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Abstract: In this paper, an efficient model predictive control (MPC) of velocity tracking of automated
vehicles is proposed, in which a reference signal is given a priori. Five degree-of-freedom vehicle
dynamics with nonlinear tires is chosen as the prediction model, in which coupling characteristics
of longitudinal and lateral dynamics are taken into account. In order to balance computational
burden and prediction accuracy, Koopman operator theory is adopted to transform the nonlinear
model into a global linear model. Then, the global linear model is used in the design of MPC to
reduce online computational burden and avoid solving nonconvex/nonlinear optimization problems.
Furthermore, the effectiveness of Koopman operator in vehicle dynamics control is verified using a
Matlab/Simulink environment. Validation results demonstrate that dynamic mode decomposition
with control (DMDc) and extended dynamic mode decomposition (EDMD) algorithms are more
accurate in model validation and dynamic prediction than local linearization, and DMDc algorithm
has less computational burden on solving optimization problems than the EDMD algorithm.

Keywords: automated vehicle control; nonlinear model predictive control; Koopman operator;
data-driven control

MSC: 93B45

1. Introduction

In recent decades, automated vehicles have developed rapidly, which are of great
significance in improving driving comfort [1] and energy efficiency [2]. The automated
driving system mainly includes positioning, perception, planning and decision-making,
and control modules [3–6]. The planning and decision-making module decide the reference
trajectory or reference velocity based on the information obtained by the sensing module
and the state of the vehicle. The control module can track the reference trajectory or velocity
by regulating the accelerator, brake, and steering wheel of vehicles.

Vehicle velocity tracking [7] is an important automated driving control, which can be
considered as a simplified adaptive cruise control (ACC). Velocity tracking usually adopts
the strategy of hierarchical control, where an upper decision-making layer calculates the
reference velocity profile based on environment information. However, the sensor noise and
the interaction of surrounding vehicles have great influence on decision-making. Therefore,
a new distributed mean-field-type filter is proposed in [8] to handle noises, partial-observed
and high-dimensional data, which improves the accuracy of vehicle tracking. Not only is a
smoothing algorithm of the measured data proposed in [9] to reduce the impact of road
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surface and body vibration, but also an ACC system with traffic jam and active collision
avoidance function is proposed. The lower control layer is responsible for designing
controller based on vehicle dynamics. However, vehicle is a multiple-input multiple-
output constrained dynamical system with strong coupling characteristics, that is, the
longitudinal and lateral characteristics influence each other. Either lateral control [10,11] or
longitudinal control [12,13] of vehicles ignores lateral and longitudinal dynamics coupling.
Integrated longitudinal and lateral control is proposed in [14–16], which considers the
coupling characteristics, but still designs longitudinal and lateral controllers separately.
While vehicles are at a high speed, a large steering angle, and a small adhesion coefficient,
vehicles with decoupling controllers will inevitably suffer from handling stability problems.
Therefore, it is necessary to fully consider coupling characteristics, and to control the lateral
and longitudinal motions simultaneously.

Compared with other controllers such as proportional integral [17] and linear quadratic
regulator [18], model predictive control (MPC) [19–21] has been widely used in vehicle
lateral and longitudinal coupling control since it can effectively deal with constraints. How-
ever, nonlinear model predictive control (NMPC) needs to solve nonconvex optimization
problems at each time instant, which might lead to excessive computational burden.

In order to avoid to solve nonconvex optimization problems and reduce online com-
putational burden of NMPC, linearization methods, such as local linearization [22], multi-
model method [23], and feedback linearization [24], are commonly used. Local linearization
is the most commonly used linearization method. However, the linear model based on
Taylor expansion works only around its equilibrium point [25], and it is necessary to up-
date the linear model and solve the Jacobian matrix at each time instant. The multi-model
method builds several linear models which are suitable for different working areas, but it
is hard to ensure stability due to (frequent) model switching [26]. Feedback linearization
requires precise mathematical models [27].

Koopman operator theory [28] provides a new tool to perform linearization. Its basic
idea is to lift a nonlinear system to an infinite-dimensional linear space, and obtain its global
linear model accordingly without information loss. Compared with common linearization
methods, Koopman operator has great advantages. The global linear model constructed
by Koopman operator is valid for all working points, which is obviously different from
local linearization and the multi-model method. That is, the continuous updating of linear
model or model switching is avoided, and the computational burden is further reduced. In
principle, Koopman operator is data-driven and can build a linear model based on system’s
input and output data. Compared with feedback linearization, there is no need to establish
an accurate mechanism model.

The infinite dimensional Koopman operator is difficult to implement, so dynamic
mode decomposition (DMD), extended dynamic mode decomposition (EDMD), and deep
neural network (DNN) are often used to approximate an infinite-dimensional Koopman
operator in finite dimensions. DMD [29] and EDMD [30] approximate the action of the
Koopman operator on a subspace of the observable space by sampling. DMD can only be
applied to autonomous systems, and has been widely used in the analysis of complex flow
phenomena due to its simple mathematical expression. Dynamic mode decomposition
with control (DMDc) [31] can overcome this limitation. Theoretically, EDMD can better
approximate Koopman eigenfunctions and Koopman operator. However, manual selection
of lifting functions has great influence on approximation accuracy. DNN [32,33] avoids
manual selection of lifting functions, and provides the possibility to achieve high approxi-
mation accuracy. DNN has the disadvantage of complex structure and time-consuming
training, so DMDc and EDMD algorithms are widely used to approximate the Koopman
operator in finite dimensions.

Koopman operator is widely used in analysis and control of nonlinear systems [34–37].
To apply Koopman operator to vehicle control, a global linear model is constructed directly
based on the system’s data. Then, linear controllers based on the obtained global linear
models are designed. For example, a “global” linear model of vehicle dynamics is obtained
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in [38] based on the EDMD algorithm. A linear MPC, named Koopman MPC, is proposed
in [39] to accurately track the reference velocity. However, it fails while the yaw rate is
changing. A three-state single-track model of vehicles with linear tires is considered in [40].
While the nonlinear characteristic of tires is obvious, i.e., in the scenario of a large steering
angle or small road adhesion coefficient, good velocity tracking performance cannot be
achieved by the proposed MPC scheme. A Koopman MPC is proposed in [41] for velocity
tracking of vehicles, in which Koopman operators are represented by a deep neural network.
The strategy has a large error in tracking the reference velocity, which might result in the
deviation of the driving state of vehicles and the handling stability problems, in particular,
when the curvature of the road is constantly changing.

