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Abstract: In the present outbreak of COVID-19, radiographic imaging modalities such as computed
tomography (CT) scanners are commonly used for visual assessment of COVID-19 infection. However,
personal assessment of CT images is a time-taking process and demands expert radiologists. Recent
advancement in artificial intelligence field has achieved remarkable performance of computer-aided
diagnosis (CAD) methods. Therefore, various deep learning-driven CAD solutions have been
proposed for the automatic diagnosis of COVID-19 infection. However, most of them consider limited
number of data samples to develop and validate their methods. In addition, various existing methods
employ image-based models considering only spatial information in making a diagnostic decision
in case of 3D volumetric data. To address these limitations, we propose a dilated shuffle sequential
network (DSS-Net) that considers both spatial and 3D structural features in case of volumetric CT data
and makes an effective diagnostic decision. To calculate the performance of the proposed DSS-Net,
we combined three publicly accessible datasets that include large number of positive and negative
data samples. Finally, our DSS-Net exhibits the average performance of 96.58%, 96.53%, 97.07%,
96.01%, and 98.54% in terms of accuracy, F1-score, average precision, average recall, and area under
the curve, respectively, and outperforms various state-of-the-art methods.

Keywords: DSS-Net; artificial intelligence; COVID-19 diagnosis; content-based retrieval; lung disease
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1. Introduction

The unprecedented Coronavirus Disease 2019 (COVID-19) has affected millions of
people worldwide by causing acute respiratory syndrome. According to a report by the
World Health Organization on 30 May 2022, the number of COVID-19 cases surpassed
525 million, with a total death toll of more than 6.28 million worldwide. More-contagious
variants of COVID-19 have mutated over time, further imperiling the world. Several
types of vaccine have undergone clinical testing and have received US Food and Drug
Administration clearance. However, early and effective diagnostic measures are still
preferable to overcome the burden on healthcare systems in developing countries. Currently,
the reverse transcription-polymerase chain reaction (RT-PCR) test is used as an efficient
measure for diagnosing COVID-19-positive cases. Nevertheless, it can only discriminate
between COVID-19 positive and negative cases without providing additional information
related to the severity of this deadly virus. In this regard, radiographic imaging modalities,
such as computed tomography (CT), are used to assess the severity of this deadly virus by
capturing a visual representation of the lung. However, personal evaluation of lung CT
scans is still a time-consuming process that requires professional radiologists.

The recent era of artificial intelligence (AI) has gained remarkable success in develop-
ing efficient computer-aided diagnosis (CAD) tools in the medical field [1–3]. In general,
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these CAD methods are used to analyze the generated data of different imaging modalities
by applying efficient AI algorithms and make an accurate diagnostic decision similar to that
of a medical expert. Recently, a new class of AI methods, known as “deep learning” (DL)
algorithms, has achieved remarkable success owing to the breakthrough performance of
these algorithms in imaging data analysis [1–7]. In the medical domain, such DL methods
can mimic the diagnostic capability of medical experts through a training process using
medical imaging data and then make an accurate diagnostic decision. In the context of
2D/3D imaging data, convolutional neural networks (CNNs) are a variety of DL algorithm
that has garnered significant attention. In the literature [1–15], various CNN models have
been devised for the diagnostic assessment of COVID-19 patients using chest radiographs,
such as CT scans and X-rays. These models are configured for a diagnostic application
using an annotated training dataset and finally tested with independent testing datasets.

Fang et al. [4] assessed the results of RT-PCR tests and chest CT scan data of 51 patients.
The efficiency of chest CT analysis compared with RT-PCR at an early stage was 98% versus
71%, with p < 0.001 [4]. Subsequently, several CAD solutions have evolved utilizing the
strength of DL-driven classification and segmentation models for the effective diagnosis of
COVID-19 [1–15]. Oh et al. [6] introduced a patch-based deep feature extraction scheme
intended to exploit infected and normal lesion patterns using a limited number of chest
X-ray scans. The overall pipeline includes a lung segmentation model that extracts lung
lobes from a given X-ray image. Then, a patched-based classification model makes a
final diagnostic decision. Similarly, Singh et al. [7] proposed a multi-objective differential
evolution approach to obtain an optimally trained DL model using a limited number
of chest CT scan data. The ultimate goal of their method was to classify positive and
negative cases based on CT data analysis. Subsequently, Castiglione et al. [1] proposed an
optimized DL model to differentiate infected and noninfected patients into binary classes
by scanning lung CT scan data. Similarly, Zhang et al. [2] proposed an advanced residual-
learning-based diagnostic framework to differentiate positive COVID-19 patients from
heterogeneous lung data.

In the context of data synthesis, Lan et al. [3] proposed a novel hierarchical polishing
spline algorithm for the reconstruction of synthesized CT data of COVID-19 patients.
Synthesized data can be used to achieve a more accurate assessment of COVID-19 severity.
Jiang et al. [8] further applied a conditional generative adversarial network (C-GAN) for
data synthesis and a U-Net model for the segmentation of pulmonary manifestations of
COVID-19 in chest CT scans. Similarly, Zhang et al. [9] proposed a novel version of C-
GAN to synthesize high-quality CT images. The experimental results with 2D and 3D
U-Net attained considerable segmentation performance compared with their method using
synthetic data. Furthermore, Fan et al. [10] introduced a semisupervised learning approach
for efficiently training their proposed segmentation network, Inf-Net, with unlabeled data.

Recently, the strength of ensemble CNN models has been investigated in the context
of automatic diagnosis of COVID-19. For example, Lan et al. [11] proposed an ensemble DL
model for the effective identification of COVID-19-positive patients using chest X-ray im-
ages based on COVID-Net. Similarly, Kundu et al. [12] performed a COVID-19 recognition
task using lung CT data with a fuzzy integral-based ensemble design by integrating four
pretrained CNN models. Rajaraman et al. [13] proposed an iteratively pruned ensemble
model for the detection of pulmonary manifestations of COVID-19 in chest X-ray scans.
Various individual pretrained deep models were tested, and the best-performing models
were combined using different ensemble strategies to improve the overall diagnostic per-
formance. Saha et al. [14] developed an ensemble classifier for the successful diagnosis
of COVID-19 using X-ray data by combining the prediction scores of different machine
learning classifiers.

For the accurate identification of COVID-19-associated lesion sites in chest radiography
images, semantic segmentation models are used instead of deep classification networks.
For example, El-Bana et al. [15] proposed a deep-learning-based multitask framework that
includes a classification-followed segmentation stage to detect and segment specific types of
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infection manifestations in CT images. Later, Zheng et al. [16] addressed a similar multiclass
segmentation problem and proposed a multiscale discriminative network (MSD-Net) that
can detect infected regions of varied sizes. The experimental findings show better MSD-Net
efficiency compared with other baseline models. Similarly, Chen et al. [17] proposed an
effective 3D deep-CNN framework for the segmentation of COVID-19-associated lesion
regions in COVID-19 CT images. A patch-based technique was implemented to ensure the
applicability of the 3D-CNN model and eliminate unnecessary background information.
Furthermore, the adoption of a 3D attention model enhanced the attention capability of the
model for infected regions.

