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Abstract: Analysing autoregressive counts over time remains a relevant and evolving matter of
interest, where oftentimes the assumption of normality is made for the error terms. In the case
when data are discrete, the Poisson model may be assumed for the structure of the error terms.
In order to address the equidispersion restriction of the Poisson distribution, various alternative
considerations have been investigated in such an integer environment. This paper, inspired by
the integer autoregressive process of order 1, incorporates negative binomial shape mixtures via a
compound Poisson Lindley model for the error terms. The systematic construction of this model is
offered and motivated, and is analysed comparatively against common alternate candidates with a
number of simulation and data analyses. This work provides insight into noncentral-type behaviour
in both the continuous Lindley model and in the discrete case for meaningful application and
consideration in integer autoregressive environments.
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1. Introduction

The analysis and modelling of data in a meaningful way remains a relevant and
evolving focus within fundamental statistical research among practitioners of statistics
and data science alike. Many fields, including medicine, security surveillance, information
technology, and finance, among others, remain bound to parametric theoretical innovation
for impactful data analysis and understanding; therefore, the sustained development
of statistical models with insightful flexibility is essential for understanding data being
generated around users in all aspects of life.

1.1. The Lindley Distribution as Departure Point

The Lindley distribution [1] has a rich and varied background in terms of generalisa-
tions and implementation within lifetime modeling, Bayes inference, and fiducial inference
within different theoretical and applied contexts; it is constructed as a finite continuous
two-component mixture of an exponential and a gamma distribution (indicated by “Exp”
and “Gam”, respectively) with common scale β > 0 and shape 2 parameters, with density
function

f (y) = ωβ exp(−βy)︸ ︷︷ ︸
Exp(β)

+ (1−ω)β2y exp(−βy)︸ ︷︷ ︸
Gam(2, β)

=
β2

β + 1
exp(−βy)(1 + y) (1)
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for y > 0 with mixing proportion ω = β
β+1 and 0 otherwise. The Lindley distribution

is substantially more flexible in its mathematical characteristics in comparison to the
exponential distribution [2] via this mixture. Plentiful attention has been paid to this model
for its parameter and flexibility enrichment and improved model fits based on a variety
of methods [3–5]. Recently, [6] introduced and studied a noncentral-type Lindley model
where the gamma component in (1) is substituted with a noncentral gamma distribution
with scale, shape, and noncentral parameters (β, 2, λ) with the density function (see [7])

fncgam(y) =
∞

∑
i=0

exp(− λ
2 )(

λ
2 )

i

i!
β2+i

Γ(2 + i)
y2+i−1 exp(−βy) (2)

for y > 0, where Γ(·) denotes the gamma function. Essentially, (2) is defined as an infinite
shape mixture of the usual gamma distribution with the Poisson mass, with parameter
λ
2 > 0. The resulting noncentral-type Lindley density function is provided by

f (y) =
β2

β + 1
exp(−βy)

[
1 + y exp

(
−λ

2

)
0F1

(
2;

λ

2
βy
)]

(3)

for y > 0, where 0F1(·) denotes the hypergeometric function of scalar argument with one
lower parameter. For the purposes of this paper, the distribution with density function (3)
is referred to as the noncentral Lindley of type I, and is denoted Y ∼ ncLI(β, λ). Note that
when λ→ 0, (1) is naturally recovered. This noncentral parameter λ has an interpretative
meaning for noncentrality (considering that the usual gamma distribution only has shape
and scale parameters), and in the ncLI case has been observed to act as an insightful
parameter addition to a model otherwise characterised only by a scale parameter β.

The Lindley distribution has been employed in a compounding approach to create
discrete counterparts via the Poisson distribution for implementation, both as a standalone
counting model [8–10] and within integer-valued autoregressive (INAR) environments.
This paper has a particular focus on the systematic development of a counting model
that is based in fundamental statistical theory while being practically motivated within an
INAR focus.

1.2. Lindley Counting Models: INAR and Other Cases

When modelling count data, the Poisson distribution is widely used in various sta-
tistical environments and models such as regression and time series analysis thanks to its
tractability and ease of implementation. A major restriction of the Poisson distribution is
the assumption of equidispersion, that is, when the mean E[X] and variance Var[X] of a
random variable X are equal, leading to the dispersion index DI = Var[X]

E[X]
= 1. In reality,

this assumption of the Poisson distribution is generally violated. In order to address this
restriction, various researchers have proposed alternative discrete distributions to capture
and more accurately describe overdispersion, many of which are described as compound
or mixed Poisson distributions; this is the case when the Poisson parameter, say, µ, acts as a
random variable in itself, with the particular distribution for µ known as the mixing distri-
bution. A classical mixed Poisson distribution is the negative binomial (NB) distribution, in
which the mixing distribution is defined as the gamma distribution. Due to the NB distri-
bution being restrictive in modelling larger levels of skewness and kurtosis, more flexible
distributions have been researched and proposed. Using the compounding method, [11,12]
proposed the Poisson distribution with its parameter µ being described by the Lindley
distribution, known as the Poisson–Lindley (PL) distribution. Extended and more flexible
considerations include the generalised Poisson–Lindley distribution, a new three-parameter
Poisson–Lindley distribution, and the two-parameter discrete Poisson-generalised Lindley
distribution, as proposed by [13–15], respectively.