In this paper, an automated driving model predictive control of vehicles is proposed,
in which vehicle dynamics and nonlinearity of tires are approximated by an identified
Koopman linear model. Furthermore, a linear MPC is designed to guarantee accurate
and implementable velocity tracking. Note that, different from [42], tire nonlinearity
is considered when establishing vehicle dynamics model, and the DMDc algorithm is
compared with the EDMD algorithm in model accuracy and online computational burden.

The main contributions of this paper are as follows:

• Automated vehicle control is reduced to a reference velocity tracking problem, in
which the reference signal is provided by the module of perception and planner. In
order to reflect full operating conditions, nonlinear vehicle dynamics and nonlinear
tires which represent the coupling characteristics of longitudinal and lateral dynamics
are considered.

• Koopman operator theory is adopted to transform the nonlinear vehicle model and
tire into a global linear model. Thus, the trade-off between prediction accuracy and
online computational burden is achieved.

This paper is organized as follows: Vehicle dynamics is introduced in Section 2. MPC
considering nonlinear vehicle dynamics and nonlinear tires is introduced in Section 3.
Linear MPC based on the Koopman operator is discussed in Section 4. Section 5 presents
simulation results. The paper is concluded in Section 6.

2. Problem Setup

Velocity tracking is an important part of classical cruise control. As shown in Figure 1,
the goal of velocity tracking is to track the reference velocity profile accurately in real time
by regulating the driving, braking, and steering of vehicles, when the reference vehicle
velocity is determined by the planning and decision-making module. In this section,
vehicle dynamics considering tire nonlinearity and the objective of velocity tracking control
are introduced.

2.1. Vehicle Dynamics

The longitudinal, lateral, and yaw motion of vehicles are considered in this paper.
Suppose that the vehicle is front-wheel steering and four-wheel driving, and vehicle
dynamics considering the lateral and longitudinal coupling shown in Figure 2 is established.
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Figure 1. Schematic diagram of velocity tracking control.
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Figure 2. Vehicle dynamics model.

According to Newton’s Second Law, the vehicle longitudinal, lateral and yaw dynam-
ics can be expressed as:

mv̇x −mvyω = Fl f cos δ− Fs f sin δ + Flr
mv̇y + mvxω = Fl f sin δ + Fs f cos δ + Fsr

Izω̇ =
(

Fl f sin δ + Fs f cos δ
)

l f − Fsrlr
(1)

where vx, vy, and ω are the longitudinal velocity, lateral velocity, and yaw rate of the
vehicle, respectively, m is the mass of vehicles, δ is the front steering angle, Fl f and Flr are
the longitudinal forces of front and rear wheel, Fs f and Fsr are the lateral forces of front
and rear wheel, l f and lr are distances of wheels from the center of gravity, and Iz is the
moment of inertia around yaw axis.

The dynamics of wheels is shown in Figure 3, which can be described accordingly by{
ω̇ f =

(
Tf − ReFl f

)
/J

ω̇r = (Tr − ReFlr)/J
(2)
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where ω f and ωr are angular velocity of front and rear tires, Re is the wheel rolling radius, J
is the moment of inertia of wheel, and Tf and Tr are the total torque of front and rear wheel.

eR

/f rT

/f rw

/lf lrF

Figure 3. Wheel dynamics model.

In this paper, the single track model of vehicle is adopted. The torque distribution
mode is as follows: the front and rear axles are distributed equally in driving and braking
condition. Define T as the total torque of the vehicle. Then, the torque Tf and Tr can be
expressed as

Tf = Tr = T/2 (3)

A five-degree-of-freedom (5DOF) model of vehicles is obtained by combining (1)–(3)

mv̇x −mvyω = Fx f cos δ− Fy f sin δ + Fxr
mv̇y + mvxω = Fx f sin δ + Fy f cos δ + Fyr

Izω̇ =
(

Fx f sin δ + Fy f cos δ
)

l f − Fyrlr

ω̇ f =
(

T/2− ReFx f

)
/J

ω̇r = (T/2− ReFxr)/J

(4)

Denote the state of the system as x =
[
vx, vy, ω, ω f , ωr

]T
, the control input as

u = [δ, T]T , and the output as y =
[
vx, vy, ω

]T . Thus, the vehicle dynamics (4) can be
rewritten as {

ẋ = f (x, u)
y = Cx

(5)

where x ∈ R5, u ∈ R2, C = [I3×3, 03×2], I is an identity matrix, and f : R5 × R2 → R3

represents the related nonlinear mapping. Furthermore, the discrete counterpart of vehicle
dynamics (5) is {

x(k + 1) = f ′(x(k), u(k))
y(k) = Cx(k)

(6)

provided that the sampling time is Ts.

2.2. Nonlinear Tire Model

Tires are the key components of vehicles which carry all the loads and influence
handling stability. Under different vertical forces Fn, the relationship between slip ratio and
longitudinal force is shown in Figure 4, and the relationship between slip angle and lateral
force is shown in Figure 5. It can be seen from Figure 5 that, when the slip angle is small,
the slip angle and lateral force is in an approximate linear relationship; as the slip angle
increases, lateral force is saturated. That is, the small-angle approximation method [43] is
no longer applicable while vehicles are fast steering at a high speed.
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Figure 4. The longitudinal forces with different vertical forces Fn.
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Figure 5. The lateral forces with different vertical forces Fn.

In order to accurately reflect the nonlinear properties of tires, the longitudinal and
lateral tire force is calculated by the following magic formula [44]: Fl = Dl sin

(
Cl arctan

(
Blα f /r − El

(
Blα f /r − arctan Blα f /r

)))
Fs = Ds sin

(
Cs arctan

(
Bsk f /r − Es

(
Bsk f /r − arctan Bsk f /r

))) (7)

where Bl , Cl , Dl , El and Bs, Cs, Ds, Es are magic formula parameters of the longitudinal tire
force Fl and lateral tire force Fs, respectively, α f and αr are the front and rear tire slip angles,
and k f and kr are the front and rear tire slip ratios. The tire slip angle and slip ratio can be
calculated by 

α f = arctan
(

vw
f y

vw
f x

)
αr = arctan

( vw
ry

vw
rx

) (8)
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
k f =

ω f Re−vw
f x∣∣∣vw

f x

∣∣∣
kr =

ωr Re−vw
rx

|vw
rx |

(9)

where vw
f x, vw

f y, vw
rx, and vw

ry are the longitudinal and lateral velocity of the front and rear
wheels under the tire coordinate system.

