
Citation: Li, L.-Y.; Xu, J.-Y.; Cheng,

S.-R.; Zhang, X.; Lin, W.-C.; Lin, J.-C.;

Wu, Z.-L.; Wu, C.-C. A Genetic

Hyper-Heuristic for an Order

Scheduling Problem with Two

Scenario-Dependent Parameters in a

Parallel-Machine Environment.

Mathematics 2022, 10, 4146. https://

doi.org/10.3390/math10214146

Academic Editors: Cristian Ramírez

Atencia and Sara Perez-Carabaza

Received: 4 October 2022

Accepted: 2 November 2022

Published: 6 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Genetic Hyper-Heuristic for an Order Scheduling Problem
with Two Scenario-Dependent Parameters in a
Parallel-Machine Environment
Lung-Yu Li 1 , Jian-You Xu 2, Shuenn-Ren Cheng 3, Xingong Zhang 4, Win-Chin Lin 5,* , Jia-Cheng Lin 5,
Zong-Lin Wu 5 and Chin-Chia Wu 5

1 Department of Computer Science and Information Engineering, Cheng Shiu University,
Kaohsiung City 83347, Taiwan

2 College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
3 Department of E-Sport Technology Management, Cheng Shiu University, Kaohsiung City 83347, Taiwan
4 Key Lab for OCME, School of Mathematical Science, Chongqing Normal University, Chongqing 401331, China
5 Department of Statistics, Feng Chia University, Taichung 40724, Taiwan
* Correspondence: linwc@fcu.edu.tw

Abstract: Studies on the customer order scheduling problem have been attracting increasing attention.
Most current approaches consider that either component processing times for customer orders on
each machine are constant or all customer orders are available at the outset of production planning.
However, these assumptions do not hold in real-world applications. Uncertainty may be caused by
multiple issues including a machine breakdown, the working environment changing, and workers’
instability. On the basis of these factors, we introduced a parallel-machine customer order scheduling
problem with two scenario-dependent component processing times, due dates, and ready times. The
objective was to identify an appropriate and robust schedule for minimizing the maximum of the
sum of weighted numbers of tardy orders among the considered scenarios. To solve this difficult
problem, we derived a few dominant properties and a lower bound for determining an optimal
solution. Subsequently, we considered three variants of Moore’s algorithm, a genetic algorithm, and
a genetic-algorithm-based hyper-heuristic that incorporated the proposed seven low-level heuristics
to solve this problem. Finally, the performances of all proposed algorithms were evaluated.

Keywords: order scheduling; scenario-dependent; genetic algorithm; genetic hyper-heuristic;
low-level heuristics

MSC: 90B35; 68M20

1. Introduction

In many service and manufacturing environments, the product development team
independently develops modules for multiple products, and the product design is consid-
ered complete after all modules are designed. This production sequence is referred to as
the customer order scheduling problem (COSP) in the literature. The COSP is encountered
in diverse industries and applications; for instance, in the manufacture of semi-finished
lenses [1], in determining the equilibrium of production capacity to solve a practical order
rescheduling problem in the steel industry [2], and in a product–service system offer-
ing a mix of tangible products and intangible services to meet the personalized needs
of customers [3]. For more applications, please refer to a review and classification of
concurrent-type scheduling models by Framinan et al. [4].

COSP studies have employed different objective functions. For example, by taking the
total completion time of a given set of orders as the criterion, Ahmadi et al. [1] developed
constructive heuristics; Framinan et al. [5] applied both the aforementioned constructive
heuristics and metaheuristics to solve the COSP.

Mathematics 2022, 10, 4146. https://doi.org/10.3390/math10214146 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10214146
https://doi.org/10.3390/math10214146
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-7705-4889
https://orcid.org/0000-0001-8237-8020
https://orcid.org/0000-0002-1598-5127
https://doi.org/10.3390/math10214146
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10214146?type=check_update&version=2

Mathematics 2022, 10, 4146 2 of 22

While considering the total weighted completion time as the criterion, Sung and
Yoon [6] proposed constructive heuristics to solve the COSP for a two-machine case,
and Ahmadi et al. [1,7–14] developed constructive heuristics to solve the COSP for the
m-machine case. More recently, Wu et al. [15] proposed an iterative greedy algorithm
and various priority rules to solve the same COSP with the total weighted completion
time proposed by Leung et al. [11] as the criterion. Riahi et al. [16] proposed a new
constructive heuristic with eight initial priority lists and a perturbative search algorithm to
solve a COSP for minimizing the total completion time. Li et al. [17] considered a problem
involving customer orders on m unrelated parallel machines to minimize the total weighted
completion time. They derived several optimality properties, a lower bound, and three
heuristics on the basis of their poorest cases to solve the problem.

Relevant studies on the COSP with consideration of the due date criterion are sum-
marized in this section. By considering the total number of tardy orders as the criterion,
Leung et al. [18,19] developed dynamic programming methods and constructive heuristics
to solve the COSP. By taking the total tardiness of a given set of orders as the criterion,
Lee [20] applied a branch-and-bound (B&B) method and constructive heuristics to solve the
problem. For the problem considered in [20], Xu et al. [21] adopted Biskup’s [22] position
learning concept and proposed a solution involving simulated annealing (SA), particle
swarm optimization (PSO), order-scheduling modified due-date, and B&B algorithms. Lin
et al. [23] simultaneously introduced two agents and the concept of ready times into the
COSP model by using the B&B, PSO, and opposite-based PSO algorithms to solve the
problem. By following the model proposed in [19] and applying the learning concept of
Koulamas and Kyparisis [24], Wu et al. [25] used a B&B method, as well as a memetic
genetic algorithm (GA) and a PSO algorithm, to develop an order scheduling model for
minimizing the number of tardy orders. By adopting the learning concept of Kuo and
Yang [26], Wu et al. [27] applied SA, artificial bee colony, and PSO algorithms, as well as a
B&B method, to solve a COSP with a learning effect based on the sum of processing times
to minimize the total tardiness of orders. Lin et al. [28] employed a B&B, four bee colony
algorithms, and four hybrid bee colony algorithms to solve a COSP with release dates to
minimize the weighted number of tardy orders. In a study on the COSP with different
forms of objective functions, Guo and Tang [2] applied a mixed-integer mathematical pro-
gramming model by considering an original objective, deviation from the initial scheduling,
and equilibrium of production capacity to solve a practical order rescheduling problem in
the steel industry.

In the aforementioned COSP studies, the component processing times for a customer’s
order on all machines were assumed to be fixed numbers. However, this assumption is
unsuitable for several manufacturing scenarios due to numerous complex factors, includ-
ing changes in the workspace, traffic transportation delays, machine breakdowns, and
worker performance instabilities [29,30]. For more real-life applications, refer to Sotskov
and Werner’s [31] comprehensive book on the stability method and models for sequencing
and scheduling under uncertainty. Thus, component processing times for a customer’s
order depend on the scenario at the time of order processing. Motivated by this observation,
scholars have suggested that the worst-case system performance is typically more impor-
tant than the average system performance. To overcome such a worst case [29,30], Kouvelis
and Yu [32] and Yang and Yu [33] recommended the use of a robust (min–max regret)
approach to solve the COSP. More recently, inspired by [33], Wu et al. [34] developed a B&B
method along with a few new dominance rules and a lower bound, proposed five construct
heuristics by combining two scenario-dependent processing times, and applied an SA
hyper-heuristic to solve the COSP. Hsu et al. [35] addressed a two-machine flow-shop prob-
lem with the scenario concept to minimize the maximum total completion time between the
two scenarios. They utilized a B&B method along with a lower bound and two optimality
properties and developed 12 construct heuristics to solve their problem. Wu et al. [36]
employed two scenarios to solve a two-stage assembly flow-shop problem in which the
measurement was the makespan. They used a B&B method, developed eight construct

Mathematics 2022, 10, 4146 3 of 22

heuristics, and proposed four variants of the cloud-theory-based simulated annealing (CSA)
hyper-heuristic method to solve the problem. Wu et al. [37] applied the scenario concept to
a single-machine scheduling problem with sequence-dependent setup times for minimizing
the total completion time. They employed a B&B method and developed five variants of
the CSA along with five new neighborhood schemes to solve the problem. Kämmerling
and Kurtz [38] presented an algorithm to calculate efficiently lower bounds for the binary
two-stage robust problem. Furthermore, [1] used the scenario pheromone in real-world
condition for producing plastic lenses; the plastic lens procedures could be conducted
by either skilled or semiskilled employees. Therefore, the component processing times
of an order differ depending on whether the order was executed by a skilled employee
or a semiskilled employee. Additionally, issues pertaining to customer’s due dates and
the release dates in COSPs have rarely been explored. By challenging these factors, we
formulated an m-parallel-machine COSP problem with two scenario-dependent component
processing times, due dates, and ready times. The objective was to identify an appropriate
and robust (min–max regret) approach to minimize the maximum of the sum of weighted
numbers of tardy orders among the considered scenarios. More recently, Wu et al. [39]
introduced a branch-and-bound algorithm and two variants of a simulated annealing hyper-
heuristic for a two-agent customer order scheduling problem with scenario-dependent
component processing times and release dates. Xuan et al. [40] proposed an exact method,
three scenario-dependent heuristics, and a population-based iterated greedy algorithm for
a single-machine scheduling problem with a scenario-dependent processing time and due
date. For understanding the importance of the criteria, due dates, and release dates in real
applications, please refer to Yin et al. [41] for a few production examples involving due
date settings.

The contributions of this study can be summarized as follows. (1) This study presents a
model of real COSPs in practical settings by addressing two scenario-dependent component
processing times, ready times, and due dates. This is a new and unexplored problem. (2)
The objective function minimized the maximum total weighted number of tardy orders
across the two possible scenarios by considering all possible permutations instead of
only the total weighted number of tardy orders. (3) Three properties and a lower bound
were derived to accelerate the search for an effective B&B method. (4) Moore’s algorithm
(Moore [42]) was used to construct heuristics. (5) A hyper-heuristic based on a GA that
incorporated seven low-level heuristics was proposed to solve this problem.

The remainder of this study is organized as follows. In the second section, the notation
definition and problem description are presented. In the third section, the derivation of
a lower bound and several properties are described and used in the B&B algorithm. In
the fourth section, three modified variants of Moore’s algorithm are introduced. In the
fifth, the GA used herein as well as the GA-based hyper-heuristic that incorporates the
proposed seven low-level heuristics are described. The sixth section outlines the parameter
tuning and setting. In the seventh section, the performances of all of the five algorithms
are proposed and evaluated herein. In the final section, our conclusions and an outline for
future studies on the topic are presented.

2. Problem Statement

The considered problem can be described as follows: For n customer orders, these
orders belong to n different clients and each customer order has m components to be
processed on m machines. Each order has its important weight (wi), and one machine
produces only one component. Because factors causing substantial uncertainties are shown,
we considered that a customer order had a component processing time ts

iv on Mv, a ready
time rs

i , and a due date ds
i in scenario s, where s = 1, 2. Our objective here was to formulate

a robust policy that minimized the maximum of the weighted number of tardy orders
in two scenario-dependent environments. In other words, the aim was to identify a job
sequence σ∗ such that σ∗ = arg{minσ∈Ω{maxs=1,2 ∑n

i=1 wi NTs
i (σ)}}, where Ω is the set of

all possible permutation schedules, and NTs
i (σ) = 1 if customer order i is tardy in scenario

Mathematics 2022, 10, 4146 4 of 22

s in σ and is 0 otherwise. When m = 1, the problem with the one-scenario environment
is NP-hard, as demonstrated by Karp [43]; the same COSP problem with one scenario
was addressed by Lin et al. [28]. Thus, the problem considered in the present study was
NP-hard as well.