Within the integer time series environment, [16] suggested the PL distribution for
the errors defined for the INAR process based on the binomial thinning operator (initially
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proposed by [17,18]). Altun [19] introduced Poisson-weighted exponential errors (via com-
pounding) for the INAR(1) process, which were fitted to real data. Altun [20] compounded
the Poisson distribution using the Bilal distribution [21], for which the Poisson–Bilal dis-
tribution is considered as the error structure for the INAR(1) process. Altun et al. [22]
introduced the Poisson mixture with quasi-xgamma errors for the modelling of earthquake
counts. The Poisson-transmuted exponential distribution (proposed by [23,24]) and the
zero-modified PL distribution (proposed by [25,26]) have both been considered for the error
structure in the INAR(1) process for modelling overdispersed and zero-inflated counts,
of which the latter can be used for the modelling of zero-deflated data as well. Most
recently, [27] suggested the Poisson binomial-exponential 2 distribution (proposed and
constructed by [28]) for the error structure of an INAR(1) process, whereas [29] proposed a
one-parameter discrete distribution by compounding the Poisson distribution through the
use of the xgamma distribution.

In [6], the authors introduced and studied the discrete counterpart of (3) as mixing
distribution within a compound Poisson framework and subsequently applied it within
an integer-valued autoregressive environment. Suppose a variable X follows a Poisson
distribution with parameter µ > 0, and let µ ∼ ncLI(β, λ) with density function (3). Then,
via the compounding method, the mass function for X is provided by

p(x) =
β2

(β + 1)x+2 +
β2 exp(− λ

2 )Γ(x + 2)
(β + 1)x+3x! 1F1

(
x + 2, 2;

λ
2 β

β + 1

)
(4)

for x = 0, 1, 2, . . . representing counts and 1F1(·) denoting the confluent hypergeometric
function of scalar argument with one upper and one lower parameter. This model, denoted
as X ∼ PncLI(β, λ), inherits a range of flexible options for the practitioner when modeling
overdispersed count data as compared to the Poisson model where DI = 1.

1.3. Contributions and Foci of This Paper

For further insight into attaining ranges of increased kurtosis and the DI, this paper
investigates in a comparative manner the incorporation of infinite negative binomial mass on
the shape of the gamma distribution that forms a component within the noncentral Lindley
environment; here, we refer to this as the noncentral Lindley of type II. In fact, [30] discusses
the meaningful comparison between the Poisson and the negative binomial distributions,
and as such the theoretical development and practical implementation of this negative
binomial consideration (compared to the more frequently considered Poisson mass) remains
convincing within the statistical literature. Subsequently, this adaptation is illustrated in
the integer case and comparatively investigated with the existing model of the Poisson
shape mixture of the gamma. This theoretical investigation and contribution is applied in
an autoregressive count framework of order 1 (i.e., integer autoregressive process of order
1, or INAR(1)). Therefore the contributions of this paper can be summarised as follows:

1. A (continuous) noncentral Lindley type II (i.e., ncLII) distribution is systematically
constructed, and statistical characteristics are derived;

2. A (discrete) counting model based on this noncentral Lindley type II distribution is
derived via compounding with the Poisson distribution (i.e., PncLII), together with
essential statistical characteristics;

3. Key insights are attained through investigation of the skewness, kurtosis, and the DI
compared to the work of [6]; and finally,

4. This discrete counting model is implemented and illustrated as an error structure
(i.e., εt) within an INAR(1) environment and juxtaposed against the PncLI for the
error structures in a simulation study and real data applications.

The rest of this paper is outlined as follows. In Section 2, the methodological approach
to the construction of the ncLII and PncLII distributions are described, together with
statistical characteristics and a discussion of key insights related to skewness, kurtosis, and
the DI. Section 3 illustrates the execution and performance of the developed results within
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the INAR(1) environment, and Section 4 contains final thoughts. All computations were
carried out using R 4.1.0 [31] in a Win 64 environment with a 1.30 GHz/Intel(R) Core(TM)
i7-1035G7 CPU Processor and 8.0 GB RAM.