Wheel velocities vw
f x, vw

f y, vw
rx and vw

ry can be expressed as:
vw

f y = v f y cos δ− v f x sin δ

vw
f x = v f y sin δ + v f x cos δ

vw
ry = vry

vw
rx = vrx

(10)

where v f x, v f y, vrx and vry are the longitudinal and lateral velocity of the front and rear
wheels under the vehicle coordinate system, and

v f x = vx
v f y = vy + l f ω

vrx = vx
vry = vy − lrω

(11)

where l f (lr) is distance from the front (rear) axle to mass center of the vehicle.

2.3. Control Objective

The control objective of velocity tracking is to accurately track the reference velocity
profile, that is, to ensure that vehicles drive at the reference velocity, i.e.,

lim
k→∞

∥∥∥vx(k)− vre f
x (k)

∥∥∥ = 0

lim
k→∞

∥∥∥vy(k)− vre f
y (k)

∥∥∥ = 0

lim
k→∞

∥∥∥ω(k)−ωre f (k)
∥∥∥ = 0

(12)

where vre f
x (k), vre f

y (k), and ωre f (k) are the reference longitudinal velocity, lateral velocity,
and yaw rate, respectively.

3. NMPC of Automated Vehicles

In this section, a nonlinear model predictive controller is proposed to solve the velocity

tracking problem. Suppose that the reference velocity is r(k) =
[
vre f

x (k), vre f
y (k), ωre f (k)

]T
.

In order to track the time-varying reference velocity signal, the following optimization
problem will be solved at each time instant.

Problem 1.
minimize

U(k)
J(x(k), r(k), U(k)) (13)

s.t.
xp(k + i + 1|k) = f ′(xp(k + i|k), u(k + i|k))
yp(k + i|k) = Cxp(k + i|k)
xp(k|k) = x(k)
xp(k + i|k) ∈

[
xp

min, xp
max

]
u(k + i|k) ∈ [umin, umax]

(14)

where xp(k + i|k) and yp(k + i|k) are the predicted state and predicted output, N is the prediction
horizon, r(k) = [r(k|k), r(k + 1|k), . . . , r(k + N − 1|k)] is the sequence of the reference signal,
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U(k) = [u(k|k), u(k + 1|k), . . . , u(k + N − 1|k)] is the sequence of the control input, xp
min / max

and umin/max are constraints of the system state and control input.
In order to track the reference velocity profile while guaranteeing that the control action is as

small as possible, both the tracking error of the prediction state to the reference signal and the control
input are included in the cost function. That is, the cost function is chosen as:

J(x(k), r(k), U(k)) =
N−1

∑
i=0

[
‖yp(k + i|k)− r(k + i|k)‖2

Q + ‖u(k + i|k)‖2
R

]
(15)

where Q and R are positive semi-definite weighting matrices.

Denote U∗(k) = [u∗(k|k), u∗(k + 1|k), . . . , u∗(k + N − 1|k)] and J∗(x(k), r(k), U(k)) as
the optimal control sequence and the related optimal cost function. The first element of
U∗(k), i.e., u∗(k|k) will be applied to vehicles.

The optimal control input of NMPC summarized in Algorithm 1 will be obtained
through the solution of Problem 1 at each time instant, in which the optimal cost function
is achieved as well.Furthermore, the proposed NMPC scheme can attenuate model-plant
mismatches and external disturbances since the optimization problem is solved in a re-
ceding horizon manner. However, as the involved optimization problem is nonlinear and
nonconvex, the proposed NMPC might suffer problems of heavy computational burden
and local minima, which will seriously deteriorate the obtained performance.

Algorithm 1 NMPC of automated vehicles

Input: The prediction horizon N, weighting matrices Q, R, and initial value of the state x(k)
Output: Optimal control input u∗(k|k)
1: for k = 0, 1, . . . do
2: Obtain the current state x(k), and the reference signal r(k)
3: Solve Problem 1 to obtain U∗(k)
4: Apply u∗(k|k) to the vehicle
5: end for

4. Koopman-Based MPC of Automated Vehicles

The vehicle dynamics emerges nonlinear and strong coupling characteristics. In this
section, Koopman linear models are constructed based on DMDc and EDMD algorithms,
respectively. The identified Koopman linear model is used to design a model predictive
controller, where the involved optimization problem is a quadratic programming problem.
Note that, in order to obtain the approximated linear model, vehicle dynamics (6) is treated
as a “transparent box” here.

The core idea of the Koopman operator theory is to express the evolution of nonlinear
dynamical systems through an infinite-dimensional linear operator [28]. Define κ as the
infinite-dimensional Koopman operator acting on the observation function ϕ. Under the
action of κ, the nonlinear evolution of vehicles can be transformed into a linear evolution:

κϕ(x(k)) = ϕ(x(k + 1)) = ϕ
(

f ′(x(k), u(k))
)

(16)

The infinite-dimensional Koopman operator κ is difficult to realize in practice. When
the Koopman operator is applied to a real controlled system, a finite-dimensional ap-
proximation of κ is often carried out. In this paper, the DMDc algorithm and the EDMD
algorithm, two common methods to approximate the Koopman operator in finite dimen-
sions, are applied to construct the global linear model of vehicles.

4.1. DMDc-MPC

The traditional DMD algorithm is only suitable for describing autonomous systems.
Instead, the DMDc algorithm [31] extends the traditional DMD algorithm to systems under
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control. Construction of a Koopman linear model and a linear MPC based on the DMDc
algorithm will be introduced in this subsection.

Based on the DMDc algorithm, the vehicle dynamics (6) can be approximated by a
discrete linear model: {

x̂(k + 1) = ADMD x̂(k) + BDMDu(k)
ŷDMD(k) = CDMD x̂(k)

(17)

where x̂(k) ∈ R5 and ŷDMD(k) ∈ R3 are the state and output of the constructed linear
model, respectively, the matrix CDMD is set to [I3×3, 03×2], and the matrices ADMD ∈ R5×5

and BDMD ∈ R5×2 are the parametric matrices that need to be identified.
In order to identify ADMD and BDMD, collect state and control input data of the vehicle

dynamics (6), and construct the following data matrices:

X1 = [x(1), · · · , x(kmax)]
X2 = [x(2), · · · , x(kmax + 1)]
Y = [y(1), · · · , y(kmax)]
U = [u(1), · · · , u(kmax)]

(18)

where X1 ∈ R5×kmax , X2 ∈ R5×kmax , Y ∈ R3×kmax , U ∈ R2×kmax , and kmax is the number of
snapshots.

