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Abstract: In social influence analysis, viral marketing, and other fields, the influence maximization
problem is a fundamental one with critical applications and has attracted many researchers in the last
decades. This problem asks to find a k-size seed set with the largest expected influence spread size.
Our paper studies the problem of fairness budget distribution in influence maximization, aiming
to find a seed set of size k fairly disseminated in target communities. Each community has certain
lower and upper bounded budgets, and the number of each community’s elements is selected into a
seed set holding these bounds. Nevertheless, resolving this problem encounters two main challenges:
strongly influential seed sets might not adhere to the fairness constraint, and it is an NP-hard
problem. To address these shortcomings, we propose three algorithms (FBIM1, FBIM2, and FBIM3).
These algorithms combine an improved greedy strategy for selecting seeds to ensure maximum
coverage with the fairness constraints by generating sampling through a Reverse Influence Sampling
framework. Our algorithms provide a (1/2− ε)-approximation of the optimal solution, and require
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complexity, respectively.

We conducted experiments on real social networks. The result shows that our proposed algorithms
are highly scalable while satisfying theoretical assurances, and that the coverage ratios with respect
to the target communities are larger than those of the state-of-the-art alternatives; there are even cases
in which our algorithms reaches 100% coverage with respect to target communities. In addition, our
algorithms are feasible and effective even in cases involving big data; in particular, the results of the
algorithms guarantee fairness constraints.

Keywords: fairness budget; submodular maximization; influence maximization; sampling; approximation
algorithm; viral marketing

MSC: 68W25; 68D15; 91B99; 90B60

1. Introduction

In the digital information age, use of online social networks (OSNs) has become
indispensable and widespread for many people. Current OSNs have millions or even
billions of users, such as Facebook, Twitter, Instagram, LinkedIn, Youtube, and others. OSNs
can rapidly influence people by sharing behavior, content, or messages between one person
and another [1]. This propagation is similar to the way viruses spread exponentially. Based
on this powerful feature of OSNs, brands or organizations use an online marketing tactic
through OSNs known as viral marketing. Because this tactic can rapidly spread information,
effectively promote products, usefully support candidates in elections, etc., on a large scale,
it often helps to achieve high results with modest investment costs [2]. However, an effective
viral marketing campaign must seed content with groups of influential people in OSNs.
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The process of identifying a group of such individuals is referred to as the Influence
Maximization (IM) problem [3].

Influence Maximization problem. Given a ground set V, which is the set of users in the
social network, and an information diffusion model, let k ∈ Z+ be a global cardinality constraint,
S ⊆ V and |S| ≤ k be the set of influential users that needs to be determined, and f (S) be the
influence function measuring the expected number of users in V that can be affected by members in
S under the given information diffusion model. The above problem finds that

max
S⊆V,|S|≤k

f (S) (1)

IM is a celebrated topic that has attracted the interest of many experts during the last
decade. Although Kempe et al. first introduced this problem under the name influence
maximization in 2003 [3], Richardson et al. in 2002 were the first to study the problem
as one of maximizing an advertiser’s earnings on a social network [4]. IM is crucial in a
wide variety of applications, including viral marketing [5,6], social network analysis [7,8],
social problems such as financial inclusion [9], HIV prevention for homeless youth [10],
propagation of information for disease spread [11], and other issues.

There are many efficient approaches to this problem that assess the spread of influ-
ence: the formulation of the discrete optimization problem, which is NP-hard [3]; using
continuous-time models [12]; ranking and score-based heuristics [13]; or an excited new
approach using sketches and the Reverse Influence Sampling (RIS) framework, as suggested
by Borgs et al. [14]. Numerous publications have used RIS to solve the IM problem, with
positive results [6,15–17].

However, most of these existing solutions to the problem IM focus on the most influen-
tial nodes to maximize the total number of affected nodes. This means that these methods
only aim to find the most influential users to maximize the number of affected people. Such
approaches are not interest in whether the influenced people are fairly distributed over the
network. Thus, there is a high probability that users in groups that do not contain seeded
users will not be influenced or will not receive the information. On the contrary, it is these
users that must be affected.

For example, viral marketing is a significant and standard application of the IM
problem. The objective is to maximize the profits of advertisers by promoting products to
users on OSNs [4]. OSNs are fertile ground for the advertising field; they have millions or
billions of users, and the number of users continuously increases every day. However, it is
troubling that users of OSNs often encounter advertising content that they have viewed
too many times or already purchased, and thus do not care about. In contrast, users who
are the right customers for these ads do not receive them. This is boring and frustrating for
users. Therefore, the challenge is how to spread advertising content to the right customers
and other potential customer groups in OSN communities.

In recent years, to conquer the above weakness of IM, a new variant of it has been
developed that has attracted the attention of researchers. This is the problem of fair influence
maximization (FIM), which aims to ensure a fair distribution for the groups in the final
set of selected nodes [18,19]. In other words, it guarantees coverage propagation in the
target communities. However, each of the existing methods offers a unique perspective
on fairness. To the best of our knowledge, there are no publications that have considered
both minimum and maximum budget constraints for each group to guarantee equitable
distribution.

Fueled by this challenge, in this paper we study FIM under budget threshold constraint,
setting upper and lower bounded budgets to choose seeds in each community in order
to guarantee fairness (termed FBIM; see Definition 5). Specifically, our contributions are
as follows.

• We propose three algorithms to solve the FBIM problem. These algorithms provide a
(1/2− ε)-approximation of the optimal solution that works efficiently with big data.
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(1) The first algorithm is FBIM1, which uses a combination of several methods. First, it
generates sampling through an RIS framework with the dynamic stop-and-stare algorithm,
known as DSSA [6], and adds a fairness constraint during seed set selection. Our algorithm

has O
(

kT log
(
(8 + 2ε)n ln 2

δ +ln (n
k)

ε2

))
complexity. The results show that this algorithm

has a runtime with an objective function value that can be equal to or better than DSSA,
depending on the adjustment of the dependent parameters. In particular, this method
resolves the fairness constraint, which DSSA lacks [20].

(2) The second algorithm is FBIM2, which combines seed selection with the online
processing influence maximization algorithm, known as OPIMC (see [15]) to ensure maximum
coverage and guarantee the fairness constraint. FBIM2 has O

(
kT log n

ε2k

)
complexity.

Similar to DSSA, OPIMC does not solve the fairness constraint.
(3) The last is the FBIM3 algorithm, which improves on FBIM2 using the greedy technique

with a threshold criterion for selecting a seed set. FBIM3 has O
(

T
ε log k

ε log n
ε2k

)
complexity.

Significantly, the seed set’s distribution guarantees a high coverage ratio, which is an
expression of ensuring the fairness constraint.

• We further investigate the performance of our algorithms by conducting experiments
for the FBIM under both well-known diffusion models, namely, Linear Threshold and
Independent Cascade [3], on real social networks. The results indicate that the seed sets
of our algorithms have a coverage ratio with respect to online communities that is
greater than the results with OPIMC; specifically, it is 2 to 10 times larger than and there
are even cases in which FBIM reaches 100% coverage for the target communities. This
process depends on the appropriate parameter selection for each dataset. An extensive
coverage ratio signifies the number of chosen seeds covering the target communities,
ensuring that the impacted individuals are the ones we want to influence. In addition,
the efficiency of FBIM algorithms must be influenced by objective factors due to the
implementation method and fairness constraints. This leads to higher cost with a
lower objective function value than OPIMC. Nevertheless, the results guarantee the
optimal theoretical approximation, especially the fairness constraint.