3. Branch-and-Bound Method

Lin et al. [28] addressed the same COSP problem, but they considered only one
scenario. Following their ideas, we derived a lower bound to enhance the searching power
of the B&B algorithm. Suppose σ = (δ, δc) is a schedule in which δ denotes a determined
schedule with q orders and δc denotes the remaining unscheduled (n − q) orders. The
completion times of the orders placed after the kth position in σ are expressed as follows:

Cs
[k+1](σ) = maxv∈ΩM

{
max

{
zs

k, rs
[k+1]

}
+ ts

[k+1]v

}
≥ maxv∈ΩM

{(
zs

k + rs
[k+1]

)
/2+

ts
[k+1]v

}
≥ zs

k
2 +

rs
[k+1]

2 + ts
k+1∗ ≥

zs
k

2 +
rs
[k+1]

2 + ts
(k+1)∗ = C̃s

[k+1](σ), s = 1, 2.
. . .

Cs
[k+n1]

(σ) = maxv∈ΩM

{
max

{
zs

q, rs
i

}
+ ts

iv

}
≥ zs

k
2n1 + ∑n1

i=1
rs
[k+i]

2n1−i+1 + ∑n1
i=1

ts
(k+i)∗
2n1−i

= C̃s
[k+n1]

(σ), s = 1, 2,

where zs
k denotes the completion time of the order scheduled at the kth position in the sched-

uled part, s = 1, 2; rs
(k+1) ≤ . . . ≤ rs

(k+n1)
denotes the nondecreasing form of

{
rs

i , i ∈ δc};

and ts
(k+1)∗ ≤ . . . ≤ ts

(k+n1)∗ denotes the nondecreasing form of
{

ts
i∗ = ∑m

v=1
ts
iv
m , i ∈ δc

}
.

Therefore, the following formulas can be obtained:

∑n
i=1 wi NTs

i (σ) > ∑q
i=1 wi NTs

i (σ)+w(1) ∑n
i=k+1 Us

{C̃s
[k+1](σ)>ds

max}
, s = 1, 2 (1)

where w(1) = min{wi, i ∈ δc}; ds
max = max

{
ds

i , i ∈ δc}, s = 1, 2; Us
{x>a} = 1 and Us

{x≤a} =

0, s = 1, 2; and {ts
(q+i)∗, i ∈ δc} denotes a set of a nonincreasing order of

{
∑m

v=1 ts
iv, i ∈ δc}.

Therefore, the inequality formula can be derived from Equation (1) as follows:

maxs=1,2{∑n
i=1 wi NTs

i (σ)} > (∑2
s=1 ∑q

i=1 wi NTs
i (σ) + w(1) ∑n

i=q+1 Us
{C̃s

[k+1](σ)>ds
max}

)/2.

Thus, a lower bound can be obtained as follows:

lowerbdd = (∑2
s=1 ∑q

i=1 wi NTs
i (σ) + w(1) ∑n

i=q+1 Us
{Cs

[q]+ts
(q+i)∗>ds

max})/2 (2)

To indicate that σ = (δ, i, j, δ′) is no worse than σ′ = (δ, j, i, δ′), we will show that wi NTs
i (σ)+

wjNTs
j (σ) ≤ wjNTs

j (σ
′) + wi NTs

i (σ
′) and Cs

j (σ) ≤ Cs
i (σ
′) hold for s = 1, 2.

Moreover, let (q − 1) be the number of orders in δ, and let zs
v be the completion time of

the (q− 1)th order in δ on machine Mv, v = 1, 2, . . . , m and s = 1, 2. According the definition,
the completion times of order i and order j in σ and σ′ are given as:

Cs
i (σ) = maxv∈ΩM

{
maxv∈ΩM

{
zs

v, rs
i
}
+ ts

iv
}

, s = 1, 2,
Cs

j (σ) = maxv∈ΩM

{
max

{
Cs

i (σ), rs
j

}
+ ts

jv

}
, s = 1, 2,

Cs
j (σ
′) = maxv∈ΩM

{
maxv∈ΩM

{
zs

v, rs
j

}
+ ts

jv

}
, s = 1, 2, and

Cs
i (σ
′) = maxv∈ΩM

{
max

{
Cs

j (σ
′), rs

i

}
+ ts

iv

}
, s = 1, 2.

Based on the aforementioned expressions, the below properties can be obtained to
increase the speeding power of a B&B algorithm to solve the problem under study. Only

Mathematics 2022, 10, 4146 5 of 22

the proof of Case (i) of Property 1 is given. The other cases are omitted because they can be
derived in the same manner.

Property 1. For s = 1, 2, if rs
j > rs

i ≥ maxv∈ΩM{zs
v }, maxv∈ΩM

{
ts
iv
}
< maxv∈ΩM

{
ts

jv

}
,

rs
i + maxv∈ΩM

{
ts
iv
}
> rs

j , and one of the following cases holds:

Case (i) rs
i + maxv∈ΩM

{
ts
iv
}

< ds
i , rs

j + maxv∈ΩM

{
ts

jv

}
+ maxv∈ΩM

{
ts
iv
}

> ds
i and

rs
i + maxv∈ΩM

{
ts
iv
}
+ maxv∈ΩM

{
ts

jv

}
< ds

j .

Case (ii) rs
j + maxv∈ΩM

{
ts

jv

}
> ds

j , and rs
i + maxv∈ΩM

{
ts
iv
}
< ds

i .

Case (iii) ds
j > rs

j +maxv∈ΩM

{
ts
iv
}
+maxv∈ΩM

{
ts
jv

}
and rs

j ++maxv∈ΩM

{
ts
jv

}
+maxv∈ΩM

{
ts
iv
}
<

ds
i .

Then, σ is no worse than σ′.

Proof: Details of the proof of Case (i) of Property 1 are as follows.
The completion times of jobs Oj in sequence σ and Oi in sequence σ′ are, respectively:

Cs
j (σ) = maxv∈ΩM

{
max

{
Cs

i (σ), rs
j

}
+ ts

jv

}
= maxv∈ΩM

{
max

{
maxv∈ΩM

{
maxv∈ΩM

{
zs

v, rs
i
}
+ ts

iv
}

, rs
j

}
+ ts

jv

}
and

Cs
i (σ
′) = maxv∈ΩM

{
max

{
Cs

j (σ
′), rs

i

}
+ ts

iv

}
= maxv∈ΩM

{
max

{
maxv∈ΩM

{
maxv∈ΩM

{
zs

v, rs
j

}
+ ts

jv

}
, rs

i

}
+ ts

iv

}
.

By applying the condition rs
j > rs

i ≥ maxv∈ΩM{zs
v }, we can simplify Cs

j (σ) and Cs
i (σ
′)

as follows:
Cs

j (σ) = maxv∈ΩM

{
max

{
rs

i + maxv∈ΩM{t
s
iv}, rs

j

}
+ ts

jv

}
(3)

Cs
i (σ
′) = maxv∈ΩM

{
max

{
rs

j + maxv∈ΩM

{
ts

jv

}
, rs

i

}
+ ts

iv

}
= rs

j + maxv∈ΩM

{
ts

jv

}
+ maxv∈ΩM

{
ts
iv
} (4)

By applying rs
i + maxv∈ΩM

{
ts
iv
}
> rs

j to (3), we have:

Cs
j (σ) = rs

i + maxv∈ΩM{t
s
iv}+ maxv∈ΩM

{
ts

jv

}
(5)

Hence, Cs
i (σ
′)− Cs

j (σ) = (rs
j − rs

i) > 0, that is, Cs
j (σ) ≤ Cs

i (σ
′), for s = 1, 2.

Next, it can be claimed that maxs ∑n
i=1 wi NTs

i (σ) ≤ maxs ∑n
i=1 wi NTs

i (σ
′); equiva-

lently, wi NTs
i (σ) + wjNTs

j (σ) ≤ wjNTs
j (σ
′) + wi NTs

i (σ
′).

It can be claimed that NTs
i (σ) = 0. By applying rs

i ≥ maxv∈ΩM{zs
v } and rs

i +
maxv∈ΩM

{
ts
iv
}
< ds

i in succession, this implies NTs
i (σ) = 0.

It can be claimed that NTs
j (σ) = 0. By applying rs

i ≥maxv∈ΩM{zs
v}, rs

i +maxv∈ΩM

{
ts
iv
}
>

rs
j , and rs

i + maxv∈ΩM

{
ts
iv
}
+ maxv∈ΩM

{
ts

jv

}
< ds

j in succession, this implies NTs
j (σ) = 0.

Because the weights wi and wj > 0, the following desired results are obtained:

0 ≤ wjNTs
j
(
σ′
)
+ wi NTs

i
(
σ′
)
.

�

Property 2. For s = 1, 2, if rs
i ≥ maxv∈ΩM{zs

v } and rs
i + maxv∈ΩM{zs

v } < rs
j , one of the

following cases holds:

Case (i): rs
j + maxv∈ΩM

{
ts

jv

}
< ds

j , and rs
i + maxv∈ΩM

{
ts
iv
}
< ds

i < rs
j + maxv∈ΩM

{
ts

jv

}
+

maxv∈ΩM

{
ts
iv
}

.

Mathematics 2022, 10, 4146 6 of 22

Case (ii): rs
j + maxv∈ΩM

{
ts

jv

}
< ds

j < rs
i + maxv∈ΩM

{
ts
iv
}
+ maxv∈ΩM

{
ts

jv

}
, and wi > wj.

Case (iii): rs
j + maxv∈ΩM

{
ts

jv

}
> ds

j , and rs
i + maxv∈ΩM

{
ts
iv
}
< ds

i .

Case (iv): ds
j > rs

j + maxv∈ΩM

{
ts
iv
}
+ maxv∈ΩM

{
ts

jv

}
.

Then, σ is no worse than σ′.

Property 3. For s = 1, 2, if maxv∈ΩM{zs
v , rs

j } > maxv∈ΩM

{
zs

v , rs
i
}

and ts
iv ≤ ts

jv, ∀ v ∈ ΩM,
one of the following cases holds:

Case (i): maxv∈ΩM

{
maxv∈ΩM

{
zs

v , rs
i
}
+ ts

iv + ts
jv

}
< ds

j , and

maxv∈ΩM

{
maxv∈ΩM

{
zs

v , rs
j

}
+ ts

jv + ts
iv

}
> ds

i > maxv∈ΩM

{
maxv∈ΩM

{
zs

v , rs
i
}
+ ts

iv
}

.

Case (ii): maxv∈ΩM

{
maxv∈ΩM

{
zs

v , rs
j

}
+ ts

jv

}
> ds

j , maxv∈ΩM

{
maxv∈ΩM

{
zs

v , rs
i
}
+ ts

iv
}
<

ds
i and maxv∈ΩM

{
maxv∈ΩM

{
zs

v , rs
j

}
+ ts

jv + ts
iv

}
> ds

i .

Case (iii): wi > wj, and maxv∈ΩM

{
maxv∈ΩM

{
zs

v , rs
i
}
+ ts

iv + ts
jv

}
> ds

j >

maxv∈ΩM

{
maxv∈ΩM

{
zs

v , rs
j

}
+ ts

jv

}
.

Case (iv): maxv∈ΩM

{
maxv∈ΩM

{
zs

v , rs
j

}
+ ts

jv

}
> ds

j , and

maxv∈ΩM

{
maxv∈ΩM

{
zs

v , rs
i
}
+ ts

iv
}
< ds

i .

Case (v): maxv∈ΩM

{
maxv∈ΩM

{
zs

v , rs
i
}
+ ts

iv + ts
jv

}
< ds

j , and

maxv∈ΩM

{
maxv∈ΩM

{
zs

v , rs
j

}
+ ts

jv + ts
iv

}
< ds

i .