According to the Koopman linear model (17), the constructed data matrices can be
expressed as:

X2 =
[

ADMD BDMD
][ X1

U

]
:= GΩ (19)

where G =
[

ADMD BDMD
]

is a finite-dimensional approximate matrix of the Koopman

operator, and Ω =
[

X1 U
]T is a reconstructed augmented data matrix.

Perform singular value decomposition (SVD) on matrix Ω. Denote the truncated rank
of SVD as p. In this paper, set p = 5. The matrix Ω can be expressed as

Ω ≈ ŨΣ̃ṼT (20)

where Ũ ∈ R(5+2)×5 is the unitary matrix, and Σ̃ ∈ R5×5 is a diagonal matrix.
To obtain the matrices ADMD and BDMD from the matrix G, decompose the matrix Ũ

as:

Ũ =

[
Ũ1
Ũ2

]
(21)

where Ũ1 ∈ R5×5 and Ũ2 ∈ R2×5.
Thus, the matrices ADMD and BDMD in the Koopman linear model can be expressed

as:
ADMD = X2ṼΣ̃−1ŨT

1
BDMD = X2ṼΣ̃−1ŨT

2
(22)

The finite-dimensional approximation of the Koopman operator using the DMDc
algorithm is summarized in Algorithm 2.

Algorithm 2 Approximation of Koopman operator with DMDc algorithm

Require: Data of the state, output and control input of the vehicle dynamics
x(1), x(2), · · · , x(kmax + 1), y(1), y(2), · · · , y(kmax) and u(1), · · · , u(kmax).
Ensure: The matrices ADMD, BDMD
1: Construct data matrices (18);
2: Construct Ω = [X1, U]T based on data matrices;
3: Perform singular value decomposition on the matrix Ω by (20);
4: Decompose the matrix Ũ into Ũ1 and Ũ2 by (21), and calculate the matrices ADMD, BDMD
by (22).
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Based on the Koopman linear model (17), a linear model predictive controller, i.e.,
DMDc-MPC, is designed. The optimization problem of DMDc-MPC is as follows:

Problem 2.
minimize

U(k)
J(x̂(k), r(k), U(k)) (23)

s.t.
x̂(k + i + 1|k) = ADMD x̂(k + i|k) + BDMDu(k + i|k)
ŷDMD(k + i|k) = CDMD x̂(k + i|k)
x̂(k|k) = x(k)
x̂(k + i|k) ∈

[
x̂DMD

min , x̂DMD
max

]
u(k + i|k) ∈

[
uDMD

min , uDMD
max

] (24)

where x̂(k + i|k) and ŷDMD(k + i|k) are the predicted state and predicted output based on the
Koopman linear model (17), respectively, N is the prediction horizon, x̂DMD

min / max, and uDMD
min / max are

constraints of the system state and control input, and U(k) is the sequence of the control input. The
cost function can be expressed as:

J(x̂(k), r(k), U(k)) =
N−1

∑
i=0

[
‖ŷDMD(k + i|k)− r(k + i|k)‖2

QDMD
+ ‖u(k + i|k)‖2

RDMD

]
(25)

where QDMD and RDMD are positive semi-definite weighting matrices.

The first element u∗(k|k) of the optimal control sequence U∗(k) will be applied to the
vehicle to implement velocities’ tracking control.

The DMDc-MPC algorithm based on Koopman operator is summarized in Algorithm 3,
and the related control diagram is shown in Figure 6.

1 ,x k f x k u k min J constraints

Vehicle dynamics DMDc-MPC

optimal control input

current state x k

 preceding vehicle state r k

Figure 6. Control diagram of DMDc-MPC based on a Koopman operator.

Algorithm 3 DMDc-MPC based on Koopman operator

Input: The prediction horizon N, weighting matrices QDMD, RDMD, parameter matrices ADMD,
BDMD, CDMD, and initial value of the system state x(k)
Output: optimal control input u∗(k|k)
1: for k = 0, 1, . . . do
2: Obtain the current state x(k), and the reference signal r(k)
3: Solve Problem 2, and obtain U∗(k)
4: Apply u∗(k|k) to the vehicle system
5: end for

4.2. EDMD-MPC

The EDMD algorithm [36] provides another idea for extending the traditional Koop-
man operator to the controlled system. The Koopman operator of the controlled system
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is defined as the Koopman operator of the autonomous system that evolves on a lifted
state space.

Denote control to go as u(k) := u(i)∞
i=k. Set the lifted state space as the combination of

the current system state and control to go, i.e., χ(k) = [x(k), u(k)]T . The evolution of the
lifted state χ(k) is

χ(k + 1) = F(χ(k)) =
[

f ′(x(k), u(k))
Su(k)

]
(26)

where F(·) represents the nonlinear mapping from χ(k) to χ(k + 1), and S is the left shift
operator for updating the control sequence, i.e., u(k + 1) = Su(k).

Define κ′ as the Koopman operator acting on the observation function ϕ′(χ(k)), i.e.,

κ′ϕ′(χ(k)) = ϕ′(F(χ(k))) (27)

The approximation of the Koopman operator κ′ of the vehicle dynamics (6) is obtained
by solving the least squares optimization problem:

minimize
AEDMD ,BEDMD

kmax

∑
k=1
‖ψ(x(k + 1))− AEDMDψ(x(k))− BEDMDu(k)‖2

2 (28)

where ψ(x(k)) =
[
ψ1(x(k)), ψ2(x(k)), . . . , ψNψ(x(k))

]T
is the vector of selected lifting func-

tions, AEDMD ∈ RNψ×Nψ and BEDMD ∈ RNψ×2 are the coefficient matrices to be calculated,
and Nψ is the number of lifting functions with Nψ � 5.