2. Construction

Consider a gamma distribution with infinite negative binomial mass on the shape
parameter (see [32]), such that

f (y) =
∞

∑
i=0

(
i + r− 1

r− 1

)
br(1− b)i β2+i

Γ(2 + i)
y2+i−1 exp(−βy) (5)

where y > 0, 0 < b < 1 and r ≥ 1, which can be viewed as a noncentral type due to
correspondence with (3). Note that when r = 1, geometric mass is used on the shape
parameter of the gamma distribution. Using (5) instead of the usual gamma distribution
in (1), the density function of the resulting ncLII distribution is given by

f (y) =
β2

β + 1
exp(−βy)[1 + ybr

1F1(r; 2; βy(1− b))] (6)

where 1F1(·) denotes the confluent hypergeometric function of scalar argument with a
single upper and lower parameter, and we denote Y ∼ ncLII(β, b, r). Note that (6) reduces
to the usual Lindley (1) when b → 1. The flexibility of this ncLII distribution is evident
from Figures 1 and 2, which illustrate the behaviour of various parameter choices (β, b, r)
on the density function (6). The moment generating function (MGF) and moments of
Y ∼ ncLII(β, b, r) with density function (6) are introduced in the following theorem.

Theorem 1. Suppose that the random variable Y is distributed as ncLII with density function (6).
Then, the MGF and moments of Y are given by:

MY(t) =
β2

(β + 1)(β− t)2

[
β− t +

(
b(β− t)
βb− t

)r]
(7)

E[Yh] =
1

βh(β + 1)
[β Γ(h + 1) + brΓ(h + 2) 2F1(r, h + 2; 2; 1− b)] (8)

respectively, where h > 0, t < β and 2F1(·) represents the Gauss hypergeometric function of scalar
argument with two upper and one lower parameter(s); see [33].

Due to closed form expressions in Theorem 1, (8) can be used to obtain various char-
acteristics of interest for the ncLII distribution such as the mean, variance, skewness, and
kurtosis. The expressions for calculating these characteristics are provided in Appendix A,
for which the skewness and kurtosis levels are illustrated in Figures 3 and 4, respectively,
for different values of (β, b, r). The additional flexibility of the ncLII distribution, especially
with regard to its increased levels of skewness and kurtosis, is evident from Figures 3 and 4,
respectively, particularly when comparing these characteristics to those of the ncLI distri-
bution described and illustrated in Appendix B, Figure A1.
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Figure 1. Shapes of the density function (6) for different values of (β, r) and b = 0.65.
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Figure 3. Skewness for Y ∼ ncLII(β, b, r) for different values of (β, b) and r = 1, 2, 5, 10.
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For the discretised counterpart, suppose a variable X follows a Poisson distribution
with parameter µ > 0, while µ is distributed as ncLII with density function as in (6). Then,
using the compounding method, the mass function for X is given by

p(x) =
β2

(β + 1)x+2

[
1 +

br(x + 1)
β + 1 2F1

(
r, x + 2; 2;

β(1− b)
β + 1

)]
(9)

for x = 0, 1, 2, . . . representing counts, where 2F1(·) denotes the Gauss hypergeometric func-
tion of scalar argument with two upper and one lower parameter(s) and X ∼ PncLII(β, b, r).
As in the continuous case, (9) reduces to the usual PL of [11,12] when b→ 1. The probability
generating function (PGF) and factorial moments of X with mass function (9) are given in
the following theorem.

Theorem 2. Suppose that the random variable X is distributed as PncLII with mass function (9).
Then, the PGF and factorial moments of X are given by:

GX(s) =
β2

(β + 1)(β + 1− s)2

[
β + 1− s +

(
b(β + 1− s)
βb + 1− s

)r]
(10)

E[(X)h] =
β2

β + 1

[
Γ(h + 1)

βh+1 + br Γ(h + 2)
βh+2 2F1(r, h + 2; 2; 1− b)

]
(11)

where h > 0, with s < β + 1 and 2F1(·) denoting the Gauss hypergeometric function of scalar
argument with two upper and one lower parameter(s).

Remark 1. By replacing s with exp(s) in (10), the MGF of the distribution in (9) is obtained. It is
valuable to emphasise the value of these closed form expressions, especially when one is interested
in assessing degrees of skewness and kurtosis of a random variable X. This may be done via direct
computation of these equations, but access to cumulants to be utilised in such computations is
also feasible by considering (10) such that ln GX(exp(s)) where this computation typically could
include Stirling numbers of the second kind [32].

Figure 5 illustrates specific shapes of the mass function (9), with the means indicated in
red, displaying similar behaviour to that of its continuous counterpart (6) in Figures 1 and 2.
The following effects from changes in r and b can be observed from Figure 5:

• As r increases (comparing Figures 5a–d, from left to right), the distribution flattens
out and the mean increases.

• As b increases (comparing Figures 5e–h, from left to right), the distribution decays
more exponentially, decreasing its spread while shifting the mean to the left.