Although significant diagnostic outcomes have been achieved in various studies [18–30],
the proposed DL models might be subject to overfitting/underfitting and generalization
problems owing to the limited dataset sizes. In addition, various methods make a slice-
based diagnostic decision using selective slices of the entire CT volume, which also requires
time and manual effort to select appropriate CT slices for effective diagnosis. Existing
3D CNN-based methods require an input CT volume of a fixed length. There has been
limited research related to 3D CNN-based CAD solutions that explored both spatial and
3D structural features from an input CT volume of variable length and make class predic-
tions. In 2D classification models, the loss of 3D structural information may result in false
predictions and diminish the overall prediction probability of the testing data.

To address the limitations of existing studies, a deep sequence-based diagnostic and
retrieval framework is proposed for the efficient screening of COVID-19-positive cases
using the entire CT volume of variable length. The quantitative results demonstrate the
superior performance of the proposed CAD framework compared with various state-of-
the-art methods. The distinct contributions of this study are as follows:

- A sequence-based 3D model called the “dilated shuffle sequential network” (DSS-Net)
is proposed for the automatic and robust diagnosis of COVID-19 using a chest CT
volume of variable length.

- A dilated shuffle block (DS-Block) is proposed that is based on multiscale dilated
convolution and shuffle operation to explore multiscale contextual features from the
input CT volume, which ultimately resulted in improved performance. In addition, all
convolutional layers in the proposed model take advantage of the grouped convolution
operation to achieve lightweight (1.57 million parameters) characteristics in the context
of volumetric data analysis without causing performance degradation.

- The network design uses an input CT volume of variable length rather than employing
a fixed-length sequence, and it leverages transfer learning in volumetric data analysis
without influencing the overall training parameters.

- The proposed DSS-Net is available to the public on request for research and education.

The rest of this article is ordered as follows. In Section 2, the overall proposed frame-
work is described with an emphasis on the network design, structure, and workflow. In
Section 3, the datasets, experimental setup, and quantitative results are described. In
Section 4, a brief discussion with a final conclusion is presented.

2. Proposed Method
2.1. Workflow Overview

The purpose of this study was to develop a deep-classification-driven retrieval frame-
work for the automatic diagnosis of COVID-19 using a variable-length chest CT scan of
n successive slices (i.e., F1, F2, F3, . . . , Fn). A simplified workflow of the proposed scheme
is shown in Figure 1. The entire framework comprises a deep classification model (DSS-
Net) followed by the retrieval phase to accomplish the diagnostic assessment and then
retrieve the relevant cases. In the first phase, DSS-Net was trained sequentially to exploit
multiscale spatial and 3D structural features from an independent training dataset. Conse-
quently, the trained DSS-Net makes a diagnostic evaluation for the given volumetric CT
data by predicting its class label (COVID-19 positive or negative). In the second phase
of classification-driven retrieval, the best-matched relevant instances (CT slices) related
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to the input sample are retrieved. These best-matched retrieval results can further help
radiologists in the subjective evaluation of computer diagnostic decisions and eventually
result in an effective diagnostic decision.
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Figure 1. Schematic workflow of the proposed diagnostic framework contains the following three
parts: (a) data preprocessing, (b) model development and validation using training and testing data,
and (c) finally retrieving the best-matched cases from the previous record.

2.2. Dilated Shuffle Sequential Network Structure

The proposed DSS-Net is based on two subnetworks: dilated shuffle subnetwork
(DS-Net) and sequential subnetwork (SS-Net). They utilize the strengths of (1) the proposed
dilated shuffle (DS) block (Figure 2) based on multiscale dilated convolution layers, (2) two
existing shuffle blocks, residual shuffle (RS)-block and identity shuffle (IS)-block in Figure 2,
and (3) a revised variant of the recurrent neural network (RNN), the long short-term
memory (LSTM) model.
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(A) Dilated Shuffle Subnetwork: The complete structure of the first subnetwork in-
cludes three DS blocks, three RS blocks, 10 IS blocks, and some other layers, as shown
in Figure 2. The proposed DS block mainly utilizes the strength of multiscale dilated
convolution and channel shuffle operations in a mutually advantageous manner to achieve
the superior performance of the final DSS-Net. In general, existing shuffle blocks (RS and IS
blocks) are based on grouped convolutional layers and are designed to reduce the compu-
tational cost without causing performance degradation. The addition of skip connections
further avoids the vanishing gradient problem in the training process and achieves the
optimal convergence of the entire network. Therefore, the strength of these shuffle blocks
was utilized to develop the DS block. Conventional shuffle blocks consist of three grouped
convolutional layers, a channel shuffle operation, and a residual connection, as shown in the
bottom-left corner of Figure 2. Mathematically, the input tensor Fi ∈ Rwi×hi×di is processed
using the following layer-wise transformations after passing through these shuffle blocks.

ΨRS(Fi) = hϕ3

(
hϕ2

(
S
(
hϕ1(Fi)

)))
� A(Fi) (1)

ΨIS(Fi) = hϕ3

(
hϕ2

(
S
(
hϕ1(Fi)

)))
+ Fi (2)

where ΨRS(·) and ΨIS(·) denote the RS and IS blocks, respectively, as transfer functions.
Here, hϕ1(·), hϕ2(·), and hϕ3(·) represent the grouped convolutional layers with training
parameters ϕ1, ϕ2, and ϕ3, respectively. The notations S(·) and A(·) represent channel
shuffling and average pooling operations, respectively. The symbols � and + represent the
depth-wise feature concatenation and pointwise addition operations, respectively.

The RS block consists of a residual connection based on a 3 × 3 average pooling
layer, denoted as A(·) in Equation (1), which mainly downsamples the input tensor
Fi ∈ Rwi×hi×di by a factor of two. The IS-block consists of an identity residual connec-
tion that incorporates the input tensor Fi as residual information without influencing its
dimension. The structure of the proposed DS-block comprises four parallel-connected
dilated convolutional layers (with dilation rates of 1, 3, 5, and 7), four shuffle operations,
eight grouped convolutional layers, and an identity residual connection. Mathematically,
input tensor Fi ∈ Rwi×hi×di undergoes the following transformations after passing through
a DS block.

