the space of codes by a special
genetic algorithm. For this purpose, a special crossover operation is developed. The
application of a special crossover operation for two codes of parents allows to receive two
new codes of child chromosomes. Different crossover operations are used for different
code forms.

A complex crossover operation in symbolic regression methods, in our opinion, makes
it difficult to find a solution. Creating new possible solutions as a result of a complex
crossover operation is similar to generating new possible solutions. Therefore, the search
process does not use the properties of evolution and is more like a random search. In order
for the search algorithms of symbolic regression methods to have metaheuristic evolution-
ary properties, it is necessary that new possible solutions obtained by transforming existing
possible solutions have the property of inheritance.

Definition 9. The evolutionary algorithm has an inheritance property, if among the new possible
solutions obtained, as a result of the evolutionary transformations of existing possible solutions,
named parents, at least a given part of the new possible solutions have functional values, which
differ from the functional values of the parents by not more than a given value.

A universal approach to provide the inheritance property to any symbolic regression
algorithm is using the principle of small variations of the basic solution [45]. The appli-
cation of this principle makes it possible to find solutions that are close to optimal in a
reasonable time.

In [24], this principle was applied to Cartesian genetic programming, and it improved
the search process of the optimal solution. In the present paper, in the experimental part,
the network operator method [46] is used, which was developed exactly for the solution
of the control synthesis problem and was the first method where the principle of small
variations was applied.

6. Hybrid Algorithm for Optimal Control Problem

The second step of the proposed approach (49) is essentially a pure optimization
problem. Today, most generic optimization algorithms are based on population search [47],
and so we also use them as a main technique, but according to the task, any other optimiza-
tion algorithm can also be appropriate.

For the most complex optimal control problems with complex phase constraints, we
propose to use a hybrid algorithm that combines GA [48], GWO [49] and PSO [50]. As we
experimentally noticed, such a combination of the evolutionary algorithms allows to avoid
the local minimum in complex tasks. A pseudocode of the algorithm can be found in
Appendix A.

7. Computational Experiment

To demonstrate the proposed synthesized approach for the machine learning feedback
control problem solution, let us consider two different optimal control tasks with mobile
robots in complex environments with phase constraints.

7.1. Two Mobile Robots with Bottlenecks Phase Constraints

The first task we considered was to make two robots switch places with each other
while accurately passing through the given areas, as if through bottlenecks.
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The mathematical model of the control object has the following form:

ẋ1 = 0.5(u1 + u2) cos(x3),
ẋ2 = 0.5(u1 + u2) sin(x3),
ẋ3 = 0.5(u1 − u2),
ẋ4 = 0.5(u3 + u4) cos(x6),
ẋ5 = 0.5(u3 + u4) sin(x6),
ẋ6 = 0.5(u3 − u4),

(52)

where x1, x2, and x3 are coordinates of the state vector of the first mobile robot, x4, x5, and
x6 are coordinates of the state vector of the second mobile robot, u1 and u2 are components
of the control vector for the first robot, and u3 and u4 are components of the control vector
for the second robot.

The values of control are limited:

− 10 = u−i ≤ ui ≤ u+
i = 10, i = 1, 2, 3, 4. (53)

The initial and terminal conditions are given:

x(0) = x0 = [0 0 0 10 10 0]T , (54)

x(t f ) = x f = [10 10 0 0 0 0]T . (55)

The quality functional is given:

J3 = t f + p1‖x f − x(t f )‖+ p2

t f∫
0

ϑ(χ(x))dt + p3

kg

∑
i=1

2

∑
j=1

ϑ(∆i,j − εi)→ min, (56)

where

t f =

{
t, if t < t+, and ‖x f − x(t f )‖ < ε0
t+, otherwise

, (57)

χ(x) = r0 −
√
(x1 − x4)2 + (x2 − x5)2, (58)

ϑ(α) is a Heaviside step function

ϑ(α) =

{
1, if α ≥ 0
0, otherwise

, (59)

∆i,j = min
t

√
(x1+(j−1)3 − yi

1)
2 + (x2+(j−1)3 − yi

2)
2, (60)

r0 = 2, kg = 4, εi = 0.1, i = 1, 2, 3, 4, y1
1 = 4, y1

2 = 2, y2
1 = 6, y2

2 = 4, y3
1 = 4, y3

2 = 6, y4
1 = 6,

y4
2 = 8, p1 = 4, p2 = 3, p3 = 4, ε0 = 0.01, t+ = 4.8.