After solving the optimization problem (28), the discrete linear model of vehicles can
be constructed as: {

z(k + 1) = AEDMDz(k) + BEDMDu(k)
ŷEDMD(k) = CEDMDz(k)

(29)

where z(k) ∈ RNψ and ŷEDMD(k) ∈ R3 are the lifted state and output, respectively. The state

z(k) = ψ(x(k)) :=
[
ψ1(x(k)), ψ2(x(k)), . . . , ψNψ(x(k))

]T
. The matrix CEDMD ∈ R3×Nψ in

(29) can be obtained by solving the following least squares optimization problem:

minimize
CEDMD

kmax

∑
k=1
‖y(k)− CEDMDψ(x(k))‖2

2 (30)

A finite-dimensional approximation of the Koopman operator using the EDMD algo-
rithm is summarized in Algorithm 4.

Algorithm 4 Approximation of Koopman operator with the EDMD algorithm

Require: Data of state, output and control input of vehicle dynamics x(1), x(2), · · · , x(kmax + 1),
y(1), y(2), · · · , y(kmax) and u(1), · · · , u(kmax), the selected lifting functions ψ(x) =[
ψ1(x), · · · , ψNψ

(x)
]T

.
Ensure: The matrices AEDMD, BEDMD, CEDMD
1: Construct the data matrices (18);
2: Lift the dimension of X1 and X2 with ψ to obtain X1,li f t and X2,li f t;

X1,li f t = [ψ(x(1)), . . . , ψ(x(kmax))]
X2,li f t = [ψ(x(2)), . . . , ψ(x(kmax + 1))]

3: Solve the optimization problem (28) and (30) to obtain AEDMD, BEDMD, CEDMD.

Based on the Koopman linear model (29), a linear model predictive controller, i.e.,
EDMD-MPC, is designed. The optimization problem of EDMD-MPC is as follows:
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Problem 3.
minimize

U(k)
J(z(k), r(k), U(k)) (31)

s.t.
z(k + i + 1|k) = AEDMDz(k + i|k) + BEDMDu(k + i|k)
ŷEDMD(k + i|k) = CEDMDz(k + i|k)
z(k|k) = ψ(x(k))
ŷEDMD(k + i|k) ∈ [ŷmin, ŷmax]
u(k + i|k) ∈

[
uEDMD

min , uEDMD
max

] (32)

where z(k + i|k) and ŷEDMD(k + i|k) = [v̂x(k + i|k), v̂y(k + i|k), ω̂(k + i|k)]T are the predicted
state and output based on the Koopman linear model (29), respectively, N is the prediction horizon,
U(k) is the sequence of the control input, ŷmin / max and uEDMD

min / max are constraints, and the cost
function can be expressed as:

J(z(k), r(k), U(k)) =
N−1

∑
i=0

[
‖ŷEDMD(k + i|k)− r(k + i|k)‖2

QEDMD
+ ‖u(k + i|k)‖2

REDMD

]
(33)

where QEDMD and REDMD are positive semi-definite weighting matrices.

The EDMD-MPC algorithm based on Koopman operator is summarized in
Algorithm 5, and the control diagram is shown in Figure 7.

Algorithm 5 EDMD-MPC based on Koopman operator

Input: The prediction horizon N, weight matrices QEDMD, REDMD, parameter matrices AEDMD,
BEDMD, CEDMD, and the initial value of the state x(k)
Output: optimal control input u∗(k|k)
1: for k = 0, 1, . . . do
2: Obtain the current state x(k), and the reference signal r(k)
3: Lift the dimension of the state x(k) and obtain z(k|k)
4: Solve Problem 3, and obtain U∗(k)
5: Apply u∗(k|k) to the vehicle system
6: end for

1 ,x k f x k u k

min J constraints

Vehicle dynamics

EDMD-MPC

optimal control input

Lifted statecurrent state x k

|z k k x k

|z k k

* |u k k
 preceding vehicle state r k

Figure 7. Control diagram of EDMD-MPC based on the Koopman operator.

Remark 1. Since it is difficult to directly collect data of vehicles to reflect the required dynamic
characteristics due to safety consideration, the vehicle dynamics (6) is used as “data generator”.
Thus, the proposed scheme is a hybrid mechanistic-data driven approach which can balance the
computational burden of MPC and accuracy of prediction.

5. Simulation Results

In order to verify the effectiveness of the proposed scheme, simulation experiments
are carried out in the Matlab R2016b environment. The Koopman linear model which can
approximate vehicle dynamics is identified with the DMDc/EDMD algorithm, respectively.
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The effectiveness of the proposed model predictive controller with the approximated global
linear model is verified under different driving scenarios.

The parameters of the vehicle model are shown in Table 1, and the parameters of the
magic formula of tires are shown in Table 2.

Table 1. Vehicle parameters.

Parameter Value Unit

m 1820 kg
g 9.8 m/s2

Iz 4095 kg ·m2

l f 1.265 m
lr 1.675 m
Re 0.353 m
J 1 kg ·m2

Table 2. Parameters of tire force.

Parameter Front Rear Parameter Front Rear

Bl 14.27 14.33 Bs 7.937 8.036
Cl 1.921 1.923 Cs 2.205 2.205
Dl 4931 3762 Ds 4941 3769
El 0.9699 0.9702 Es 1.004 1.004

5.1. Data Collection and Model Identification

In principle, Koopman operator theory is data-based, i.e., only input–output data are
needed. However, vehicle dynamics (4) is used to ’produce’ data in this paper. That is, the
proposed scheme is a kind of mixture of data-mechanism. In other words, measurement
noise of sensors can be avoided indeed.

Set the sampling period Ts to 10 ms, and discretize (5) using the Runge–Kutta method
to obtain vehicle dynamics (6).

Select 1000 trajectories with the time duration of 2 s to form a dataset. In order to
obtain data that can better reflect the dynamic characteristics of vehicles, 1000 trajectories
in the dataset are divided equally to form a straight driving subdataset and a curve driving
subdataset, respectively. The settings of the two subdatasets are as follows:

• Straight driving subdataset: The initial values of longitudinal velocity vx, lateral
velocity vy, and yaw rate ω are randomly selected in [1, 30] m/s, [−0.5, 0.5] m/s,
and [−0.5, 0.5] rad/s. The initial values of ω f and ωr are both randomly selected in
[1/Re, 30/Re] rad/s. The torque T is randomly selected in [−1000, 1000] N , and the
front steering angle δ is randomly selected in [−0.001, 0.001]rad.