Using the results from Theorem 2, the mean and variance for the PncLII distribution
are provided by

E[X] =
2
β
+

1
β + 1

[
r

βb
− r

b
− 1
]

(12)

and

Var[X] =
2
β
+

2
β2 −

[
1

β + 1

(
r

βb
− r

b
− 1
)]2

+
1

β + 1

[
r

βb

(
r

βb
+

1
βb
− 2r

β
+ 1
)
+

r
b

(
r
β
− 1

β
− 1
)
− 1
]

. (13)

From (12) and (13), it is clear that Var[X] > E[X] for the PncLII distribution, implying
overdispersion (that is DI > 1) and making the PncLII distribution ideal for modelling
overdispersed count data sets. The behaviour of this DI is illustrated for different values
of (β, b) (for r = 1 and r = 10) in Figure 6, emphasizing the additional flexibility and
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increased levels in the DI of the PncLII distribution in comparison to the PncLI distribution
illustrated in Appendix C, Figure A2.
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Figure 5. Shapes of the mass function (9) for different values of (b, r) and β = 0.4, with means
indicated in red.
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Figure 6. Dispersion index for X ∼ PncLII(β, b, r) for different values of (β, b) and r = 1, 10.

3. Implementation

Suppose that Xt represents the (non-negative) autoregressive count at time t. The
INAR(1) process is defined by

Xt = p ◦ Xt−1 + εt (14)

for t = {0, 1, 2, . . . , T}, where p ∈ (0, 1) and “◦” denotes the binomial thinning operator
defined such that p ◦ Xt−1 := ∑

Xt−1
i=1 Wi, where Wi is a Bernoulli random variable with

P(Wi = 1) = 1− P(Wi = 0) = p (see [34] for details). Furthermore, εt represents the error
structure of discrete nature, with mean µε and finite variance σ2

ε such that Xt represents
counts measured over time.
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The INAR(1) process in (14) can be described as a homogeneous Markov chain,
and thus the one-step transition probability of the process is given by

P(Xt = k|Xt−1 = l) =
min(k,l)

∑
i=0

P(Bp
l = i)× PPncLI I(εt = k− i) (15)

where k, l ≥ 0, Bp
l ∼ Binomial(p, l) for p ∈ (0, 1); in the case of this study, PPncLI I(·) is

provided by (9). Given µε and σ2
ε (calculated using (12) and (13), respectively), the mean

and variance for the INAR(1) process itself are provided by µXt =
µε

1−p and σ2
Xt

= σ2
ε+pµε

1−p2 ,
respectively (see [34,35]). In order to account for overdispersion, which is often encountered
in count data, the contributions of [6,16] are valuable for proposing theoretical departures
from the restrictive equidispersion property of the commonly used Poisson distribution.

Assuming εt ∼ PncLII(β, b, r) for fixed values of r in (14), conditional maximum
likelihood is used to fit the INAR(1) process with the conditional log-likelihood function,
defined as

`(Θ) =
T

∑
t=2

ln(P(Xt = k|Xt−1 = l))

=
T

∑
t=2

ln

(
min(Xt ,Xt−1)

∑
i=0

(
Xt−1

i

)
pi(1− p)Xt−1−i pPncLI I(Xt − i)

)
(16)

where Θ = (p, θ, b) is the vector of maximum likelihood estimates of the parameters and
pPncLI I(·) denotes the mass function in (9).

3.1. Simulation

This section evaluates the finite-sample performance of the maximum likelihood
estimator Θ = (p, θ, b) for the INAR(1) process with εt ∼ PncLII(β, b, r). The following
steps were implemented for this purpose:

1. Define the theoretical parameters p = 0.35, β = 0.2, b = 0.8, and r = 1, and set the
simulation replication number equal to 500.

2. Generate errors εt ∼ PncLII(β, b, r) for sample sizes T = 30, 50, 75, 100 such that
εt ∼ Poisson(ψ) with ψ ∼ ncLII(β, b, r).

(a) Generate ψ ∼ ncLII(β, b, r) variates.
(b) Generate the errors such that εt ∼ Poisson(ψ).

3. Generate the time series with binomial variates such that

Xt = ϕ ◦ Xt−1︸ ︷︷ ︸
Bin(Xt−1,ϕ)

+ εt .

4. Because the stationary marginal distribution of {Xt} is not explicitly available, a burn-
in period {X−s, . . . , X0} should be generated, of which the corresponding marginal
distributions then converge to the desired stationary marginal distribution [34]; in
this case, we initialise X−s := round(µXt).

5. In order to estimate (p, θ, b) under various sample sizes, the conditional log-likelihood
function (16) is maximised using the optim( ) function in R.

