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Abstract: We consider a stochastic differential equation (SDE) governed by a fractional Brown-
ian motion (BH

t ) and a Poisson process (Nt) associated with a stochastic process (At) such that:
dXt = µXtdt + σXtdBH

t + AtXt−dNt, X0 = x0 > 0. The solution of this SDE is analyzed and
properties of its trajectories are presented. Estimators of the model parameters are proposed when
the observations are carried out in discrete time. Some convergence properties of these estimators are
provided according to conditions concerning the value of the Hurst index and the nonequidistance of
the observation dates.

Keywords: stochastic differential equation; fractional Black–Scholes; jump process; maximum
likelihood estimation
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1. Introduction

Modeling with fractional Brownian motions is an interesting tool in many domains
where self-similarity and short- or long-range dependence are evident. In this paper, we
consider a stochastic differential equation (SDE) whose solutions are continuous-time
stochastic processes that can be used in different applications such as finance or hydrology.
It is an extension of the Black–Scholes model [1] in the case where there is a short- or
long-term dependence with jumps of random amplitude. The main object of this paper is
to provide estimation procedures for the extended model parameters.

Let (Ω,F , (Ft)t≥0,P) be a filtered complete probability space. The SDE considered is:

dXt = µXtdt + σXtdBH
t + AtXt−dNt, (1)

where µ ∈ R is the drift coefficient and σ ∈ R∗+ is the diffusion coefficient.(
BH

t
)

t≥0 is the standard fBm with index H ∈ (0, 1) [2]. (Nt)t≥0 is a homogeneous Pois-
son process with intensity λ ∈ R∗+. (At)t≥0 is a stochastic process taking value in (−1,+∞).
We assume that the three processes (Nt)t≥0, (At)t≥0 and (BH

t )t≥0 are independent and
adapted to (Ft)t≥0.

Our motivation is to propose parameter estimators for the solution X = (Xt)t≥0 of the
SDE (1). Note that without the jump term AtXt−dNt, this SDE defines the Black–Scholes
model governed by an fBm [3], which is one of the extensions of the mathematical model
in finance introduced by [1]. One of these extensions is the mixed fractional SDE proposed
by [4].

In the following, we denote byM(µ, σ2, λ, θ, x0, H) the model followed by the solution
of Equation (1) where θ ∈ Rk stands for the distribution parameter of (At)t≥0 and x0 ∈ R∗+
is the known initial value of (Xt)t≥0. For an observation interval of length T > 0, we
focus on the estimation of µ, σ2, λ and θ from data consisting of observations of X on
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(0, T] at n dates 0 < t1, · · · , tn ≤ T plus the amplitude ADi and the date Di of jumps
for i ∈ [1, NT ] ∩ N. As in [5], we assume that the self-similarity parameter H is known.
Nevertheless, procedures for estimating H such as quadratic variation methods [6] and
regression methods [7] are discussed.

It is worth pointing out that statistical inference for fractional diffusion processes
(without jumps) have been studied by many authors under discrete observations [3,8–10]
and also under a continuous observation assumption [9]. They proposed estimation
methods concerning mainly the drift and diffusion coefficients, but also sometimes the
Hurst index H [3]. On the other hand, the Black–Scholes model with jumps governed by the
standard Brownian motion was applied to hydrology data [11]. In this paper, we consider
methods for estimating the drift and diffusion coefficients as well as the parameters of the
jump distribution for a fractional Black–Scholes model with jumps. In Section 2, we first
recall some properties of fBm and then present distributional properties of the solution
of Equation (1). In Section 3, we propose estimators for the parameters of this fractional
Black–Scholes process with jumps. Their asymptotic properties are studied. Procedures for
simulatingM(µ, σ2, λ, θ, x0, H) are provided in Section 4 with numerical codes given in
Appendix A. Section 5 proposes some perspectives for future work.

2. Preliminaries

The standard fractional Brownian motion
(

BH
t
)

t∈R with Hurst index H ∈ (0, 1) is a
continuous and centered Gaussian process with covariance function [12]:

E(BH
s BH

t ) =
1
2

(
|s|2H + |t|2H − |s− t|2H

)
, ∀(s, t) ∈ R2. (2)

Thus, BH
t follows a Gaussian distribution with parameters (0, |t|2H). In the following,

we consider the restriction of the fBm on R+. The process
(

BH
t
)

t≥0 has stationary increments

but these increments are dependent unless H = 1
2 . In this last case, we get the standard

Brownian motion. We have a long-term dependence when H ∈ ( 1
2 , 1) and a positive

correlation between increments. Inversely, the increments are negatively correlated when
H ∈ (0, 1

2 ). Nevertheless, long-range dependence with a positive correlation is usually
considered in practice for more realistic modeling. More detailed properties of fBm can
be seen in [2,12,13]. Note the pioneering work of [14] and their discussion of potential
applications of fBm for modeling long-term dependence in economics or hydrology.