In the first stage, according to the proposed approach, the control synthesis problem is
solved in order to provide the existence of the equilibrium point.

The stabilization system was received by the network operator method. As far as the
received expressions of the control function, both the encoded and decoded forms are too
long, so we place them into the Appendix B.
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In the second stage, it is necessary to solve the optimal control problem and to find the
control function in the form of piece-wise constant control function

x∗ = x∗,i, (i− 1)∆t ≤ t < i∆t, (61)

where i = 1, . . . , K, ∆t is a time interval, ∆t = 0.6, and K is the number of time intervals

K =

⌊
t+

∆t

⌋
=

⌊
4.8
0.6

⌋
= 8. (62)

To solve the optimal control problem and find x∗,i, i = 1, . . . , 8, the described hybrid
algorithm was used. The following optimal solution was found:

x∗,1 = [5.4629 0.8503 − 0.0834 5.5730 7.4134 − 0.2191]T ,
x∗,2 = [8.0879 4.6283 − 0.1367 2.7272 4.3233 − 04311]T ,
x∗,3 = [6.6929 4.2258 − 1.4392 1.1911 7.7361 0.2100]T ,
x∗,4 = [1.8651 7.0765 − 0.0173 6.6029 2.6080 0.1310]T ,
x∗,5 = [3.6284 4.0688 0.3204 0.7814 9.4491 − 0.1612]T ,
x∗,6 = [8.4951 8.4002 0.3134 1.0557 0.7920 0.7306]T ,
x∗,7 = [7.7752 9.9316 − 0.0237 1.6134 1.9251 0.0495]T ,
x∗,8 = [10.0465 9.8035 0.1303 − 1.0000 0.0051 0.2369]T .

(63)

Optimal trajectories on horizontal plane for robots are presented in Figure 1.

Figure 1. Optimal trajectories of robots for synthesized control

In the Figure 1 the solid black line is a trajectory of the first robot, the dash line is a
trajectory of the second robot, the small circles are the bottlenecks, the small black squares
are the optimal control points (63) for the first robot, and the small white squares are the
optimal control points (63) for the second robot. The optimal value of the functional (56)
is 4.8347.

For comparison, the optimal control problem (52)–(60) was solved by the direct ap-
proach of optimal control. For this purpose, the time axis was divided on K̃ intervals. The
control function is found in the form of the piece-wise linear function

uj =


u+

j = 10, if ûi > u+
i

u−j = −10, if ûi < u−i
ûj, otherwise

, j = 1, 2, 3, 4, (64)

where

ûj = (qi+(j−1)K̃+1 − qi+(j−1)K̃)
t− (i− 1)∆̃t

∆̃t
+ qi+(j−1)K̃ (65)
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where j = 1, 2, 3, 4, j = 1, . . . , K̃, ∆̃t is a time interval, ∆̃t = 0.2,

K̃ =

⌊
t+

∆̃t

⌋
=

⌊
4.8
0.2

⌋
= 24. (66)

In total, it is necessary to find 96 parameters, q = [q1 . . . q96]
T . The problem was very

difficult for many evolutionary algorithms. The most successful in solving this problem
was the described hybrid evolutionary algorithm.

In the result, the following solution was obtained:

q = [3.6515 − 5.6155 − 5.8103 − 4.1722 − 3.1398 − 5.4711 0.0936
6.6150 2.6432 − 8.8133 − 2.4498 − 18.5059 − 9.5896 0.1931
−5.5797 − 14.2516 9.5304 0.2181 0.6002 − 11.9435 − 12.2196
−0.0127 − 19.4712 8.8589 5.5695 8.4877 5.6459 0.7054 − 3.6582
−8.0966 − 0.6840 − 8.6774 7.7892 − 5.6366 − 5.3715 − 4.8317
−16.6047 − 19.8104 − 14.9474 7.6756 4.7000 9.7919 − 14.6483
−3.5860 − 3.1178 − 9.7188 − 16.2048 − 15.9328 − 1.3150 1.9570
−10.2673 − 0.5094 − 6.4163 − 4.9303 − 3.7649 − 6.3955
−5.8384 − 15.8273 − 9.2860 − 0.1217 9.0490 − 3.0543 0.8906
7.6340 10.8459 10.2492 3.4207 − 10.6311 − 4.9477 − 3.4041
−13.6140 − 15.2029 4.8782 − 10.4763 − 10.5894 6.4966 − 4.2872
−12.7573 − 8.2174 − 0.8267 − 14.1822 − 1.6810 − 15.3973 12.1957
15.4694 10.3573 − 12.7840 7.9684 − 6.3937 17.4171 − 6.6234 1.3378
−8.2870 − 0.2343 − 18.0791 − 5.3433]T .