Then, σ is no worse than σ′.

4. Three Modified Moore’s Heuristics

The literature [42] indicates that Moore’s algorithm produces an optimal schedule
for minimizing the total number of tardy jobs on a single machine. To find the near-
optimal robust job sequences for the proposed NP-hard problem, by following the idea
of Moore’s algorithm, we introduced three mixed heuristics and combined them with
the scenario-dependent processing times, ready times, and due dates across two possible
scenarios. Notably, Moore’s algorithm could not be applied directly to solve this model
regardless of whether the scenario-dependent parameters were present. In light of the
favorable performance of Moore’s algorithm in conjunction with the tardiness criterion in
the classical singe-machine setting, the pairwise interchange improvement was applied
to Moore’s algorithm. The process flow of Moore’s algorithm is as follows: (1) Form a
schedule σ by using the rule for all orders (jobs) ON . (2) Set the current schedule σ* = σ
and S* = ON . (3) Compute the completion time of orders in S* until a tardy order is found
and erase it from σ* and S* to form a new current sequence σ* and new S*. (4) Find the
order O* with the longest processing time in the current sequence σ*. (5) Delete O* from
σ* and S* and repeat steps (3)–(5) until no tardy orders remain. The procedures of the
three proposed modified heuristics (called Moore_pi_M, Moore_pi_m, and Moore_pi_mean
heuristic) derived from Moore’s algorithm are as follows:

Moore_pi_M heuristic:

01: Let t∗i = max1≤v≤m
{

t1
iv + r1

i , t2
iv + r2

i
}

and d∗i = max
{

d1
i , d2

i
}

be the processing time
and due date, respectively, for order Oi, i = 1, 2, . . . , n, and ON = {O1, O2, . . . , On}.

02: Form a schedule σ by following the earliest due dates (EDD) rule based on ON .
03: Let the current schedule σ* = σ and the corresponding set of orders S* = ON
04: Compute the completion times of the orders in σ until a tardy order is found and

delete it from
05: σ* (and from S*) to form a new current schedule σ* and new S*. Find an order O*
06: with the largest processing time in S*.
07: Delete order O* from σ* and S*. Repeat Steps 04–07 until no tardy order remains.

Mathematics 2022, 10, 4146 7 of 22

08: Output the final schedule σM = (σ∗, σ′), where σ∗ denotes the sequence of orders
09: completed on time and scheduled using the EDD rule, and σ′ denotes an arbitrary
10: sequence of orders that are tardy under σM.
11: Execute σM by using the pairwise interchange improvement method and output the

final solution.

Moore_pi_m heuristic:

01: Let t∗i = min1≤v≤m
{

t1
iv + r1

i , t2
iv + r2

i
}

and d∗i = min
{

d1
i , d2

i
}

be the processing time
and due date, respectively, for order Oi, i = 1, 2, . . . , n, and ON = {O1, O2, . . . , On}.

02–11: are the same as those in the Moore_pi_M heuristic.

Moore_pi_mean heuristic:

01: Let t∗i = max {r1
i + ∑m

v=1
t1
iv
m , r2

i + ∑m
v=1

t2
iv
m } and d∗i = (d1

i + d2
i)/2 be the processing

time and due date, respectively, for order Oi, i = 1, 2, . . . , n and ON = {O1, O2, . . . ,
On}.

02–11: are the same as those in the Moore_pi_M heuristic.

Note that the complexity of Moore’s algorithm can be seen in [42].

5. A Genetic and a Genetic Hyper-Heuristic

Most researchers have observed that in general, a heuristic seems relatively simple
and easy to construct, whereas a metaheuristic is both complex and difficult to construct,
as well as to use for intelligently implementing random search strategies [44,45]. The
GA has been successfully utilized to obtain high-quality approximate solutions of many
combinatorial problems. The GA is an effective computerized search tool for identifying
the best and optimal solutions to complex problems based on genetic and neural selection
mechanics such as mutation, crossover, and reproduction. These mutations have been used
to successfully solve numerous NP-hard combinatorial problems. In the GA or GAHH
(hyper-heuristic based on the GA framework), we applied a group of continuous real
numbers to display the codes of orders by using a random-number encoding method. For
example, given a chromosome (0.73, 0.62, 0.14, 0.23, 0.81) as a gene, we decoded it as a
schedule (3, 4, 2, 1, 5) by using the ranking method. Specifically, in the reproduction stage,
we selected the parents and recombined them by using a certain crossover operator to
create offspring. In particular, in this study, we considered a linear order crossover (see
Iyer and Saxena [46]). Moreover, the notations Pop, P, and IT_GA denote the number of
parents, value of the mutation rate, and number of iterations (or generations), respectively,
in executing the GA. The main structures of the proposed GA are summarized as follows:

Steps of genetic algorithm:

00: Input Pop, P, IT_GA.
01: Generate a series of Pop initial parents (schedules) and find their fitness values.
02: Do i = 1, IT_GA
03: Choose two parents from Pop populations by using the roulette wheel method and

employ a linear order crossover to reproduce a set of Pop offspring.
04: For each offspring, generate a random number u (0 < u < 1) if u < P; then, create a new
05: offspring by inserting a displacement mutation.
06: Record the best one (schedule) and replace these Pop parents with their offspring.
07: End do /* for the number of iterations (IT_GA) is fulfilled */
08: Output the final best schedule and its fitness value.

In the following, a GA-based hyper-heuristic is applied to solve this problem by
identifying problem-solving methods instead of directly finding solutions to the problem
(refer to Cowling et al. [47] and Anagnostopoulos and Koulinas [48]). Hyper-heuristic
processes have a high level of strategy and a low level of a group of heuristics that is used
to determine a low-level heuristic to produce a new solution. Moreover, seven low-level
heuristics are proposed on the basis of candidate variation operators such as the two-job
swap heuristic, one step (or two steps) to the right heuristic, one step (or two steps) to

Mathematics 2022, 10, 4146 8 of 22

the left heuristic, pulling-out and onward-moved reinsertion heuristic, and pulling-out
and backward-moved reinsertion heuristic. Many studies have indicated that the two-job
swapping method represents an effective improved scheme. To explore diverse search
solutions, the randomly determined neighborhoods of a current job must be explored as
well. They are recorded as LH1, LH2, . . . , and LH7. The details of the proposed seven
low-level heuristics are as follows:

LH1: Two-order swap heuristic: randomly select two orders (e.g., O2 and O4) in a schedule
σ and swap the selected two orders, resulting in a new schedule σ′. For example,
σ = (O1, O2, O3, O4, O5), σ′ = (O1, O4, O3, O2, O5).

LH2: One step to the right heuristic: randomly select one order (e.g., O2) in a schedule
σ, extract order O2 from its position, move it one position toward the right, and
reinsert it to obtain a new schedule σ′. For example, σ = (O1, O2, O3, O4, O5),
σ′ = (O1, O3, O2, O4, O5).

LH3: Two steps to the right heuristic: randomly select one order (e.g., O3) in a schedule
σ, extract order O3 from its position, move it two positions toward the right, and
reinsert it, resulting in a new schedule σ′. For example, σ = (O1, O2, O3, O4, O5),
σ′ = (O1, O2, O4, O5, O3).

LH4: One step to the left heuristic: randomly select one order (e.g., O4) in a schedule σ,
extract job O4 from its position, move it one position toward the left, and reinsert
it, resulting in the new schedule σ′. For example, σ = (O1, O2, O3, O4, O5), σ′ =
(O1, O2, O4, O3, O5).

LH5: Two steps to the left heuristic: randomly select one order (e.g., O5) in a schedule
σ, extract order O5 from its position, move it two positions toward the left, and
reinsert it to obtain a new schedule σ′. For example, σ = (O1, O2, O3, O4, O5),
σ′ = (O1, O2, O5, O3, O4).

LH6: Pulling-out and onward-moved reinsertion heuristic: Randomly select two orders
(e.g., O2 and O5) in a schedule σ, extract order O2 (the leftward of the two selected
orders) from its position, and onward reinsert it just after O5 to obtain a new schedule
σ′. For example, σ = (O1, O2, O3, O4, O5), σ′ = (O1, O3, O4, O5, O2).

LH7: Pulling-out and backward-moved reinsertion heuristic: randomly select two orders
(e.g., O2 and O5) in a schedule σ, extract order O5 (the rightward of the two selected
orders) from its position, and backward reinsert it just before O2 to obtain a new
schedule σ′. For example, σ = (O1, O2, O3, O4, O5), σ′ = (O1, O5, O2, O3, O4).

Notably, as the value of n increases (for example, when n > 10,) in general, the operators
LH6 and LH7 differ from the other five heuristics, especially when n = 100 or 200.

In what follows, the genetic algorthim hyper-heuristic is introduced based on the GA
framework as well; it was labeled GAHH. In the execution of the GAHH, we randomly
selected a low-level heuristic based on its selection probability and applied it once to
each population over several iterations (named L_no). The current solution was replaced
with a newly generated solution if the new solution was superior to the current solution;
otherwise, it was accepted with a certain probability. Let fl = 1/7 be the initial probability
of each LHl; l = 1, 2, . . . , 7. Assume that πl is the recorded total frequency of obtaining a
superior solution when cyclically executing LHl. To ensure that all of the seven low-level
heuristics in the pool were in the GAHH, we set πl = max{1, πl}. The procedures of the
GAHH were as follows:

Steps of genetic algorthim hyper-heuristic:

00: Input Pop, P, ITRN, L_no.
01: Generate a series of Pop initial parents and find their fitness values.
02: Do c = 1, ITRN
03: set fl = 1/7, l = 1, 2, . . . , 7.
04: Do i = 1, pop /* for each parent σi
05: Do k = 1, L_no
06: Select an LHl by using the roulette wheel method based on the value
07: of fl to improve σi for generating another new schedule σt.

Mathematics 2022, 10, 4146 9 of 22

08: Replace πl = πl + 1 with LHj if RC(σt) < RC(σi).
09: Retain each superior current parent σi
10: End do /* for the low-level heuristics */
11: End do /* i = 1, 2, . . . , Pop */
12: Update the probabilities { fl , l = 1, 2, . . . , 7} of LH1, LH2, . . . , and LH7 according
13: their past records as { fl = πl/ ∑7

j=1 πj, l = 1, . . .,7}
14: Select two parents from Pop populations by using the roulette wheel method and
15: employ a linear order crossover to reproduce a set of Pop offspring.
16: For each offspring, generate a random number u (0 < u < 1) if u < P; then, create a
17: new offspring by inserting a displacement mutation.
18: Retain the best offspring, and replace the parents of this Pop with their offspring.
19: End do /*when the iterative number of high-level cycles (ITRN) is */
20: Output the final best sequence and its fitness value.

The flowchart of the GAHH is depicted in Figure 1.

Mathematics 2022, 10, 4146 10 of 21

Figure 1. Flowchart of GAHH.

6. Tuning Genetic Algorithm Hyper-Heuristic Parameters
With reference to the scheme of Montgomery [49], in this section, we present an ap-

proach that used one factor at a time to tune the relevant GAHH parameters. The GAHH
proposed in Section 5 had four parameters; namely, population size (Pop), number of low-

start

Initialization:
Pop, P, ITRN, L_no, w = 7

Generate Pop parent sequences, 𝜎ଵ,𝜎ଶ … … , 𝜎௉௢௣, and compute their fitness
values. C = 1

For each 𝜎௜: Apply one lower heuristic LHj
with prob. pj = 1/w, per time.
Repeat L_no times.
Record improvement information of each
LHj.

Update pj

Selection (using the roulette wheel method)

Crossover: Apply a linear crossover

Mutation (with probability P)

Update Pop parents and the best
sequence

C<ITRN?