Lemma 1. Let T ∈ R∗+ and (Xt)t∈R+ be a solution of SDE (1), then

∀t ∈ (0, T], Xt =




(1 + At)Xt− if t ∈ {D1, · · · , DNT}

Xt− otherwise
(3)

where Xt− = lim
s→t
s<t

Xs.

Proof. Note that the fractional Black–Scholes process without jump has continuous tra-
jectories since the fBm is continuous. When jumps are included in the model, the process
trajectories are continuous on any open interval (Di, Di+1) between two consecutive jump
dates. Furthermore, from Equation (1), we can write

∀(t, ε)∈ (0, T]×R∗+, Xt − Xt−ε = µ
∫ t

t−ε
Xs−ds + σ

∫ t

t−ε
Xs−dBH

s +
∫ t

t−ε
AsXs−dNs (4)
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where
∫ t

t−ε
AsXsdNs = ∑

i∈(Nt−ε ,Nt ]

ADi XD−i
. When ε tends to zero, we get

Xt − Xt− = ∑
i∈(Nt− ,Nt ]

ADi XD−i
=





AtXt− if t ∈ {D1, · · · , DNT}

0 otherwise
.

This leads us to the final result.

This lemma emphasizes that At is the relative jump at date t while the raw jump at t,
which is Xt − Xt− , is equal to AtXt− .

We have not ruled out in our model the fact of having jumps with negative values. For
example, consider that 1+ At follows a log-Gaussian distribution denoted by LN (θ1,t, θ2,t).
This means that θ1,t and θ2,t are the expectation and variance of log(1 + At), respectively.
In such a case, At may take negative values since

P
(

At ∈ (−1, 0]
)
= P

(
log(1 + At) ∈ (−∞, 0]

)
= Φ

(
− θ1,t√

θ2,t

)
> 0 (5)

where Φ is the standard normal cumulative distribution function.

Theorem 1. The solution of Equation (1) is given by:

∀t ∈ R+, Xt = X0 exp
(

µt− 1
2

σ2t2H + σBH
t +

∫ t

0
log(1 + As)dNs

)
(6)

Proof. To solve SDE (1), we can proceed in two steps. Firstly, we consider SDE (7) without
jumps associated with SDE (1):

dXt = µXtdt + σXtdBH
t , X0 = x0 > 0 (7)

By applying to SDE (7) the stochastic integrating method proposed by [15] for SDEs
driven by a fractional Brownian motion, we get:

∀t ∈ R+, Xt = X0 exp
(
µt + σBH

t −
1
2

σ2t2H). (8)

Secondly, we take into consideration the fact there is no jump in any open interval
between two consecutive jump dates. For any given t in R+, we can write

[0, t] =
( Nt⋃

i=1

[Di−1, Di)
)
∪ {DNt} ∪ (DNt , t] with D0 = 0.

According to Equality (8), conditional on X0 = x0, we have

∀s ∈ [0, D1), Xs = x0 exp(µs + σBH
s −

1
2

σ2s2H). (9)

Therefore,

XD−1
= lim

t→D1
t<D1

Xt = x0 exp(µD1 + σBH
D1
− 1

2
σ2D2H

1 ) (10)

and from Lemma 1, we get

XD1 = x0(1 + AD1) exp(µD1 + σBH
D1
− 1

2
σ2D2H

1 ). (11)

On the other hand, Lemma 1 gives us

∀i ∈ [1, Nt] ∩N, XDi = (1 + ADi )XD−i
.
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Consequently, for 1 < i ≤ Nt, we obtain in a similar way as above

∀s ∈ [Di−1, Di), Xs = x0

i−1

∏
j=1

(1 + ADj) exp(µs + σBH
s −

1
2

σ2s2H). (12)

and

XDi = x0

i

∏
j=1

(1 + ADj) exp(µDi + σBH
Di
− 1

2
σ2D2H

i ). (13)

Thus, for s ∈ (DNt , t],

Xs = x0

Nt

∏
i=1

(1 + ADi ) exp(µs + σBH
s −

1
2

σ2s2H).

Since
Nt

∏
i=1

(1 + ADi ) = exp
( ∫ t

0
log(1 + As)dNs

)
,

Equations (9)–(13) lead us to the final result.