ΨDS(Fi) = ∑r=1,3,5,7 hϕ3

(
h∗ϕr

2

(
S
(
hϕ1(Fi)

)))
+ Fi (3)

where ΨDF(·) denotes the DS block as the transfer function. Here, h∗ϕr
2
(·) represents dilated

convolutional layers with a dilation rate r. The key insight behind the development of
DS block is to incorporate additional multiscale contextual features from the output of
each IS block, which ultimately results in better performance. A quantitative ablation
study (see Section 3) showed the significant strength of the DS block in implementing our
final DSS-Net.

(B) Sequential Subnetwork: SS-Net includes a revised variant of RNNs (the LSTM
model), which resolves the vanishing gradient problem in the training process. In general,
the structure of LSTM models is based on the cascaded connectivity of multiple LSTM
cells. Each cell includes a memory cell unit and three gate units (input, forget, and output
gates) [5]. LSTM models are appropriate for fixed- and variable-length moving sequences of
2D CT slices and are designed to exploit temporal dependencies among successive images.
In addition, a cascade of 2D-CNN and LSTM models can leverage transfer learning for
volumetric data analysis without influencing the overall training parameters. Therefore,
the strength of LSTM was exploited to design the lightweight SS-Net for the effective
classification of volumetric CT data in the medical domain.

2.3. Dilated Shuffle Sequential Network Workflow

Figure 2 and Table 1 present the complete workflow and layer-wise configuration of
our proposed DSS-Net, respectively. First, a 3 × 3 convolutional layer extracts low-level
semantic information from each CT slice F and produces an output feature map of size
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112 × 112 × 24, which is further downsampled by a 3 × 3 max-pooling layer into a new
output tensor of size 56 × 56 × 24. Afterward, a stack of 16 shuffle blocks (including a
total of three DS blocks, three RS blocks, 10 IS blocks, and some other layers, as shown in
Figure 2) successively exploits the multilevel semantic information from the output tensor
of the previous block and eventually generates a high-level feature map of size 7 × 7 × 544.
Ultimately, the last 7 × 7 average-pooling layer downsampled this high-level feature map
and created a final output feature vector of size 1 × 1 × 544. Consequently, a multiscale
semantic representation of the input slice F was obtained as an output feature vector f of
size 1 × 1 × 544.

Table 1. Layer-wise configuration details of the proposed dilated shuffle sequential network (DSS-Net)
(“Conv: Convolutional layer”, “N: Number of nodes in FC layer”, “R: Dilation rate”, “Itr.: Num-
ber of iterations”).

Layer Name Input Size Filter Size Filter Depth(R) Str. Itr. Output Size

Input 224 × 224 – – – 1 –
Conv 224 × 224 × 3 3 × 3 24 2 1 112 × 112 × 24

Max-pooling 112 × 112 × 24 3 × 3 1 2 1 56 × 56 × 24

RS block 56 × 56 × 24 1 × 1, 3 × 3, 1 × 1
3 × 3

112, 112, 112
1

1, 2, 1
2 1 28 × 28 × 136

IS block 28 × 28 × 136 1 × 1, 3 × 3, 1 × 1 136, 136, 136 1, 1, 1 2 28 × 28 × 136

DS block 28 × 28 × 136

1 × 1, 3 × 3, 1 × 1
1 × 1, 3 × 3, 1 × 1
1 × 1, 3 × 3, 1 × 1
1 × 1, 3 × 3, 1 × 1

136, 136, 136(1)
136, 136, 136(3)
136, 136, 136(5)
136, 136, 136(7)

1, 1, 1
1, 1, 1
1, 1, 1
1, 1, 1

1 28 × 28 × 136

RS block 28 × 28 × 136 1 × 1, 3 × 3, 1 × 1
3 × 3

136, 136, 136
1

1, 2, 1
2 1 14 × 14 × 272

IS block 14 × 14 × 272 1 × 1, 3 × 3, 1 × 1 272, 272, 272 1, 1, 1 6 14 × 14 × 272

DS block 14 × 14 × 272

1 × 1, 3 × 3, 1 × 1
1 × 1, 3 × 3, 1 × 1
1 × 1, 3 × 3, 1 × 1
1 × 1, 3 × 3, 1 × 1

272, 272, 272(1)
272, 272, 272(3)
272, 272, 272(5)
272, 272, 272(7)

1, 1, 1
1, 1, 1
1, 1, 1
1, 1, 1

1 14 × 14 × 272

RS block 14 × 14 × 272 1 × 1, 3 × 3, 1 × 1
3 × 3

272, 272, 272
1

1, 2, 1
2 1 7 × 7 × 544

IS block 7 × 7 × 544 1 × 1, 3 × 3, 1 × 1 544, 544, 544 1, 1, 1 2 7 × 7 × 544

DS block 7 × 7 × 544

1 × 1, 3 × 3, 1 × 1
1 × 1, 3 × 3, 1 × 1
1 × 1, 3 × 3, 1 × 1
1 × 1, 3 × 3, 1 × 1

544, 544, 544(1)
544, 544, 544(3)
544, 544, 544(5)
544, 544, 544(7)

1, 1, 1
1, 1, 1
1, 1, 1
1, 1, 1

1 7 × 7 × 544

Avg-pooling 7 × 7 × 544 7 × 7 1 1 1 1 × 1 × 544

Sequence Input 1 × 1 × 544 × n – – – 1 –
LSTM 1 × 1 × 544 × n – – – 1 1 × 1 × 600
FC1 1 × 1 × 600 – 128N 1 × 1 × 128

Dropout (50%) 1 × 1 × 128 – – – 1 1 × 1 × 128
FC2 1 × 1 × 128 – 2N – 1 1 × 1 × 2

Softmax 1 × 1 × 2 – – – 1 1 × 1 × 2
Classification 1 × 1 × 2 – – – 1 2

In the case of n successive CT slices (i.e., F1, F2, F3, . . . , Fn), the proposed DSS-Net suc-
cessively processes each input slice and outputs a set of n feature vectors (i.e., f1, f2, f3, . . . , fn)
of size 1 × 1 × 544 × n. All these feature vectors are accumulated and then further pro-
cessed by the second-stage SS-Net (Figure 2) to exploit 3D structural features and perform
class prediction. First, a sequence input layer of SS-Net passes the accumulated set of
n feature vectors (f1, f2, f3, . . . , fn) to the LSTM layer, which exploits 3D structural depen-
dencies among these feature vectors, and finally generates a single feature vector hn of
size 1 × 1 × 600. Successively, the first fully connected layer (FC1; Figure 2 and Table 1)
further exploits more discriminative patterns from hn by mapping them into a 1 × 1 × 128
low-dimensional feature vector. Furthermore, a dropout layer (having a dropout factor
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of 0.5) was included after FC1 to avoid overfitting. Finally, a stack of three additional
layers: (1) FC2, (2) softmax, and (3) classification layers, predicts a single class label for
the entire CT scan. The FC2 layer identifies the larger hidden patterns in the output of
the preceding dropout layer, and the softmax layer (including the softmax function as
f′i = efi / ∑2

i=1 efi [5]) further transforms the output of the FC2 layer in terms of probability.
Finally, the classification layer performs class prediction and assigns a class label to the
input CT scan based on the highest probability score.