(67)

The functional value is 4.8132. The optimal trajectories on the horizontal plane are
presented in Figure 2.

Figure 2. Optimal trajectories of robots for direct control.

To analyze the received results, these optimal control functions were tested for the
mathematical model with perturbations:

ẋ1 = 0.5(u1 + u2) cos(x3) + βξ(t),
ẋ2 = 0.5(u1 + u2) sin(x3) + βξ(t),
ẋ3 = 0.5(u1 − u2) + βξ(t),
ẋ4 = 0.5(u3 + u4) cos(x6) + βξ(t),
ẋ5 = 0.5(u3 + u4) sin(x6) + βξ(t),
ẋ6 = 0.5(u3 − u4) + βξ(t),

(68)

where ξ(t) is a function that returns a random number from diapason (−1; 1) at every call,
and β is a constant value.
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For the system (68), disturbances were also introduced into the initial conditions

x(0) = x0
i + β0ξ, i = 1, . . . , 6, (69)

where β0 is a constant value. The results of the tests are presented in Table 1. For every
disturbance, 10 tests were performed. In Table 1, J3 is an average functional value for
synthesized control, σ(J3) is a standard deviation for values J3, J4 is an average functional
value for direct control, and σ(J4) is a standard deviation for values J4.

Table 1. Functional values for perturbed control object model.

β0 β J3 σ(J3) J4 σ(J4)

0 0 4.8347 0 4.8132 0
0 0.01 4.9999 0.1989 4.9267 0.1462
0 0.02 5.0868 0.288 5.1706 0.2559
0 0.05 5.3896 0.2087 6.1610 1.0704

0.01 0 5.2286 0.2053 6.5891 0.9445
0.02 0 5.4569 0.266 7.2853 1.6878
0.05 0 5.7369 0.6871 13.4286 3.5257
0.01 0.01 5.2365 0.2861 6.4381 0.9502
0.1 0 6.2945 0.7365 19.8192 8.0565

As the test results show, synthesized control is much less susceptible to perturbations of
the mathematical model and the initial conditions than direct control. Direct optimal control
is the most sensitive to disturbances of initial conditions. Even the smallest disturbances
of the initial conditions make direct control unacceptable. The results show that the
synthesized control obtains the compression property, and it is feasible in real systems.

7.2. Synthesized Control for Omni-Mecanum-Wheeled Robot

A mecanum robot has special wheels that allow it to move under a direct angle to
its direction of axis without any turns [51]. In Figure 3, an example of a mecanum robot
is shown.

Figure 3. Omni-mecanum-wheeled robot.
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Consider the optimal control problem, where two identical mecanum robots have to
swap their places in some area with obstacles and without collisions for a minimal amount
of time.

The mathematical model of the control object is the following:

ẋ1 = 0.25((u1 + u4)(cos(x3) + sin(x3)) + (u2 + u3)(cos(x3)− sin(x3))),
ẋ2 = 0.25((u1 + u4)(sin(x3)− cos(x3)) + (u2 + u3)(cos(x3) + sin(x3))),
ẋ3 = 0.25(−u1 + u2 − u3 + u4)/(L0 + H0),
ẋ4 = 0.25((u5 + u8)(cos(x6) + sin(x6)) + (u6 + u7)(cos(x6)− sin(x6))),
ẋ5 = 0.25((u5 + u8)(sin(x6)− cos(x6)) + (u6 + u7)(cos(x6) + sin(x6))),
ẋ6 = 0.25(−u5 + u6 − u7 + u8)/(L0 + H0),

(70)

where x1, x2, and x3 are the state vector coordinates of the first mecanum robot, x4, x5,
and x6 are the state vector coordinates of the second mecanum robot, u1, u2, u3, and u4
are components of the control vector of the first mecanum robot, u5, u6, u7, and u8 are
components of the control vector of the first mecanum robot, and L0 and H0 are geometric
parameters of the robots, L0 = 2, H0 = 1.

