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Abstract: This paper studies the leaderless consensus of the stochastic multi-agent systems based on
partial differential equations–ordinary differential equations (PDE-ODEs). Compared with the tradi-
tional state coupling, the most significant difference between this paper is that the space state coupling
is designed. Two boundary couplings are investigated in this article, respectively, collocated bound-
ary measurement and distributed boundary measurement. Using the Lyapunov directed method,
sufficient conditions for the stochastic multi-agent system to achieve consensus can be obtained.
Finally, two simulation examples show the feasibility of the proposed spatial boundary couplings.
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1. Introduction

Multi-agent system (MAS) is a group system composed of several agents, which has
attracted a lot of researchers in recent years [1]. Although many works have been per-
formed on MAS, most of the work assumes that each agent in the system receives accurate
information about its neighbors without any system overhead. However, in fact, this kind
of situation is actually very difficult to realize in the real application, the reason is that
agents are often affected by uncertain factors such as information delay, information loss,
and electromagnetic interference in the process of transmitting and receiving information.
If we ignore the influence of these factors on the system, there will be greater errors, and
even affect the stability of the system. Therefore, considering the consensus of stochas-
tic multi-agent systems (MASs) is a realistic and urgent problem. Stochastic MASs have
attracted extensive attention and research from various scholars [2–4]. MASs have many
applications such as robotics [5,6], distributed control [7–9], and telecommunications and
economic [10]. Consequently, it is of theoretical significance and practical value for the
research team cooperating with MASs.

Consensus is the most fundamental problem in multi-agent system, has important
applications in many fields, such as in robotic systems, the consensus problem is studied
to make all robots cooperate with each other to complete the same task (arrive a certain
position, speed reaches a certain value, etc.). In the aerial refueling system, the aerial
vehicles can cooperate with each other to complete the oil transportation task. Therefore,
consensus is also the most important dynamic behaviors of MASs, which has been widely
used in engineering fields such as image encryption [11,12], automatic control [13,14], and
communication security [15,16]. Over the past few decades, many important controllers
have been designed, for instance, cluster control [17,18], adaptive control [19–22], event-
triggered control [23–25], pining control [26], quantized control [27], global asymptotic
consensus control [28], etc. At this stage, most literature on the consensus of MASs is based
on ODEs, which leads to the neglect of the spatial dynamic behavior of the system. In
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fact, there are various spatio-temporal behaviors in nature, such as ecosystems, chemical
reactions, food webs, etc., all of which depend on time and space and need to be modeled
with the help of PDEs. Consequently, it is very important to study the consensus of
stochastic MASs modeled by PDEs.

It should be noticed that, MASs are mostly full of randomness [29,30]. Consequently,
research on stochastic systems is very important. In the cooperative control of linear
Gaussian MASs, the mean and variance are usually used as the objectives to achieve the
purpose of consensus. In addition, the control of stochastic multi-agent systems can be
divided into internal control and boundary control, the former is easy to obtain in theory,
but difficult to achieve in industrial production and with high production costs. The
boundary control only acts on the space boundary, which has the vital significance in the
reality, when the point in the space domain cannot be controlled, the boundary control
can solve this problem very well [31]. Traditional state coupling does not consider the
position information of agent. However, many systems in reality not only change with time,
but also have relation with the displacement of agent [32]. For example, the ecosystem,
the aerial refueling system, the robot cooperation system, etc. These systems are often
associated with the spatial state of the system, so it is necessary to design the spatial state
coupling to depict them. Ref. [33] studies the boundary consensus of continuous-time
linear MASs. These results provide an effective method for consensus of MASs based on
PDE. Boundary control only acts on the spatial boundary, which is of great significance
in practice. However, there are few research achievements on boundary coupling for
consensus of MASs based on PDEs.

Over the past few decades, nonlinear systems have been further studied. Most mean-
ingful works have been successfully achieved, such as consensus or synchronization of
switched nonlinear systems [34–36]. In [37], the adaptive fuzzy finite-time tracking control
problem of switched nonlinear systems is addressed, they used a finite-time command filter
to handle the drawback in the recursive design method. By introducing TP and MDADT
to the switching signal, ref. [38] studied global exponential synchronization of CNs. In
addition, the study of nonlinear systems is not limited to this, a great deal with control
protocols. These references provide the basis for our work.