Proposition 1. Consider the process (Xt)t≥0 defined by Equation (6) and suppose that the follow-
ing three conditions are verified:

(C1) The processes (Nt)t≥0, (At)t≥0 and (BH
t )t≥0 are independent;

(C2) ∀i ∈ [1, Nt] ∩N, E(A2
Di
) < ∞;

(C3) For any t > 0, the random variables ADi , i = 1, · · · , Nt are independent and identically
distributed.

Then, for (t, x0) ∈ R+ ×R, conditionally to X0 = x0,

(i) The expectation of Xt is

E(Xt|X0 = x0) = x0 exp
((

µ + λE(AD1)
)
t
)

; (14)

(ii) The variance of Xt is

Var(Xt|X0 = x0) = E2(Xt|X0 = x0)

(
exp

(
σ2t2H + λtE(A2

D1
)
)
− 1
)

. (15)

Proof.

(i) Equation (6) leads to the expectation of Xt conditionally to X0 = x0:

E(Xt|X0 = x0) = x0 exp(µt− 1
2 σ2t2H)×E

(
eσBH

t × exp(
∫ t

0 log(1 + As)dNs)
)

.

Since condition (C1) is verified, then

E(Xt|X0 = x0) = x0 exp(µt− 1
2

σ2t2H)× exp(
1
2

σ2t2H)×E
( Nt

∏
i=1

(1 + ADi )
)

= x0 exp(µt)×E
[(

1 +E(AD1 |Nt)
)Nt]

(because of (C3)).
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The independence of AD1 and Nt implies that E(AD1 |Nt) = E(AD1) and then

E(Xt|X0 = x0) = x0 exp(µt)×E
[(

1 +E(AD1)
)Nt]

= x0 exp(µt)× exp
(

λt(1 +E(AD1)− 1)
)

= x0 exp
((

µ + λE(AD1)
)
t
)

.

(ii) Similarly, we get

E(X2
t |X0 = x0) = x2

0 exp(2µt− σ2t2H)× exp(2σ2t2H)×E
( Nt

∏
i=1

(1 + ADi )
2
)

= x2
0 exp(2µt + σ2t2H)× exp

(
λt
(

2E(AD1) +E(A2
D1
)
))

so that Var(Xt|X0 = x0) = E2(Xt|X0 = x0)

(
exp

(
σ2t2H + λtE(A2

D1
)
)
− 1
)

.

Theorem 2. Let (Xt)t∈R+ be the solution of Equation (1). If µ + λE(AD1) < 0, then the expected
process

(
E(Xt)

)
t≥0 converges to zero and we have the following results:

(i) If 2H − 1 < 0 and µ < − λ
2

(
2(E(AD1) + E(A2

D1
)
)

, then (Xt) converges in mean square
to zero.

(ii) If 2H − 1 = 0 and µ < − λ
2

(
2(E(AD1) + E(A2

D1
) + σ2

)
then (Xt) converges in mean

square to zero.
(iii) If 2H − 1 > 0, there is no mean-square convergence.

Proof. From Equation (14), we have

∀t ∈ R+, E(Xt|X0 = x0) = x0 exp
((

µ + λE(AD1)
)
t
)

.

Since µ + λE(AD1) < 0, then

∀x0 ∈ R, lim
t→+∞

E(Xt|X0 = x0) = 0.

On the other hand, let us write

Rt = 2µ + 2λE(AD1) + λE(A2
D1
) + σ2t2H−1.

Then,

E(X2
t |X0 = x0) = x2

0 exp
((

2µ + 2λE(A1) + λE(A2
1) + σ2t2H−1

)
t
)

= x2
0 exp(tRt).

(i) If 2H − 1 < 0, then lim
t→+∞

Rt = 2µ + 2λE(A1) + λE(A2
1) < 0 so that

lim
t→+∞

E(X2
t ) = 0.

(ii) If 2H− 1 = 0 then lim
t→+∞

Rt = 2µ + 2λE(A1) + λE(A2
1) + σ2 < 0 and lim

t→+∞
E(X2

t ) = 0.