Organization. The rest of this article includes six sections. Related works is presented
in Section 2. Definitions and descriptions related to FBIM are presented in Section 3.
Section 4 devises the Threshold Greedy method for the Fair Submodular Maximization
problem, that is, the generation of FBIM. Section 5 contains the proposed algorithms and
their theoretical analysis. We evaluate the experimental results in Section 6, and conclude
the paper in Section 7.

2. Related Works

According to earlier research [3,5,8,21], the IM problem is often addressed using a
greedy technique with an approximation of (1− 1/e). Although the greedy strategy is
quite successful for IM, computing the influence function f (S) remains challenging, as it is
P-hard. Existing approaches for IM may be classified into three primary classes based on
how the influence function is calculated [7].

(1) Simulation-based approaches, such as Greedy [3], CELF [22], CELF++ [23,24], and
UBLF [25], calculate the influence function using Monte Carlo sampling. To achieve highly
scalable algorithms for IM, heuristic techniques can be merged based on a greedy algorithm.
These algorithms aim to produce an (1− 1/e) approximation answer. These methods have
an advantage in that they are suitable for diffusion models. However, their disadvantage is
that it is necessary to generate many sample cases in order to calculate the objective function
with only minor errors. Hence, this approach significantly increases computational costs.

(2) Proxy-based approaches, such as SimPath [26], Degree [23], PageRank [27–29], and
EasyIM [30], approximate the influence function f (S) to overcome the P-hard problem
by devising proxy models. The approximate solution obtained is (1− 1/e− ε) for any
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ε > 0. Many algorithms have demonstrated that the proxy-based strategy is efficient for
empiricism; however, it does not provide theoretical guarantees.

(3) Sketch-based approaches, such as TIM, TIM+ [31], and IMM [32], use a novel RIS
sampling method. The goal of these techniques is to produce an (1− 1/e− ε)-approximate
solution with a minimal number of RIS samples [14]. The drawback of these approaches is
that their lower bounded budget is unknown, and the number of generated samplings can
be rather large. Furthermore, these algorithms guarantee theoretical efficiency thanks to
their rigorously bounded solutions and minimal time complexity. However, because they
must ensure the approximation ratio for the worst-case scenario, the practical efficiency
of sketch-based strategies may be lower than that of proxy-based approaches.

Nguyen et al. [6] have proposed two new sampling techniques, SSA and DSSA,
which attempt to obtain a small number of RIS samples while ensuring (1 − 1/e − ε)-
approximations. Despite this, Huang et al. [33] discovered that SSA/DSSA has certain
flaws. They provided SSA-Fix, an updated version of SSA. Afterwards, Nguyen et al. pre-
sented D-SSA-Fix [34], a significantly updated version of DSSA that produces (1− 1/e− ε)-
approximations.

In addition, many studies have sought to resolve other variants of IM [16,31,32,34].
However, almost all of these methods focus on offline processing. This means that the user
does not receive any output until the final result is obtained. Thus, the user cannot terminate
the algorithm early to trade solution quality for efficiency. Motivated by this phenomenon,
Tang et al. proposed the OPIMC algorithm for online processing of influence maximization
in [15]. This method allows the user to terminate any timestamp, then obtain a seed set
S and report an approximate guarantee (1− 1/e − ε), such that S is the IM problem’s
approximate solution with at least (1− α) probability, with α ∈ (0, 1) a user-specified
parameter.

Unfortunately, virtually all of the above methods have focused on identifying the
most influential nodes to increase the number of nodes affected. This fails to ensure that
chosen nodes are evenly distributed across the partitions of the dataset. This shortcoming
is a driving force that has attracted the attention of researchers. Recent publications have
proposed multiple definitions of fairness and explicitly integrated fairness into the IM
problem. One such fairness concern, known as group fairness, is meant to ensure that each
group receives a fair share of resources and that the distribution of those resources respects
the varied makeup of the groups. These studies of group fairness constraints in the IM
problem have obtained positive results.

Tsang et al. (2019) [35] proposed the issue of optimizing the dissemination of a strategy
while keeping a group fairness restriction in mind. The authors developed two fairness
measures, maximin fairness and group rationality, to assess group fairness in IM. Maximin
fairness measures the smallest number of nodes within each group for whom the influence
must be maximized. Meanwhile, the main principle of group rationality is that no group
may increase its influence by withdrawing from IM with its proportional allocation of
resources and distributing those resources internally. Both measures aim to ensure that
each group receives an equitable share of resources.

Stoica et al. (2020) [36] studied the problem of fair resource allocation in influence
maximization. The authors provided an algorithmic framework for locating solutions that
satisfy fairness constraints for multi-objective submodular maximization problems. This
method increases the diversity of nodes in the seed set, and may have an impact on the
effectiveness and fairness of the information diffusion process. The authors demonstrated
that seeding methods that consider the diversity of nodes in the seed set are more effective
and fair in certain circumstances.

Halabi et al. (2020) [37] worked on the problem of maximizing fair submodular func-
tions, including monotone and non-monotone submodular functions, proposing streaming
algorithms for this problem. For the monotone case, the authors achieved two results,
the (1/2)-approximation algorithm and the (1/4)-approximation algorithm, each of which
use O(log k) time. For non-monotone case, they achieved a (q + ε)-approximation with q
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as an input excess ratio, requiring O(k) time. These approaches apply to the creation of fair
summaries for massive datasets.

Next, Khajehnejad et al. (2020) [18] studied fair influence maximization in an effort
to more fairly reach minority groups. The authors used machine learning approaches to
pick a seed set using an adversarial graph embedding technique, which allows for strong
impact propagation as well as fairness among communities.

Rahmattalabi et al. (2021) [38] resolved the problem that Tsang et al. studied in [35].
This is the problem of group fairness in the influence maximization problem. However,
Rahmattalabi et al. took a different approach, which is to offer a principled characterization
of the properties that a fair influence maximization algorithm must meet. The authors
designed a framework founded on the social welfare theory that aggregates the cardinal
utilities each community derives using isoelastic social welfare functions. In this framework,
the trade-off between fairness and efficiency can be handled by a single inequality aversion
design parameter.

More recently, Becker et al. (2022) [19] considered the same problem as Tsang et al. [35],
proposing a new approach. The authors modeled the problem on the basis of the proba-
bilistic techniques used to choose seed sets, rather than purely deterministic ones. They
provided two variations of this probabilistic problem: the node-based problem, which uses
probabilistic strategies over nodes, and the set-based problem, which uses probabilistic
strategies over sets of nodes. After examining the relationship between the two probabilistic
problems, the authors demonstrated that both probabilistic variants provide approximation
algorithms that achieve a constant multiplicative factor of (1− 1/e), minus an arbitrarily
small additive error caused by the simulation of the information spread.

Ali et al. (2022) [39] solved the fairness of the spread process in various groups. They
focused on the time-critical aspect of IM, examining the number of affected people and
the time step at which they are influenced. Subsequently, they found that maximizing
the expected number of individuals reached by selecting a fixed cardinality seed set and
minimizing the amount of seeds needed to affect a given portion of the network can lead
to unfair solutions. The authors proposed an objective function that balances two goals,
such as maximizing the expected number of nodes reached and minimizing the maximum
disparity in influence between any two communities.

Razaghi et al. (2022) [40] worked on the same group fairness-aware influence maxi-
mization problem in social networks as Tsang et al. [35]. However, they fixed an important
omission that Tsang et al. overlooked by assessing the time required to receive resources by
different nodes of groups. The authors expanded the concept of group fairness in the IM
problem by examining the speed of node activation in different social network groups. They
proposed a multi-objective meta-heuristic (SetMOGWO) founded on the multi-objective
gray wolf optimizer in order to increase the fair propagation of information in the IM
problem as it relates to various fairness measures.