2.4. Training Loss

A two-step training process was performed sequentially to attain the optimal con-
vergence of the final DSS-Net. In the first step, the first DS-Net was trained to exploit
and learn the spatial features from the entire training dataset, denoted as 〈[FT ]

p
i=1, [lT ]

p
i=1〉,

using a cross-entropy (CE) loss function [17]. The initial weights of different shuffle blocks
(in DS-Net) were obtained from a pretrained S-Net trained with a large-scale ImageNet
dataset [26] using the CE loss function. Therefore, a similar loss was applied to train the
DS-Net model. In the next step, all training data samples [FT ]

p
i=1 were converted into

feature vectors [fT ]
p
i=1 after processing each data sample using the trained DS-Net model.

Consequently, a new training dataset ( 〈[fT ]
p
i=1, [lT ]

p
i=1〉) was obtained in the feature domain.

In the second stage, SS-Net was trained to learn the 3D structural dependencies from the
feature-level data samples 〈[fT ]

p
i=1, [lT ]

p
i=1〉 using the same CE loss function. The overall

two-step loss of the proposed DSS-Net can be expressed as

LDSS−Net =


arg min
w′DS−Net

L1(ψwDS−Net([FT ]
p
i=1), [lT ]

p
i=1)

arg min
w′SS−Net

L2(ψwSS−Net([fT ]
p
i=1), [lT ]

p
i=1)

(4)

where ψ1 and ψ2 represent DS-Net and SS-Net, respectively, as the transfer functions. Here,
L1(·) and L2(·) denote CE loss functions. After training, the performance of the final
DSS-Net was assessed using an independent testing dataset, denoted as 〈[FTs]

r
i=1, [lTs]

r
i=1〉.

3. Results and Analysis
3.1. Dataset and Experimental Setup

To analyze the proposed method quantitatively, three publicly available chest CT
datasets selected in a previous study [29] were combined to create a single large-scale
database that includes 5471 data samples of 2789 different patients. The entire dataset
was subdivided into COVID-19 negative and positive categories according to the ground-
truth labels of the data. The negative data collection comprised 2217 data samples from
1129 patients. The positive data collection included 3254 data samples collected from
1660 patients. Figure 3 depicts a few representative CT scans from the chosen dataset to
demonstrate the visual difference between COVID-19 negative and positive instances. All
the simulations were executed in a MATLAB (R2019a) framework (with the deep-learning
toolbox) using a desktop PC with the following specifications: (1) Intel Core i7 processor,
(2) 16-GB RAM, (3) NVIDIA GeForce GPU (GTX 1070), and (4) Windows 10 operating
system. A stochastic gradient descent optimizer with a learning rate of 0.001 was utilized
in the optimization strategy to train both subnetworks. Mini-batch sizes of 10 and 100 were
selected for training DS-Net and SS-Net, respectively. All other hyperparameters were
initialized using the default parametric setting of the deep-learning toolbox provided by
MATLAB (R2019a). In all the experiments, five-fold cross validation was accomplished
using 70% (3830 data samples), 10% (547 data samples), and 20% (1094 data samples) of
the whole data for model training, validation, and testing, respectively. For fair analysis,
different patient data were used for training, validation, and testing.
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Figure 3. Visual illustration of a few example chest CT slices of COVID-19 (a) negative and (b) positive
cases. The positive data samples mainly include consolidation, bilateral, ground-glass opacity, and
pleural effusion.

Previous methods lack validation datasets, which may result in underfitting or overfitting
problems. To prevent these problems, an independent validation dataset (10% of the total
dataset) was included, and a training stop criterion was defined that stops the training process
after the validation accuracy converges, as explained in Algorithm 1. Figure 4 shows the
training/validation losses and accuracies of both subnetworks. In Figure 4, the convergence of
the training and validation curves (with respect to losses and accuracies) validates that neither
model was overfitted with the training dataset. Finally, the quantitative testing results of our
proposed and other methods were assessed in terms of average accuracy (ACC), F1-score (F1),
average recall (AR), average precision (AP), and area under the curve (AUC).

Algorithm 1: Two-step training stop algorithm.

Input: trainable parameters, wDS−Net, wSS−Net; learning-rate, η; maximum number of epochs, N;

p training samples denoted as
〈
[FT ]

p
i=1, [lT ]

p
i=1

〉
; and q validation samples denoted as〈

[FV ]
q
i=1, [lV ]

q
i=1

〉
1

Initialize trainable parameters wDS−Net (Pretrained weights of [26] for shuffle blocks and
Gaussian random weights for remaining blocks/layers), wSS−Net (Gaussian random weights)

2 /* Step 1: Continue the training of the first DS-Net */
3 for n = 1, 2, 3, . . . , Ndo
4 get:

[
l′T
]p

i=1 = ψwDS−Net

(
[FT ]

p
i=1

)
,
[
l′V
]q

i=1 = ψDS

(
[FV ]

q
i=1

)
5 update: wDS−Net = wDS−Net − η.∇L1

([
l′T
]p

i=1, [lT ]
p
i=1

)
6 check: if accuracy

([
l′V
]q

i=1, [lV ]
q
i=1

)
converges do stop the training end

7 End
8 Output 1: Learned weights w′DS−Net for DS-Net
9 /* Step 2: Extract features dataset from the avg-pooling layer of DS-Net */
10 get: [fT ]

p
i=1 = YAvg−pool

(
ψDS−Net, [FT ]

p
i=1

)
, [fV ]

q
i=1 = YAvg−pool

(
ψDS−Net, [FV ]

q
i=1

)
11 Output 2: Training and validation feature dataset:[fT ]

p
i=1, [fV ]

q
i=1

12 /* Step 3: Continue the training of SS-Net */
13 for n = 1, 2, 3, . . . , Ndo
14 get:

[
l′T
]p

i=1 = ψwSS−Net

(
[fT ]

p
i=1

)
,
[
l′V
]q

i=1 = ψwSS−Net

(
[fV ]

q
i=1

)
15 update: wSS−Net = wSS−Net − η.∇L2

([
l′T
]p

i=1, [lT ]
p
i=1

)
16 check: if accuracy

([
l′V
]q

i=1, [lV ]
q
i=1

)
converges do stop training end

17 end
18 Output 3: Learned weights w′SS−Net for S-Net
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Figure 4. Training/validation accuracies and losses of the proposed (a) DS-Net and (b) DSS-Net.