Motivated by the results above and drawing on research [39,40], in this article, bound-
ary coupling for the consensus of nonlinear leaderless stochastic MASs based on PDE-ODEs
is proposed.

Notations: The following is represented by some of the symbols used in this article:
P > 0 regards a positive definite matrix P; ‖ · ‖ be used to regard the Euclidean norm for
vector; λmax(min)(·) is the maximum (minimum) eigenvalue; E denotes the mathematical
expectation.

Consider the stochastic MAS based on PDE-ODEs in an one-dimensional spatial
domain as

dxi(t) =

[
v(xi(t)) +

∫ L

0
w(yi(η, t))dη + ui(t)

]
dt + C1xi(t)dω1(t), (1)

dyi(η, t) =
[
Θyi,ηη(η, t) + p(yi(η, t)) + q(xi(t))

]
dt + C2yi(η, t)dω2(t), (2)

in which (η, t) ∈ [0, L]× [0, ∞). Here, yi(η, t) ∈ Rn is the state; ui(t) is the control inputs;
C1, C2 ∈ Rn×n are known constant matrices, where n stands for n-dimensional space,
R represents the field of real numbers; 0 < L ∈ R; Θ ∈ Rn×n is symmetric positive
definite the subscript η means the partial derivative with respect to η; ω1(t), ω2(t) ∈ R is
stochastic disturbance.

For systems with N agents, the coupling in Equation (1) is initialized as

ui(t) = −k
N

∑
i=1

hij(xi(t)− xj(t)), (3)
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the Neumann boundary condition under the collocated boundary measurement form is
designed as {

yi,η(0, t) = 0,
yi,η(L, t) = −d ∑N

j=1 gij(yi(L, t)− yj(L, t)), (4)

another Neumann boundary condition under the distributed measurement form is con-
structed as {

yi,η(0, t) = 0,
yi,η(L, t) = −d

∫ L
0 ∑N

j=1 gij(yi(η, t)− yj(η, t))dη,
(5)

where k, d are positive feedback gains that will be determined later, and the coupling matrix
G = [gij] is constructed as : gij > 0(i 6= j), if i is connected to j, otherwise gij = 0(i 6= j);
and gii = 0, i, j ∈ {1, 2, · · · , N}. H = [hij] is defined same to G.

Define consensus error ei(t)
∆
= xi(·)− x̄(·), ζi(η, t) ∆

= yi(·)− ȳ(·), one has

dei(t) =

[
v(xi(t))−

1
N

N

∑
j=1

v(xj(t)) +
∫ L

0
w(yi(η, t))dη (6)

− 1
N

N

∑
j=1

∫ L

0
w(yi(η, t))dη + ui(t)

]
dt + C1ei(t)dω1(t),

dζi(η, t) =

[
Θζi,ηη(η, t) + p(y(η, t))− 1

N

N

∑
j=1

p(yi(η, t)) (7)

+ q(xi(t))−
1
N

N

∑
j=1

q(xi(t))

]
dt + C2ζi(η, t)dω2(t),

where x̄(·) = 1
N ∑N

j=1 xj(t) and ȳ(·) = 1
N ∑N

j=1 yj(η, t). With the Neumann boundary
condition under the collocated boundary measurement form is shown as{

ζi,η(0, t) = 0,
ζi,η(L, t) = −d ∑N

j=1 gij(ζi(L, t)− ζ j(L, t)), (8)

the other Neumann boundary condition under the distributed boundary measurement
form is displayed as{

ζi,η(0, t) = 0,
ζi,η(L, t) = −d

∫ L
0 ∑N

j=1 gij(ζi(η, t)− ζ j(η, t))dη,
(9)

and the initial condition is defined as

ζi(η, 0) = ϕi(η), (10)

where ϕi(η)
∆
= ϕi(η)− 1

N ∑N
j=1 ϕj(η) and v(ei(η, t)) ∆

= v(yi(η, t))−∑N
j=1 v(yj(η, t)).