Based on the available literature, the above publications show that previous studies
have been concerned with particular aspects or constraints on the problem of group fairness
in IM. As far as we know, there has been no single study that mentions the fairness
constraints on both the lower and upper bounded budgets of the target communities in
the dataset, which is the reason and impetus for our to research and our attempts find a
solution to this shortcoming.

3. Preliminaries

In this section, we first introduce the definition of the Fair Submodular Maximization
(FSM) problem, which was studied by Halabi et al. [37], generate the present problem, and
recap the Fair Greedy algorithm, which is able to return an approximation of (1/2) within
O(nk) queries. We then introduce our studied fairness influence maximization problem
and recap certain properties of the problem. Table 1 summarizes the notations commonly
used in this paper.
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Table 1. Table of the usual notation used in the maximizing submodular problem under fairness
constraint.

Notation Description

n the number of nodes in the graph.

V the set of nodes in the graph G, |V| = n.

2V the subset family of V.

m the number of edges in the graph.

E the set of edges in the graph G, |E| = m.

w the set of edge weights in the graph.

v a random node in the graph.

u a neighbor node of v in the graph.

k a total budget, which is upper bound of |S|.

K the number of target communities is selected for the FBIM’s input.

C ′ the set of K communities in network G.

C a set of disjoint communities of the graph, |C| = N

N the size of a set C

Ci, Cj the i-th community and the j-th community.

Vi the set of nodes of the community Ci

kl
i the lower bounded budget of the community Ci.

ku
i the upper bounded budget of the community Ci.

S the returned size-k seed set of algorithms.

S∗ an optimal size-k seed set.

Ri, Rj a random RR set.

T the number of nodes in C ′ , T =
∣∣∣⋃Ci∈C ′ (Ci)

∣∣∣ and T ≤ n.

R,R′ ,R1,R2 the set of random RR sets.

CovR(S) number of RR sets in R incident at some node in S.

f (S) influence spread of a seed set S

fl(S), fu(S∗) the lower bound of f (S) and the upper bound of f (S∗).

f̂ (S) an estimation of f (S) on a collection of RR setsR

E an expected value

Consider a ground set V of n elements and a submodular function f : 2V → R+; given
two sets S, T ⊆ V, the marginal gain of S in relation to T is defined as follows:

f (S|T) = f (S ∪ T)− f (T) (2)

For two sets S, T, S ⊆ T ⊆ V and an element v ∈ V \ T, the function f is submodular if

f (v|S) ≥ f (v|T), (3)

while f is monotone if f (T) ≥ f (S). The FSM problem is defined as follows:

Definition 1 (FSM problem). Assume that V is divided into C ′ disjoint subsets V1, V2, . . . , VK,
and Ci ∩ Cj = ∅. Each subset Vi has a lower and an upper bound on the number of elements kl

i and



Mathematics 2022, 10, 4185 7 of 26

ku
i that represents the fairness constraint. Let a positive number k be a global cardinality constraint.

The FSM then seeks to find

max: f (S) (4)

subject to: |S| ≤ k (5)

kl
i ≤ |S ∩Vi| ≤ ku

i , i = 1 . . . K (6)

We define an instance of the problem FSM as a tuple ( f , V, V1, . . . , VK, k). The FSM
problem can then be reduced to a submodular maximization under a matroid constraint
(SMM) problem [37], defined as follows:

Definition 2 (SMM problem). The problem seeks to select a set S ⊆ V with S ∈ M such that
it maximizes f (S), whereM is a matroid. A family of setsM with subset 2V is referred to as
a matroid if it satisfies the following conditions:

1. M 6= ∅;
2. downward-closedness, i.e., if A ⊆ B and B ∈ M, then A ∈ M;
3. augmentation, i.e., if A, B ∈ M with |A| ≤ |B|, then there exists s ∈ B such that

A + s ∈ M.

Fair Greedy Algorithm. We now recap the Fair Greedy algorithm (Algorithm 1) [37].
The operation of this algorithm is based on the notation of an extendable set.

Algorithm 1: Fair Greedy Algorithm
Input: An instance of FSM problem ( f , V, V1, . . . , VK, k)
Output: A 1/2-approximation solution S

1. S← ∅
2. for i = 1 to k do
3. U ← {s ∈ V|S ∪ s is extendable }
4. v← arg maxs∈U f (s|S)
5. S← S ∪ {v}
6. return S

Definition 3 (An extendable set S [37]). A set S, S ⊆ V is extendable if and only if

|S ∩ Ci| ≤ ku
i , i = 1, . . . , K (7)

and

K

∑
i=1

max(|S ∩ Ci|, kl
i) ≤ k (8)

Fairness Budget Influence Maximization Problem.

In this section, we introduce the FBIM problem, which is the focus of this study, and its
related definitions. FBIM inherits two issues: fair submodular maximization (FSM) [37] and
fair influence maximization (FIM) [38].

Definition 4 (FIM problem). Consider a graph G = (V, E), where V is the set of vertices,
|V| = n, E is the set of edges, |E| = m, and k ∈ Z+ is a global cardinality constraint. Let C be a
set of disjoint communities (empty intersections) of the graph Each vertex v of V belongs to one
of the communities Ci ∈ C, i ∈ 1, ..., N such that V1 ∪ ... ∪VN = V, where Vi denotes the set of
vertices of the community Ci. Furthermore, communities may be disconnected, that is, ∀Ci, Cj ∈ C
and ∀v ∈ Vi, u ∈ Vj; in this case, there is no edge between v and u. Here, A denotes the initial set
of vertices (referred to as influencer vertices), and we define A∗ := {A ⊂ V||A| ≤ k} as the set of
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feasible budget influencers. Lastly, for any choice of A ∈ A∗, we let hCi (A) denote the expected
fraction of the influenced vertices of a community Ci, where the expectation in terms of the spread of
influence is reached under a diffusion model. The fair influence maximization problem solves the
optimization problem

maximize
A∈A∗ ∑

Ci∈C
|Vi|.hCi (A) (9)

Definition 5 (FBIM problem). Consider a social network G = (V, E, w), where |V| = n, and
a set C ′ = {C1, C2, . . . , CK}, where ∀Ci ⊂ G and Ci

⋂
i 6=j Cj = ∅. Each community Ci has a pair

of upper ku
i and lower kl

i bounded budgets where kl
i ≤ ku

i . For a given total budget k, the problem
seeks to find a seed set S, |S| ≤ k, which satisfies kl

i ≤ |S ∩ Ci| ≤ ku
i such that f (S) is maximal,

where f (S) is the influence function. Here, f (S) measures the expected number of users in V that
can be influenced by the elements under S in a diffusion model.

In this paper, we solve the FBIM problem under both the Linear Threshold (LT) and In-
dependent Cascade (IC) models, which are the well-known and standard diffusion models for
the IM problem as well as other problems related to the analysis of social networks [6,15,41].
These models were first proposed by Kempe et al. in [3].