3.2. Testing Results (Ablation Studies)

DSS-Net exploits spatial and 3D structural features from a given volumetric CT scan
and makes a diagnostic decision (i.e., either COVID-19 negative or positive). A five-fold
quantitative assessment of DSS-Net is summarized in Table 2. The comparative results of
DS-Net (proposed second-best) and S-Net (baseline model) are also presented in Table 2.
These comparative results show the contribution of multiscale feature aggregation using
DS blocks and second-stage SS-Net in terms of quantitative gains. In particular, DS-Net
(comprising DS, RS, and IS blocks) surpasses S-Net (comprising only RS and IS blocks)
with average gains of 1.66%, 1.58%, 1.03%, 2.05%, and 1.78% in terms of ACC, F1, AP, AR,
and AUC, respectively. Subsequently, the addition of SS-Net (in DSS-Net) improved the
performance of the first-stage DS-Net, with average gains of 3.27%, 3.43%, 3.35%, 3.52%,
and 1.15% in terms of ACC, F1, AP, AR, and AUC, respectively. DSS-Net significantly
outperformed S-Net (baseline model), with average gains of 4.93%, 5.01%, 4.38%, 5.57%,
and 2.93% in terms of ACC, F1, AP, AR, and AUC, respectively. In a t-test analysis, DSS-Net
accomplished an average p-value of 0.0014 (p < 0.01) and 0.0003 (p < 0.01) compared
with DS-Net and S-Net, respectively. The lower p-values (p < 0.01) imply that DSS-Net
significantly outperformed them with a 99% confidence score.

The receiver operator characteristic (ROC) response of DSS-Net compared with DS-
Net and S-Net is further highlighted in Figure 5. Each curve (Figure 5) presents a trade-off
between the average false-positive rate (FPR) and true-positive rate (TPR) of a model
according to different thresholds varying from 0 to 1 in 0.01 increments. The best validation
performance was achieved for each method at a particular classification threshold. The
optimal threshold values for DSS-Net (best model), DS-Net (second-best model), and S-Net
(baseline model) were 0.513, 0.514, and 0.507, respectively. Compared with S-Net, DSS-Net
considerably decreased the FPR from 9.57% to 4.03% with an average gain of 5.54% and
improved the TPR from 90.44% to 96.01% with an average gain of 5.57%, as shown in
Figure 6. In addition, DS-Net also decreased the FPR from 9.57% to 7.56% with an average
gain of 2.01% and improved the TPR from 90.44% to 92.49% with an average gain of 2.05%
compared with S-Net, as shown in Figure 6.

The initial trainable parameters of the shuffle blocks in DS-Net were acquired from a
pretrained S-Net through transfer learning. Therefore, DS-Net and DSS-Net were trained
from scratch to highlight the quantitative gain of transfer learning in the proposed method.
The comparative results of transfer learning and training from scratch are presented in
Table 3. In the case of DS-Net, the results imply (Table 3) that transfer learning outperforms
training from scratch with average gains of 9.87%, 10.32%, 8.9%, 11.53%, and 10.6% in
terms of ACC, F1, AP, AR, and AUC, respectively. Similarly, significant performance gains
of 7.97%, 7.47%, 4.63%, 9.66%, and 10.85% were observed in terms of ACC, F1, PRE, REC,
and AUC, respectively, for DSS-Net.
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Table 2. Quantitative performance comparison of DSS-Net, DS-Net, and S-Net. The average results are
highlighted in boldface. (“#: The number of”, “Avg.: Average”, “Std: Standard deviation”, “unit: %”).

Model #Fold ACC F1 AP AR AUC

Shuffle Network
(S-Net) [26]

1 96.07 96.02 95.63 96.4 99.46
2 92.69 92.41 93.03 91.8 97.94
3 89.76 89.49 90.94 88.08 94.72
4 97.63 97.54 97.6 97.47 99.71
5 82.1 82.16 86.23 78.47 86.23

Avg.
(Std)

91.65
(6.15)

91.52
(6.10)

92.69
(4.41)

90.44
(7.68)

95.61
(5.61)

Dilated Shuffle
Subnetwork (DS-Net)

1 95.79 95.66 95.5 95.81 98.64
2 94.33 94.16 94.89 93.44 98.54
3 89.95 89.62 90.82 88.45 96.22
4 96.07 95.92 96.04 95.8 99.11
5 90.41 90.13 91.36 88.93 94.43

Avg.
(Std)

93.31
(2.94)

93.1
(3.02)

93.72
(2.44)

92.49
(3.60)

97.39
(2.00)

Dilated
Shuffle Sequential

Network (DSS-Net)

1 99.36 99.34 99.25 99.43 99.99
2 97.17 97.06 97.18 96.93 99.59
3 94.88 94.77 95.65 93.9 98.24
4 98.81 98.77 98.72 98.82 99.75
5 92.69 92.73 94.53 90.99 95.14

Avg
(Std)

96.58
(2.79)

96.53
(2.77)

97.07
(2.00)

96.01
(3.54)

98.54
(2.02)
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Table 3. Comparative results of the proposed DSS-Net and DS-Net with and without performing
transfer learning. (“T.L: Transfer learning”).

Model T.L ACC
(Std)

F1
(Std)

AP
(Std)

AR
(Std)

AUC
(Std)

Dilated Shuffle Subnetwork
(DS-Net)

5 83.44 (11.11) 82.78 (11.53) 84.82 (9.6) 80.96 (13.31) 86.79 (12.53)
X 93.31 (2.94) 93.1 (3.02) 93.72 (2.44) 92.49 (3.60) 97.39 (2.00)

Dilated Shuffle Sequential
Network (DSS-Net)

5 88.61 (12.91) 89.06 (12.21) 92.44 (7.36) 86.35 (16.17) 87.69 (16.51)
X 96.58 (2.79) 96.53 (2.77) 97.07 (2.00) 96.01 (3.54) 98.54 (2.02)

3.3. Comparison

Different CAD techniques have been proposed for the automated diagnostic screening
of COVID-19. Here, a comparative performance analysis is presented of DSS-Net with
different state-of-the-art CAD methods related to COVID-19 diagnostics [18–30]. However,
most previous solutions consider a limited number of datasets. For a fair comparison, the
findings of these current approaches [18–30] were compared with the datasets selected in
this study using the same experimental setting as the method. The quantitative results
of DSS-Net and various baseline approaches [18–30] are presented in Table 4. DSS-Net
exceeds all the baseline models in terms of quantitative performance (Table 4) and is ranked
as the best model. In addition, the method of Tsiknakis et al. [30] ranked second among all
other methods [18–29]. Nevertheless, DSS-Net outperformed that model [30] with average
gains of 2.01%, 2.12%, 2.18%, 2.07%, and 0.61% in terms of ACC, F1, AP, AR, and AUC,
respectively. In a t-test analysis, DSS-Net outperformed the method of Tsiknakis et al. [30]
at a 99% confidence score by reaching an average p-value of 0.0019 (p < 0.01). In addition,
the number of learnable parameters of DSS-Net is approximately 13.89 times lower than
that in the previous model [30] (i.e., proposed DSS-Net: 1.57 million << Tsiknakis et al. [30]:
21.81 million). Consequently, the proposed model stands out among all the baseline
techniques [18–30] because of its improved performance and lower number of parameters.