Definition 1 ([39]). MAS (1)–(3) achieves consensus if there exist scalar M > 0, η > 0, for instance,

E||ζ(η, t)||2 ≤ M||ϕ(η)||2exp−ηt, (11)

for all ϕi(η) ∈ L2(0, 1), ζ
∆
= [ζT

1 (η, t), ζT
2 (η, t), · · · , ζT

N(η, t)]T and ϕ
∆
= [ϕ1(η)

T , ϕT
2 (η), · · · ,

ϕT
N(η)]

T .
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Lemma 1 ([41]). Define ζ(η) as a vector function with ζ(0) = 0 or ζ(L) = 0, then the following
inequality holds for any matrix Φ > 0, then

∫ L

0
ζT(s)Φζ(s)ds ≤ 4L2

π2

∫ L

0
ζ̇T(s)Φζ̇(s)ds. (12)

SupposeW ∈ RN×N is a symmetric Laplacian matrix, then 0 = λ1(W) < λ2(W) ≤
λi(W) ≤ λN(W), λi ∈ {λ1, λ2, · · · , λN}.

Lemma 2 ([42]). For Laplacian matrixW , symmetric positive definite P and x ∈ RN×n such that
1T

Nnx = 0, the following inequality is satisfied:

λ2(W)xT(IN ⊗ P)x ≤ xT(W ⊗ P)x.

Assumption 1. Assume for any real constants ξ1, ξ2, there exist positive numbers γ1, γ2, γ3, γ4
satisfying Lipschitz condition:

|v(ξ1)− v(ξ2)| ≤ γ1|ξ1 − ξ2|,
|p(ξ1)− p(ξ2)| ≤ γ2|ξ1 − ξ2|,
|w(ξ1)− w(ξ2)| ≤ γ3|ξ1 − ξ2|,
|q(ξ1)− q(ξ2)| ≤ γ4|ξ1 − ξ2|.

2. Consensus of PDE-ODEs Based MASs under the Collocated Boundary
Measurement Form

Choose the Lyapunov functional candidate for MASs (1)–(3) as

V(t) =
1
2

N

∑
i=1

eT
i (t)ei(t) +

1
2

N

∑
i=1

∫ L

0
ζT

i (η, t)ζi(η, t)dη. (13)

The differential of V(t) along MASs (1)–(3) is obtained as

dV =
N

∑
i=1

eT
i (t)dei(t) +

N

∑
i=1

∫ L

0
ζT

i (η, t)dζi(η, t)dη

=

[
N

∑
i=1

eT
i (t)(v(xi(t))−

1
N

N

∑
j=1

v(xj(t))

+
∫ L

0
w(yi(η, t))dη − 1

N

N

∑
i=1

∫ L

0
w(yi(η, t))dη)

]
dt

+
N

∑
j=1

eT
i (t)ui(t)dt +

N

∑
i=1

eT
i (t)C1ei(t)dω1(t)

+

[
N

∑
i=1

∫ L

0
ζT

i (η, t)[Θζi,ηη(η, t) + p(yi(η, t))− 1
N

N

∑
j=1

p(yi(η, t))

+ q(xi(t))−
1
N

N

∑
j=1

q(xi(t))]dη

]
dt

+
N

∑
i=1

∫ L

0
ζT

i (η, t)C2ζi(η, t)dηdω2(t). (14)
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Owing to ∑N
i=1 ei(t)(v( 1

N ∑N
j=1 xj(t))− 1

N ∑N
j=1 v(xj(t))) = 0 , using Hypothesis 1, we

can obtain that

N

∑
i=1

ei(t)[v(xi(t))−
1
N

N

∑
j=1

v(xj(t))]

=
N

∑
i=1

ei(t)

[
v(xi(t))− v(

1
N

N

∑
j=1

xj(t)) + v(
1
N

N

∑
j=1

xj(t))−
1
N

N

∑
j=1

v(xj(t))

]