6. The bias and mean squared error (MSE) are calculated for each of the estimators
(p, θ, b) for the different sample sizes of T, where

bias =
r

∑
j=1

θ̂j − θ

500
and MSE =

r

∑
j=1

(θ̂j − θ)2

500
.
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The results for the simulation described above are graphically summarised in Figure 7.
With the biases and MSEs approaching the desired value of zero, it can be concluded
that the maximum likelihood estimators perform well for small to moderate sample sizes,
especially for β and p, indicating the consistency of Θ.
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Figure 7. Bias and MSE of β̂, b̂ and p̂ for a simulated INAR-PncLII(1) process.

3.2. Real-Data Applications

For this section, consider the following data sets:

1. Daily number of downloads of certain software for the period from June 2006 to
February 2007 (sample size T = 267) [36].

2. Yearly number of terrorism incidents in Australia for years 1970 to 2015 (sample size
T = 45). The data are available in the Ecdat package of R software.

3. Monthly number of strikes leading to at least 1000 workers being idle (published
by the U.S. Bureau of Labor Statistics, http://www.bls.gov/wsp/, accessed on 1
December 2021). The time period from January 1994 to December 2002 (sample size
T = 108) is considered.

Here, the INAR(1) process in (14) is fitted to the above-mentioned data while assuming
εt ∼ PncLII(β, b, r) for fixed values of r. In particular, the obtained results in this paper
are contextualised versus the PncLI candidate from [6], together with the usual Poisson,
NB, and PL contenders. The negative log-likelihood (−`) and Akaike information criterion
(AIC) values are compared in order to identify the model that fits the data best, with the
latter defined as

AIC = −2`n(Θ̂) + 2M

where M denotes the number of parameters in the model [37]. Models with the smallest −`
and AIC values are identified as those with the best fit. In order to evaluate the accuracy of
the fitted models, the Pearson residuals

et =
xt − E[Xt|xt−1]√

Var[Xt|xt−1]
(17)

are analysed for t = {2, 3, . . . , T} using the results in Remark 1 of [6]. For an accurate
model, the residuals should be uncorrelated with a mean and variance close to values of 0
and 1, respectively [34].

3.2.1. Number of Downloads of Certain Software

The first dataset under consideration is the daily number of downloads of certain
software for the period from June 2006 to February 2007 (see [36]). The series consists of
T = 267 observations with a sample mean and variance of 2.4007 and 7.5061, respectively.
The time plot, marginal distribution, autocorrelation function (ACF), and partial autocor-

http://www.bls.gov/wsp/
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relation function (PACF) are presented in Figure 8, of which Figure 8c,d indicates that an
AR(1)-type process is an appropriate choice for fitting the download data, as suggested
by the significant sample partial autocorrelation at only lag 1. Because the data are of a
particularly discrete nature, an INAR(1) process (14) is suggested with an error structure
εt characterised by a discrete distribution allowing for overdispersion due to a sample
DI > 1.

(a) Time plot
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(b) Marginal distribution
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Figure 8. Time plot, observed marginal distribution, ACF, and PACF for the download data.

Table 1 summarises the conditional maximum likelihood estimation results for the
INAR(1) process assuming various distributions for the error structure. Best fits are indi-
cated in bold, with the smallest −` and AIC values, it is found that the proposed INAR-
PncLII(1) for r = 2 and r = 5 fits the downloads data best relative to its considered
competitors. In addition to the AIC values, the proposed model for r = 2 yields a better
estimated variance than for r = 5, suggesting a slightly better fit, even though the proposed
model for r = 1 estimates the best in terms of the variance.

Table 1. Estimated parameters (with standard errors in italics and parentheses), goodness of fit
statistics, fitted mean, and fitted variance of considered models for the downloads data.

Model Parameter Estimate −` AIC Mean (µXt ) Variance (σ2
Xt

)

INAR-P(1)
p 0.1718

634.1 1272.2 2.3655 2.3655(0.0323)

µ
1.9590

(0.1096)

INAR-NB(1)

p 0.1544

537.9 1081.7 2.3657 7.1888

(0.0415)

r 0.8501
(0.1491)

b 0.2982
(0.0373)
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Table 1. Cont.

Model Parameter Estimate −` AIC Mean (µXt ) Variance (σ2
Xt

)

INAR-PL(1)
p 0.1180

541.1 1086.1 2.3559 5.5808(0.0400)

β
0.7554

(0.0527)

INAR-PncLI(1)

p 0.1573

537.9 1081.7 2.3700 6.6734

(0.0415)

β
1.3054

(0.2414)

λ
5.4097

(2.5779)

INAR-PncLII(1)

p 0.1515

537.9 1081.8 2.3659 7.2181

(0.0407)

β
1.1080

(for r = 1) (0.1583)

b 0.3875
(0.1071)

INAR-PncLII(1)

p 0.1554

537.7 1081.4 2.3656 7.0867

(0.0409)

β
1.1957

(for r = 2) (0.1898)

b 0.4938
(0.1122)