Yes

Output: the best sequence and its
objective value

End

C=C+1

Figure 1. Flowchart of GAHH.

Mathematics 2022, 10, 4146 10 of 22

To find an exact solution for small-sized orders, the best of the schedules found using
the three proposed heuristics, a GA, and the GAHH was used as the upper bound in a
depth-first B&B method. To help cut the branching trees, the proposed properties and
the lower bound were used in the method. The orders were first scheduled in a forward
manner, and we selected a systematic search and branch down each tree [25,28,34,36].

6. Tuning Genetic Algorithm Hyper-Heuristic Parameters

With reference to the scheme of Montgomery [49], in this section, we present an
approach that used one factor at a time to tune the relevant GAHH parameters. The
GAHH proposed in Section 5 had four parameters; namely, population size (Pop), number
of low-level heuristics applied (L_no), mutation probability (P), and number of high-
level cycles (ITRN). To reduce the computation time or obtain superior solutions, the
values of these parameters must be tuned before conducting a simulation study. To obtain
suitable parameter settings, we computed the average error percentage (AEP) as AEP =

100∑n
i=1(

Hi−B∗i
B∗i

)[%], where Hi is the objective solution searched using the GAHH, and B∗i
is the optimal objective value obtained using the B&B method for each instance i. With
reference to the designs of Leung et al. [10–14,16], Lee [20], Lin et al. [28], and Yang and
Yu [33], the weights wi were generated from the uniform distribution U (1, 100). The
component processing time t(1)iv and ready time r(1)i of an order were generated from the
uniform distributions U (1, 100) and U (1, 100× n× λ); the due dates of an order were
generated from the uniform distribution U (TPTbar(1) (1 − τ − ρ/2), TPTbar(1) (1 − τ +
ρ/2)) in Scenario 1. In Scenario 2, the component processing time t(2)iv and ready time r(2)i of
an order were generated from the uniform distributions U (1, 200) and U (1, 200× n× λ),
and the due dates of an order were generated from the uniform distribution U (TPTbar(2)
(1 − τ − ρ/2), TPTbar(2) (1 – τ + ρ/2)), where TPTbar(s) = ∑m

v=1 ∑n
i=1 t(s)iv /m; τ and ρ

describe the tardiness factor and range of due dates, respectively; and 0 < λ < 1 is a
controllable parameter. For simplification, we set n = 10, m = 3, τ = 0.5, ρ = 0.5, and λ = 0.3
and generated 100 problem instances for testing.

With Pop = 10, P = 0.05, and L_no = 20, a simulation was conducted and designed
as ITRN was varied from 1 to 10 in incremental steps of 1. It can be seen in Figure 2a
that the lowest point of the AEP was located at ITRN = 6. With Pop = 10, ITRN = 6, and
L_no = 20, a simulation was conducted and designed as P was varied from 0.01 to 0.1 in
incremental steps of 0.1. It can be seen in Figure 2b that the AEP was approximately zero
(below 0.59%) when P was 0.04, which indicated an effective reduction in the AEP. With
ITRN = 6, P = 0.04, and L_no = 20, a simulation was conducted and designed as Pop was
varied from 10 to 20 in incremental steps of 2. It can be seen in Figure 2c that the AEP was
the minimum (~0.29%) when Pop = 20, which indicated an effective reduction in the AEP
with an increase in Pop. With ITRN = 6, P = 0.04, and Pop = 20, a simulation was conducted
and designed as L_no was varied from 10 to 50 in incremental steps of 4. It can be seen in
Figure 2d that the AEP was the lowest (~0.03%) when L_no equaled 46.

Mathematics 2022, 10, 4146 11 of 22

Mathematics 2022, 10, 4146 11 of 21

level heuristics applied (L_no), mutation probability (P), and number of high-level cycles
(ITRN). To reduce the computation time or obtain superior solutions, the values of these
parameters must be tuned before conducting a simulation study. To obtain suitable pa-
rameter settings, we computed the average error percentage (AEP) as AEP =
100∑ (ு೔ି஻೔∗஻೔∗௡௜ୀଵ)[%], where Hi is the objective solution searched using the GAHH, and 𝐵௜∗ is

the optimal objective value obtained using the B&B method for each instance i. With ref-
erence to the designs of Leung et al. [10–14,16], Lee [20], Lin et al. [28], and Yang and Yu
[33], the weights 𝑤௜ were generated from the uniform distribution U (1, 100). The compo-
nent processing time 𝑡௜௩(ଵ) and ready time 𝑟௜(ଵ) of an order were generated from the uniform
distributions U (1, 100) and U (1, 100 × n × λ); the due dates of an order were generated
from the uniform distribution U (TPTbar(1) (1 − τ − ρ/2), TPTbar(1) (1 − τ + ρ/2)) in Scenario
1. In Scenario 2, the component processing time 𝑡௜௩(ଶ) and ready time 𝑟௜(ଶ) of an order were
generated from the uniform distributions U (1, 200) and U (1, 200 × n × λ), and the due
dates of an order were generated from the uniform distribution U (TPTbar(2) (1 − τ − ρ/2),
TPTbar(2) (1 – τ + ρ/2)), where 𝑇𝑃𝑇𝑏𝑎𝑟(𝑠) = ∑ ∑ 𝑡௜௩(௦)௡௜ୀଵ /𝑚௠௩ୀଵ ; τ and ρ describe the tardi-
ness factor and range of due dates, respectively; and 0 < λ < 1 is a controllable parameter.
For simplification, we set n = 10, m = 3, τ = 0.5, ρ = 0.5, and λ = 0.3 and generated 100
problem instances for testing.

With Pop = 10, P = 0.05, and L_no = 20, a simulation was conducted and designed as
ITRN was varied from 1 to 10 in incremental steps of 1. It can be seen in Figure 2a that the
lowest point of the AEP was located at ITRN = 6. With Pop = 10, ITRN = 6, and L_no = 20,
a simulation was conducted and designed as P was varied from 0.01 to 0.1 in incremental
steps of 0.1. It can be seen in Figure 2b that the AEP was approximately zero (below 0.59%)
when P was 0.04, which indicated an effective reduction in the AEP. With ITRN = 6, P =
0.04, and L_no = 20, a simulation was conducted and designed as Pop was varied from 10
to 20 in incremental steps of 2. It can be seen in Figure 2c that the AEP was the minimum
(~ 0.29%) when Pop = 20, which indicated an effective reduction in the AEP with an in-
crease in Pop. With ITRN = 6, P = 0.04, and Pop = 20, a simulation was conducted and
designed as L_no was varied from 10 to 50 in incremental steps of 4. It can be seen in Figure
2d that the AEP was the lowest (~0.03%) when L_no equaled 46.

Finally, the optimal setting values of the parameter (Pop, P, ITRN, L_no) were set to
(20, 0.04, 6, 46) for small-sized orders. However, for large-sized orders, where n = 100 and
200, a greater number of lower-level heuristics (L_no) was required to obtain superior so-
lutions; following the same approach as above, we eventually set L_no to 560 and 1000 for
n = 100 and n = 200, respectively, for use in subsequent simulation studies.

Figure 2. Tuning the GAHH parameters. Figure 2. Tuning the GAHH parameters.

Finally, the optimal setting values of the parameter (Pop, P, ITRN, L_no) were set to (20,
0.04, 6, 46) for small-sized orders. However, for large-sized orders, where n = 100 and 200,
a greater number of lower-level heuristics (L_no) was required to obtain superior solutions;
following the same approach as above, we eventually set L_no to 560 and 1000 for n = 100
and n = 200, respectively, for use in subsequent simulation studies.

Notably, three stopping conditions are commonly used in metaheuristics; namely, the
number of generations, the difference between the current best solution and the previous
best solution, and the limitation of CPU time. To fairly compare the proposed GAHH
and GA, the same values for the population size, the same crossover scheme, and the
same mutation rates were used in both approaches. We only revised the number of
generations (IT_GA) in case of the GA to approximate to the number of repeated cycles
(ITRN) multiplied by the times of the low-level heuristics per cycle (L_no) in the GAHH,
that is, IT_GA = ITRN × L_no. After our preliminary tests, the parameters (Pop, P, IT_GA)
in the GA method were set to (20, 0.04, 276) for small-sized orders (n = 9, 11), (20, 0.04, 3360)
for n = 100, and (20, 0.04, 6000) for n = 200, respectively. Due to the integration of high-
level strategic heuristics with a group of low-level heuristics, a small GAHH population
was adequate.

7. Simulation Study

In this section, the performances of the B&B method, three heuristics, the GA, and
the GAHH were evaluated through simulation studies. All of the algorithms were coded
in FORTRAN and executed on a personal computer equipped with an Intel Core i7 CPU
(2.66 GHz) and 4 GB of RAM and running the Windows XP operating system. With
reference to the design of Leung et al. [10,12–14], Lee [20], and Lin et al. [28], we generated
the component processing times t(1)iv from U (1, 100) for the order instances in Scenario 1.

The t(2)iv values of an order i on m machines were independently obtained from U (1, 200)
for m = 2, 3, and 4 (small-sized orders) and m = 5, 10, and 20 (large-sized orders). The
weight wi of each order was randomly generated from another U (1, 100) independently. In
addition, we generated the due dates of the orders from another U (TPTbar(s) (1 − τ − ρ/2),
TPTbar(s) (1 – τ + ρ/2)), where TPTbar(s) = ∑m

v=1 ∑n
i=1 t(s)iv /m, τ denotes the tardiness

factor, and ρ denotes range of due dates. The combinations of (τ, ρ) included (0.25, 0.25),
(0.25, 0.5), (0.5, 0.75), (0.5, 0.5), (0.5, 0.25), and (0.25, 0.75). With reference to the design of
Reeves [50], we generated the ready times from U (1, 100nλ) for Scenario 1 and U (1, 200nλ)

Mathematics 2022, 10, 4146 12 of 22

for Scenario 2, respectively, where λ is the control variable. The value of λ was set to 0.1,
0.3, and 0.5. Herein, the two parts of the simulation study were designed to address small-
and large-sized orders.

7.1. Results Obtained for Small-Sized Orders

For the small-sized orders, the number of orders n was set as 9 and 11 and the number
of machines m as 2, 3, and 4. A total of 100 problem instances were examined for each
combination of (n, m, λ, τ, ρ). Thus, in total, 10,800 (=100·2·3·3·2·3) instances were tested
in this experiment. The B&B method was set to stop and run the next instance when the
number of trimmed nodes exceeded 108.

The average and maximum number of nodes and the average and maximum execution
times (in seconds) were recorded to determine the performance of the B&B method. To
assess the performance of the three modified Moore’s heuristics, GA, and GAHH, the AEP
and maximum error percentage were recorded. The performance of the B&B method is
summarized in Table 1. The performances of the proposed heuristics and algorithms are
summarized in Table 2.

Table 1. Number of B&B nodes and CPU time for small values of n.