≤ γ1

N

∑
i=1

eT
i (t)ei(t), (15)

treating the following formula in the same way, one has

N

∑
i=1

∫ L

0
ζT

i (η, t)

[
p(yi(η, t))− 1

N

N

∑
j=1

p(yi(η, t))

]
dη

≤ γ3

N

∑
i=1

∫ L

0
ζT

i (η, t)ζi(η, t)dη. (16)

Under Hypothesis 1, the following can be obtained,

N

∑
i=1

eT
i (t)

∫ L

0

[
w(yi(η, t))− 1

N

N

∑
j=1

w(yi(η, t))

]
dη

=
N

∑
i=1

eT
i (t)

∫ L

0

[
w(yi(η, t))− w(

1
N

N

∑
j=1

yj(η, t))

]
dη

≤ 1
2

N

∑
i=1

eT
i ei(t) +

1
2

N

∑
i=1

∫ L

0
[w(yi(η, t))− w(

1
N

N

∑
j=1

yj(η, t))2]dη

≤ 1
2

N

∑
i=1

eT
i (t)ei(t) +

1
2

N

∑
i=1

γ2
2

∫ L

0
ζT

i (η, t)ζi(η, t)dη. (17)

Using the boundary coupling (4) with Θ > 0 and Lemma 1, Lemma 2, we can have that

N

∑
i=1

∫ L

0
ζT

i (η, t)Θζηη(η, t)dη

=
N

∑
i=1

ζT
i (L, t)Θd

N

∑
j=1

gij(ζi(L, t)− ζ j(L, t))dη −
∫ L

0

N

∑
i=1

ζT
i,η(η, t)Θζi,η(η, t)dη

≤ −d
N

∑
i=1

ζT
i (L, t)(LG ⊗Θ)ζi(L, t)

−0.25L−2π2
N

∑
i=1

∫ L

0
(ζT

i (η, t)− ζT
i (L, t))(IN ⊗Θ)(ζi(η, t)− ζi(L, t))dη

≤ −dλ2(LG)
N

∑
i=1

ζT
i (L, t)(IN ⊗Θ)ζi(L, t)

−0.25L−2π2
∫ L

0
(ζT

i (η, t)− ζT
i (L, t))(IN ⊗Θ)(ζi(η, t)− ζi(L, t))dη

≤ −dλ2(LG)λmin(Θ)
N

∑
i=1

ζT
i (L, t)ζi(L, t)

−0.25L−2π2
∫ L

0
(ζT

i (η, t)− ζT
i (L, t))(IN ⊗Θ)(ζi(η, t)− ζi(L, t))dη, (18)
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where LG = D− G, D = diag{d1, d2, · · · , dN}, di = ∑N
j=1 gij, therefore, LG is a Laplacian

matrix and λ2(·) denotes the minimum nonzero eigenvalue of ·.
In the same way, the following can be derived as

N

∑
i=1

∫ L

0
ζT

i (η, t)[q(xi(t))−
1
N

N

∑
j=1

q(xj(t))]dη

=
N

∑
i=1

∫ L

0
ζT

i (η, t)[q(xi(t))− q(
1
N

N

∑
j=1

xj(t))]dη

≤ 1
2

N

∑
i=1

∫ L

0
ζT

i (η, t)ζi(η, t)dη +
1
2

N

∑
i=1

∫ L

0
[q(xi(t))− q(

1
N

N

∑
j=1

xj(t))]2dη

≤ 1
2

∫ L

0
ζT

i (η, t)ζi(η, t)dη +
1
2

γ2
4

N

∑
i=1

eT
i (t)ei(t). (19)

Theorem 1. MASs (1)–(4) is said to be mean-square exponential consensus, if there exists d > 0
such that

Ψ ∆
=

 Ψ11 0 0
∗ Ψ22 Ψ23
∗ ∗ Ψ33

 < 0, (20)

where

Ψ11
∆
= L−1(γ1 + 0.5γ2

4 + 0.5− kλ2(LH))INn,

Ψ22
∆
= −dλ2(LG)λmin(Θ)INn − 0.25L−2π2 IN ⊗Θ,

Ψ23
∆
= 0.25L−2π2 IN ⊗Θ,

Ψ33
∆
= 0.5γ2

2 + γ3 + 0.5− 0.25L−2π2 IN ⊗Θ.