(iii) If 2H − 1 > 0, then tRt =

((
2µ + 2λE(A1) + λE(A2

1)
)

t1−2H + σ2
)

t2H tends to in-

finity when t tends to infinity. Therefore, we do not have mean-square convergence to
zero.
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3. Parameter Estimation

In the case of SDEs without jumps, several parameter estimation methods have been
discussed in the literature [3,5,9,16,17]. In this paper, our main goal is to estimate the
parameters of model (6) which incorporates jumps. The process (Xt)t≥0 is observed
discretely on the interval [0, T] at dates t1, · · · , tn with T > 0 and 0 < t1, · · · , tn ≤ T. The
process (Nt)t≥0 is fully observed on [0, T] and each jump amplitude ADi is available for
i ∈ [1, NT ] ∩N.

In the following, we write Yt = log(Xt) so that Equation (6) leads to:

Yt = log(X0) +
Nt

∑
i=1

log(1 + ADi ) + µt− 1
2

σ2t2H + σBH
t . (16)

In Section 3.1, the maximum likelihood estimators (MLEs) of µ, σ2 and λ are provided
assuming that x0 and H are known. The estimation of the jump amplitude parameter θ is
presented in Section 3.2. Then, an asymptotically unbiased and consistent estimator of σ2 is
proposed in Section 3.3 by means of quadratic variations. Results on convergence properties
of MLEs are obtained in Section 3.4 with respect to the Hurst index value in situations
where it is not necessary to assume the same interval length between two consecutive
observation dates.

3.1. Maximum Likelihood Estimator of (µ, σ2, λ)

As mentioned before, refs. [3,17] proposed a MLE in the case of SDEs without jumps.
In the following theorem, we take into account the dates and amplitudes of jump to provide
the MLE of (µ, σ2, λ).

Theorem 3. The MLEs of µ, σ2 and λ from the observations Yt1 , · · · , Ytn , AD1 , · · · , ADNt
are,

respectively,

µ̂ =

n

∑
i=1

n

∑
j=1

tiΓ−1
ij

(
Ytj +

1
2

σ̂2t2H
j − log(X0)−

Ntj

∑
k=1

log(1 + ADk )
)

n

∑
i=1

n

∑
j=1

titjΓ−1
ij

(17)

σ̂2 = 2

(
n2 + (

n

∑
i=1

n

∑
j=1

Cti Γ
−1
ij Ctj)(

n

∑
i=1

n

∑
j=1

t2H
i t2H

j Γ−1
ij )
)1/2

− n

n

∑
i=1

n

∑
j=1

t2H
i t2H

j Γ−1
ij

(18)

λ̂ =
NT
T

(19)

where the Γ−1
ij are the elements of the inverse matrix Γ−1 of Γ with Γ =

(
E(BH

ti
BH

tj
)
)

1≤i≤n
1≤j≤n

given by

Equation (2).

Cti = Yti − µ̂ti − log(X0)−
Nti

∑
k=1

log(1 + ADk ).

Proof. The random variable Yt as defined in expression (16) has a Gaussian distribution
conditionally to (ADi )i=1,··· ,Nt with expectation

E
(

Yt | (ADi )1≤i≤Nt , Nt

)
= log(x0) +

Nt

∑
i=1

log(1 + ADi ) + µt− 1
2

σ2t2H (20)
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and variance
Var

(
Yt | (ADi )1≤i≤Nt , Nt

)
= σ2t2H . (21)

Writing t = (t1, · · · , tn), t2H = (t2H
1 , · · · , t2H

n ), Y = (Yt1 , · · · , Ytn) and

Zt =

(
log(x0) +

Nt1

∑
k=1

log(1 + ADk ), · · · , log(x0) +
Ntn

∑
k=1

log(1 + ADk )

)
, the log-likelihood

L(Y ;(µ, σ2)) for the observations Y conditional on (ADi )1≤i≤NT , NT and X0 is

−n
2

log(2π)− 1
2

log(|σ2Γ|)− 1
2σ2

(
Y − µt +

1
2

σ2t2H − Zt

)
Γ−1

(
Y − µt +

1
2

σ2t2H − Zt

)′

where Γ is the square matrix
(
E(BH

ti
BH

tj
)
)

and prime (′) denotes the vector transposition.

Therefore, L(Y ;(µ, σ2)) can be expressed as follows:

L(Y ;(µ, σ2)) =

− n
2

log(2π)− 1
2

log(|σ2Γ|)− 1
2σ2

n

∑
i=1

n

∑
j=1

(
yti − µti +

1
2

σ2t2H
i − log(x0)−

Nti

∑
k=1

log(1 + Ak)

)
×

Γ−1
ij

(
ytj − µtj +

1
2

σ2t2H
j − log(x0)−

Ntj

∑
k=1

log(1 + Ak)

)
. (22)

The derivatives of expression (22) with respect to µ and σ2 lead to the MLEs µ̂ and σ̂2 as
expressed in Equations (17) and (18).