INAR-PncLII(1)

p 0.1577

537.7 1081.4 2.3667 6.9021

(0.0411)

β
1.2680

(for r = 5) (0.2190)

b 0.6698
(0.1009)

INAR-PncLII(1)

p 0.1579

537.7 1081.5 2.3676 6.8009

(0.0413)

β
1.2908

(for r = 10) (0.2306)

b 0.7934
(0.0761)

In order the evaluate the accuracy of the proposed model for r = 2, the Pearson
residuals are calculated and analysed using (17). The residuals yield a mean and variance
of −0.0025 and 0.9826, respectively, with no significant autocorrelation shown in Figure 9b,
indicating a good fit. Based on the obtained results and the discussion above, the fitted
model is provided by

Xt = 0.1554 ◦ Xt−1 + εt

where εt ∼ PncLII(1.1957, 0.3875, 2). The predicted values for the number of downloads,
illustrated in Figure 9a, can be calculated as

X̂1 = µ̂Xt =
E[X]

1− p̂

and for t > 1 as
X̂t = E[Xt|Xt−1] = p̂Xt−1 + E[X]

where E[X] represents the estimated mean of the error structure, calculated using (12). It
can be noted that the autoregressive estimate p̂ is small (though significant) due to a large
number of zeros observed in the data; refer to Figure 8. This small value of p̂ results in the
predicted values centralising around E[X], as evident from Figure 9a.
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(a) Predicted values
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(b) ACF of Pearson residuals
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Figure 9. Predicted values (in red) and Pearson residuals’ ACF for the download data.

3.2.2. Number of Terrorism Incidents

As a second illustration, we consider the yearly number of terrorism incidents in
Australia for the years 1970 to 2015. The series consists of T = 45 observations, with a
sample mean and variance of 1.9556 and 5.6798, respectively. The time plot, marginal
distribution, ACF, and PACF are presented in Figure 10, of which Figure 10c,d indicates
that an AR(1)-type process is an appropriate choice for fitting the terrorism data. Because
these data are again of discrete-nature, an INAR(1) process (14) is suggested with an error
structure εt characterised by a discrete distribution allowing for overdispersion due to a
sample DI > 1.

(a) Time plot
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Figure 10. Time plot, observed marginal distribution, ACF, and PACF for the terrorism data.

Table 2 summarises the conditional maximum likelihood estimation results for the
INAR(1) process assuming various distributions for the error structure. For this application,
the INAR(1) process with PL errors yields the smallest AIC value, although the proposed
INAR-PncLII(1) for r = 10 competes well with the smallest negative log-likelihood (−`),
estimating a mean and variance close to the sample statistics.
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Table 2. Estimated parameters (with standard errors in parentheses), goodness of fit statistics, fitted
mean, and fitted variance of considered models for the terrorism data.

Model Parameter Estimate −` AIC Mean (µXt ) Variance (σ2
Xt

)

INAR-P(1)
p 0.3085

93.6 191.3 2.0379 2.0379(0.0851)

µ
1.4093

(0.2182)

INAR-NB(1)

p 0.1969

82.4 170.8 2.0107 5.6309

(0.1358)

r 0.7494
(0.3135)

b 0.3170
(0.1027)

INAR-PL(1)
p 0.1950

83.0 170.1 1.9986 4.0675(0.1282)

β
0.9417

(0.1813)

INAR-PncLI(1)

p 0.1800

82.2 170.4 1.9976 5.3266

(0.1440)

β
1.6410

(0.5842)

λ
6.9169

(5.9401)

INAR-PncLII(1)

p 0.1966

82.6 171.1 2.0110 5.3104

(0.1354)

β
1.3010

for r = 1 (0.4396)

b 0.3946
(0.2767)

INAR-PncLII(1)

p 0.1923

82.4 170.9 2.0073 5.3783

(0.1384)

β
1.4186

(for r = 2) (0.5011)

b 0.4827
(0.2593)

INAR-PncLII(1)

p 0.1865

82.3 170.6 2.0023 5.3794

(0.1414)

β
1.5347

(for r = 5) (0.5514)

b 0.6409
(0.2172)

INAR-PncLII(1)

p 0.1836

82.2 170.5 1.9998 5.3615

(0.1427)

β
1.5855

(for r = 10) (0.5689)

b 0.7629
(0.1634)

In order the evaluate the accuracy of the proposed model for r = 10, the Pearson
residuals are calculated, from which a mean and variance of −0.0063 and 0.9522, respec-
tively. No significant autocorrelation is shown in Figure 11b, indicating an accurate model.
The fitted model is provided by

Xt = 0.1836 ◦ Xt−1 + εt
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where εt ∼ PncLII(1.5855, 0.7629, 10). The predicted values for the number of terrorism
incidents are illustrated in Figure 11a. Similar to the previous application, p̂ is small (though
significant) due to a large number of zeros, leading to predicted values centralising around
E[X].