Proof. Substituting (15)–(19) into (14), one obtains

dV ≤
[
(γ1 − kλ2(LH) + 0.5γ2

4 + 0.5)
N

∑
i=1

eT
i (t)ei(t)

+(0.5γ2
2 + 0.5 + γ3)

N

∑
i=1

∫ L

0
ζT

i (η, t)ζi(η, t)dη

]
dt

+
N

∑
i=1

eT
i (t)C1eT

i (t)dω1(t)

+

[
−dλ2(LG)λmin(Θ)

N

∑
i=1

ζT
i (L, t)ζi(L, t)

−0.25L−2π2
N

∑
i=1

∫ L

0
ζT

i (η, t)− ζT
i (L, t)(IN ⊗Θ)(ζi(η, t)− ζi(L, t))dη

]
dt

+(
N

∑
i=1

∫ L

0
ζT

i (η, t)C2ζi(η, t))dω2(t)

≤
[∫ L

0
ζ̂T(η, t)Ψζ̂(η, t)dη

]
dt +

N

∑
i=1

eT
i (t)C1ei(t)dω1(t)

+(
N

∑
i=1

∫ L

0
ζT

i (η, t)C2ζi(η, t)dη)dω2(t), (21)
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where ζ̂(η, t) ∆
= [eT(t), ζT(L, t), ζT(η, t)]T and ζ

∆
= [ζT

1 , ζT
2 , · · · , ζT

N ]
T and Ψ has defined in

Equation (20).
By Itô’s formula [43], one has

E[exp(λmin(Ψ)t)V(t)]−E[exp(λmin(Ψ)0)V(0)]

= E
∫ t

0
d[exp(λmin(Ψ)s)V(s)]ds

= E
∫ t

0
λmin(Ψ) exp(λmin(Ψ)s)V(s)ds +E

∫ t

0
exp(λmin(Ψ)s)dV(s). (22)

Substituting (20) and (21) into (22), we can obtain

E[exp(λmin(Ψ)t)V(t)]

≤ V(0) +E
∫ t

0
[λmin(Ψ) exp(λmin(Ψ)s)V(s)

−λmin(Ψ) exp(λmin(Ψ)s)
∫ L

0
eT(η, s)e(η, s)dη]ds

+E
∫ t

0
exp(λmin(Ψ)s)eT

i (s)C1ei(s)dω1(s)

+E
∫ t

0
exp(λmin(Ψ)s)

∫ L

0
ζT

i (η, s)C2ζi(η, s)dηdω2(s)

= V(0), (23)

that is
EV(t) ≤ V(0) exp(−λmin(Ψ)t). (24)

The proof is completed.

3. Consensus of PDE-ODEs Based MASs under the Distributed Boundary
Measurement Form

Theorem 2. MASs (1)–(3) and (5) is said to be mean-square exponential consensus, if there exists
d > 0 such that

Ξ ∆
=

 Ξ11 0 0
∗ Ξ22 Ξ23
∗ ∗ Ξ33

 < 0, (25)

where

Ξ11
∆
= L−1(γ1 − kλ2(LH) + 0.5γ2

4 + 0.5)INn,

Ξ22
∆
= −0.25L−2π2 IN ⊗Θ,

Ξ23
∆
= 0.5dλ2(LG)λmin(Θ)INn,

Ξ33
∆
= (0.5γ2

2 + 0.5 + γ3 − dλ2(LG)λmin(Θ))INn.