On the other hand, the independence condition (C1) implies that the term from the

full likelihood related to λ is exp
( ∫ T

0
log(λ)dNs −

∫ T

0
λds
)
= λNT exp(−λT) so that the

MLE of λ is λ̂ =
NT
T

.

It is worth noticing that µ̂ and σ̂2 have a matrix expression:

µ̂ =
tΓ−1K′

tΓ−1t′
, (23)

σ̂2 = 2

(
n2 +

(
t2H Γ−1(t2H)′

)
CΓ−1C′

) 1
2 − n

t2H Γ−1(t2H)′
, (24)

where C = (Ct1 , · · · , Ctn) and K = (Kt1 , · · · , Ktn) with

Ktj = Ytj +
1
2

σ̂2t2H
j − log(X0)−

Ntj

∑
k=1

log(1 + ADk ) for 1 ≤ j ≤ n. (25)

3.2. Estimation of θ

The observed jump amplitudes D1, · · · , DNT provide us with a sample of independent
realizations from the same distribution, say Dθ . Consequently, statistical inference on θ can
be performed by means of classical tools [18]. For example, the package maxlik [19] uses
different optimization routines in the statistical environment R for maximum likelihood
estimations.

3.3. Quadratic Variation Method for Estimating σ2

Ref. [3] proposed a quadratic variation method for estimating σ2 in the case where
there are no jumps and for which the observation dates are equidistant. Our goal in this
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subsection is to extend this method and provide an asymptotically unbiased estimator of
σ2 in the case of jumps and for observation dates not necessarily equidistant.

Theorem 4. From the observations Yt1 , · · · , Ytn , AD1 , · · · , ADNt
, the quadratic variation method

provides the following estimator of σ2:

σ̃2 =
1
n

n−1

∑
i=0

(
Yti+1 −Yti −

Nti+1

∑
j=Nti+1

log(1 + ADj)
)2

(ti+1 − ti)
2H (26)

with t0 = 0.
For H > 1

2 , if ti = hi + εi for i = 1, · · · , n with h > 0 and εi = o( 1
n ), then the estimator σ̃2

is asymptotically unbiased and consistent for σ2.

Proof. For any integer i such that 0 ≤ i < n, from Equation (16), we get

Yti+1 −Yti =

Nti+1

∑
j=Nti+1

log(1 + ADj) + µ(ti+1 − ti)−
1
2

σ2(t2H
i+1 − t2H

i ) + σ(BH
ti+1
− BH

ti
)

Therefore, for H > 1
2 , we obtain in a similar way as [3]:

(
Yti+1 −Yti −

Nti+1

∑
j=Nti+1

log(1 + ADj)
)2

= σ2
(

BH
ti+1
− BH

ti

)2
+ o
(
(ti+1 − ti)

2H) (27)

so that

1
n

n−1

∑
i=0

(
Yti+1 −Yti −

Nti+1

∑
j=Nti+1

log(1 + ADj)
)2

(ti+1 − ti)
2H =

σ2
n−1

∑
i=0

(
BH

ti+1
− BH

ti

)2

n(ti+1 − ti)
2H + o

( 1
n

)
. (28)

Taking the expectation of both members of Equality (28), we get

E(σ̃2) = σ2 + o
( 1

n

)
(29)

so that σ̃2 is asymptotically unbiased.
On the other hand, we can prove that σ̃2 is consistent by first calculating its second-

order moment:

E
(
(σ̃2)2

)
=

1
n2E




n−1

∑
i=0

(
Yti+1 −Yti −

Nti+1

∑
j=Nti+1

log(1 + ADj)
)2

(ti+1 − ti)
2H




2

. (30)
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From (30), we obtain

n2E
(
(σ̃2)2

)
=

n−1

∑
i=0

E
(

Yti+1 −Yti −
Nti+1

∑
j=Nti+1

log(1 + ADj)

)4

(ti+1 − ti)
4H +

2
n−1

∑
0≤i<k

E




(
Yti+1−Yti−

Nti+1

∑
j=Nti+1

log(1 + ADj)

)2

(ti+1 − ti)
2H ×

(
Ytk+1−Ytk−

Ntk+1

∑
j=Ntk+1

log(1 + ADj)

)2

(tk+1 − tk)
2H




2

.