(a) Predicted values
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Figure 11. Predicted values (in red) and ACF of the Pearson residuals for the terrorism data.

3.2.3. Number of Strikes

Finally, the monthly number of strikes leading to at least 1000 workers being idle for
the time period from January 1994 to December 2002 (published by the U.S. Bureau of
Labor Statistics, http://www.bls.gov/wsp/, accessed on 1 December 2021) is considered.
This series consists of T = 108 observations, with a sample mean and variance of 4.9444
and 7.9221, respectively. The time plot, marginal distribution, ACF, and PACF are presented
in Figure 12. Similar to the previous applications, Figure 12c,d indicates that an AR(1)-type
process is an appropriate choice for fitting the strike data, and as the data consist of integer
values, an INAR(1) process (14) is suggested, with an error structure εt characterised by a
discrete distribution allowing for overdispersion due to a sample DI > 1.

(a) Time plot
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(b) Marginal distribution
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(d) PACF
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Figure 12. Time plot, observed marginal distribution, ACF, and PACF for the strike data.

http://www.bls.gov/wsp/
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Table 3 summarises the conditional maximum likelihood estimation results for the
INAR(1) process assuming various distributions for the error structure. For this application,
the INAR(1) with an error structure described by the NB distribution is the best fit, with
the smallest −` and AIC values and the estimated mean and variance closest to the sample
statistics. Regarding the fitting of the proposed INAR-PncLII(1), it should be noted that b is
estimated close to 1 regardless of the value of r, suggesting a PL distribution for the error
structure, as (6) holds the usual PL as a special case of b = 1.

Table 3. Estimated parameters (with standard errors in parentheses), goodness of fit statistics, fitted
mean, and fitted variance of considered models for the strike data.

Model Parameter Estimate −` AIC Mean (µXt ) Variance (σ2
Xt

)

INAR-P(1)
p 0.5061

234.5 473.1 4.9810 4.9810(0.0560)

µ
2.4600

(0.2988)

INAR-NB(1)

p 0.5484

231.8 469.7 4.9810 6.8575

(0.0579)

r 3.8567
(2.4028)

b 0.6316
(0.1339)

INAR-PL(1)
p 0.6062

234.0 471.9 5.0017 9.5604(0.0414)

β
0.7912

(0.0966)

INAR-PncLI(1)

p 0.6062

234.0 473.9 4.9999 9.5560

(0.0414)

β
0.7914

(0.0967)

λ
0.000002
(0.00002)

INAR-PncLII(1)

p 0.6061

234.0 473.9 5.0019 9.5621

(0.0419)

β
0.7910

(for r = 1) (0.1587)

b ≈ 1.0000
(0.4764)

In order to evaluate the accuracy of the proposed INAR-PncLII(1) model for r = 1,
the Pearson residuals are calculated and analysed. These residuals yield a mean and
variance of −0.003 and 0.8183, respectively, with no significant autocorrelation shown in
Figure 13b. These results indicate a good fit of the data, even though the fit seems slightly
better for the previous datasets. Based on the obtained results and the discussion above,
the fitted INAR-PncLII(1) model is provided by

Xt = 0.6061 ◦ Xt−1 + εt

where εt ∼ PncLII(0.791, 1, 1), suggesting εt ∼ PL(0.791). The corresponding predicted
values based on the INAR-PncLII(1) model are illustrated in Figure 13a.
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(a) Predicted values
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Figure 13. Predicted values (in red) and ACF of the Pearson residuals for the strike data.

3.3. Discussion

In these data analyses, the proposed PncLII model performs favourably compared to
other commonly considered candidates, such as the INAR-P(1), INAR-NB(1), INAR-PL(1),
and INAR-PcnLI(1). Certain models, such as INAR-PL(1) and INAR-PncLI(1), have the
ability to account for departures from the inherent theoretical restrictions imposed by the
usual Poisson candidate (INAR-P(1)), and the flexibility that b and the choice of r offers the
practitioner in a real modelling scenario is evident. This is further supported by the close
estimation of the variance by INAR-PncLII(1) in the case of the download data, for example.
Equally valuable, the options and ranges of skewness and kurtosis that PncLII inherits from
the ncLII model are of value within the INAR environment illustrated in Figures 3 and 4.
In the future, it might be worthwhile to consider alternative weight constructions for ω,
as well as to further consider the ncLII (6) developed in this paper as a candidate for error
structures in the usual autoregressive cases, for example, juxtaposed against results similar
to those of [38].

4. Conclusions

In recent years, positive-support distributions have enjoyed the attention of many re-
searchers seeking to effect generalisations. In the case of this paper, the Lindley distribution
is adapted in a meaningful and implementable way via infinite negative binomial shape
mixtures within the gamma component, resulting in the ncLII distribution. This approach,
inspired by the work of [6], generalises the fundamental Lindley model (1) in a meaningful
way by extending the skewness and kurtosis of this model to allow broad flexibility to the
practitioner, together with computable and closed-form expressions of the density function
and statistical characteristics.