Definition 6 (LT model). Consider a directed graph G = (V, E, w), where V is the set of vertices,
|V| = n, and E is the set of edges, |E| = m. A vertex v in G is affected by each of its neighbors
u with probability p(u, v), p(u, v) ∈ w, and ∑u neighbor of v p(u, v) ≤ 1. Every vertex v in V is
assigned a threshold Λv from the interval [0; 1] at random. This threshold is the weighted proportion
of v’s neighbors (active vertices) influencing v to become active. The process spreads as follows.
Originally, we initialize a random set of threshold values and a seed set of active vertices S while
the rest are inactive. In the t-th step, all active vertices in the (t− 1)-th step remain active, and the
process activates any vertex v with a total weight of active neighbors greater than or equal to Λv:

∑
u active neighbor of v

p(u, v) ≤ 1 (10)

Definition 7 (IC model). Consider a directed graph G = (V, E, w), where V is the set of vertices,
|V| = n, and E is the set of edges |E| = m. At first, the vertices in the seed set S are active,
while all remaining nodes are inactive. The process spreads according to the following rule. At
the t-th step, if vertex v becomes active first, it has only one chance to activate each neighbor u.
The probability of success is p(v, u), p(v, u) ∈ w. If u has multiple active neighbors, their diffusion
is sequenced in random order. As soon as vertex v succeeds, vertex u becomes active in the (t + 1)-th
step. Regardless of whether v succeeds or not, it cannot make any further attempts to activate u in
subsequent rounds. In this way, the process works until no more activation is feasible.

For the FBIM problem, according to the proposition of Halabi et al. in [37], the greedy
method selects the element with the highest marginal gain, where the marginal gain of
an element s is the value of ( f (S ∪ s) − f (S)), while meeting the constraints. We note
that the greedy approach might not produce a feasible solution if this element was only
required to hold the cardinality and upper bounds constraints, as it may meet the global
cardinality restriction without meeting the lower bounds. As a result, more careful selection
of elements is required. Thus, the seed set S must be an extendable set.

In addition, there are several definitions that are typically used in this paper. These
are Reverse Influence Sampling (RIS), Reachable Reverse Sets (RR set), and the Coverage of seed
set S on the set of Reachable Reverse Sets (CovR(S)).

Definition 8 (RIS [14]). Given a graph G = (V, E, w), RIS apprehends the influence scene of G
by generating a setR of random RR sets. An RR set contains nodes that can reach v in g, where v
is a random node in V and g is a sample graph from G.
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Definition 9 (RR set [14]). Consider a graph G = (V, E, w) under the IC model; a random RR
set Ri is generated from G according to the following steps:
• Step 1. Choose a source vertex v ∈ V;
• Step 2. Generate a sample graph g from G;
• Step 3. Return Ri such that it contains vertices that can be reached from v in g.

We refer to the set of random RR sets asR. According to [6], finding a seed set S and
influence spread f (S) is based on computing the coverage of S on the majority of RR sets.
Because of the generation of a setR of multiple random RR sets, influential vertices may
commonly occur in the RR sets. Hence, we can find the vertices that occur in the majority
of RR sets in order to add the seed set S. Moreover, the influence spread f (S) on a random
RR set Ri is proportional to the probability that S intersects with Ri. Therefore, a seed set S
covers a set RR Ri if S ∩ Ri 6= ∅. For greater simplicity, we refer to the coverage of S onR
as CovR(S), and compute it as follows:

CovR(S) = ∑
Ri∈R

min{1, |S ∩ Ri|} (11)

Furthermore, the influence spread f (S) on a random RR set Ri is proportional to the
probability of S intersecting with Ri. Borgs et al. [14] proposed the following calculation
for the influence spread function f (·):

f (S) = n ·E[min{1, |S ∩ Ri|}] (12)

and for the estimation of f (S) over a collection of RR setsR,

f̂ (S) = n · CovR(S)/|R| (13)

4. Threshold Greedy for FSM

In this section, we devise the Threshold Greedy algorithm, which applies the de-
creasing threshold greedy strategy for the FSM problem. This algorithm improves on
Algorithm 1 by using a decreasing threshold to reduce the number of data traversals while
continuing to ensure the approximate solution.

4.1. Algorithm Description

The Threshold Greedy algorithm operates as follows. At the beginning, it initiates
the initial threshold t with M, where M = maxu∈V f (u). One loop of the inner loop ‘for’
is named one iteration. It scans all elements in S. At each iteration, if the current element
s satisfies two conditions, S ∪ s is extendable and f (s|S) ≥ t, then s is selected into S.
After each loop of the “while” loop, t is decremented by (1− ε) times until t < εM/k,
then the algorithm terminates and returns S. A detailed description of this algorithm is
provided in Algorithm 2.

4.2. Theoretical Analysis

The following theoretical analysis along with the proofs in Lemma 1 and Theorem 1
demonstrate the feasibility and efficiency of this algorithm in guaranteeing the approxima-
tion solution.
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Algorithm 2: Threshold Greedy Algorithm
Input: An instance of FSM problem ( f , V, V1, . . . , VK, k), accuracy parameter ε.
Output: A (1/2− ε)-approximation solution S

1. S← ∅
2. M← maxu∈V f (u)
3. t← M
4. while t ≥ εM/k do
5. for s ∈ V do
6. if S ∪ {s} is extendable and f (s|S) ≥ t then
7. S← S ∪ {s}

8. t← (1− ε)t

9. return S

Lemma 1. Denote ti as threshold t at the i-th iteration and let Si be S at the beginning of the i-th
iteration. We first show that

ti ≥ (1− ε) max
s∈V:Si∪{s} is extendable

f (s|Si) (14)

Proof of Lemma 1. We prove Lemma 1 using induction. If i = 1, S1 = ∅ and t1 = M ≥
(1− ε)maxs∈V:S1∪{s} is extendable f (s). Assume that the lemma holds for i ≥ 1. Then,
we have

ti+1 = (1− ε)ti ≥ (1− ε) max
s∈V:Si+1∪{s} is extendable

f (s|Si+1) (15)

The inequality is due to the fact that the element

smax = arg max
s∈V:Si+1∪{s} is extendable

f (s|Si+1)

was not added to S in iteration i. The lemma is proved.

Theorem 1. Algorithm 2 requires O( n
ε log k

ε ) runtime and returns a (1/2− ε)-approximation
solution for the FSM problem.

Proof of Theorem 1. The computational complexity can be easily proven. Assume that
there are a total of x number of iterations in the “while” loop of Algorithm 2. Therefore, we
have (1− ε)x = ε

k . Solving this equation yields

x =
log k

ε

log 1
1−ε

≤ 1
ε

log
k
ε

(16)

The “for” loop carries out n iterations. Thus, the time complexity of this algorithm is
O( n

ε log k
ε ).

In addition, assuming that smax = maxs∈V:Si∪{s} is extendable f (s|Si),
Si = Si−1 ∪ {s1, s2, . . . , sl}, that Ss is S immediately before s is processed, and that Ss

i ∪ {s}
is extendable, we have the following:

ti ≥ f (smax|Ss) ≥ f (smax|Si) (17)

Now, assume that S = {s1, s2, . . . , su}, u ≤ k is S after ending the main loop of the
algorithm. We can consider the following two cases:
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Case 1. With |S| = u, u = k, assume that O = {o1, o2, . . . , ok} is the optimal solution
such that {s1, s2, . . . , si−1, oi} can be extended, which exists because the extendability is
matroid [37] and satisfies the augmentation property. Denote Si to be S immediately before
si is added to S, and let t(si) be t at iteration si to be added to S. We then have the following:

f (S) =
u

∑
i=1

f (si|{s1, s2, . . . , si−1})

≥
u

∑
i=1

t(si)

≥
u

∑
i=1

(1− ε) f (si|Si)(By Lemma 1)

≥
u

∑
i=1

(1− ε) f (oi|Si)

≥
u

∑
i=1

(1− ε) f (oi|{s1, s2, . . . , si−1})