The control is restricted:

− 10 = u−i ≤ ui ≤ u+
i = 10, i = 1, . . . , 8, (71)

where u−i and u+
i are given lower and upper limits for values of control, respectively,

i = 1, . . . , 8.
The initial state is given:

x(0) = x0 = [0 0 0 10 10 0]T . (72)

The terminal state is given:

x(t f ) = x f = [10 10 0 0 0 0]T , (73)

where t f is the time of achievement of the terminal state. It is determined by Equation (57)
with ε0 = 0.05, t+ = 1.9.

The quality criterion includes phase constraints and the accuracy of the terminal state
achievement.

J = p1‖x f − x(t f )‖+
K

∑
i=1

wi

t f∫
0

ϑ(φi(x))dt + p2

t f∫
0

ϑ(χ(x))dt + t f → min
u

, (74)

where p1 and p1 are the penalty coefficient, where p1 = 3 and p2 = 3, wi is a weight coeffi-
cient, i = 1, . . . , K, K = 8, ϑ(α) is a Heaviside step function (59), and χ(x) is determined by
Equation (58):

φi(x) = ri −
√
(x1)− x1,i)2 + (x2 − x2,i)2, i = 1, 2, 3, 4, (75)

φi(x) = ri−4 −
√
(x4)− x1,i−4)2 + (x5 − x2,i−4)2, i = 5, 6, 7, 8, (76)

r1 = 2, r2 = 2.5, r3 = 2.5, r4 = 2, x1,1 = 2, x2,1 = 2, x1,2 = 8, x2,2 = 2, x1,3 = 2, x2,3 = 8,
x1,4 = 8, x2,4 = 8, r0 = 1.

According to the synthesized method, initially, the feedback control synthesis problem
is solved, such that the closed-loop control system is stable relative to some equilibrium
point in the state space. For this purpose, again, the network operator method is used.
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Since the robots are the same, we make the synthesis of the stabilization system for
one robot, for example, the first robot.

In the result, the network operator method found the following control function:

ui =


u+

i , if ũi ≥ u+
i

u−i , if ũi ≤ u−i
ũiotherwise

, (77)

where
ũ1 = D + arctan(q1∆1), (78)

ũ2 = ρ19(ũ1) + ρ4(C) + ρ17(B) + sgn(q2∆2+
q1∆1 + q3

3
√

∆3) + ρ18(q2∆2) + q1∆1 − (q1∆1)
3,

(79)

ũ3 = ũ2 + C3 + A + arctan(q1)− (A + arctan(q1))
3 + ∆−1

2 , (80)

ũ4 = sin(ũ3) + ρ16(ũ2) + (C + 3
√

∆1)
3 + B+

ϑ(q2∆2 + q1∆1) + q3
3
√

∆3,
(81)

A = sgn(q2∆2 + q1∆1 + q3
3
√

∆3) + ϑ(q2∆2 + q1∆1),

B = A + arctan(q1) + sgn(q2∆2 + q1∆1) + arctan(q1∆1),

C = cos(B) + ρ4(q2∆2 + q1∆1) + ρ16(∆1) + ρ19(q1∆1 + q2∆2) + exp(q1∆1),

D = C + 3
√

∆1 + C3 + ρB − A− arctan(q1) + ρ16(q1∆1),

∆1 = x∗1 − x1, ∆2 = x∗2 − x2, ∆3 = x∗3 − x3, q1 = 11.89282, q2 = 10.15381, q3 = 15.25903,

ρ4(α) = sgn(α)
√
|α|, ρ16(α) =

{
α, if |α| < 1
sgn(α), otherwise

,

ρ17(α) = sgn(α) ln(|α|+ 1), ρ18(α) = sgn(α)(exp(|α|)− 1),

ρ19(α) = sgn(α) exp(−|α|).

For the second robot in the control function (77), it is necessary to replace xi, i = 1, 2, 3
with xi, i = 4, 5, 6, and x∗i , i = 1, 2, 3, with x∗i i = 4, 5, 6, respectively.

Plots of the trajectories of the robot movement from four initial states are presented in
Figure 4.