Using Equality (27) leads to

n−1

∑
i=0

E
(

Yti+1 −Yti −
Nti+1

∑
j=Nti+1

log(1 + ADj)
)4

(ti+1 − ti)
4H =

n−1

∑
i=0

E
(

σ2
(

BH
ti+1
− BH

ti

)2
+ o(ti+1 − ti)

2H

)2

(ti+1 − ti)4H = n(3σ4 + o(1)). (31)

Moreover,

n−1

∑
0≤i<k

E




(
Yti+1−Yti−

Nti+1

∑
j=Nti+1

log(1 + ADj)

)2

(ti+1 − ti)
2H ×

(
Ytk+1−Ytk−

Ntk+1

∑
j=Ntk+1

log(1 + ADj)

)2

(tk+1 − tk)
2H




2

=

n(n− 1)
2

(
σ4 + o(1)

)
. (32)

Thus, the results (29), (31) and (32) lead us to

Var(σ̃2) =
2σ4

n
+ o
( 1

n

)

so that Var(σ̃2) tends to zero as n tends to ∞.
Furthermore, from Chebyshev’s inequality, we get for any ε > 0

P(|σ̃2 − σ2| ≥ ε) ≤ P(|σ̃2 −E(σ̃2)|+ |E(σ̃2)− σ2| ≥ ε) (33)

≤ Var(σ̃2)
(

ε− |E(σ̃2)− σ2|
)2 (34)

which tends to zero as n tends to ∞ and implies the consistency of σ̃2 for σ2.

3.4. Asymptotic Properties of MLEs

In this subsection, we focus on some distributional properties of estimators of µ and σ2.
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Theorem 5. When σ2 is known,

(i) The estimator µ̂ of µ is unbiased.
(ii) If ti = hi + εi for i = 1, · · · , n with h > 0 and εi = o( 1

n ), then µ̂ converges in mean square
to µ as n −→ ∞.

(iii) µ̂ follows a Gaussian distribution with expectation µ and variance
σ2

tΓ−1t′
.

Proof.
(i) Let us write BH = (BH

t1
, · · · , BH

tn
). From Equations (16) and (25), we have K = µt + σBH

and Equation (23) leads to

µ̂ =
tΓ−1(µt′ + σ(BH)′)

tΓ−1t′
= µ + σ

tΓ−1(BH)′

tΓ−1t′
. (35)

BH is centered so that E(µ̂) = µ.
(ii) From Equation (35), we obtain the variance of µ̂:

Var(µ̂) = E
(
(µ̂− µ)2) = σ2E

(
tΓ−1BH(BH)′Γ−1t′

(tΓ−1t′)2

)
.

Since Γ = E
(

BH(BH)′
)
, we obtain

Var(µ̂) =
σ2

tΓ−1t′
. (36)

Γ−1 is symmetric positive definite which implies that

tΓ−1t′ ≥ tt′

γmax
(37)

where γmax denotes the largest eigenvalue of Γ.
Consequently,

Var(µ̂) ≤ σ2 γmax

tt′
. (38)

On the other hand,

tt′ =
n

∑
i=1

(hi + εi
)2

=
n(n + 1)(2n + 1)

6
h2 + 2h

n

∑
i=1

iεi +
n

∑
i=1

ε2
i .

Since εi = o( 1
n ), we have tt′ =

h2n3

3
+ o( 1

n ). Moreover, according to Gerschgorin’s theorem
(see [20], chp. 8), we have

γmax ≤ max
i=1,··· ,n

n

∑
j=1
|Γij| ≤ βn

(
nh + o(

1
n
)
)2H

(39)

with β > 0. From Inequalities (38) and (39), we get

Var(µ̂) ≤ σ2βh−2n2H−2/3

so that Var(µ̂) converges to zero when n tends to infinity.
(iii) The result is straightforward from expressions (35) and (36).

Theorem 6. When µ is known,

(i)
(

σ̂2
)2

follows a noncentral chi-square distribution.
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Assume that the following conditions are verified:

(C4) H > 3
4 ;

(C5) ∃i0 ∈ N∗, ∀i ≥ i0, ti > 1;
(C6) ti = hi + εi for i = 1, · · · , n with h > 0 and εi = o( 1

n ).

Then,

(ii) The estimator σ̂2 of σ2 is asymptotically unbiased.
(iii) σ̂2 converges in mean square to σ2 as n −→ ∞.

Proof.

(i) From Equality (24), we get that
(

σ̂2
)2

is a quadratic form of the Gaussian vector C so
that it follows a noncentral chi-square distribution (see Theorem 5.5 in [21]).