≥
u

∑
i=1

(1− ε) f (oi|{s1, s2, . . . , su} ∪ {o1, . . . , oi−1})(Due to the submodularity of f )

=
u

∑
i=1

(1− ε) f (oi|S ∪ {o1, . . . , oi−1})

= (1− ε)( f (O ∪ S)− f (S))(by equality (2))

and thus,

f (S) ≥ (1− ε)

(2− ε)
f (O)

≥ (1− 2ε)

2
f (O)

= (
1
2
− ε) f (O)

Case 2. With |S| = u, u < k and S = {s1, s2, . . . , su}, assume that O is the optimal solution,
S′ = {su+1, . . . , sk}, and Sk = {s1, s2, . . . , su} ∪ {su+1, . . . , sk}, meaning that Sk = S ∪ S′.
Denote tlast to be t after ending the main loop of the algorithm. Then, we have the following:

k

∑
i=u+1

f (si|{s1, s2, . . . , si−1}) ≤ ktlast (Due to f (si|S)i=u+1,...,k ≤ tlast)

≤ k
εM

k
≤ εM ≤ ε f (O)

and thus,

f (Sk)− f (S) ≤ ε f (O)

We now have the equivalent inequality, as follows:

f (S) ≥ f (Sk)− ε f (O)

≥ (
1
2
− ε) f (O)− ε f (O) (By the proof of Case 1)

≥ (
1
2
− 2ε) f (O)

≥ (
1
2
− ε′) f (O) (with ε′ = 2ε)
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The proof is completed.

As mentioned above, FSM is the generation of the FBIM problem. Therefore, the
Threshold Greedy algorithm is the basis of an important key to designing an efficient
algorithm for the FBIM problem in the next section. This is the Threshold Greedy Algorithm
for Fairness Max Cover, which finds a seed set S such that it maximizes the coverage and
satisfies the fairness constraint.

5. Proposed Algorithms for FBIM

This section introduces three algorithms for the FBIM problem, called FBIM1, FBIM2,
and FBIM3. The details of these algorithms are fully presented in Algorithms 3–7. Because
our proposed algorithms are based on the DSSA [6] and OPIMC [15] methods, we do not
perform the proofs provided in the originals.

5.1. FBIM1—An Algorithm Based on the Stop-and-Stare Method

This method combines an improved greedy strategy for selecting seeds satisfying
the fairness constraint with generating sampling of the DSSA. The FBIM1 algorithm’s
fundamental principle is to (1) choose k nodes that occur on the majority of communities and
add them to S to maximize the coverage of S on the set of RR sets; and (2) compute f (S) using the
stop-and-stare technique. If the result does not satisfy the threshold condition of the algorithm,
the process repeats the search for a new S on the new set of RR sets with double the number
of elements. The details of this algorithm are fully presented in Algorithms 3 and 4.

Algorithm 3: Fairness-Max-Coverage (FMC) procedure

Input: Graph G, C ′ , k, RR sets (R).
Output: A seed set S that satisfies fairness constraint, |S| ≤ k and its estimated

influence f (S).
1. S← ∅
2. for i = 1 to k do
3. U← {s ∈ (CjCj∈C

′ \ S)|S ∪ s is extendable }

4. v← arg max{s∈U}(CovR(S ∪ s)− CovR(S))
5. S← v

6. return S.

5.1.1. Algorithm Description

The FBIM1 algorithm inputs a K-size communities set C ′ , a budget k, parameters
ε and δ, (0 ≤ ε, δ ≤ 1), which are related to the solution’s quality, and the algorithm’s
runtime. This allows us to adjust the solution quality trade-off with runtime. In particular,
ε and δ guarantee the size bound of S. In contrast, k and the set C ′ guarantee the value
of the objective function f (S) and the coverage ratio of S in communities in C ′ , which is
considered to satisfy the fairness constraint.

In the initial step, the algorithm generates a set R that contains Γ random RR sets
by RIS, with the value of Γ initialized as line 1. The formula of Γ has been proven in [6].
Subsequently, based on thisR, Algorithm 3 returns a seed set S.

Algorithm 3 receives a K-size community C ′ set, a budget k and a setR. This algorithm
produces a k-size seed set S that satisfies fairness constraint. Initiate an empty set S. It
performs a loop of k times, each iteration finds an element s in all Cj of C ′ , except in S,
so that (S + s) is extendable and the coverage of s on the RR sets of R is maximal. This
element s is added to S. After the loop ends, the algorithm returns the seed set S.
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Algorithm 4: FBIM1 algorithm

Input: Graph G, C ′ , k, and 0 ≤ ε, δ ≤ 1
Output: A seed set S, |S| ≤ k.

1. Γ←
√

8(1 + ε)2 ln 2
δ

1
ε2

2. R ← Generate Γ random RR sets by RIS

3. S← FMC(G, C ′ , k,R)
4. f (S)← n.CovR(S)/|R|
5. repeat
6. R′ ← Generate |R| random RR sets by RIS

7. f
′
(S)← n.CovR′ (S)/|R

′ |
8. ε1 ← ( f (S)/ f

′
(S))− 1

9. if ε1 ≤ ε then
10. ε2 ← (ε− ε1)/(2(1 + ε1))

11. ε3 ← (ε− ε1)/(2(1− 1
e ))

12. δ1 ← e
−

CovR(S).ε2
3√

8(1 + ε1)(1 + ε2)

13. δ2 ← e
−

(
CovR′ (S)− 1

)
.ε2

2√
8(1 + ε2)

14. if δ1+δ2 ≤ δ then
15. return S.

16. R ← R∪R′

17. S← FMC(G, C ′ , k,R)
18. f (S)← n.CovR(S)/|R|

19. until |R| ≥ (8 + 2ε)n
ln 2

δ + ln (n
k)

ε2 ;

20. return S.

We now turn our attention to Algorithm 4. This algorithm executes an indefinite
loop; in each iteration, it evaluates the efficiency of S by computing f

′
(S) on set R′ and

checks whether ( f (S)/ f
′
(S)) − 1 meets the conditions in lines 9 and 14. If this is true,

the algorithm stops. Otherwise,R doubles by addingR′ to find a new S and proceeds to

the next iteration. The loop stops when |R| is at least (8 + 2ε)n.
ln 2

δ + ln(n
k)

ε2 .

5.1.2. Theoretical Analysis

Theorem 2. Algorithm 3 is an improved greedy algorithm; it has O(kT) complexity, with T =∣∣∣⋃Ci∈C
′ (Ci)

∣∣∣ and T ≤ n.

Proof of Theorem 2. Algorithm 3 iterates k times to select seeds for the seed set S of size k.
Each iteration scans the majority of the elements of Ci (∀Ci ∈ C

′
) to select an element that

has the greatest coverage onR. As a result, the complexity of the algorithm is O(kT).

Theorem 3. The complexity of Algorithm 4 is O

(
kT log

(
(8 + 2ε)n

ln 2
δ + ln (n

k)

ε2

))
.

Proof of Theorem 3. Algorithm 4 iterates the generation of the set R of random RR sets
with randomly chosen source elements from Ci and finds 〈S, f (S)〉 on the basis ofR using
Algorithm 3. At lines 14 and 19, Algorithm 4 has two requirements to break the loop. In each
iteration, |R| is doubled in size and calls Algorithm 3 to find a new S; thus, in the worst case,
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this algorithm stops when it meets condition line 19, which indicates that the maximum

number of iterations is log

(
(8 + 2ε)n

ln 2
δ + ln (n

k)

ε2

)
. Consequently, the complexity of this

method is O

(
kT log

(
(8 + 2ε)n

ln 2
δ + ln (n

k)

ε2

))
.