• Curve driving subdataset: The initial values of longitudinal velocity vx, lateral ve-
locity vy, and yaw rate ω are randomly selected in [1, 30] m/s, [−0.5, 0.5]m/s, and
[−0.5, 0.5] rad/s. The initial values of ω f and ωr are both randomly selected in
[1/Re, 30/Re] rad/s. The torque T is randomly selected in [−600, 600] N, and the
front steering angle δ is randomly selected in [−0.1, 0.1] rad.

When using the EDMD algorithm to identify the Koopman linear model, a lifting
function should be selected first. The lifting functions ψi are chosen to be itself (i.e., ψ1 = vx,
ψ2 = vy, ψ3 = ω, ψ4 = ω f , ψ5 = ωr) and 100 Gaussian radial basis functions, so the
dimension of the lifted state of the discrete linear model is 105. The expression of the
Gaussian radial basis function is

my = exp

(
−‖θ − θcenter‖2

σ2

)
(34)

where θcenter is the randomly selected center value, and σ is the kernel width.
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Remark 2. While constructing the dataset, an approximate expression of the initial angular velocity
of the front and rear tires is adopted, i.e., vx/Re. Thus, initial values of ω f and ωr are determined
by the initial value of longitudinal velocity vx and tire radius Re, that is, initial values of ω f and
ωr are within [1/Re, 30/Re]rad/s.

5.2. Model Validation

Here, simulation experiments are carried out to verify the effectiveness of the identified
Koopman linear model through comparison of states of the actual vehicle system and the
linear system approximated by the Koopman operator. Two scenarios are set as follows:

• Scenario 1 (longitudinal motion): The initial state of the vehicle system is set to
[25, 0, 0, 25/Re, 25/Re]

T , the torque T is set to 600 Nm, and the front steering angle δ
is set to 0.

• Scenario 2 (lateral and longitudinal coupling motion):The initial state of the vehicle
system is set to [15, 1,−0.45, 15/Re, 15/Re]

T , the torque T is set to −400 Nm, and the
front steering angle is δ = 0.15 cos(5t).

Precision refers to how close the model’s predictions are to the observed values. The
more precise the model, the closer the data point to the observed value. In order to test
predicted precision, the Root Mean Square Error (RMSE ) is used as an objective evaluation
index, i.e.,

RMSE =

√
∑k

∥∥∥xpred(k)− xtrue(k)
∥∥∥2

2√
∑k ‖xtrue(k)‖2

2

× 100% (35)

where xtrue(k) and xpred(k) are the actual state of vehicle system and the state of the
identified Koopman linear model at time instant k, respectively.

Under the two scenarios, the evolutions of local linearization and the identified
Koopman linear models constructed by DMDc and EDMD algorithms are shown in
Figures 8 and 9. Accordingly, the values of RMSE of deviations between the real states
and the predicted states with different methods are shown in Tables 3 and 4, respectively.

Table 3. RMSEs of deviations between the real states and the predicted states with different methods
(Scenario 1).

Step N 10 30 50 100 200

DMDc 0.09% 0.28% 0.43% 0.74% 1.32%
EDMD 0.08% 0.26% 0.41% 0.73% 1.34%

Local linearization 0.13% 0.14% 0.14% 0.14% 0.14%

Table 4. RMSEs of deviations between the real states and the predicted states with different methods
(Scenario 2).

Step N 10 30 50 100 200

DMDc 0.91% 1.56% 1.50% 1.83% 2.85%
EDMD 0.88% 1.54% 1.49% 1.73% 2.73%

Local linearization 0.15% 2.98% 13.97% 71.48% 238.20%
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Figure 8. Validation of the Koopman linear model (Scenario 1).
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Figure 9. Validation of the Koopman linear model (Scenario 2).

In Scenario 1, the front steering angle is set to 0, i.e., the coupling characteristics are
weak. In this scenario, local linearization can achieve higher approximated accuracy than
the Koopman linear model constructed by DMDc and EDMD algorithms.

In Scenario 2, the front steering angle is time-varying, i.e., coupling characteristics are
strong. As shown in Figure 10, in Scenario 2, the slip angle of the front and rear tires of the
vehicle works in its nonlinear region. When coupling characteristics and tire nonlinearity
are significant, the obtained Koopman linear model can approximate the system dynamics
accurately. However, local linearization is failed.



Mathematics 2022, 10, 4163 16 of 23

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-0.1

0

0.1

0.2

0.3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.15

-0.1

-0.05

0

0.05

0.1

0.9 0.95 1
0

0.05

0.1

Figure 10. The front and rear tire slip angles (Scenario 2).

Compared with local linearization, the data-driven Koopman linear model can predict
the system dynamics accurately in various scenarios, especially in scenarios of strong tire
nonlinearity. Compared with the DMDc algorithm, the Koopman linear model constructed
by the EDMD algorithm has higher accuracy. However, the modeling process of EDMD
algorithm is more complex, and the dimension of obtained Koopman linear model is
much higher.

Note that, compared with [41], both nonlinear dynamics of vehicles and nonlinear
characteristics of tires are considered in this paper.

5.3. Velocity Tracking

In order to verify the effectiveness of both DMDc-MPC and EDMD-MPC, simulation
experiments are carried out under three different cases:

• Case 1: The reference of the lateral velocity and yaw rate are set to 0, and the longitu-
dinal velocity is time-varying. Note that the Gaussian distributed random signal is
injected into the reference signal in this case.

• Case 2: The reference of the lateral velocity and yaw rate are time-varying, and the
longitudinal velocity persistently increases.

• Case 3: The reference of the lateral velocity and yaw rate are time-varying, and the
longitudinal velocity is kept at 30 m/s.

Note that the reference velocities and the initial sate of vehicles are consistent in Case
1, 2, and 3.

Remark 3. In this paper, only velocity tracking of reference is considered. Multi-sensor fu-
sion, driver’s behavior, and the interaction of other vehicles in the traffic will be considered in
future research.