(ii) From Equation (24), we have

E
(
(σ̂2)2) = 4E

(
CΓ−1C′)

t2H Γ−1
(
t2H)′ . (40)

Since

E
(
CΓ−1C′) = E(C)Γ−1E(C′) + tr(Γ−1σ2Γ) =

1
4

σ4t2H Γ−1(t2H)′ + nσ2,

then

E
(
(σ̂2)2) = σ4 +

4nσ2

t2H Γ−1
(
t2H)′ .

Similarly to Inequality (37), we get

t2H Γ−1(t2H)′ ≥ t2H(t2H)′

γmax
. (41)

From condition (C6) and Inequalities (39) and (41), it follows that

4nσ2

t2H Γ−1
(
t2H)′ ≤

4nσ2γmax

t2H(t2H)′ ≤
4βn2σ2

(
nh + o( 1

n )
)2H

n

∑
i=1

(
ih + o(

1
n
)
)4H

.

When conditions (C4), (C5) and (C6) are verified, we obtain

n

∑
i=1

(
ih + o(

1
n
)
)4H

=
n

∑
i=0

(ih)3 + o(
1
n
) =

n2(n + 1)2h3

4
+ o(

1
n
) (42)

which leads to
4nσ2

t2H Γ−1
(
t2H)′ ≤ 16σ2βh2H−3n2H−2 (43)

so that the bias of (σ̂2)2 for σ4 converges to zero when n tends to infinity.
Due to the preservation of the convergence in probability and the distribution by
continuous mappings (see Lemmas 3.3 and 3.7 in [22]), we obtain the final result.

(iii) From Equation (24), we have

Var
((

σ̂2
)2
)
=

16Var
(
CΓ−1C′)

(
t2H Γ−1

(
t2H)′)2 (44)

and since



Mathematics 2022, 10, 4190 12 of 17

Var
(

CΓ−1C′
)

= 2tr
(
(Γ−1σ2Γ)2

)
+ 4E(C)Γ−1(σ2Γ)Γ−1E(C′)

= 2nσ4 + σ6t2H Γ−1(t2H)′

we get

Var
((

σ̂2
)2
)

=
16
(
2nσ4 + σ6t2H Γ−1(t2H)′)

(
t2H Γ−1

(
t2H)′)2

=
32nσ4

(
t2H Γ−1

(
t2H)′)2 +

16σ6

t2H Γ−1
(
t2H)′ .

It results from (43) that the right member of Equality (44) tends to zero as n tends to
infinity.

4. Numerical Simulations

In order to simulate (Xt)t≥0 given by Equation (6), it is first necessary to simu-
late the fBm. Different methods have been discussed in the literature to simulate fBm
trajectories [23,24]. Thus, the packages somebm and longmemo have been available with the
software environment for statistical computing and graphics
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ti
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a
L
= BH

ti−a
L
= BH

i
n (b−a)

( stationary increment property),

BH
i
n (b−a)

L
= (b− a)H BH

i
n
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so that
BH
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L
= BH
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i
n
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2
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[25]. With function f bm
of somebm, we can simulation a standard fBm on [0, 1].

To get a simulation on any interval [a, b] with a < b, we created a subdivision of
length n by writing ti = a + i

n (b− a) for i = 0, · · · , n and used the following equalities
in law:

BH
ti
− BH

a
L
= BH

ti−a
L
= BH

i
n (b−a)

(stationary increment property),

BH
i
n (b−a)

L
= (b− a)H BH

i
n

(self-similarity property)

so that
BH

ti

L
= BH

a + (b− a)H BH
i
n

. (45)

Equation (45) allows us to simulate an fBm trajectory on [a, b] from one on [0, 1]. In
Appendix A, an R script simulating the modelM(µ, σ2, λ, θ, x0, H) is provided. In what
follows, this script was applied to different parameter values (µ, σ2, λ, θ, x0, H) with respect
to the convergence conditions given in Theorem 2. The jump amplitudes were distributed
according to a log-Gaussian law with log-expectation θ1 and log-variance θ2. Then, four
cases were distinguished:

Case 1: µ < min
(
− λ

(
eθ1+

θ2
2 − 1

)
;− λ

2
(
e2(θ1+θ2) − 1

))
and H < 1

2 ,

Case 2: µ < min
(
− λ

(
eθ1+

θ2
2 − 1

)
;− λ

2
(
e2(θ1+θ2) − 1 + σ2)) and H = 1

2 ,

Case 3: µ < −λ
(
eθ1+

θ2
2 − 1

)
and H > 1

2 ,

Case 4: µ > −λ
(
eθ1+

θ2
2 − 1

)
.