5.2. FBIM2 & FBIM3—Algorithms Based on the Online Processing of Influence
Maximization Method
5.2.1. Algorithm Description

The FBIM2 and FBIM3 algorithms are exactly similar in their main idea, and are only
different in the way they find the seed set S. The main idea of these algorithms is to perform
a finite loop that performs the following processing: (1) generate two set of RR sets, i.e.,R1
andR2; (2) find a seed set S based onR1 such that S satisfies the fairness constraint; (3) compute
fl(S) based on R2 and fu(S∗) based on R1. If the ratio fl(S)/ fu(S∗) satisfies the optimal
solution approximation (e.g., for FBIM2, it is at least 1/2− ε, and for FBIM3, it is at least
1/2− 2ε), the algorithm stops before the limit. Otherwise, the algorithm repeats the step in
which it finds S, now withR1 andR2 doubled in size.

As mentioned above, FBIM2 and FBIM3 are inherited from the OPIMC method of
Tang et al. [15]; thus, we have the expressions fl(S) and fu(S

′
) as follows:

fl(S) =

(√CovR2(S) +
2 ln(1/δ2)

9
−
√

ln(1/δ2)

2

)2

− ln(1/δ2)

18

.
n
Γ0

(18)

fu(S∗) =

√CovR1(S)
1/2

+
ln(1/δ1)

2
+

√
ln(1/δ1)

2

2

.
n
Γ0

(19)

For FBIM2, finding the seed set S is similar to FBIM1 (Algorithm 3), that is, k elements
are selected in all Ci communities of C ′ , meaning that each element appears the most in
communities and guarantees an extendable S after adding to it, which is known as the
mandatory condition of the fairness constraint. The details of this algorithm are fully
presented in Algorithm 5.

For FBIM3, finding the seed set S is improved by decreasing the search elements times
for S. Instead of having to perform k iterations, as FBIM2 does, FBIM3 only requires at
most 1

ε log( k
ε ) iterations. The detail of this process is fully presented in the Threshold

Greedy Algorithm for Fairness Max Cover procedure (Algorithm 6). The main idea of
this algorithm is to find elements s in Cj, (∀Cj ∈ C

′
) that make S + s is extendable while

maximizing the gain of coverage ratio of s when adding to S on R (line 4 and 5). This
idea is based on the principle of a simple near-linear time algorithm for the problem of
maximizing monotone submodular functions, which was studied by Badanidiyuru and
Vondrák [42].
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Algorithm 5: FBIM2 algorithm

Input: Graph G, C ′ , k, ε, δ
Output: A solution S, |S| ≤ k

1. Γmax ←
2n
(

1
2

√
ln 6

δ +
√

1
2 (ln (n

k) + ln 6
δ )

)2

ε2k
2. Γ0 ← Γmax.ε2k/n
3. R1 ← Generate Γ0 random RR sets by RIS
4. R2 ← Generate Γ0 random RR sets by RIS
5. imax ← dlog2(Γmax/Γ0)e
6. for i← 1 to imax do
7. S← FMC(G, C ′ , k,R1)
8. δ1 = δ2 = δ/(3imax)
9. compute fl(S) and fu(S∗) by (18) and (19)

10. ε
′ ← fl(S)/ fu(S∗)

11. if ε
′ ≥ ( 1

2 − ε) or i == imax then
12. return S.

13. Γ0 ← 2Γ0 and generate Γ0 new random RR sets forR1,R2.

Algorithm 6: Threshold Greedy Algorithm for Fairness Max Cover
(ThresholdGreedy(R, ε)) procedure

Input: Graph G, C ′ , k, RR sets (R), ε > 0
Output: An ( 1

2 − ε)-optimal solution, S, |S| ≤ k
1. S← ∅
2. M← maxu∈V CovR(u)
3. for (t = M; t ≥ εM/k; t← (1− ε)t) do
4. for s ∈ (CjCj∈C

′ \ S)|S + s is extendable do

5. if (CovR(S ∪ s)− CovR(S)) ≥ t then
6. S← S ∪ {s}

7. return S.

5.2.2. Theoretical Analysis

Theorem 4. Algorithm 5 has O
(

kT log n
ε2k

)
complexity.

Proof of Theorem 4. When Algorithm 5 iterates, it generates two random RR sets, R1
and R2, with each set having a size of Γ0. Later, the algorithm finds a seed set S based
on R1 through Algorithm 3. Next, it calculates the approximation solution ε

′
of S, with

ε
′
=

fl(S)
fu(S∗)

. This algorithm has two conditions to stop and return the result on line 11.

In each iteration, Γ0 doubles in size and calls Algorithm 3 to find a new S; thus, in the worst
case, this algorithm stops when it has not found S satisfying ε

′ ≥ (1/2− ε) and the number
of iterations has reached imax, with imax = dlog(Γmax/Γ0)e in line 5. In such a case, we have

Γmax =

2n
(

1
2

√
ln 6

δ +
√

1
2 (ln (n

k) + ln 6
δ )

)2

ε2k
(at line 1) and Γ0 = Γmax.ε2k/n (at line 2).

After calculating to reduce for imax, we have imax = dlog n
ε2k e. As a result, this algo-

rithm has O
(

kT log n
ε2k

)
complexity.
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Theorem 5. Algorithm 6 has O
(

T
ε log k

ε

)
complexity.

Proof of Theorem 5. Similar to Algorithm 2, in Algorithm 6 the outer “for” loop requires
at most 1

ε log k
ε iterations, while the inner “for” loop requires a maximum of T iterations.

As a result, this algorithm has O
(

T
ε log k

ε

)
complexity.

Theorem 6. Algorithm 7 has O
(

T
ε log k

ε log n
ε2k

)
complexity.

Proof of Theorem 6. Algorithm 7 operates similarly to Algorithm 5, only differing in the
step in which it finds set S (in line 7); that is, Algorithm 7 uses Algorithm 6. Therefore, we
can likewise prove that for Algorithm 5, Algorithm 7 has O

(
T
ε log k

ε log n
ε2k

)
complexity.

Algorithm 7: FBIM3 algorithm

Input: Graph G, C ′ , k, ε, δ
Output: A solution S, |S| ≤ k

1. Γmax ←
2n
(

1
2

√
ln 6

δ +
√

1
2
(
ln (n

k) + ln 6
δ

))2

ε2k

2. Γ0 ← Γmax
ε2k
n

3. R1 ← Generate Γ0 random RR sets by RIS
4. R2 ← Generate Γ0 random RR sets by RIS
5. imax ← dlog2(Γmax/Γ0)e
6. for i← 1 to imax do
7. S← ThresholdGreedy(R1, ε)
8. δ1 = δ2 = δ/(3imax)
9. compute fl(S) and fu(S∗) by (18) and (19)

10. ε
′ ← fl(S)/ fu(S∗)

11. if ε
′ ≥ (1/2− 2ε) or i == imax then

12. return S.

13. Γ0 ← 2Γ0 and generate Γ0 new random RR sets forR1,R2.

6. Experiment

We conducted a number of experiments on the FBIM problem in the course of our work.
This section describes the experimental process, including the datasets, the algorithms for
comparison, parameter setting, evaluation of the results, and discussion.

6.1. Experiment Settings
6.1.1. Datasets

For a comprehensive experiment, we chose four datasets on SNAP [43]. These datasets
have medium to large size and diverse numbers of edges, nodes, and communities. The
datasets were the Epinions social network (Epinions), the Pokec social network (Pokec),
the LiveJournal social network and ground-truth communities (Live-journal), and the Orkut
social network and ground-truth communities (Orkut). These datasets have commonly
been used to find the seed set with Influence Maximization. Table 2 presents information
on the datasets.