In a further related study, Hu et al. [24] applied an existing pretrained network
for automatic diagnosis of COVID-19, which includes approximately 0.71 million fewer
trainable parameters than those of the proposed DSS-Net (i.e., our proposed DSS-Net:
1.57 million > Hu et al. [24]: 0.86 million). Nevertheless, the quantitative results of DSS-Net
are significantly higher than those of a previously proposed method [24], with average
gains of 4.93%, 5.01%, 4.38%, 5.57%, and 2.93% in terms of ACC, F1, AP, AR, and AUC,
respectively. Moreover, in a t-test analysis, DSS-Net outperformed the previous method [24]
at a 99% confidence score by reaching an average p-value of 0.0003 (p < 0.01). In another
study, the method of Minaee et al. [20] also contains approximately 0.33 million fewer
parameters than the proposed DSS-Net (i.e., proposed DSS-Net: 1.57 million > Minaee
et al. [20]: 1.24 million). However, the quantitative results of DSS-Net were significantly
higher than those of a previous method [20], with average gains of 6.74%, 7.05%, 7.16%,
6.95%, and 4.68% in terms of ACC, F1, AP, AR, and AUC, respectively. A t-test analysis
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also revealed superior performance at a 99% confidence score, with an average p-value
of 0.0001 (p < 0.01).

Table 4. Comparative performance analysis of DSS-Net with various state-of-the-art methods.
(“#: The number of”).

Study #Par. (M) ACC F1 AP AR AUC

Brunese et al. [18] 134.27 89.66 89.54 91.43 87.81 92.35
Farooq et al. [19] 23.54 90.30 90.22 92.17 88.53 92.79
Minaee et al. [20] 1.24 89.84 89.48 89.91 89.06 93.86
Khan et al. [21] 139.58 91.54 91.33 92.26 90.47 94.54
Alsharman et al. [22] 5.98 89.73 89.53 90.4 88.73 94.91
Misra et al. [23] 11.18 92.96 92.76 93.41 92.14 95.06
Hu et al. [24] 0.86 91.65 91.52 92.69 90.44 95.61
Ardakani et al. [25] 42.56 90.30 90.26 92.17 88.64 95.71
Apostolopoulos et al. [26] 2.24 92.95 92.85 93.81 91.94 96.51
Martínez et al. [27] 4.27 93.68 93.49 94.19 92.82 96.67
Jaiswal et al. [28] 18.11 94.17 94.03 94.63 93.46 97.36
Owais et al. [29] 3.16 94.72 94.60 95.22 94.00 97.50
Tsiknakis et al. [30] 21.81 94.57 94.41 94.89 93.94 97.93
Proposed 1.57 96.58 96.53 97.07 96.01 98.54

In conclusion, one can infer the following interpretations from this comparative
analysis. The method of Tsiknakis et al. [30] shows quantitative results comparable to
those of the proposed method. However, the computational cost (in terms of the number
of training parameters) of the previous method [30] is significantly higher (approximately
13.89 times) than that of the methods in this study. Second, the method proposed by Hu
et al. [24] includes a 50% lower number of trainable parameters than that of the proposed
model. However, its quantitative performance is significantly lower than that of DSS-Net.
In addition, despite the lower number of training parameters in a previous report [20],
the quantitative performance gain of DSS-Net is significantly higher than that reported by
Minaee et al. [20].

4. Discussion and Conclusions

In general, 2D-CNNs explore only spatial features from each input slice of given volu-
metric data and make a diagnostic decision. However, 3D-CNNs explore given volumetric
data in 2D and 3D directions, exploring spatial and 3D structural features, and make a
class prediction. In the first scenario, 2D-CNNs disregard 3D structural features, which
can cause performance deficiencies. In the second scenario, 3D-CNNs comprise millions
of trainable parameters and require high computational power for training. To address
these problems, a 3D classification model was proposed for the precise classification of
volumetric data. The proposed network design leverages transfer learning in volumetric
data analysis without influencing the overall training parameters. It can also be used to
classify variable-length sequences. Network design mainly leverages multiscale contextual
features (DS blocks) to achieve state-of-the-art performance. DS-Net extracts a set of n
multiscale spatial feature vectors from given volumetric CT data. The second-stage SS-Net
then exploits 3D structural features from a set of n spatial feature vectors and makes the
final diagnostic decision (i.e., COVID-19 negative or positive).

In the second stage, classification-driven content retrieval was performed, and the
most-relevant instances (CT slices) were retrieved for the provided CT data as an additional
output. Figure 7 presents the qualitative classification and retrieval results of our proposed
framework. The results in Figure 7 show the predicted class label, prediction score, and best-
matched data sample corresponding to each input CT scan. Five best-matched data samples
were retrieved from the testing database corresponding to each input data sample (Figure 1).
Specifically, a set of negative (F− =

{
f−1 , f−2 , . . . , f−p

}
) or positive (F+ =

{
f+1 , f+2 , . . . , f+q

}
)

feature vectors was chosen from the feature database based on the predicted class label
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(Figure 1). Here, p and q are the numbers of negative and positive cases, respectively. All
these feature vectors (F− and F+) were extracted from the training dataset that includes
both COVID-19 negative and positive data samples and stored as a feature database
(Figure 1). Subsequently, a Euclidean-distance-based matching algorithm was employed
to select a subset of n best-matched features (in this case, n = 5) from the selected set of
feature vectors corresponding to the query feature vector f′ (extracted from the testing data
sample). Finally, the selected subset of n best-matched features was used to retrieve the
corresponding CT slices from the testing database, as shown in Figure 7. Such retrieved
cases can further assist medical experts in validating CAD decisions subjectively.
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Figure 7. Visualization of predicted outputs of the proposed framework for given data samples
including COVID-19 negative and positive cases (“P.S: Prediction score”).

Figure 8 shows a few samples of misclassified testing cases together with their pre-
dicted scores. The existence of identical lesion shapes in COVID-19 negative and positive
datasets may cause these incorrect predictions (false-negative and false-positive cases).
Furthermore, inadequate data annotation might lead to incorrect predictions. However,
medical specialists can reduce these inaccuracies by visually assessing the projected outputs
(i.e., prediction score and best-matched retrieved cases). Despite the substantial perfor-
mance of the proposed diagnostic framework, there are drawbacks to the proposed CAD
approach that might affect its overall efficacy in a clinical context. The main concern is the
issue of generalizability, especially in cases that show a small ratio of infected lung. Second,
real-world data can show high intraclass variance because of several types of CT imaging
modalities and may affect the diagnostic results. However, these constraints can be re-
solved by incorporating a large repository of well-annotated datasets as training/validation
data. In future work, it is planned to investigate more-diversified datasets and resolve
generalizability concerns thoroughly.