Node CPU_Time

n m Mean Max Mean Max

9 2 102,150 35,6594 0.56 1.25
3 108,842 35,9043 0.68 1.48
4 116,378 386,330 0.82 1.79

11 2 606,5047 25,997,813 57.42 193.89
3 6,701,240 27,681,786 74.84 235.82
4 6,952,756 27,613,651 90.24 272.42

Mean 3,341,069 1,373,2536 37.43 117.78

n λ Mean Max Mean Max

9 0.1 63,883 15,8272 0.52 1.11
0.3 84,005 374,265 0.61 1.56
0.5 179,482 569,430 0.93 1.86

11 0.1 316,9517 9,901,037 47.60 131.62
0.3 4,378,853 21,526,663 61.14 236.57
0.5 12,170,673 49,865,551 113.76 333.93

Mean 3,341,069 13,732,536 37.43 117.78

n τ Mean Max Mean Max

9 0.25 73,284 287,313 0.55 1.40
0.50 144,963 447,331 0.82 1.62

11 0.25 3,734,194 17,472,356 53.12 200.44
0.50 9,411,835 36,723,144 95.21 267.64

Mean 3,341,069 13,732,536 37.43 117.78

n ρ Mean Max Mean Max

9 0.25 120,476 374,104 0.71 1.49
0.50 105,302 379,570 0.67 1.51
0.75 101,593 348,294 0.68 1.53

11 0.25 7,668,642 29,579,795 80.48 255.49
0.50 6,353,625 26,905,933 71.67 225.25
0.75 5,696,776 24,807,523 70.35 221.39

Mean 3,341,069 13,732,536 37.43 117.78

Mathematics 2022, 10, 4146 13 of 22

Table 2. AEPs of the proposed heuristics and algorithms for small n.

Moores_pi_M Moores_pi_m Moores_pi_Mean GA GAHH

n m Mean Max Mean Max Mean Max Mean Max Mean Max

9 2 63.19 684.27 63.39 851.01 65.54 650.55 18.47 278.18 0.77 26.61
3 47.03 335.87 45.22 355.35 47.88 284.18 15.21 130.37 0.35 14.42
4 45.80 319.15 43.15 237.90 45.31 307.29 13.79 92.95 0.32 14.15

11 2 81.46 478.10 78.19 448.14 83.70 448.73 26.99 226.09 2.45 69.87
3 68.64 467.13 64.53 460.21 70.29 473.65 22.55 121.51 1.89 33.21
4 66.44 432.34 62.17 326.86 66.07 340.21 21.62 125.73 1.55 27.67

Mean 62.09 452.81 59.44 446.58 63.13 417.44 19.77 162.47 1.22 30.99

n λ Mean Max Mean Max Mean Max Mean Max Mean Max

9 0.1 107.49 1009.37 103.09 1121.00 108.48 927.90 27.76 348.97 1.10 34.63
0.3 38.61 220.82 37.83 248.44 39.25 234.59 14.14 106.10 0.26 16.50
0.5 9.92 75.27 10.84 74.82 11.01 79.53 5.57 46.44 0.07 4.04

11 0.1 148.71 990.73 134.73 822.99 148.81 891.54 41.34 303.50 4.46 98.83
0.3 53.71 301.37 54.70 323.03 55.24 282.37 21.32 116.75 1.12 18.92
0.5 14.12 85.47 15.46 89.19 16.01 88.67 8.50 53.08 0.30 13.01

Mean 62.09 447.17 59.44 446.58 63.13 417.43 19.77 162.47 1.22 30.99

n τ Mean Max Mean Max Mean Max Mean Max Mean Max

9 0.25 84.43 796.07 82.39 871.91 85.42 727.47 24.21 271.87 0.75 26.91
0.50 19.58 100.94 18.78 90.93 20.40 100.54 7.44 62.47 0.20 9.87

11 0.25 116.61 813.22 110.02 722.44 117.08 735.28 35.40 260.65 3.16 70.70
0.50 27.75 105.17 26.57 101.04 29.63 106.44 12.04 54.90 0.76 16.47

Mean 62.09 453.85 59.44 446.58 63.13 417.43 19.77 162.47 1.22 30.99

n ρ Mean Max Mean Max Mean Max Mean Max Mean Max

9 0.25 38.27 233.89 37.68 247.73 38.07 212.74 11.73 75.19 0.47 19.79
0.50 53.90 296.54 51.15 289.09 54.89 294.14 16.97 122.25 0.51 18.54
0.75 63.85 816.19 62.93 907.44 65.77 735.13 18.77 304.06 0.45 16.85

11 0.25 51.33 272.43 52.18 292.91 52.07 280.87 17.25 97.82 1.01 21.54
0.50 75.80 463.10 72.77 441.39 77.43 416.31 25.34 169.34 1.81 31.39
0.75 89.40 642.04 79.93 500.92 90.56 565.40 28.57 206.17 3.07 77.82

Mean 62.09 454.03 59.44 446.58 63.13 417.43 19.77 162.47 1.22 30.99

The effects of the parameters on the execution of the B&B method are summarized
in Table 1. The averages of the mean nodes and CPU time increased dramatically as n
was increased from 9 to 11 regardless of the parameter. This phenomenon illustrated one
characteristic of an NP-hard problem. The number of machines and ρ had little effect on
the performance of the B&B method. In terms of the effects of the parameters m, λ, and τ
on the mean number of nodes in the B&B method, the means of both the number of nodes
and CPU time tended to increase for both n = 9 and n = 11 as the value of one of these
parameters was increased and the other parameters were fixed. The number of nodes and
CPU time decreased as the value of ρ increased for both values of n. This result implied
that in the instances with a smaller value, the optimal solution was easily obtained using
the B&B method.

In terms of the effects of the aforementioned parameters on the performance of the
three Moore’s-type heuristics, the mean AEPs of the three heuristics, GA, and GAHH
tended to decrease as the value of m, λ, or τ increased (Table 2). In contrast, the mean AEP
of the three heuristics and both GAs increased as the value of ρ increased. Moreover, the
results in Table 2 confirmed that on average, the GAHH outperformed the other algorithms.

To compare the solution quality among the Moore_pi_M, Moore_pi_m, Moore_pi_mean,
GA, and GAHH (with mean AEPs of 62.09, 59.44, 63.13, 19.77, and 1.22, respectively), the

Mathematics 2022, 10, 4146 14 of 22

AEPs obtained under variations in different factors including the algorithm; number of
jobs; number of machines; and the parameters λ, τ, and ρ were fitted to a linear model. The
analysis of variance results for the AEP revealed significant differences in the performance
of all factors when the significance level was 0.05, but the normality of the error term was
significantly invalid as indicated by a Shapiro–Wilk test (with the statistic = 0.8535 and
p < 0.0001). The boxplots in Figure 3 display the AEP distributions of all the proposed
heuristics and algorithms. Accordingly, a nonparametric statistical method was used
to perform multiple comparisons between these methods. Then, a Freidman test (with
p < 0.0001) showed that the AEP samples were not followed the same distribution under
a significance level of 0.05 according to the basis of AEP ranks on the 108 (n·m·λ·τ·ρ =
2·3·3·2·3) blocks of test problem instances.

Mathematics 2022, 10, 4146 15 of 21

Figure 3. Boxplots of AEPs of heuristics and algorithms (small n).

Table 3. Nonparametric multiple comparisons of AEP and relative percentage deviation.

 Small Job Size n Large Job Size n
Pairwise Comparison between

Algorithm
|Pairwise Rank-Sum

Difference|
Difference >

64.4 *
|Pairwise Rank-Sum

Difference|
Difference >

64.4 *
Moores_pi_M vs. Moores_pi_m |401.0–414.0| NO |359.0–496.0| YES
Moores_pi_M vs. Moores_pi_mean |401.0–472.0| YES |359.0–402.0| NO

Moores_pi_M vs. GA |401.0–223.0| YES |359.0–255.0| YES
Moores_pi_M vs. GAHH |401.0–110.0| YES |359.0–108.0| YES

Moores_pi_m vs. Moores_pi_mean |414.0–472.0| NO |496.0–402.0| YES
Moores_pi_m vs. GA |414.0–223.0| YES |496.0–255.0| YES

Moores_pi_m vs. GAHH |414.0–110.0| YES |496.0–108.0| YES
Moores_pi_mean vs. GA |472.0–223.0| YES |402.0–255.0| YES

Moores_pi_mean vs. GAHH |472.0–110.0| YES |402.0–108.0| YES
GA vs. GAHH |223.0–110.0| YES |255.0–108.0| YES

* Approximated using a formula reported in Hollander et al. [51], page 316.

As for the usage of the seven low-level heuristics, the variations in the probabilities
of them being called in the GAHH are displayed in Figure 4. HL3 was called most fre-
quently and was typically followed by HL1. However, HL4, HL5, HL6, and HL7 were rarely
called.

Figure 3. Boxplots of AEPs of heuristics and algorithms (small n).

Furthermore, to find the pairwise differences among the three heuristics, GA, and
GAHH, we conducted a Wilcoxon–Nemenyi–McDonald–Thompson (WNMT) test (see
chapter 7 in Hollander et al. [51]). Table 3 lists the sum of ranks of AEPs for the three heuris-
tics, GA, and GAHH. The behaviors of all of the proposed algorithms could be grouped
into four groups under a significance level of 0.05. As can be inferred from columns 2 and 3
of Table 3, the performance of the GAHH was the best (rank-sum = 110.0) followed by GA
(rank-sum = 223), whereas Moores_pi_m and Moores_pi_mean (rank-sums = 414.0 and
472.0, respectively) exhibited the poorest performances.

Mathematics 2022, 10, 4146 15 of 22

Table 3. Nonparametric multiple comparisons of AEP and relative percentage deviation.

Small Job Size n Large Job Size n

Pairwise Comparison
between Algorithm

|Pairwise Rank-Sum
Difference| Difference > 64.4 * |Pairwise Rank-Sum

Difference| Difference > 64.4 *

Moores_pi_M vs.
Moores_pi_m |401.0–414.0| NO |359.0–496.0| YES

Moores_pi_M vs.
Moores_pi_mean |401.0–472.0| YES |359.0–402.0| NO

Moores_pi_M vs. GA |401.0–223.0| YES |359.0–255.0| YES
Moores_pi_M vs. GAHH |401.0–110.0| YES |359.0–108.0| YES

Moores_pi_m vs.
Moores_pi_mean |414.0–472.0| NO |496.0–402.0| YES

Moores_pi_m vs. GA |414.0–223.0| YES |496.0–255.0| YES
Moores_pi_m vs. GAHH |414.0–110.0| YES |496.0–108.0| YES
Moores_pi_mean vs. GA |472.0–223.0| YES |402.0–255.0| YES

Moores_pi_mean vs.
GAHH |472.0–110.0| YES |402.0–108.0| YES

GA vs. GAHH |223.0–110.0| YES |255.0–108.0| YES

* Approximated using a formula reported in Hollander et al. [51], page 316.

As for the usage of the seven low-level heuristics, the variations in the probabilities of
them being called in the GAHH are displayed in Figure 4. HL3 was called most frequently
and was typically followed by HL1. However, HL4, HL5, HL6, and HL7 were rarely called.

Mathematics 2022, 10, 4146 16 of 21

Figure 4. Variations in probabilities of low-level heuristics.

7.2. Results for Large-Sized Orders
For a large number of jobs, we set the order size n to 100 and 200 and the number of

machines m to 5, 10, and 20. One hundred problem instances were randomly examined
for each parameter combination. Consequently, a total of 10,800 (=100·2·3·3·2·3) problem
instances were examined in this simulation. To evaluate the performance of the three heu-
ristics, GA, and GAHH, we reported the mean and maximum relative percentage devia-
tion (RPD). RPD is defined as follows: RPD = 100∑ (ு೔ିு∗ு∗௡௜ୀଵ)[%], where 𝐻௜ is the value of
the objective function searched for using the three heuristics, GA, and GAHH; and H* is
the minimum among these five methods for each instance. The RPDs obtained with vari-
ations in n, m, λ, τ, and ρ are summarized in Table 4.

Table 4. RPDs obtained using proposed heuristics and algorithms for large n.