Mathematics 2022, 10, 4185 17 of 26

Table 2. Statistics of the datasets.

Dataset #Nodes #Edges #Communities Avg. Degree Type

Epinions 131,828 841,372 6359 13.4 Directed
Pokec 1,632,803 30,622,564 1284 37.5 Directed

Live-journal 3,997,962 34,681,189 5000 28.5 Directed
Orkut 3,072,441 117,185,083 4745 76.3 Undirected

6.1.2. Environment

We conducted our experiments on a Linux machine with Intel Xeon Gold 6154 (720)
@ 3.700GHz CPUs and 3TB RAM. Our implementation was created using g++ 11 and the
C/C++ language.

6.1.3. Algorithm Comparison

To the best of our knowledge, there is no existing algorithm that solves the problem of
fairness influence maximization for communities under constraints with a pair of lower
and upper bound budgets. Therefore, we experimented to compare our three algorithms
with OPIMC, as they are similar in terms of implementation. As such, this experiment
involves four algorithms, namely, OPIMC, FBIM1, FBIM2, and FBIM3, with different sets of
input parameters used to analyze and evaluate their effectiveness. For brevity, we refer to
our three proposed algorithms as the FBIM algorithms. The experimental results are shown
in Figures 1–4.

In this paper, we do not compare FBIM1 with DSSA, as we showed the efficiency of
FBIM1 and compared FBIM1 to DSSA in our previous study [20]. FBIM1 has little advantage
compared to FBIM2 and FBIM3 because, as demonstrated by Tang et al. [15], OPIMC is
more efficient than DSSA. Nonetheless, we include FBIM1 in this paper as a synthesis of
algorithms for our research on the FBIM problem. At the same time, we wanted to compare
the performance of FBIM1 with FBIM2, FBIM3, and OPIMC when experimenting with the
same set of parameters and data with specific appropriate datasets and parameters, FBIM1
has a conspicuously better influence and coverage ratio than FBIM2, FBIM3, and even
OPIMC (see Figures 3 and 4 for the Pokec and Orkut datasets).

As already indicated, these algorithms obtain S and nearly obtain |S| ' k, allowing
f (S) to be maximized. Additionally, whereas OPIMC does not satisfy the fairness constraint,
our methods of discovering S do. As such, we contrasted variables such as influence f (S),
memory usage, runtime, approximation ratio fl(S)/ fu(S∗), and coverage ratio S across the
target communities. This ratio is the number of communities with elements selected into S
that satisfies the constraints of the lower and upper bounds as compared with the original
total number of communities (K).

6.1.4. Parameter Setting

We conducted experiments with two sets of parameter settings:

1. We set k ∈ [1000, 10000], |C′| = K with K = 20%k, the pair (kl
i ; ku

i ) of each Ci to
(0.3; 0.5), called 〈AlgorithmName〉.1 (such as FBIM1.1, FBIM2.1, FBIM3.1), set (kl

i ; ku
i )

equal to (0.1; 0.9), and called 〈AlgorithmName〉.2 similar to case 1. The experiment
with these settings is called Experiment 1.

2. Here, we used the same k as in Experiment 1, with K = k. In this case, K is no longer
limited to the problem. Because it is already set to the maximum value, that is, in the
ultimate case, if the number of communities covered is exactly K (for K = k), each
community of K communities chooses precisely one element for input S. For the
other parameters, the upper bound ku

i was assigned a fixed value of 0.5 while the
lower bound kl

i varied by 0.1, 0.01 and 0.001, respectively, for 〈AlgorithmName〉.3,
〈AlgorithmName〉.4, and 〈AlgorithmName〉.5. We explain these changes in the dis-
cussion of the experimental results. The above case is referred to as Experiment 2.
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As mentioned above, we executed these algorithms for both information diffusion

models, that is, LT and IC. Finally, we used the parameters ε = 0.1, δ =
1
n

as the
default setting.
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Figure 1. Running time, memory usage, and influence for Experiment 1 under the LT model.
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Figure 2. Running time, memory usage, and influence for Experiment 1 under the IC model.

6.2. Discussion and Evaluation of Experimental Results

In this section, we discuss and evaluate the experimental results in order to clarify
the strengths and weaknesses of the different algorithms. The results are clearly shown in
Figures 1–4.
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Figure 3. Running time, influence, and coverage ratio for Experiment 2 under the LT model.

6.2.1. Objective Factors Affecting the Efficiency of Algorithms

As clarified in the theoretical analysis of the algorithms, our algorithms guarantee the
theoretical optimization probability. However, in the experimental process, a number of
objective factors affect the performance of the algorithms.



Mathematics 2022, 10, 4185 21 of 26

2,000 4,000 6,000 8,000 10,000
k

1

2

3

4

5

6

Ti
m

e 
(S

ec
on

d)
epinions

2,000 4,000 6,000 8,000 10,000
k

10,000

20,000

30,000

40,000

50,000

60,000

In
flu

en
ce

epinions

2,000 4,000 6,000 8,000 10,000
k

0.1

0.2

0.3

0.4

0.5

C
ov

er
ag

e 
ra

ti
o

epinions

2,000 4,000 6,000 8,000 10,000
k

20

40

60

80

100

120

140

160

Ti
m

e 
(S

ec
on

d)

pokec

2,000 4,000 6,000 8,000 10,000
k

50,000

100,000

150,000

200,000

In
flu

en
ce

pokec

2,000 4,000 6,000 8,000 10,000
k

0.0

0.1

0.2

0.3

0.4

C
ov

er
ag

e 
ra

ti
o

pokec

2,000 4,000 6,000 8,000 10,000
k

100

150

200

250

300

350

400

Ti
m

e 
(S

ec
on

d)

live-journal

2,000 4,000 6,000 8,000 10,000
k

0

100,000

200,000

300,000

400,000

500,000

In
flu

en
ce

live-journal

2,000 4,000 6,000 8,000 10,000
k

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

C
ov

er
ag

e 
ra

ti
o

live-journal

2,000 4,000 6,000 8,000 10,000
k

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

Ti
m

e 
(S

ec
on

d)

orkut

2,000 4,000 6,000 8,000 10,000
k

0

100,000

200,000

300,000

400,000

500,000

600,000

In
flu

en
ce

orkut

2,000 4,000 6,000 8,000 10,000
k

0.0

0.2

0.4

0.6

0.8

1.0

C
ov

er
ag

e 
ra

ti
o

orkut

OPIMC

FBIM1.3

FBIM1.4

FBIM1.5

FBIM2.3

FBIM2.4

FBIM2.5

FBIM3.3

FBIM3.4

FBIM3.5

Figure 4. Running time, influence, and coverage ratio for Experiment 2 under the IC model.

1. Data preprocessing

(a) Communities detection strategy. We use the Directed Louvain method [44] to detect
communities in the datasets. This method applies the idea of simulating the
Monte Carlo randomness of the approach. It has been proven that this method
is able to achieve a more promising result when extracting communities in
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case of a directed graph, although does have flaws. In short, our algorithms’
efficiency is affected by the random factor during the communities detection
stage.

(b) Communities selection strategy. To ensure objectivity, selecting K communities
for the input of the problem FBIM works by choosing randomly, as long as
the probability of satisfying the condition for a valid result is within the up-
per/lower bounds of the fairness constraint. The selection of the combination
of communities is entirely random. This selection is repeated many times if
the previous combinations do not satisfy the conditions of the FBIM problem.
In short, our algorithms are affected by the randomness factor in choosing the
initial K communities. However, if we apply these algorithms to real problems,
the communities selection stage could depend on a constraint. Thus, a user can
improve the selection of elements of S with respect to communities in order to
achieve a better result.