Mathematics 2022, 10, 4160 14 of 15

Mathematics 2022, 10, x FOR PEER REVIEW 14 of 16 
 

 

 

Figure 7. Visualization of predicted outputs of the proposed framework for given data samples in-

cluding COVID-19 negative and positive cases (“P.S: Prediction score”). 

Figure 8 shows a few samples of misclassified testing cases together with their pre-

dicted scores. The existence of identical lesion shapes in COVID-19 negative and positive 

datasets may cause these incorrect predictions (false-negative and false-positive cases). 

Furthermore, inadequate data annotation might lead to incorrect predictions. However, 

medical specialists can reduce these inaccuracies by visually assessing the projected out-

puts (i.e., prediction score and best-matched retrieved cases). Despite the substantial per-

formance of the proposed diagnostic framework, there are drawbacks to the proposed 

CAD approach that might affect its overall efficacy in a clinical context. The main concern 

is the issue of generalizability, especially in cases that show a small ratio of infected lung. 

Second, real-world data can show high intraclass variance because of several types of CT 

imaging modalities and may affect the diagnostic results. However, these constraints can 

be resolved by incorporating a large repository of well-annotated datasets as training/val-

idation data. In future work, it is planned to investigate more-diversified datasets and 

resolve generalizability concerns thoroughly. 

 

Figure 8. Illustration of misclassified (false positives and false negatives) testing samples, including 

prediction scores. 

Author Contributions: Methodology, M.O.; Conceptualization, M.O., H.S. and M.U.; Validations, 

N.R.B., Y.W.L., D.T.N. and G.B.; Supervision, K.R.P.; Writing—original draft, M.O.; Writing—re-

view and editing, K.R.P. All authors have read and agreed to the published version of the manu-

script. 

Funding: This research was supported in part by the National Research Foundation of Korea (NRF) 

funded by the Ministry of Science and ICT (MSIT) through the Basic Science Research Program 

Figure 8. Illustration of misclassified (false positives and false negatives) testing samples, including
prediction scores.

Author Contributions: Methodology, M.O.; Conceptualization, M.O., H.S. and M.U.; Validations,
N.R.B., Y.W.L., D.T.N. and G.B.; Supervision, K.R.P.; Writing—original draft, M.O.; Writing—review
and editing, K.R.P. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported in part by the National Research Foundation of Korea (NRF)
funded by the Ministry of Science and ICT (MSIT) through the Basic Science Research Program (NRF-
2021R1F1A1045587), in part by the NRF funded by the MSIT through the Basic Science Research
Program (NRF-2022R1F1A1064291), and in part by the NRF funded by the MSIT through the Basic
Science Research Program (NRF-2020R1A2C1006179).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Castiglione, A.; Vijayakumar, P.; Nappi, M.; Sadiq, S.; Umer, M. COVID-19: Automatic detection of the novel coronavirus disease

from CT images using an optimized convolutional neural network. IEEE Trans. Ind. Inform. 2021, 17, 6480–6488. [CrossRef]
2. Zhang, M.; Chu, R.; Dong, C.; Wei, J.; Lu, W.; Xiong, N. Residual learning diagnosis detection: An advanced residual learning

diagnosis detection system for COVID-19 in industrial internet of things. IEEE Trans. Ind. Inform. 2021, 17, 6510–6518. [CrossRef]
3. Lan, T.; Cai, Z.; Ye, B. A novel spline algorithm applied to COVID-19 computed tomography image reconstruction. IEEE Trans.

Ind. Inform. 2022, 18, 7804–7813. [CrossRef]
4. Fang, Y.; Zhang, H.; Xie, J.; Lin, M.; Ying, L.; Pang, P.; Ji, W. Sensitivity of chest CT for COVID-19: Comparison to RTPCR. Radiology

2020, 296, 200432. [CrossRef]
5. Heaton, J. Artificial Intelligence for Humans; Heaton Research, Inc.: Scotts Valley, CA, USA, 2013.
6. Oh, Y.; Park, S.; Ye, J.C. Deep learning COVID-19 features on CXR using limited training data sets. IEEE Trans Med. Imaging 2020,

39, 2688–2700. [CrossRef]
7. Singh, D.; Kumar, V.; Kaur, M. Classification of COVID-19 patients from chest CT images using multi-objective differential

evolution–based convolutional neural networks. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 1379–1389. [CrossRef]
8. Jiang, Y.; Chen, H.; Loew, M.H.; Ko, H. COVID-19 CT image synthesis with a conditional generative adversarial network. IEEE J.

Biomed. Health Inform. 2021, 25, 441–452. [CrossRef]
9. Zhang, P.; Zhong, Y.; Deng, Y.; Tang, X.; Li, X. CoSinGAN: Learning COVID-19 infection segmentation from a single radiological

image. Diagnostics 2020, 10, 901. [CrossRef]
10. Fan, D.P.; Zhou, T.; Ji, G.-P.; Zhou, Y.; Chen, G.; Fu, H.; Shen, J.; Shao, L. Inf-net: Automatic COVID-19 lung infection segmentation

from CT images. IEEE Trans. Med. Imaging 2020, 39, 2626–2637. [CrossRef] [PubMed]
11. Tang, S.; Wang, C.; Nie, J.; Kumar, N.; Zhang, Y.; Xiong, Z.; Barnawi, A. EDL-COVID: Ensemble deep learning for COVID-19 case

detection from chest x-ray images. IEEE Trans. Ind. Inform. 2021, 17, 6539–6549. [CrossRef]
12. Kundu, R.; Singh, P.K.; Mirjalili, S.; Sarkar, R. COVID-19 detection from lung CT-Scans using a fuzzy integral-based CNN

ensemble. Comput. Biol. Med. 2021, 138, 104895. [CrossRef] [PubMed]
13. Rajaraman, S.; Siegelman, J.; Alderson, P.O.; Folio, L.S.; Folio, L.R.; Antani, S.K. Iteratively pruned deep learning ensembles for