 Moores_pi_M Moores_pi_m Moores_pi_Mean GA GAHH
n m Mean Max Mean Max Mean Max Mean Max Mean Max

100 5 117.98 190.76 134.45 225.48 115.52 194.47 79.90 143.19 0.00 0.00
 10 111.11 175.04 127.34 213.33 108.83 174.50 74.67 126.33 0.00 0.00
 15 107.61 196.72 123.20 207.02 105.71 201.19 72.78 130.91 0.00 0.00

200 5 105.19 154.86 127.30 180.75 105.31 156.38 81.17 123.84 0.00 0.00
 10 100.35 146.16 120.94 172.32 99.54 151.17 77.28 114.04 0.00 0.00
 15 97.85 144.41 118.07 166.99 97.77 139.84 74.94 109.50 0.00 0.00
Mean 106.68 167.99 125.22 194.32 105.45 169.59 76.79 124.64 0.00 0.00

n λ Mean Max Mean Max Mean Max Mean Max Mean Max
100 0.1 184.26 323.65 235.51 406.75 174.74 320.61 114.44 212.68 0.00 0.00

 0.3 109.43 168.40 103.81 162.00 109.91 175.22 71.13 118.47 0.00 0.00
 0.5 43.02 70.46 45.67 77.09 45.42 74.33 41.78 69.28 0.00 0.00

200 0.1 161.27 245.04 210.16 302.04 158.99 243.33 124.74 189.48 0.00 0.00
 0.3 101.68 139.58 110.93 150.51 101.66 141.29 68.45 98.37 0.00 0.00
 0.5 40.45 60.81 45.22 67.52 41.97 62.76 40.21 59.54 0.00 0.00
Mean 106.68 167.99 125.22 194.32 105.45 169.59 76.79 124.64 0.00 0.00

n τ Mean Max Mean Max Mean Max Mean Max Mean Max
100 0.25 158.29 274.79 190.88 332.02 155.80 284.64 106.99 195.69 0.00 0.00

 0.50 66.18 100.22 65.78 98.53 64.24 95.47 44.58 71.27 0.00 0.00
200 0.25 139.15 209.37 170.33 245.76 139.91 212.30 110.48 167.20 0.00 0.00

Figure 4. Variations in probabilities of low-level heuristics.

7.2. Results for Large-Sized Orders

For a large number of jobs, we set the order size n to 100 and 200 and the number of
machines m to 5, 10, and 20. One hundred problem instances were randomly examined
for each parameter combination. Consequently, a total of 10,800 (=100·2·3·3·2·3) problem
instances were examined in this simulation. To evaluate the performance of the three
heuristics, GA, and GAHH, we reported the mean and maximum relative percentage
deviation (RPD). RPD is defined as follows: RPD = 100∑n

i=1(
Hi−H∗

H∗)[%], where Hi is the
value of the objective function searched for using the three heuristics, GA, and GAHH; and
H* is the minimum among these five methods for each instance. The RPDs obtained with
variations in n, m, λ, τ, and ρ are summarized in Table 4.

Mathematics 2022, 10, 4146 16 of 22

Table 4. RPDs obtained using proposed heuristics and algorithms for large n.

Moores_pi_M Moores_pi_m Moores_pi_Mean GA GAHH

n m Mean Max Mean Max Mean Max Mean Max Mean Max

100 5 117.98 190.76 134.45 225.48 115.52 194.47 79.90 143.19 0.00 0.00
10 111.11 175.04 127.34 213.33 108.83 174.50 74.67 126.33 0.00 0.00
15 107.61 196.72 123.20 207.02 105.71 201.19 72.78 130.91 0.00 0.00

200 5 105.19 154.86 127.30 180.75 105.31 156.38 81.17 123.84 0.00 0.00
10 100.35 146.16 120.94 172.32 99.54 151.17 77.28 114.04 0.00 0.00
15 97.85 144.41 118.07 166.99 97.77 139.84 74.94 109.50 0.00 0.00

Mean 106.68 167.99 125.22 194.32 105.45 169.59 76.79 124.64 0.00 0.00

n λ Mean Max Mean Max Mean Max Mean Max Mean Max

100 0.1 184.26 323.65 235.51 406.75 174.74 320.61 114.44 212.68 0.00 0.00
0.3 109.43 168.40 103.81 162.00 109.91 175.22 71.13 118.47 0.00 0.00
0.5 43.02 70.46 45.67 77.09 45.42 74.33 41.78 69.28 0.00 0.00

200 0.1 161.27 245.04 210.16 302.04 158.99 243.33 124.74 189.48 0.00 0.00
0.3 101.68 139.58 110.93 150.51 101.66 141.29 68.45 98.37 0.00 0.00
0.5 40.45 60.81 45.22 67.52 41.97 62.76 40.21 59.54 0.00 0.00

Mean 106.68 167.99 125.22 194.32 105.45 169.59 76.79 124.64 0.00 0.00

n τ Mean Max Mean Max Mean Max Mean Max Mean Max

100 0.25 158.29 274.79 190.88 332.02 155.80 284.64 106.99 195.69 0.00 0.00
0.50 66.18 100.22 65.78 98.53 64.24 95.47 44.58 71.27 0.00 0.00

200 0.25 139.15 209.37 170.33 245.76 139.91 212.30 110.48 167.20 0.00 0.00
0.50 63.12 87.58 73.87 100.95 61.83 85.96 45.12 64.39 0.00 0.00

Mean 106.68 167.99 125.22 194.32 105.45 169.59 76.79 124.64 0.00 0.00

n ρ Mean Max Mean Max Mean Max Mean Max Mean Max

100 0.25 93.79 156.60 108.21 173.59 94.62 160.03 70.15 119.17 0.00 0.00
0.50 117.33 211.28 134.50 232.41 115.43 217.54 79.01 145.33 0.00 0.00
0.75 125.60 194.63 142.28 239.83 120.02 192.59 78.19 135.93 0.00 0.00

200 0.25 86.77 128.64 106.01 146.45 89.63 129.30 73.60 107.26 0.00 0.00
0.50 105.66 155.60 126.86 181.39 105.13 156.28 81.10 122.02 0.00 0.00
0.75 110.97 161.18 133.44 192.22 107.86 161.80 78.70 118.10 0.00 0.00

Mean 106.68 167.99 125.22 194.32 105.45 169.59 76.79 124.64 0.00 0.00

As summarized in Table 4, the average RPDs of the three modified Moore’s-type
heuristics and the GA strictly decreased as the number of machines and values of the
parameters λ and τ increased for n = 100 and 200. In contrast, the average RPDs of the
three Moore’s-type heuristics decreased as the value of ρ increased. Moreover, with an
average RPD of close to 0 for both values of n, the GAHH outperformed the other methods.

The boxplots of the RPDs of the five algorithms are depicted in Figure 5. The GAHH
outperformed the other four algorithms when n was large. Overall, the average RPDs of the
Moores_pi_M, Moores_pi_m, Moores_pi_mean, GA, and GAHH approaches were 106.68,
125.22, 105.45, 76.79, and 0.00, respectively. The experimental results further corroborated
the superiority of the GAHH approach.

Mathematics 2022, 10, 4146 17 of 22

Mathematics 2022, 10, 4146 17 of 21

 0.50 63.12 87.58 73.87 100.95 61.83 85.96 45.12 64.39 0.00 0.00
Mean 106.68 167.99 125.22 194.32 105.45 169.59 76.79 124.64 0.00 0.00

n ρ Mean Max Mean Max Mean Max Mean Max Mean Max
100 0.25 93.79 156.60 108.21 173.59 94.62 160.03 70.15 119.17 0.00 0.00

 0.50 117.33 211.28 134.50 232.41 115.43 217.54 79.01 145.33 0.00 0.00
 0.75 125.60 194.63 142.28 239.83 120.02 192.59 78.19 135.93 0.00 0.00

200 0.25 86.77 128.64 106.01 146.45 89.63 129.30 73.60 107.26 0.00 0.00
 0.50 105.66 155.60 126.86 181.39 105.13 156.28 81.10 122.02 0.00 0.00
 0.75 110.97 161.18 133.44 192.22 107.86 161.80 78.70 118.10 0.00 0.00
Mean 106.68 167.99 125.22 194.32 105.45 169.59 76.79 124.64 0.00 0.00

As summarized in Table 4, the average RPDs of the three modified Moore’s-type
heuristics and the GA strictly decreased as the number of machines and values of the pa-
rameters λ and τ increased for n = 100 and 200. In contrast, the average RPDs of the three
Moore’s-type heuristics decreased as the value of ρ increased. Moreover, with an average
RPD of close to 0 for both values of n, the GAHH outperformed the other methods.

The boxplots of the RPDs of the five algorithms are depicted in Figure 5. The GAHH
outperformed the other four algorithms when n was large. Overall, the average RPDs of
the Moores_pi_M, Moores_pi_m, Moores_pi_mean, GA, and GAHH approaches were
106.68, 125.22, 105.45, 76.79, and 0.00, respectively. The experimental results further cor-
roborated the superiority of the GAHH approach.

Figure 5. Boxplots of RPDs of heuristics and algorithms (large n).

In view of the significant differences in the average RPDs of the three heuristics, GA,
and GAHH, we performed an analysis to confirm the differences and make direct pair-
wise comparisons statistically. Another linear model that was run in the SAS 9.4 environ-
ment was fitted to the RPDs obtained under variations in different factors including the
algorithm; number of jobs and machines; and parameters λ, τ, and ρ. Subsequently, the
normality of the error term was tested for significance by running the Shapiro–Wilk test
(statistic = 0.9114 and p < 0.0001) under a significance level of 0.05. A nonparametric sta-
tistical method—the WNMT test—was used to make multiple comparisons of the perfor-
mance of the five algorithms. Table 3 lists the sum of ranks of RPDs of the three proposed

Figure 5. Boxplots of RPDs of heuristics and algorithms (large n).

In view of the significant differences in the average RPDs of the three heuristics,
GA, and GAHH, we performed an analysis to confirm the differences and make direct
pairwise comparisons statistically. Another linear model that was run in the SAS 9.4 envi-
ronment was fitted to the RPDs obtained under variations in different factors including
the algorithm; number of jobs and machines; and parameters λ, τ, and ρ. Subsequently,
the normality of the error term was tested for significance by running the Shapiro–Wilk
test (statistic = 0.9114 and p < 0.0001) under a significance level of 0.05. A nonparamet-
ric statistical method—the WNMT test—was used to make multiple comparisons of the
performance of the five algorithms. Table 3 lists the sum of ranks of RPDs of the three
proposed heuristics, GA, and GAHH. The performance levels of all proposed algorithms
could be grouped into four groups at the 0.05 significance level. As can be inferred from
columns 4 and 5 of Table 3, the GAHH (rank-sum = 108.0) yielded the best performance
followed by the GA (rank-sum = 255), whereas Moores_pi_m (rank-sum = 496) yielded the
poorest performance.

The CPU times of all of the proposed algorithms were extremely short in the small-
order-size case; thus, they were omitted here. Table 5 lists the CPU times of all of the
proposed heuristics and metaheuristics in the large-order-size case. As summarized and
illustrated in Table 5 and Figure 6, respectively, on average, the AEPs of the Moore_pi_M,
Moore_pi_m, Moore_pi_mean, GA, and GAHH approaches were 0.32, 0.30, 0.30, 0.02, and
2.14, respectively, in the large-order-size case regardless of the parameter values, except
for the number of orders (n). Furthermore, in terms of the differences between the GA
and GAHH, under the same design with the same population, the same mutation, and
It_GA = ITRN × L_no, the computation time of the GAHH was 2 s longer than that of
the GA because the GAHH required considerable CPU time to select low-level heuristics.
In the worst case, GAHH required 8.02 s to solve an instance. However, the mean of the
maximum solving times of the GAHH approach was 2.51 s. This result confirmed that the
GAHH approach maintained a small population and limited the number of generations
required for obtaining a high-quality solution.