Figure 4. Trajectories on the horizontal plane for four initial states.
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On the second stage, the optimal control problem (70)–(74) is solved for the closed
loop control system with the control function (77). A control on the second stage is vector
x∗, determining the position of the stable equilibrium point in the state space. For solving
the optimal control problem, the time axis is divided on the intervals, and in each interval,
a control function is approximated by a piece-wise constant function. The value of the
interval is equal to ∆t = 0.19.

x∗i = xi(tj) = qi+(j−1)6, (82)

where i = 1, . . . , 6, tj = (j− 1)∆t j = 1, . . . , D, D is the number of intervals,

D =
t+

∆t
=

1.9
0.19

= 10. (83)

In total, it was necessary to find an optimal vector with 10 · 6 = 60 parameters:

q = [q1 . . . q60]
T .

For solving the problem, the hybrid evolutionary algorithm was applied. The values
of the parameters were restricted:

−2.5 = q+1 ≤ q1+3(k−1) ≤ q−1 = 2.5
−2.5 = q+2 ≤ q2+3(k−1) ≤ q−2 = 2.5

−5π/12 = q+2 ≤ q3+3(k−1) ≤ q−2 = 5π/12
, (84)

where k = 1, . . . , 20.
The following solution was obtained:

q = [−2.4862 2.0000 0.6231 − 2.1975 − 1.3799 0.7058 − 2.5000 1.9421
1.2094 − 0.6933 − 2.0088 − 0.3378 0.1956 1.7643 0.6378 1.4052
−2.4611 − 0.3230 1.7245 2.0000 0.8872 1.6769 − 1.2832 − 0.4372

0.5624 1.9987 − 1.1601 1.9452 − 1.8859 0.7357 1.6876 1.5024
0.0997 1.1642 − 1.3678 0.5321 1.6945 1.9946 0.5580 0.7886
−1.6027 1.3090 1.1795 1.5385 − 1.0798 0.6781 − 1.9975 0.0204

−0.8939 1.0578 − 0.4106 − 2.1003 − 1.2544 − 1.3090 − 2.5000 1.0746
−1.2216 − 2.0840 − 1.3344 − 0.8913]T .

(85)

The optimal value of the functional (74) is J = 1.923.
Optimal trajectories on the horizontal plane of two robots are presented in Figure 5.

The solid line is the trajectory of the first robot, the dash line is the trajectory of the second
robot, the red circles are the phase constraints, the black small squares are projections
of control x∗ on the horizontal plane for the first robot, and the white small squares are
projections of control x∗ on the horizontal plane for the second robot.

Figure 5 shows very clearly, as in the previous example with bottlenecks, that the
equilibrium points are located not on the trajectory of the robot, as is done with conventional
stabilization, but outside the trajectory. By placing points on the trajectory, we can lose
quality because when approaching the equilibrium point, the robot must slow down. Such
an optimal arrangement of points ensures the optimal value of the functional.

In this example, we would like to note the following. It occurs that two components of
the control vector are enough to control the mecanum robot. The other two components
have limit values and do not change during the control process. This can be seen in the
additional control plots presented in Appendix C. However, indeed, we noted that in the
mathematical model of the mecanum robot (70), the control was redundant, m > n. So,
the computer itself found a solution for how to proceed in this case, and in the solution
found, the two components of control, in fact, do not participate in the search for the
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optimal solution. This is one of the more successful demonstrations of intelligent machine
automation of the process of creating control systems.

Figure 5. Optimal trajectories on the horizontal plane.

8. Discussion

In this work, we are laying the theoretical foundations of machine learning control.
The main feature is that the machine proof of various properties is implemented experi-
mentally basing on examples. In particular, this is what happens in neural networks, when
experiments are carried out on a test sample to check whether the system achieves certain
properties. We formulate several machine properties in the control system design. In the
future, the proposed formal descriptions can be developed, new properties of systems
can be considered, and quantitative probabilistic estimates can be given based on positive
test results.

An important result of the work is the expansion of the formulation of the optimal
control problem and the introduction of additional requirements for the required control.
Ensuring the introduced conditions additionally requires the introduction of feedback.
The paper presents the approach of synthesized optimal control, which allows implement-
ing optimal control systems, taking into account the introduced additional requirement.
In this case, other approaches can be considered and proposed.