COVID-19 detection in chest X-rays. IEEE Access 2020, 8, 115041–115050. [CrossRef]
14. Saha, P.; Sadi, M.S.; Islam, M.M. EMCNet: Automated COVID-19 diagnosis from X-ray images using convolutional neural

network and ensemble of machine learning classifiers. Inform. Med. Unlocked 2021, 22, 100505. [CrossRef]
15. El-bana, S.; Al-Kabbany, A.; Sharkas, M. A multi-task pipeline with specialized streams for classification and segmentation of

infection manifestations in COVID-19 scans. PeerJ Comput. Sci. 2020, 6, e303. [CrossRef]

http://doi.org/10.1109/TII.2021.3057524
http://doi.org/10.1109/TII.2021.3051952
http://doi.org/10.1109/TII.2022.3142782
http://doi.org/10.1148/radiol.2020200432
http://doi.org/10.1109/TMI.2020.2993291
http://doi.org/10.1007/s10096-020-03901-z
http://doi.org/10.1109/JBHI.2020.3042523
http://doi.org/10.3390/diagnostics10110901
http://doi.org/10.1109/TMI.2020.2996645
http://www.ncbi.nlm.nih.gov/pubmed/32730213
http://doi.org/10.1109/TII.2021.3057683
http://doi.org/10.1016/j.compbiomed.2021.104895
http://www.ncbi.nlm.nih.gov/pubmed/34649147
http://doi.org/10.1109/ACCESS.2020.3003810
http://doi.org/10.1016/j.imu.2020.100505
http://doi.org/10.7717/peerj-cs.303


Mathematics 2022, 10, 4160 15 of 15

16. Zheng, B.; Liu, Y.; Zhu, Y.; Yu, F.; Jiang, T.; Yang, D.; Xu, T. MSD-Net: Multi-scale discriminative network for COVID-19 lung
infection segmentation on CT. IEEE Access 2020, 8, 185786–185795. [CrossRef] [PubMed]

17. Chen, C.; Zhou, K.; Zha, M.; Qu, X.; Guo, X.; Chen, H.; Wang, Z.; Xiao, R. An effective deep neural network for lung lesions
segmentation from COVID-19 CT images. IEEE Trans. Ind. Inform. 2021, 17, 6528–6538. [CrossRef]

18. Brunese, L.; Mercaldo, F.; Reginelli, A.; Santone, A. Explainable deep learning for pulmonary disease and coronavirus COVID-19
detection from X-rays. Comput. Meth. Programs Biomed. 2020, 196, 105608. [CrossRef] [PubMed]

19. Farooq, M.; Hafeez, A. COVID-ResNet: A deep learning framework for screening of COVID19 from radiographs. arXiv 2020,
arXiv:2003.14395. [CrossRef]

20. Minaee, S.; Kafieh, R.; Sonka, M.; Yazdani, S.; Soufi, G.J. Deep-COVID: Predicting COVID-19 from chest X-ray images using deep
transfer learning. Med. Image Anal. 2020, 65, 101794. [CrossRef]

21. Khan, I.U.; Aslam, N. A deep-learning-based framework for automated diagnosis of COVID-19 using X-ray images. Information
2020, 11, 419. [CrossRef]

22. Alsharman, N.; Jawarneh, I. GoogleNet CNN neural network towards chest CT-coronavirus medical image classification. J.
Comput. Sci. 2020, 16, 620–625. [CrossRef]

23. Misra, S.; Kafieh, R.; Sonka, M.; Yazdani, S.; Soufi, G.J. Multi-channel transfer learning of chest X-ray images for screening of
COVID-19. Electronics 2020, 9, 1388. [CrossRef]

24. Hu, R.; Ruan, G.; Xiang, S.; Huang, M.; Liang, Q.; Li, J. Automated diagnosis of COVID-19 using deep learning and data
augmentation on chest CT. medRxiv 2020. [CrossRef]

25. Ardakani, A.A.; Kanafi, A.R.; Acharya, U.R.; Khadem, N.; Mohammadi, A. Application of deep learning technique to manage
COVID-19 in routine clinical practice using CT images: Results of 10 convolutional neural networks. Comput. Biol. Med. 2020,
121, 103795. [CrossRef] [PubMed]

26. Apostolopoulos, I.D.; Mpesiana, T.A. COVID-19: Automatic detection from X-ray images utilizing transfer learning with
convolutional neural networks. Australas. Phys. Eng. Sci. Med. 2020, 43, 635–640. [CrossRef]

27. Martínez, F.; Martínez, F.; Jacinto, E. Performance evaluation of the NASNet convolutional network in the automatic identification
of COVID19. Int. J. Adv. Sci. Eng. Inf. Techn. 2020, 10, 662–667, 662. [CrossRef]

28. Jaiswal, A.; Gianchandani, N.; Singh, D.; Kumar, V.; Kaur, M. Classification of the COVID-19 infected patients using densenet201
based deep transfer learning. J. Biomol. Struct. Dyn. 2021, 39, 5682–5689. [CrossRef]

29. Owais, M.; Yoon, H.S.; Mahmood, T.; Haider, A.; Sultan, H.; Park, K.R. Light-weighted ensemble network with multilevel
activation visualization for robust diagnosis of COVID19 pneumonia from large-scale chest radiographic database. Appl. Soft
Comput. 2021, 108, 107490. [CrossRef] [PubMed]

30. Tsiknakis, N.; Trivizakis, E.; Vassalou, E.E.; Papadakis, G.Z.; Spandidos, D.A.; Tsatsakis, A.; Sánchez-García, J.; López-González,
R.; Papanikolaou, N.; Karantanas, A.H.; et al. Interpretable artificial intelligence framework for COVID-19 screening on chest
X-rays. Exp. Ther. Med. 2020, 20, 727–735. [CrossRef]

http://doi.org/10.1109/ACCESS.2020.3027738
http://www.ncbi.nlm.nih.gov/pubmed/34812359
http://doi.org/10.1109/TII.2021.3059023
http://doi.org/10.1016/j.cmpb.2020.105608
http://www.ncbi.nlm.nih.gov/pubmed/32599338
http://doi.org/10.48550/arXiv.2003.14395
http://doi.org/10.1016/j.media.2020.101794
http://doi.org/10.3390/info11090419
http://doi.org/10.3844/jcssp.2020.620.625
http://doi.org/10.3390/electronics9091388
http://doi.org/10.1101/2020.04.24.20078998
http://doi.org/10.1016/j.compbiomed.2020.103795
http://www.ncbi.nlm.nih.gov/pubmed/32568676
http://doi.org/10.1007/s13246-020-00865-4
http://doi.org/10.18517/ijaseit.10.2.11446
http://doi.org/10.1080/07391102.2020.1788642
http://doi.org/10.1016/j.asoc.2021.107490
http://www.ncbi.nlm.nih.gov/pubmed/33994894
http://doi.org/10.3892/etm.2020.8797

	Introduction 
	Proposed Method 
	Workflow Overview 
	Dilated Shuffle Sequential Network Structure 
	Dilated Shuffle Sequential Network Workflow 
	Training Loss 

	Results and Analysis 
	Dataset and Experimental Setup 
	Testing Results (Ablation Studies) 
	Comparison 

	Discussion and Conclusions 
	References