Proof. To prevent repetitions, only the difference with Theorem 1 is shown here.
Choose the same Lyapunov function as in Equation (13).
Using boundary coupling (5) to recalculate (18),
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∫ L

0
ζT

i (η, t)Θζi,ηη(η, t)dη

= −
∫ L

0

N

∑
i=1

ζT
i (L, t)Θd

N

∑
j=1

gij(ζi(η, t)− ζ j(η, t))dη −
∫ L

0
ζT

i,η(η, t)Θζi,η(η, t)dη

= −
∫ L

0
dζT

i (L, t)(LG ⊗Θ)ζi(η, t)dη −
∫ L

0
ζT

i,η(η, t)Θζi,η(η, t)dη

≤ −d
∫ L

0
ζT(η, t)(LG ⊗Θ)ζi(η, t)dη

− 0.25L−2π2
∫ L

0
ζT

i (η, t)− ζT
i (L, t)(IN ⊗Θ)(ζi(η, t)− ζi(L, t))dη

≤
∫ L

0
dζ̄T(η, t)(LG ⊗Θ)ζi(η, t)dη − dλ2(LG)λmin(Θ)

∫ L

0
ζT

i (η, t)(IN ⊗Θ)ζi(η, t)dη

− 0.25L−2π2
∫ L

0
ζ̄T(η, t)(IN ⊗Θ)ζ̄(η, t)dη, (26)

for brevity, we take ζ̄(η, t) ∆
= ζ(η, t)− ζ(L, t).

Substituting (15)–(18) and (26) into (14),

dV ≤
[
(γ1 − kλ2(LH) + 0.5γ2

4 + 0.5)
N

∑
i=1

eT
i (t)e

T
i (t)

+(0.5γ2
2 + 0.5 + γ3 − dλ2(LG)λmin(Θ))

N

∑
i=1

∫ L

0
ζT

i (η, t)ζi(η, t)dη

]
dt

+
N

∑
i=1

eT
i (t)C1ei(t)dω1(t)

+

[
N

∑
i=1

∫ L

0
dζ̄T(η, t)(LG ⊗Θ)ζi(η, t)dη

−0.25L−2π2
∫ L

0
ζ̄T(η, t)(IN ⊗Θ)ζ̄(η, t)dη

]
dt

+
N

∑
i=1

∫ L

0
ζT

i (η, t)C2ζi(η, t)dηdω2(t)

≤
[

λmin(Ξ)
∫ L

0
ζ̃T(η, t)ζ̃(η, t)dη

]
dt

+
N

∑
i=1

eT
i (t)C1ei(t)dω1(t) +

N

∑
i=1

∫ L

0
ζT

i (η, t)C2ζi(η, t)dηdω2(t), (27)

in which ζ̃(η, t) ∆
= [eT(t), ζ̄T(η, t), ζT(η, t)]T .

Most specially, EV(t) ≤ V(0) exp(−λmin(Ξ)t). This completes the proof.

Remark 1. Different from the coupling design in ODE systems for consensus [44,45], this paper
solves the consensus of stochastic MASs based on PDE-ODEs by designing boundary coupling.

Remark 2. There have been many important results for MASs [46–48]. However, this article
studies a class of MASs when only boundary nodes can receive messages, and the boundary coupling
is designed to solve this issue.

4. Simulation Examples

Example 1. Consider the following nonlinear leaderless MAS (1)–(4) with random initial conditions:

dxi(t) =

[
v(xi(t)) +

∫ L

0
w(yi(η, t))dη + ui(t)

]
dt + C1xi(t)dω1(t), (28)
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dyi(η, t) =
[
Θyi,ηη(η, t) + p(yi(η, t)) + q(xi(t))

]
dt + C2yi(η, t)dω2(t), (29)

where

Θ =

[
2 0
0 5

]
, C1 = C2 =

[
1 0
0 1

]
, L = 1, (30)

v(·) = p(·) = w(·) = q(·) = tanh(·). (31)

Obviously, v(·), p(·), w(·) and q(·) satisfy Lipschitz condition with γ1 = γ2 = γ3 = γ4 = 1,
and the stochastic factors ω1(t), ω2(t) can be written by matrix, one has

Ω1 = Ω2 =

[
sin(2x)cos(πt)

sin(2x)cos(2πt)

]
. (32)

The coupling matrix represents communication between agents, and it can be designed as:

H = G =


3 −1 −1 −1
−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3

 (33)

and the initial conditions

y0
1(η, t) =[−0.8 + 0.5 cos(2πη − π

3
),−1.2 sin(πη +

π

4
)]T ,

y0
2(η, t) =[−0.5 + 0.8 sin(0.2πη),−0.6− 0.3 exp(0.5πη +

π

6
)]T ,

y0
3(η, t) =[−0.7 + 0.2 cos(0.3πη), 0.5 + 0.3 sin(πη +

π

5
)]T ,

y0
4(η, t) =[0.5 exp(0.4πη),−0.8 + 0.2 cos(πη +

π

3
)]T ,

(34)

According to Theorem 1, solving LMI (20) by Matlab, the control gains d = 0.7288,
k = 4.4242 is obtained. It can be shown in Figures 1 and 2 that the MAS (1)–(4) achieve consensus,
the states of the MAS eventually converge, and the error between agents tends to 0, which means
that the agents agree on speed or reach a certain point in time in engineering field. The boundary
coupling (3) and (4) with the feedback gain are shown in Figures 3 and 4.
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Figure 1. The system error ζi(η, t) of MAS with boundary coupling (4) in Example 1.

Figure 2. The system error ei(t) of MAS with boundary coupling (4) in Example 1.

Figure 3. The boundary coupling ui(t) in Example 1.
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Figure 4. The boundary coupling yi(L, t) in Example 1.

Example 2. Consider a stochastic MAS (1), (3), and (5) with the same coefficients as in Example 1.
Different from former, the boundary coupling condition is adopted in the form of distributed
measurement. According to Theorem 2, solving LMI (25) by Matlab, d = 1.7428, k = 3.9784 is
obtained. Similarly, we can observe that the stochastic MAS in question can eventually be stabilized
with the application of a controller. It can be shown in Figures 5 and 6 that the error of the MAS (1),
(3), and (5) finally approaches 0 with the change of time. The boundary coupling (3) and (5) with
the feedback gain are shown in Figures 7 and 8.

Figure 5. The system error ζi(η, t) of MAS with boundary coupling (5) in Example 2.
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Figure 6. The system error ei(t) of MAS with boundary coupling (5) in Example 2.

Figure 7. The boundary coupling ui(t) in Example 2.

Figure 8. The boundary coupling yi(L, t) in Example 2.

5. Results

According to the above simulation examples, it is not difficult to obtain the following
results. With the collocated boundary coupling and distributed boundary coupling, we
designed two boundary controllers, which enable the MAS (1) and (2) with stochastic
disturbance to reach agreement. As shown in Examples 1 and 2, by using LMI Matlab
tools, the control gains k, d are calculated. Thus, in full consideration of the communication
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between agents, all agents can achieve one common goal, so that the stochastic MASs
achieve consensus. Different from other references, this paper not only solved the consensus
of stochastic MASs based on PDE-ODEs, but also took the boundary control strategy.
The experiment proved that the proposed methods can save costs and is very effective
and of practical significance for the consensus control of MASs. The reason is that we
fully considered the stochastic factors in this paper, the implementation of the proposed
controllers only require few actuators located at the boundary of the spatial domain and is
thus relatively easy.

6. Conclusions

In this article, we have investigated the leaderless consensus of stochastic MASs. The
research model was established by nonlinear PDE-ODEs. Compared with the traditional
state coupling, the most significant difference between this paper is that the space state
coupling is designed. The spatial position of the system is fully considered. In addition,
it is very difficult and costly to apply the traditional control strategy in reality; therefore,
this paper adopts the boundary coupling method to design the boundary controller and
place the controller only on the boundary of the system. This greatly reduces the cost of
resources, but also achieved a good control effect. Thus, two boundary couplings have
been investigated in this article, respectively, collocated measurement and distributed
measurement. Using Lyapunov directed method, we obtained sufficient conditions for
the stochastic multi-agent system to achieve consensus. Finally, two simulation examples
are used to be shown the feasibility of the proposed spatial boundary couplings. In future
work, backstepping control, and adaptive control for consensus of MASs will be studied.
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