Mathematics 2022, 10, 4146 18 of 22

Table 5. CPU times obtained with proposed heuristics and algorithms for large n.

Moore_pi_M Moore_pi_m Moore_pi_Mean GA GAHH

n m Mean Max Mean Max Mean Max Mean Max Mean Max

100 5 0.04 0.05 0.04 0.05 0.04 0.05 0.01 0.02 0.51 0.58

10 0.07 0.09 0.07 0.09 0.07 0.09 0.01 0.03 0.91 1.01

15 0.10 0.13 0.10 0.13 0.10 0.13 0.01 0.04 1.33 1.52

200 5 0.28 0.35 0.28 0.33 0.29 0.35 0.01 0.03 1.78 1.98

10 0.50 0.67 0.49 0.57 0.49 0.56 0.02 0.05 3.11 3.47

15 0.90 1.13 0.83 1.05 0.83 1.07 0.03 0.08 5.21 6.46

mean 0.32 0.40 0.30 0.37 0.30 0.38 0.02 0.04 2.14 2.50

n λ Mean Max Mean Max Mean Max Mean Max Mean Max

100 0.1 0.07 0.09 0.07 0.09 0.07 0.09 0.01 0.03 0.90 1.01

0.3 0.07 0.09 0.07 0.09 0.07 0.09 0.01 0.03 0.89 1.01

0.5 0.07 0.09 0.07 0.09 0.07 0.09 0.01 0.02 0.91 1.02

200 0.1 0.51 0.62 0.49 0.59 0.51 0.61 0.03 0.06 3.22 3.65

0.3 0.54 0.69 0.52 0.64 0.53 0.66 0.03 0.07 3.42 4.26

0.5 0.61 0.78 0.56 0.68 0.55 0.67 0.01 0.03 3.28 3.80

mean 0.31 0.39 0.30 0.36 0.30 0.37 0.02 0.04 2.10 2.46

n τ Mean Max Mean Max Mean Max Mean Max Mean Max

100 0.25 0.07 0.09 0.07 0.09 0.07 0.09 0.01 0.03 0.93 1.05

0.50 0.07 0.09 0.07 0.09 0.07 0.09 0.01 0.03 0.91 1.02

200 0.25 0.55 0.69 0.53 0.64 0.53 0.64 0.03 0.06 3.39 4.00

0.50 0.58 0.75 0.54 0.66 0.54 0.68 0.02 0.05 3.35 3.94

mean 0.32 0.41 0.30 0.37 0.30 0.38 0.02 0.04 2.15 2.50

n ρ Mean Max Mean Max Mean Max Mean Max Mean Max

100 0.25 0.07 0.09 0.07 0.09 0.07 0.09 0.01 0.03 0.92 1.05

0.50 0.07 0.10 0.07 0.09 0.07 0.09 0.01 0.03 0.91 1.02

0.75 0.07 0.09 0.07 0.09 0.07 0.09 0.01 0.03 0.93 1.05

200 0.25 0.56 0.70 0.52 0.63 0.53 0.65 0.02 0.05 3.34 3.97

0.50 0.55 0.70 0.53 0.63 0.53 0.66 0.02 0.06 3.38 3.99

0.75 0.58 0.75 0.54 0.68 0.55 0.67 0.03 0.06 3.38 3.96

mean 0.32 0.41 0.30 0.37 0.30 0.38 0.02 0.04 2.14 2.51

Mathematics 2022, 10, 4146 19 of 22

Mathematics 2022, 10, 4146 19 of 21

mean 0.32 0.41 0.30 0.37 0.30 0.38 0.02 0.04 2.14 2.51

Figure 6. Boxplots of CPU times of the heuristics and algorithms (large n).

On the basis on the test results, we concluded that the GAHH, on average, outper-
formed the other heuristics and the GA in the simulation tests regardless of the order size.

8. Conclusions and Future Work
Customer order scheduling models have emerged as a major challenge in manufac-

turing environments and practical applications (Framinan et al. [4]). Diverging from the
common assumption that component processing times, ready times, and due dates are
fixed, this study investigated cases involving scenario-dependent component processing
times, ready times, and due dates; the objective was to find an appropriate and robust
sequence of orders to minimize the maximum of the sum of weighted tardy orders across
the considered scenarios. To solve this problem, first, dominance properties and a lower
bound were derived and a B&B method was applied to search for the optimal solutions
for small-sized orders. Second, three variants (heuristics) of Moore’s algorithm and the
GAHH were developed along with a conventional GA to obtain approximate solutions
for large-sized orders. Simulations were performed to evaluate the capability of the B&B
method and the effects of parameter values on its performance. The experimental results
obtained by considering the dominance properties and the derived lower bound indicated
that the B&B method could solve problem instances with n values up to 11 within a rea-
sonable CPU time (Table 1). The experimental tests further demonstrated that the GA and
GAHH performed satisfactorily in term of efficacy and efficiency for problem instances
involving both small- and large-sized orders. In the case of the GAHH with a scheme for
randomly selecting from among seven operators, we only required a small population
and a small number of iterative cycles (ITRN) to obtain a high-quality solution compared
with the GA without a neighborhood heuristic. Overall, on the basis of the simulation
results, we can recommend using the GAHH approach to solve the problem considered
herein due to its superior performance and speed in attaining high-quality solutions in
terms of the AEP and RPD. In the future, researchers can investigate the COSP with more
than three scenario-dependent processing times as well as order rejection based on differ-
ent criteria; for example, the total completion time, the makespan, or even a multiobjective
case. Another direction for future study could involve using the GAHH with seven ver-
sions to evaluate the impact of having no operator, one operator, and multiple operators.

Figure 6. Boxplots of CPU times of the heuristics and algorithms (large n).

On the basis on the test results, we concluded that the GAHH, on average, outper-
formed the other heuristics and the GA in the simulation tests regardless of the order size.

8. Conclusions and Future Work

Customer order scheduling models have emerged as a major challenge in manufac-
turing environments and practical applications (Framinan et al. [4]). Diverging from the
common assumption that component processing times, ready times, and due dates are
fixed, this study investigated cases involving scenario-dependent component processing
times, ready times, and due dates; the objective was to find an appropriate and robust
sequence of orders to minimize the maximum of the sum of weighted tardy orders across
the considered scenarios. To solve this problem, first, dominance properties and a lower
bound were derived and a B&B method was applied to search for the optimal solutions
for small-sized orders. Second, three variants (heuristics) of Moore’s algorithm and the
GAHH were developed along with a conventional GA to obtain approximate solutions
for large-sized orders. Simulations were performed to evaluate the capability of the B&B
method and the effects of parameter values on its performance. The experimental results
obtained by considering the dominance properties and the derived lower bound indicated
that the B&B method could solve problem instances with n values up to 11 within a rea-
sonable CPU time (Table 1). The experimental tests further demonstrated that the GA and
GAHH performed satisfactorily in term of efficacy and efficiency for problem instances
involving both small- and large-sized orders. In the case of the GAHH with a scheme for
randomly selecting from among seven operators, we only required a small population and
a small number of iterative cycles (ITRN) to obtain a high-quality solution compared with
the GA without a neighborhood heuristic. Overall, on the basis of the simulation results,
we can recommend using the GAHH approach to solve the problem considered herein
due to its superior performance and speed in attaining high-quality solutions in terms
of the AEP and RPD. In the future, researchers can investigate the COSP with more than
three scenario-dependent processing times as well as order rejection based on different
criteria; for example, the total completion time, the makespan, or even a multiobjective case.
Another direction for future study could involve using the GAHH with seven versions to
evaluate the impact of having no operator, one operator, and multiple operators.

Mathematics 2022, 10, 4146 20 of 22

Author Contributions: Conceptualization, L.-Y.L., J.-Y.X., X.Z. and C.-C.W.; Data curation, C.-C.W.;
Formal analysis, W.-C.L.; Investigation, J.-Y.X.; Methodology, L.-Y.L., J.-Y.X., S.-R.C., X.Z. and C.-C.W.;
Project administration, S.-R.C.; Resources, L.-Y.L. and S.-R.C.; Software, W.-C.L., J.-C.L. and Z.-L.W.;
Visualization, J.-C.L. and Z.-L.W.; Writing—original draft, W.-C.L.; Writing—review and editing,
C.-C.W. All authors have read and agreed to the published version of the manuscript.

Funding: This paper did not accept any specific grants from funding agencies in the public, commer-
cial, or not-for-profit sectors.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: We thank the guest editors and two referees for their positive comments and
useful suggestions. This paper was supported in part by the Ministry of Science and Technology of
Taiwan (MOST 110-2221-E-035-082-MY2) and in part by the National Natural Science Foundation of
China (grant number 72271048).

Conflicts of Interest: The authors declare that they have no conflict of interest.

References
1. Ahmadi, R.; Bagchi, U.; Roemer, T.A. Coordinated scheduling of customer orders for quick response. Nav. Res. Logist. 2005, 52,

493–512. [CrossRef]
2. Guo, Q.; Tang, L. Modelling and discrete differential evolution algorithm for order rescheduling problem in steel industry. Comput.

Ind. Eng. 2019, 130, 586–595. [CrossRef]
3. Zhang, Y.; Dan, Y.; Dan, B.; Gao, H. The order scheduling problem of product-service system with time windows. Comput. Ind.

Eng. 2019, 133, 253–266. [CrossRef]
4. Framinan, J.M.; Perez-Gonzalez, P.; Fernandez-Viagas, V. Deterministic assembly scheduling problems: A review and classification

of concurrent-type scheduling models and solution procedures. Eur. J. Oper. Res. 2019, 273, 401–417. [CrossRef]
5. Framinan, J.; Perez-Gonzalez, P. New approximate algorithms for the customer order scheduling problem with total completion

time objective. Comput. Oper. Res. 2017, 78, 181–192. [CrossRef]
6. Sung, C.S.; Yoon, S.H. Minimizing total weighted completion time at a pre- assembly stage composed of two feeding machines.

Int. J. Prod. Econ. 1998, 54, 247–255. [CrossRef]
7. Yoon, S.H.; Sung, C.S. Fixed pre-assembly scheduling on multiple fabrication machines. Int. J. Prod. Econ. 2005, 96, 109–118.

[CrossRef]
8. Wang, G.; Cheng, T.C.E. Customer order scheduling to minimize total weighted completion time. Omega 2007, 35, 623–626.

[CrossRef]
9. Leung, J.Y.T.; Li, H.; Pinedo, M.; Sriskandarajah, C. Open shops with jobs overlap-revisited. Eur. J. Oper. Res. 2005, 163, 569–571.

[CrossRef]
10. Leung, J.Y.T.; Li, H.; Pinedo, M. Approximation algorithms for minimizing total weighted completion time of orders on identical

machines in parallel. Nav. Res. Logist. 2006, 53, 243–260. [CrossRef]
11. Leung, J.Y.T.; Li, H.; Pinedo, M. Scheduling orders for multiple product types to minimize total weighted completion time. Discret.

Appl. Math. 2007, 155, 945–970. [CrossRef]
12. Leung, J.Y.T.; Li, H.; Pinedo, M.; Zhang, J. Minimizing total weighted completion time when scheduling orders in a flexible

environment with uniform machines. Inf. Process. Lett. 2007, 103, 119–129. [CrossRef]
13. Leung, J.Y.T.; Li, H.; Pinedo, M. Scheduling orders on either dedicated or flexible machines in parallel to minimize total weighted

completion time. Ann. Oper. Res. 2008, 159, 107–123. [CrossRef]
14. Leung, J.Y.T.; Lee, C.Y.; Ng, C.W.; Young, G.H. Preemptive multiprocessor order scheduling to minimize total weighted flowtime.