9. Conclusions

A general machine learning approach for the automatic design of feedback control
systems for any dynamical nonlinear control objects is considered. The main perspective
is the machine-automated development of control systems. According to this trend, the
control system is obtained as a result of a machine solution of some formal mathematical
control problem and it is to be implemented in the real object directly.

Since the control system is created by machine learning, the paper formulates a ma-
chine check of all the properties required from the control system. Mathematical statements
of control problems and some theoretical justifications for solution of these problems by
machine methods are presented. The paper introduces and discusses such notions as
machine learning control, stability, optimality and feasibility of machine-made control
systems. In this regard, substantiations are introduced for the machine learning feedback
control approach based on symbolic regression and evolutionary algorithms.

Thus, the feedback control design is generalized and automated with a generic ap-
proach applicable to any nonlinear models, including machine-learning-identified models.
It is shown that with this approach, the computer is able to propose interesting outstanding
solutions, which sometimes an engineer cannot even suppose.
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There is another feature in the proposed approach that can be developed in a good di-
rection. It is possible to control an object by controlling the position of the equilibrium point
both offline under predetermined operating conditions, and online, when the positions
of the points can be optimally planned for some short term and then adjusted according
to the situation. This is one more direction for further research and application of the
presented approach.
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Appendix A. Hybrid Evolutionary Algorithm

During the experiments, we noticed that evolutionary algorithms work faster if they
use as much information as possible about the goal function values in the space of search
at the evolutionary transformation of each possible solution. The PSO algorithm at the con-
struction of new possible solutions uses information about the current best possible solution,
about the best possible solution among random selected informants, and about previous
goal function values for each possible solution. The GWO algorithm uses information
about some current best possible solutions. Therefore, these algorithms work well.

However, when the goal function has a complex form, or it includes many complex
constraints, then these algorithms stop at some points of the local minimum. The GA in
these cases begins to work better than other evolutionary algorithms. The GA often can
shift the search from the current local minimum.

We propose a hybrid algorithm that includes all three listed above algorithms.
Initially, all arrays are created, and the type of evolutionary transformation is randomly

chosen: GA, GWO or PSO. In each generation, the number of transformations of every
algorithms is approximately the same. A pseudocode of the algorithm can be found in the
Algorithms A1–A4. We proposed that the hybrid algorithm worked better than GA, PSO
and GWO individually.

Here is the description of the proposed hybrid algorithm.
In the description of the algorithm, a function Goal(q) returns the goal function value

for the vector of parameters q. Procedure NumbertoGray(a, y) converts the real number a
to Gray code y. Procedure GraytoNumber(y, a), on the contrary, converts Gray code to a
real number a. Procedure Sort(I, F, k) sorts the first k elements in array F and sets the first
indexes in the array of index I.
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Algorithm A1 Hybrid algorithm.

Require: H > 0 is a number of possible solutions in the initial population, G > 0 is the
number of generations, R > 0 is the number of evolutionary changes in one generation,
p is the number of searched parameters, q+i > q−i , i = 1, . . . , p, are restrictions on the
parameters, c is the number bits in the integer part of the parameter, d is the number
of bits in the fractional part of the parameter, α, β, γ, σ, k0 are parameters for the PSO
algorithm, and kw is the number of leaders for the GWO algorithm.

Ensure: q̃ = [q̃1 . . . q̃p]T is the optimal vector of parameters
q0

j = q̃j j = 1, . . . , p,

qi
j ← (q+j − q−j )ξ + q−j , j = 1, . . . , p, i = 1, . . . , H − 1

vi
j ← 0, j = 1, . . . , p, i = 0, . . . , H − 1

Fj ← Goal(qj), j = 0, . . . , H − 1
Ij = j, F̃j = Fj, j = 0, . . . , H − 1
t← 0
while t < G do

j− ← 0, F− ← F0, j← 1
while j < H do

if Fj < Fj− then
j− ← j,
Fj− ← Fj

end if
j← j + 1

end while
Sort(I, F̃, kw)
s← 0
while s < R do

ka ← ξ(3)
if ka = 0 then

GWO transformations
end if
if ka = 1 then

GA transformation
end if
if ka = 2 then

PSO transformation
end if
s← s + 1

end while
t← t + 1

end while
j− ← 0, F− ← F0, j← 1
while j < H do

if Fj < Fj− then
j− ← j,
Fj− ← Fj

end if
j← j + 1

end while
q̃← qj−
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Algorithm A2 GWO transformation.