Set the prediction horizon N to 10, and set the constraints of the longitudinal and
lateral velocities and the yaw rate to [−35, 35] m/s, [−2, 2] m/s, and [−1, 1] rad/s. The
constraints of the torque and the front steering angle are [−1500, 1500]Nm and [−0.2, 0.2]
rad. The weight matrices are set as follows:
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QDMD = QEDMD =

 50, 000 0 0
0 500 0
0 0 50, 000


RDMD = REDMD =

[
0.1 0
0 0.01

] (36)

Acceleration and deceleration in the longitudinal direction are considered in Case 1.
Furthermore, measurement noise, i.e., Gaussian distribution with mean 0 and variance
[10−2, 10−4, 10−4]T , is incorporated into the reference signals. Figures 11 and 12 show that
vehicles with both DMDc-MPC and EDMD-MPC can accurately track the reference velocity,
and keep the lateral velocity and yaw rate close to zero.
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Figure 11. State evolution of DMDc-MPC (Case 1).
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Figure 12. State evolution of EDMD-MPC (Case 1).
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Vehicles are accelerating at the longitudinal direction and changing lanes in Case 2,
where the lateral and longitudinal motions are coupled. Since the lateral velocity is low,
tire does not enter its nonlinear region, and the vehicle nonlinearity is mainly reflected
in the lateral and longitudinal coupling characteristics. As shown in Figures 13 and 14,
vehicles with both DMDc-MPC and EDMD-MPC can effectively track the reference velocity
signal with small deviation while the reference lateral velocity and yaw rate are changing.
Compared with [40,41], the controller proposed in this paper makes the deviation between
vehicle state and the reference velocity smaller, and the RMSE of deviations is about 10%
of [41].
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Figure 13. State evolution of DMDc-MPC (Case 2).
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Figure 14. State evolution of EDMD-MPC (Case 2).
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Remark 4. In cases of obvious lateral and longitudinal coupling characteristics, local linearization
modeling fails to track the reference velocity signal. Furthermore, due to the complex structure of
vehicle dynamics (6), updating the Jacobian matrix at each time instant will generate tremendous
computational burden.

In order to verify the effectiveness of the proposed controller in scenario where the
vehicle lateral and longitudinal coupling nonlinearity and tire nonlinearity are significant,
the experiment in Case 3 is carried out. The designed controllers can effectively track
the reference velocity signal, which is shown in Figures 15 and 16. Furthermore, the slip
angles of the front and rear tires of vehicles are shown in Figures 17 and 18. When the
slip angle of front and rear tires gradually reaches its peak, the nonlinear characteristic of
tires emerges. The experimental results show that the proposed controller can still ensure
tracking accuracy when the nonlinearity of the tire is significant.
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Figure 15. State evolution of DMDc-MPC (Case 3).
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Figure 16. State evolution of EDMD-MPC (Case 3).
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Figure 17. Evolution of slip angle of DMDc-MPC (Case 3).
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Figure 18. Evolution of slip angle of EDMD-MPC (Case 3).

RMSM of the proposed DMDc-MPC and EDMD-MPC in different cases is shown
in Table 5. The accuracy of the Koopman linear model based on the EDMD algorithm is
higher, so the tracking accuracy of EDMD-MPC is slightly higher than that of DMDc-MPC.

The simulations are carried out with Processor Intelr CoreTM i7-10700CPU @2.90 GHz
produced by Intelr Corporation, Santa Clara, CA, USA, and 16 GB RAM produced by Ra-
maxel Technology, Shenzhen, China. The optimization problem is solved by qpOASES [45].
The average computation time of the involved optimization problem is shown in Table 6,
which is much smaller than the sampling time 10 ms. Compared with EDMD-MPC,
DMDc-MPC can achieve similar performance with smaller computation time.
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Table 5. RMSEs of tracking errors in different cases.

RMSE DMDc-MPC EDMD-MPC

Case 1 3.44% 3.29%
Case 2 1.84% 1.76%
Case 3 0.68% 0.65%

Table 6. Average computation time of DMDc-MPC and EDMD-MPC.

Computation Time (ms) DMDc-MPC EDMD-MPC

Case 1 0.157 0.481
Case 2 0.162 0.463
Case 3 0.149 0.460

6. Conclusions and Future Research

In this paper, an efficient model predictive control for velocity tracking of automated
vehicles was proposed, provided that a reference signal was given a priori. A 5-DOF non-
linear model of vehicles combined with nonlinear tires is introduced to cover full operation
conditions. An approximated global linear model is obtained based on Koopman operator
theory in order to reduce the online computational burden of MPC and avoid solving
nonconvex/nonlinear optimization problems. The DMDc algorithm, EDMD algorithm,
and the local linearization method are compared in different driving scenarios. Local
linearization is only suitable for scenarios with weak coupling characteristics such as longi-
tudinal driving scenarios. The Koopman linear model obtained by the DMDc algorithm
and EDMD algorithm can guarantee the accurate prediction of system dynamics in various
complex driving scenarios. The control strategy adopted in this paper can ensure the
control accuracy and acceptable computational burden in complex scenarios with obvious
coupling characteristics and tire nonlinearity, which is helpful to improve driving safety.

Future research will focus on adaptive cruise control and platooning of vehicles with
a performance guarantee using efficient nonlinear model predictive control.

Author Contributions: Conceptualization, S.Y. and E.S.; methodology, S.Y. and E.S.; software, E.S.;
supervision, Y.L., H.C. and Y.H.; writing—original draft preparation, E.S.; writing—review and
editing, S.Y., E.S., H.C. and Y.Z. All authors have read and agreed to the published version of the
manuscript.

Funding: This research was funded in part by the National Natural Science Foundation of China
(U1964202), in part by the Natural Science Foundation of Jilin Province (YDZJ202101ZYTS169).

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Du, Y.; Liu, C.; Li, Y. Velocity Control Strategies to Improve Automated Vehicle Driving Comfort. IEEE Intell. Transp. Syst. Mag.

2018, 10, 8–18. [CrossRef]
2. Guanetti, J.; Kim, Y.; Borrelli, F. Control of Connected and Automated Vehicles: State of the Art and Future Challenges. Annu. Rev.

Control 2018, 45, 18–40. [CrossRef]
3. Cui, Y.; Ge, S. Autonomous Vehicle Positioning with GPS in Urban Canyon Environments. IEEE Trans. Robot. Autom. 2003, 19,

15–25.
4. Hulse, L.M.; Xie, H.; Galea, E.R. Perceptions of Autonomous Vehicles: Relationships with Road Users, Risk, Gender and Age. Saf.

Sci. 2018, 102, 1–13. [CrossRef]
5. Schwarting, W.; Alonso-Mora, J.; Rus, D. Planning and Decision-Making for Autonomous Vehicles. Annu. Rev. Control. Robot.