INAR processes are convenient for implementation when the error structure follows
a pure Poisson model; however, this may be practically restrictive due to the inherent
equidispersion property. For this reason, this paper introduces and studies a subsequent
PncLII model that acts as contender for the PncLI model of [6]. This model’s competitive
performance in the implementation within the INAR(1) environment and has closed-form
mathematical characteristics make it an attractive and meaningful contender in both discrete
data environment and INAR realms.
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Abbreviations
The following abbreviations are used in this manuscript:

Exp Exponential
Gam Gamma
Bin Binomial
ncLI noncentral Lindley of type I
ncLII noncentral Lindley of type II
PncLI Poisson noncentral Lindley of type I
PncLII Poisson noncentral Lindley of type II
DI Dispersion index
NB Negative binomial
INAR Integer autoregressive
MGF Moment-generating function
MSE Mean squared error
PGF Probability-generating function
ACF Autocorrelation function
PACF Partial autocorrelation function
AIC Akaike’s information criterion

Appendix A. Moments of the Noncentral Lindley of Type II

Suppose that the random variable Y ∼ ncLII(β, b, r) with density function (6). Then,
using (8), the first four moments of Y are provided as follows:

E[Y] =
1

β(β + 1)
[β + 2br

2F1(r, 3; 2; 1− b)]

E[Y2] =
1

β2(β + 1)
[2β + 6br

2F1(r, 4; 2; 1− b)]

E[Y3] =
1

β3(β + 1)
[6β + 24br

2F1(r, 5; 2; 1− b)]

E[Y4] =
1

β4(β + 1)
[24β + 120br

2F1(r, 6; 2; 1− b)]

where 2F1(·) represents the Gauss hypergeometric function of scalar argument with two
upper and one lower parameter(s); see [33]. Using these four moments, the levels of
skewness and kurtosis for Y can be calculated as follows:

skewness =
E[Y3]− 3E[Y2]E[Y] + 2E[Y]3

Var[Y]3/2

kurtosis =
E[Y4]− 4E[Y3]E[Y] + 6E[Y2]E[Y]2 − 3E[Y]4

Var[Y]2

https://drive.google.com/drive/folders/1pxymEy37SqJ8nqdBjj4MJ_-DxhiJ8TXC?usp=sharing
https://drive.google.com/drive/folders/1pxymEy37SqJ8nqdBjj4MJ_-DxhiJ8TXC?usp=sharing
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where E[Y] and Var[Y] = E[Y2]− E[Y]2 define the mean and variance of Y, respectively.

Appendix B. Moments of the Noncentral Lindley of Type I

Suppose that the random variable Y ∼ ncL(β, λ) with density function (3). Then, the
moments of Y are provided by

E[Yh] =
β2

β + 1
Γ(h + 1)

βh+1 +
exp(− λ

2 )Γ(h + 2)
(β + 1)βh 1F1

(
h + 2; 2;

λ

2

)
(A1)

where h > 0 and 2F1(·) represents the confluent hypergeometric function of scalar argument
with one upper and one lower parameter (see [6,33]). Using (A1), the levels of skewness
and kurtosis for Y can be calculated as described in Appendix A. These characteristics are
illustrated in Figure A1a and Figure A1b, respectively, for different values of β and λ.
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Figure A1. Skewness and kurtosis for Y ∼ ncLI(β, λ) for different values of β and λ.

Appendix C. Moments of the Poisson Noncentral Lindley of Type I

Suppose that the random variable X ∼ PncL(β, λ) with mass function (4). Then,
the factorial moment of X is provided by

E[(X)h] =
β2

β + 1
Γ(h + 1)

(β + 1)h+1

[
1 + exp(−λ

2
)1F1

(
2; h + 1;

λ
2 β

β + 1

)]
(A2)

where h > 0 and 1F1(·) represents the confluent hypergeometric function of scalar argument
with one upper and one lower parameter (see [6,33]). Using (A2), the first two moments of
X are provided by

E[X] =
1 + 1

β

(
λ
2 + 2

)
β + 1

(A3)

and

E[X2] =
1

β + 1

[
λ

2β
+

2
β
+

3λ

β2 +
λ2

4β2 +
6
β2 +

2
β
+ 1
]

(A4)

where E[X] and Var[X] = E[X2]− E[X]2 define the mean and variance of X, respectively.
Thus, the DI for X can be calculated as E[X]

Var[X]
, as illustrated in Figure A2 for different values

of β and λ.
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Figure A2. Dispersion index for X ∼ PncLI(β, λ) for different values of (β, λ).
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