L← 2− t(2/G)
i← ξ(H)
j← 0
while j < p do

αx ← 0
k← 0
while k < kw do

gA ← 2Lξ − L
gC ← 2ξ

αD ← |gCqIk
j − qi

j|
αx ← αx + qIk

j − gAαD

k← k + 1
end while
q̂j ← αx/kw

if q̂j > q+j then
q̂j ← q+j

end if
if q̂j < q−j then

q̂j ← q−j
end if
j← j + 1

end while
F̂ ← Goal(q̂)
if F̂ < Fi then

Fi ← F̂
qi ← q̂
Sort(I, F, kw)

end if
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Algorithm A3 GA transformation.

k1 ← ξ(H), k2 ← ξ(H)
d← ξ
if d > Fj−/Fk1 or d > Fj−/Fk2 then

ks ← ξ(p)
NumbertoGray(qk1

ks
, y1)

NumbertoGray(qk2
ks

, y2)

kc ← ξ(c + d)
j← 0
while j < kc do

Sony1
j ← y1

j , Sony2
j ← y2

j , j← j + 1
end while
j← kc
while j < c + d do

Sony1
j ← y2

j , Sony2
j ← y1

j , j← j + 1
end while
i← 0
while i < ks do

Son1
i ← qk1

i , Son2
i ← qk2

i , i← i + 1
end while
i← ks + 1
while i < p do

Son1
i ← qk2

i , Son2
i ← qk1

i , i← i + 1
end while
GraytoNumber(Sony1, Son1

ks
)

GraytoNumber(Sony2, Son2
ks
)

j← 1
while j ≤ 2 do

if Sonj
ks
> q+ks

then

Sonj
ks
← q+ks

else if Sonj
ks
< q−ks

then

Sonj
ks
← q−ks

end if
F̂ ← Goal(Sonj)
i+ ← 0, i← 1
while i < H do

if Fi > Fi+ then
i+ ← i

end if
end while
if F̂ < Fi+ then

qi+ ← Sonj

Fi+ ← F̂
end if
j← j + 1

end while
end if
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Algorithm A4 PSO transformation.

j← ξ(H)
k← ξ(H)
i← 0
while i < k0 do

l ← ξ(H)
if Fl < Fk then

k← l
end if

end while
i← 0
while i < p do

vj
i ← αvj

i + ξβ(qk
i − qj

i) + ξγ(qj−
i − qj

i)

q̂i ← qj
i + σvj

i
if q̂i > q+i then

q̂i ← q+i
else if q̂i < q−i then

q̂i ← q−i
end if
i← i + 1

end while
F̂ ← Goal(q̂)
if F̂ < Fj then

Fj ← F̂
qj ← q̂

end if

Appendix B. Stabilization System of the Mobile Robot

Ψ =

[
Ψ1,1 Ψ1,2

012×12 Ψ2,2

]
(A1)

Ψ1,1 =



0 0 0 0 0 0 1 10 0 0 12 1
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 2 0 0 8 0 0
0 0 0 0 0 0 0 2 0 1 19 0
0 0 0 0 0 0 0 0 2 1 0 0
0 0 0 0 0 0 0 0 0 1 1 8
0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 1



(A2)
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Ψ1,2 =



15 0 0 0 0 0 0 0 0 0 0 10
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 9 0 0 0 0 10 0 0 0
0 0 0 13 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 4 13 10 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 12 0 0 0 19 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 4 23 1 0 0 0 0 0 0 23
1 10 10 0 0 0 0 23 0 16 0 16



(A3)

Ψ2,2 =



1 1 15 0 14 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 13
0 0 0 1 8 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 2 1 0 15 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 1 5 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 1 1 12
0 0 0 0 0 0 0 0 0 0 2 1
0 0 0 0 0 0 0 0 0 0 0 1



(A4)

In the matrices, the numbers correspond to the functions with one and two arguments
according to [46].