2. RIS framework
Our algorithms depend on the generation of sample graphs of the RIS framework.
In the first few iterations of the algorithms, if the size of the vertices intersection set
of the sample graphs and the selected communities is empty or small, the algorithm
must generate more sample graphs to increase this value (i.e., it must increase the
number of vertex degrees). After this necessary condition is satisfied, the algorithm
finds a seed set S that meets the fairness constraint. Therefore, our algorithms may
take extra time to generate sample graphs. Briefly, our algorithms depend on the
random factor in creating the sample graph and the number of sample graphs.

In summary, if the above factors are not good, the algorithm takes more time to run
before choosing a set S that meets the requirements of the problem. These weaknesses are
involved in one of our directions for improvement in future studies.

6.2.2. Experimental Result Evaluation

Experiment 1. For this setting case, the goal of the experiment is to evaluate the
algorithm’s performance by choosing two narrow and wide bound ranges along with the
number of small communities. This setting simulates the general requirement in which
it is necessary to select a seed set from several specific finite communities. Experiment
1 evaluates an algorithm’s feasibility and performance compared to other algorithms in
terms of how disparate they are in runtime and resources.

Hence, Experiment 1 is intended to show how the FBIM algorithms perform in a
general setting, including a large range [kl

i , ku
i ] and a small K. The results in Figures 1 and 2

show that most of the FBIM algorithms run faster than OPIMC; in certain cases, the FBIM
algorithms are 4x to 12x faster than OPIMC, especially with increased k. The essence of
these algorithms is that OPIMC uses the greedy strategy, which scans all elements on V
to find S on theR set, while, FBIM2 and FBIM3 use an improved greedy approach which
scans all elements in communities of C ′ (|⋃Ci∈C

′ (Ci)| ≤ n). However, there are cases
in which the runtime of the FBIM algorithms is extended more than OPIMC, as they are
affected by the aforementioned objective factors. Intuitively, the instances of the FBIM
algorithms can run longer than OPIMC when k is small. Furthermore, FBIM1 sometimes
runs longer than OPIMC because DSSA (the base method of FBIM1) generates more sample
graphs than OPIMC. This assertion has been made clear by Tang et al. in [15].

Though the FBIM algorithms typically run faster than OPIMC, their influence on f (S)
is less than that of OPIMC. The difference varies by 1.5x to 10x. The reason for this is the
small value of K, as when K is small there are fewer communities to cover. This leads to
faster calculations while satisfying the fairness constraint. Nevertheless, this is a double-
edged sword; because the set of K communities are chosen at random, there is a smaller
domain in which to select the seeds, although less time is required to guarantee fairness.
Consequently, the algorithm may not always choose nodes with the largest influence in
accordance with the improved greedy strategy.



Mathematics 2022, 10, 4185 23 of 26

Experiment 2. The goal of this experiment is to evaluate the theoretical potential of the
algorithm with the requirement that it cover as many communities as possible; as such,
K is not explicitly set, and the lower bound changes while the upper bound remains the
same. The lower bound determines the minimum number of elements in the seed set that
must be selected from each community to satisfy the requirement that S be extendable.
The upper bound is merely a constraint on the maximum number of elements selected
from each community.

Thus, for this setting example we want to know the potential value of K to choose
a seed set S of size k such that S can cover the majority of the target communities.
As a result, we do not specify a value for K. In this case, Figures 3 and 4 show that
the lower bound strongly affects the results of the FBIM algorithms. In these figures,
the influence of 〈AlgorithmName〉.4 and 〈AlgorithmName〉.5 increases significantly com-
pared to 〈AlgorithmName〉.3; 〈AlgorithmName〉.3 has the same lower bound setting as
〈AlgorithmName〉.2. The coverage ratio of the FBIM algorithms is greater than that of
OPIMC, from 2x to 10x. Even in specific cases, the coverage ratio of OPIMC is only
1.5% (for Pokec), while the ratio of the FBIM algorithms can achieve 33.9–43.9%. For the
Orkut dataset, the most extensive dataset of the four, FBIM1 achieves 100%. Furthermore,
the value of the coverage ratio and the disparity of these ratios between the FBIM algo-
rithms and OPIMC are proportional to k. In particular, because 〈AlgorithmName〉.5 has the
smallest lower bound in the lower bounds of the experiments, the algorithm’s coverage
ratios are better and the difference distance of the f (S) value from OPIMC is shortened.

Contrarily, set S covers the desired communities, meaning that the affected individuals
are the target elements to be affected. In conclusion, the quality of the seed set of the FBIM
algorithms can be dealt with by controlling the lower bound kl

i and k. Nevertheless, lengthy
runtime is a disadvantage. The reason for this is that in order to find S, OPIMC only needs
to see the first k seeds that meet its requirements, whereas the FBIM algorithms need to find
k seeds such that (1) the same requirements are satisfied as for OPIMC, and (2) the requirement
that S be extendable is satisfied. Therefore, the more communities S covers, the more vertex
lists must be examined in order to ensure the fairness constraint. This assertion is clearly
shown in the experiments with the algorithms in both the LT and IC propagation models.

Considering the memory usage of these algorithms, in two parameters settings under
both IC and LT models, the FBIM algorithms almost always require more memory usage,
as the datasets contain large communities (especially Epinions Live-journal, and Orkut).
This is inevitable due to the FBIM algorithms needing to take an additional step to store
and process information about communities. Briefly, although the FBIM algorithms obtain
S with an influence spread f (S) smaller than that of OPIMC, their running time is usually
faster, and most importantly, they solve the fairness constraint. For the convenience of
readers, we summarize the results of our experiments using the FBIM algorithms and
OPIMC algorithm in Table 3.

Table 3. Statistical comparison of experimental results of FBIM algorithms vs. OPIMC.

Experiment 1

Runtime faster than 4x to 12x

Memory larger than 1x to 2.7x

Influence less than 1.5x to 10x

Experiment 2

Runtime faster than 0.5x to 6x

Influence less than 2x to 6x

Coverage ratio
greater than 1x to 5x (for Orkut, even FBIM1 can
reach 100%; for Pokec, FBIMs can achieve
33.9%→ 43.9% while OPIMC achieves 1.5%)
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7. Conclusions and Future Work

In this paper, we propose three algorithms to resolve the FBIM problem, which is the FIM
problem under a budget threshold constraint and while setting upper and lower bounds to
choose seeds in each community in order to ensure fairness. The main result of this study is the
finding that our approximation algorithms achieve a (1/2− ε)-approximation of the optimal so-

lution, and require O
(

kT log
(
(8 + 2ε)n ln 2

δ +ln(n
k )

ε2

))
, O
(

kT log n
ε2k

)
, and O

(
T
ε log k

ε log n
ε2k

)
complexity, respectively. We compare our algorithms with the state-of-the-art OPIMC algo-
rithm by conducting experiments under both the LT and IC information diffusion models.
The experiments help to confirm our proven theoretical results. At the same time, we
present our algorithms’ advantages and disadvantages through the analysis and evaluation
of our experimental results. The results indicate that our algorithms are highly scalable
and achieve results that satisfy both theoretical assurances and approximation solutions. In
addition, these algorithms are feasible and effective even with big data. In future work, we
plan to improve the objective factors that affect the efficiency of these algorithms in order
to obtain shorter runtime and a more significant influence spread in larger and more varied
datasets.
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