Auton. Syst. 2018, 1, 187–210. [CrossRef]
6. Yang, J.; Ma, R.; Zhang, Y.; Zhao, C. Sliding Mode Control for Trajectory Tracking of Intelligent Vehicle. Phys. Procedia 2012, 33,

1160–1167. [CrossRef]

http://doi.org/10.1109/MITS.2017.2776148
http://dx.doi.org/10.1016/j.arcontrol.2018.04.011
http://dx.doi.org/10.1016/j.ssci.2017.10.001
http://dx.doi.org/10.1146/annurev-control-060117-105157
http://dx.doi.org/10.1016/j.phpro.2012.05.191


Mathematics 2022, 10, 4163 22 of 23

7. Hang, P.; Chen, X.; Zhang, B.; Tang, T. Longitudinal Velocity Tracking Control of a 4WID Electric Vehicle. IFAC-PapersOnLine
2018, 51, 790–795. [CrossRef]

8. Gao, J.; Tembine, H. Distributed Mean-Field-Type Filter for Vehicle Tracking. In Proceedings of the 2017 American Control
Conference (ACC), Seattle, WA, USA, 24–26 May 2017.

9. Zhang, G.; Wang, Z.; Fan, B.; Zhao, L.; Qi, Y. Adaptive Cruise Control System with Traffic Jam Tracking Function Based on
Multi-Sensors and the Driving Behavior of Skilled Drivers. Adv. Mech. Eng. 2018, 10, 1–13. [CrossRef]

10. Rajamani, R.; Zhu, C.; Alexander, L. Lateral Control of a Backward Driven Front-Steering Vehicle. Control. Eng. Pract. 2003, 11,
531–540. [CrossRef]

11. Mata, S.; Zubizarreta, A.; Cabanes, I.; Nieva, I.; Pinto, C. Linear Time Varying Model Based Model Predictive Control for Lateral
Path Tracking. Int. J. Veh. Des. 2017, 75, 1–22. [CrossRef]

12. Raffin, A.; Taragna, M.; Giorelli, M. Adaptive Longitudinal Control of an Autonomous Vehicle with an Approximate Knowledge
of Its Parameters. In Proceedings of the 2017 11th International Workshop on Robot Motion and Control (RoMoCo), Wasowo,
Poland, 3–5 July 2017.

13. Hamersma, H.A.; Els, P.S. Longitudinal Vehicle Dynamics Control for Improved Vehicle Safety. J. Terramechanics 2014, 54, 19–36.
[CrossRef]

14. Chatzikomis, C.I.; Spentzas, K.N. A Path-Following Driver Model with Longitudinal and Lateral Control of Vehicle’s Motion.
Forsch. Ingenieurwesen 2009, 73, 257. [CrossRef]

15. Zhao, J.; Kamel, A.E. Integrated Longitudinal and Lateral Control System Design for Autonomous Vehicles. IFAC Proc. Vol. 2009,
42, 496–501. [CrossRef]

16. Li, M.; Jia, Y. Decoupling and Robust Control of Velocity-Varying Four-Wheel Steering Vehicles with Uncertainties via Solving
Attenuating Diagonal Decoupling Problem. J. Frankl. Inst. 2017, 354, 105–122. [CrossRef]

17. Singh, S. Longitudinal Velocity Control of Autonomous Ground Vehicle Using PID and PI Controller. Int. J. Res. Appl. Sci. Eng.
Technol. 2021, 9, 504–510. [CrossRef]

18. Park, M.; Kang, Y. Experimental Verification of a Drift Controller for Autonomous Vehicle Tracking: A Circular Trajectory Using
LQR Method. Int. J. Control. Autom. Syst. 2021, 19, 404–416. [CrossRef]

19. Mayne, D.Q. Model Predictive Control: Recent Developments and Future Promise. Automatica 2014, 50, 2967–2986. [CrossRef]
20. Owaki, Y.; Yuno, T.; Kawabe, T. Nonlinear Model Predictive Control for Path Following of Simple Small Electric Vehicle Using

C/GMRES. IFAC-PapersOnLine 2018, 51, 253–258. [CrossRef]
21. Sajadi-Alamdari, S.A.; Voos, H.; Darouach, M. Nonlinear Model Predictive Control for Ecological Driver Assistance Systems in

Electric Vehicles. Robot. Auton. Syst. 2019, 112, 291–303. [CrossRef]
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36. Korda, M.; Mezić, I. Linear Predictors for Nonlinear Dynamical Systems: Koopman Operator Meets Model Predictive Control.

Automatica 2018, 93, 149–160. [CrossRef]

http://dx.doi.org/10.1016/j.ifacol.2018.10.129
http://dx.doi.org/10.1177/1687814018795801
http://dx.doi.org/10.1016/S0967-0661(02)00143-0
http://dx.doi.org/10.1504/IJVD.2017.090900
http://dx.doi.org/10.1016/j.jterra.2014.04.002
http://dx.doi.org/10.1007/s10010-009-0112-5
http://dx.doi.org/10.3182/20090921-3-TR-3005.00086
http://dx.doi.org/10.1016/j.jfranklin.2016.09.029
http://dx.doi.org/10.22214/ijraset.2021.32866
http://dx.doi.org/10.1007/s12555-019-0757-2
http://dx.doi.org/10.1016/j.automatica.2014.10.128
http://dx.doi.org/10.1016/j.ifacol.2018.11.022
http://dx.doi.org/10.1016/j.robot.2018.12.001
http://dx.doi.org/10.1016/j.mechrescom.2016.09.001
http://dx.doi.org/10.1016/j.ins.2015.08.033
http://dx.doi.org/10.1016/j.proeng.2014.12.642
http://dx.doi.org/10.1109/LRA.2020.3002449
http://dx.doi.org/10.1016/j.asoc.2019.105927
http://dx.doi.org/10.1073/pnas.17.5.315
http://dx.doi.org/10.1017/S0022112010001217
http://dx.doi.org/10.1007/s00332-015-9258-5
http://dx.doi.org/10.1137/15M1013857
http://dx.doi.org/10.1063/1.4993854
http://dx.doi.org/10.1016/j.compchemeng.2017.07.002
http://dx.doi.org/10.1016/j.ifacol.2020.12.373
http://dx.doi.org/10.1016/j.automatica.2018.03.046


Mathematics 2022, 10, 4163 23 of 23

37. Williams, M.O.; Hemati, M.S.; Dawson, S.T.M.; Kevrekidis, I.G.; Rowley, C.W. Extending Data-Driven Koopman Analysis to
Actuated Systems. IFAC-PapersOnLine 2016, 49, 704–709. [CrossRef]
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