Eur. J. Oper. Res. 2008, 190, 40–51. [CrossRef]
15. Wu, C.-C.; Yang, T.-H.; Zhang, X.; Kang, C.C.; Chung, I.H.; Lin, W.-C. Using heuristic and iterative greedy algorithms for the total

weighted completion time order scheduling with release times. Swarm Evol. Comput. 2019, 44, 913–926. [CrossRef]
16. Riahi, V.; Hakim Newton, M.A.; Polash, M.M.A.; Sattar, A. Tailoring customer order scheduling search algorithms. Comput. Oper.

Res. 2019, 108, 155–165. [CrossRef]
17. Li, H.; Li, Z.; Zhao, Y.; Xu, X. Scheduling customer orders on unrelated parallel machines to minimize total weighted completion

time. J. Oper. Res. 2020, 72, 1726–1736. [CrossRef]
18. Leung, J.Y.T.; Li, H.; Pinedo, M. Scheduling orders for multiple product types with due date related objectives. Eur. J. Oper. Res.

2006, 168, 370–389. [CrossRef]
19. Lin, B.M.T.; Kononov, A.V. Customer order scheduling to minimize the number of late jobs. Eur. J. Oper. Res. 2007, 183, 944–948.

[CrossRef]
20. Lee, I.-S. Minimizing total tardiness for the order scheduling problem. Int. J. Prod. Econ. 2013, 144, 128–134. [CrossRef]

http://doi.org/10.1002/nav.20092
http://doi.org/10.1016/j.cie.2019.03.011
http://doi.org/10.1016/j.cie.2019.04.055
http://doi.org/10.1016/j.ejor.2018.04.033
http://doi.org/10.1016/j.cor.2016.09.010
http://doi.org/10.1016/S0925-5273(97)00151-5
http://doi.org/10.1016/j.ijpe.2004.03.005
http://doi.org/10.1016/j.omega.2005.09.007
http://doi.org/10.1016/j.ejor.2003.11.023
http://doi.org/10.1002/nav.20138
http://doi.org/10.1016/j.dam.2006.09.012
http://doi.org/10.1016/j.ipl.2007.03.002
http://doi.org/10.1007/s10479-007-0270-5
http://doi.org/10.1016/j.ejor.2007.05.052
http://doi.org/10.1016/j.swevo.2018.10.003
http://doi.org/10.1016/j.cor.2019.04.015
http://doi.org/10.1080/01605682.2020.1718010
http://doi.org/10.1016/j.ejor.2004.03.030
http://doi.org/10.1016/j.ejor.2006.10.021
http://doi.org/10.1016/j.ijpe.2013.01.025

Mathematics 2022, 10, 4146 21 of 22

21. Xu, J.; Wu, C.-C.; Yin, Y.; Zhao, C.L.; Chiou, Y.-T.; Lin, W.-C. An order scheduling problem with position-based learning effect.
Comput. Oper. Res. 2016, 74, 175–186. [CrossRef]

22. Biskup, D. Single-machine scheduling with learning considerations. Eur. J. Oper. Res. 1999, 115, 173–178. [CrossRef]
23. Lin, W.-C.; Yin, Y.; Cheng, S.R.; Cheng, T.C.E.; Wu, C.H.; Wu, C.-C. Particle swarm optimization and opposite-based particle

swarm optimization for two-agent multi-facility customer order scheduling with ready times. Appl. Soft Comput. 2017, 52,
877–884. [CrossRef]

24. Kuolamas, C.; Kyparisis, G.J. Single-machine and two-machine flowshop scheduling with general learning functions. Eur. J. Oper.
Res. 2007, 178, 402–407. [CrossRef]

25. Wu, C.-C.; Liu, S.C.; Zhao, C.L.; Wang, S.Z.; Lin, W.-C. A multi-machine order scheduling with learning using the memetic genetic
algorithm and particle swarm optimization. Comput. J. 2018, 61, 14–31. [CrossRef]

26. Kuo, W.H.; Yang, D.L. Minimizing the total completion time in a single- machine scheduling problem with a time-dependent
learning effect. Eur. J. Oper. Res. 2006, 174, 1184–1190. [CrossRef]

27. Wu, C.-C.; Lin, W.C.; Zhang, X.; Chung, I.H.; Yang, T.H.; Lai, K. Tardiness minimization for a customer order scheduling problem
with sum-of processing-time-based learning effect. J. Oper. Res. Soc. 2019, 70, 487–501. [CrossRef]

28. Lin, W.-C.; Xu, J.; Bai, D.; Chung, I.H.; Liu, S.C.; Wu, C.-C. Artificial bee colony algorithms for the order scheduling with release
dates. Soft Comput. 2019, 23, 8677–8688. [CrossRef]

29. Daniels, R.L.; Kouvelis, P. Robust scheduling to hedge against processing time uncertainty in single-stage production. Manag. Sci.
1995, 41, 363–376. [CrossRef]

30. Sabuncuoglu, I.; Goren, S. Hedging production schedules against uncertainty in manufacturing environment with a review of
robustness and stability research. Int. J. Comput. Integr. Manuf. 2009, 22, 138–157. [CrossRef]

31. Sotskov, Y.N.; Sotskova, N.Y.; Lai, T.-C.; Werner, F. Scheduling with Uncertainty: Theory and Algorithms; Belorusskaya Nauka: Minsk,
Belarus, 2010.

32. Kouvelis, P.; Yu, G. Robust Discrete Optimization and Its Applications; Kluwer Academic Publishers: Amsterdam, The Nether-
lands, 1997.

33. Yang, J.; Yu, G. On the robust single machine scheduling problem. J. Comb. Optim. 2002, 6, 17–33. [CrossRef]
34. Wu, C.-C.; Bai, D.Y.; Chen, J.-H.; Lin, W.-C.; Xing, L.; Lin, J.C.; Cheng, S.R. Several variants of simulated annealing hyper-heuristic

for a single-machine scheduling with two-scenario-based dependent processing times. Swarm Evol. Comput. 2021, 60, 100765.
[CrossRef]

35. Hsu, C.L.; Lin, W.C.; Duan, L.; Liao, J.R.; Wu, C.-C.; Chen, J.H. A robust two-machine flow-shop scheduling model with scenario-
dependent processing times. Discret. Dyn. Nat. Soc. 2020, 2020, 3530701. [CrossRef]

36. Wu, C.-C.; Gupta, J.N.D.; Cheng, S.R.; Lin, B.M.T.; Yip, S.H.; Lin, W.-C. Robust scheduling of a two-stage assembly shop with
scenario-dependent processing times. Int. J. Prod. Res. 2021, 59, 5372–5387. [CrossRef]

37. Wu, C.-C.; Lin, W.-C.; Zhang, X.G.; Bai, D.Y.; Tsai, Y.W.; Ren, T.; Cheng, S.R. Cloud theory-based simulated annealing for a
single- machine past sequence setup scheduling with scenario-dependent processing times. Complex Intell. Syst. 2021, 7, 345–357.
[CrossRef]

38. Kämmerling, N.; Kurtz, J. Oracle-based algorithms for binary two-stage robust optimization. Comput. Optim. Appl. 2020, 77,
539–569. [CrossRef]

39. Xuan, G.; Lin, W.C.; Cheng, S.R.; Shen, W.L.; Pan, P.A.; Kuo, C.L.; Wu, C.-C. A robust single-machine scheduling problem with
two scenarios of job parameters. Mathematics 2022, 10, 2176. [CrossRef]

40. Wu, C.-C.; Gupta, J.N.D.; Lin, W.C.; Cheng, S.R.; Chiu, Y.L.; Chen, C.J.; Lee, L.Y. Robust scheduling of Two-Agent Customer
Orders with Scenario-Dependent Component Processing Times and Release Dates. Mathematics 2022, 10, 1545. [CrossRef]

41. Yin, Y.; Wang, D.; Cheng, T.C.E. Due Date-Related Scheduling with Two Agents: Models and Algorithms; Uncertainty and Operations
Research Book Series; Springer Nature Singapore: Singapore, 2020.

42. Karp, R.M. Reducibility among Combinatorial Problems. In Complexity of Computer Computations; Miller, R.E., Thatcher, J.W., Eds.;
Springer: Berlin/Heidelberg, Germany, 1972; pp. 85–103.

43. Moore, J.M. An n job one machine sequencing algorithm for minimizing the number of late jobs. Manag. Sci. 1968, 14, 102–109.
[CrossRef]

44. Holland, J. Adaptation in Natural and Artificial Systems; University of Michigan Press: Ann Arbor, MI, USA, 1975.
45. Essafi, I.; Matib, Y.; Dauzere-Peres, S. A genetic local search algorithm for minimizing total weighted tardiness in the job-shop

scheduling problem. Comput. Oper. Res. 2008, 35, 2599–2616. [CrossRef]
46. Iyer, S.K.; Saxena, B.S. Improved memetic genetic algorithm for the permutation flowshop scheduling problem. Comput. Oper.

Res. 2004, 31, 593–606. [CrossRef]
47. Cowling, P.; Kendall, G.; Han, L. An investigation of a hyperheuristic memetic genetic algorithm applied to a trainer scheduling

problem. In Proceedings of the 2002 Congress on Evolutionary Computation (CEC 2002), Honolulu, HI, USA, 12–17 May 2002;
IEEE Computer Society Press: Honolulu, HI, USA, 2002; pp. 1185–1190.

48. Anagnostopoulos, K.P.; Koulinas, G.K. A simulated annealing hyperheuristic for construction resource levelling. Constr. Manag.
Econ. 2010, 28, 163–175. [CrossRef]

49. Montgomery, D.C. Design and Analysis of Experiments; 5/e, John Wiley & Sons, Inc.: New York, NY, USA, 2001.

http://doi.org/10.1016/j.cor.2016.04.021
http://doi.org/10.1016/S0377-2217(98)00246-X
http://doi.org/10.1016/j.asoc.2016.09.038
http://doi.org/10.1016/j.ejor.2006.01.030
http://doi.org/10.1093/comjnl/bxx021
http://doi.org/10.1016/j.ejor.2005.03.020
http://doi.org/10.1080/01605682.2018.1447249
http://doi.org/10.1007/s00500-018-3466-5
http://doi.org/10.1287/mnsc.41.2.363
http://doi.org/10.1080/09511920802209033
http://doi.org/10.1023/A:1013333232691
http://doi.org/10.1016/j.swevo.2020.100765
http://doi.org/10.1155/2020/3530701
http://doi.org/10.1080/00207543.2020.1778208
http://doi.org/10.1007/s40747-020-00196-7
http://doi.org/10.1007/s10589-020-00207-w
http://doi.org/10.3390/math10132176
http://doi.org/10.3390/math10091545
http://doi.org/10.1287/mnsc.15.1.102
http://doi.org/10.1016/j.cor.2006.12.019
http://doi.org/10.1016/S0305-0548(03)00016-9
http://doi.org/10.1080/01446190903369907

Mathematics 2022, 10, 4146 22 of 22

50. Reeves, C. Heuristics for scheduling a single machine subject to unequal job release times. Eur. J. Oper. Res. 1995, 80, 397–403.
[CrossRef]

51. Hollander, M.; Wolfe, D.A.; Chicken, E. Nonparametric Statistical Methods, 3rd ed.; John Wiley& Sons: Hoboken, NJ, USA, 2014.

http://doi.org/10.1016/0377-2217(93)E0290-E

	Introduction
	Problem Statement
	Branch-and-Bound Method
	Three Modified Moore’s Heuristics
	A Genetic and a Genetic Hyper-Heuristic
	Tuning Genetic Algorithm Hyper-Heuristic Parameters
	Simulation Study
	Results Obtained for Small-Sized Orders
	Results for Large-Sized Orders

	Conclusions and Future Work
	References