The mathematical expression for the found control function described by these matri-
ces has the following form and parameters:

ui+(j−1)2 =


u+

i+(j−1)2 if ũi+(j−1)2 > u+
i+(j−1)2

u−i+(j−1)2 if ũi+(j−1)2 < u−i+(j−1)2

ũi+(j−1)2 otherwise

, (A5)

where i = 1, 2, j = 1, 2,

ũ1+(j−1)2 = sgn(q3(x∗3+(j−1)3 − x3+(j−1)3)) exp(−|q3(x∗3+(j−1)3 − x3+(j−1)3)|)+

a−1 + 3
√

a + sgn(x∗3+(j−1)3 − x3+(j−1)3) + µ(b), (A6)

ũ2+(j−1)2 = ũ1+(j−1)2 + sin(ũ1+(j−1)2) + arctan(h) + µ(b) + c− c3, (A7)

a = tanh(d) +
(

b + 3
√

x∗1+(j−1)3 − x1+(j−1)3

)3
+

c + sin(q3(x∗3+(j−1)3 − x3+(j−1)3)),

b = g + sgn(sgn(x∗1+(j−1)3 − x1+(j−1)3)q2(x∗2+(j−1)3 − x2+(j−1)3))×

exp(−|sgn(x∗1+(j−1)3 − x1+(j−1)3)q2(x∗2+(j−1)3 − x2+(j−1)3)|)+

sin(x∗1+(j−1)3 − x1+(j−1)3) + tanh(g) + x∗1+(j−1)3 − x1+(j−1)3,

c = g + sgn(sgn(x∗1+(j−1)3 − x1+(j−1)3)q2(x∗2+(j−1)3 − x2+(j−1)3))×

exp(−|sgn(x∗1+(j−1)3 − x1+(j−1)3)q2(x∗2+(j−1)3 − x2+(j−1)3)|)+
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sin(x∗1+(j−1)3 − x1+(j−1)3),

d = h + c− c3 + sgn(q1(x∗1+(j−1)3 − x1+(j−1)3))+

arctan(q1) + ϑ(x∗3+(j−1)3 − x3+(j−1)3),

g = sgn(x∗1+(j−1)3 − x1+(j−1)3)q2(x∗2+(j−1)3 − x2+(j−1)2)+

q3(x∗3+(j−1)3 − x3+(j−1)3) + tanh(q1(x∗1+(j−1)3 − x1+(j−1)3)),

h = arctan(q1(x∗1+(j−1)3 − x1+(j−1)3))+

sgn(w)
√
|w|+ w + v + 2sgn(w + tanh(v))+

3

√
w + tanh(v) + 3

√
x∗1+(j−1)3 − x1+(j−1)3+

sgn(x∗1+(j−1)3 − x1+(j−1)3)
√
|x∗1+(j−1)3 − x1+(j−1)3|+

3
√

x∗1 − x1 + tanh(v),

w = sgn(x∗1+(j−1)3 − x1+(j−1)3)+

sgn(q2(x∗2+(j−1)3 − x2+(j−1)3))sgn(x∗1+(j−1)3 − x1+(j−1)3)×

tanh(x∗1+(j−1)3 − x1+(j−1)3),

v = q3(x∗3+(j−1)3 − x3+(j−1)3) + sgn(x∗1+(j−1)3 − x1+(j−1)3)q2×

(x∗2+(j−1)3 − x2+(j−1)3) + tanh(x∗1+(j−1)3 − x1+(j−1)3),

µ(α) = sgn(α)min{1, |α|}, tanh(α) =
1− exp(−2α)

1 + exp(−2α)
,

j = 1, 2, q1 = 14.7288, q2 = 2.0271, q3 = 4.0222.

Appendix C. Plots for Mecanum Robot

Figures A1–A6 demonstrate the plots of optimal values of the state-space vector
components (black lines) and the corresponding values of the vector x∗ (red lines).

Figure A1. Plots of optimal x1 and x1
∗.
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Figure A2. Plots of optimal x2 and x2
∗.

Figure A3. Plots of optimal x3 and x3
∗.

Figure A4. Plots of optimal x4 and x4
∗.

Figure A5. Plots of optimal x5 and x5
∗.
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Figure A6. Plots of optimal x6 and x6
∗.

In Figures A7–A14, the plots of optimal values of the control vector components
are presented.

Figure A7. Plot of optimal values of control component u1.

Figure A8. Plot of optimal values of control component u2.

Figure A9. Plot of optimal values of control component u3.
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Figure A10. Plot of optimal values of control component u4.

Figure A11. Plot of optimal values of control component u5.

Figure A12. Plot of optimal values of control component u6.

Figure A13. Plot of optimal values of control component u7.
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Figure A14. Plot of optimal values of control component u8.
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