The latter case is the situation for which the expected process
(
E(Xt)

)
t≥0 tends

to infinity.
Figures 1 and 2 provide graphical representations of the simulated trajectories for each

case. The expectation and variance of the jump amplitudes were 0.111 and 0.012, respec-
tively. The probability of a negative amplitude was 0.159 in accordance with Equation (5).
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These figures illustrate the convergence results given by Theorem 2, namely that in cases 1
to 3, we had convergence of the expected process, and divergence of this process in case 4.

Case 1 Case 2
Figure 1. Four simulated trajectories of model M(µ, σ2, λ, θ, x0, H) over [0, 2] for jumps dis-
tributed according to LN (0.1, 0.01). On the left, an example of case 1 with (µ, σ2, λ, θ, x0, H) =

(−1, 0.2, 5, (0.1, 0.01), 6, 0.4); On the right, an example of case 2 with (µ, σ2, λ, θ, x0, H) =

(−1, 0.2, 5, (0.1, 0.01), 6, 0.5).

Case 3 Case 4
Figure 2. Four simulated trajectories of model M(µ, σ2, λ, θ, x0, H) over [0, 2] for jumps dis-
tributed according to LN (0.1, 0.01). On the left, an example of case 3 with (µ, σ2, λ, θ, x0, H) =

(−1, 0.2, 5, (0.1, 0.01), 6, 0.6); On the right, an example of case 4 with (µ, σ2, λ, θ, x0, H) =

(0.1, 0.2, 5, (0.1, 0.01), 6, 0.4).

Figure 3 illustrates the following theoretical result: between two consecutive jumps, the
trajectories are smoother as H approaches unity and more irregular as H approaches zero.



Mathematics 2022, 10, 4190 14 of 17

Figure 3. Four simulated trajectories of model M(−1, 0.1, 10, (0.1, 0.01), 6, H) over [0, 1] for H in
{0.1, . . . , 0.9}. The trajectory smoothness between two consecutive jumps increases as H goes from 0
to 1.

5. Conclusions

Since the work of [14] on fractional noise, the fields of application of processes with
long-term dependence have increased quite considerably. In this paper, we developed
statistical inference for fractional Black–Scholes processes with jumps for which H is not
necessarily greater than 1/2. First, the distributional properties of such processes were
presented. Closed-form MLEs for the drift and diffusion coefficients were proposed. Their
asymptotic properties were studied, in particular consistency. An asymptotically unbiased
and consistent estimator of σ2 was proposed by means of quadratic variations. These results
were obtained with respect to the Hurst index value. Contrary to most methods proposed
in the literature, we did not require an equal interval length between two consecutive
observation dates. A procedure for simulating trajectories was developed within the
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programming environment.
We assumed independence between the Poisson process of jump dates and the series

of jump amplitudes. It would be interesting in the future to study how the correlation
between jump dates and amplitudes may impact the behavior of the SDE solution and the
statistical inference on this process.
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Appendix A. Codes with R Programming Language

M(µ, σ2, λ, θ, x0, H) is the solution of the SDE (1) and can be simulated by means of
the R script detailed below. It is required to install the R package somebm. Jump amplitudes
are assumed to be log-Gaussian.

Listing A1. Script with R language for simulating the solution of the SDE (1).

SimBSfsauts2=funct ion (mu, sigma2 , lambda , theta , X0 ,H, t , Nsim ,MAX) {
#mu i s the d r i f t
#sigma2 i s the d i f f u s i o n c o e f f i c i e n t
#lambda i s the Poisson i n t e n s i t y
# t h e t a i s the vec tor parameter of the jump amplitude law :
#a log −Gaussian d i s t r i b u t i o n with log −e x p ec t a t i o n t h e t a [ 1 ]
#and log −var iance t h e t a [ 2 ] .
#X0 i s the i n i t i a l value of the process a t t =0
#H i s the Hurst parameter
# t i s the s imulat ion window length
#Nsim i s the number of simulated t r a j e c t o r i e s
#MAX i s the maximum value on y− a x i s
# i n s t a l l the package "somebm" f o r s imulat ions of fBm
n=rpois ( 1 , lambda * t ) #drawing of one r e a l i z a t i o n of the Poisson law
dates= s o r t ( r u n i f ( n , max= t ) )
#Drawing of $n$ jump amplitudes
sauts=rlnorm ( n , meanlog= t h e t a [ 1 ] , sdlog= s q r t ( t h e t a [ 2 ] ) ) − 1
# Simulat ion between dates 0 and dates [ 1 ]
temps=seq ( 0 , dates [ 1 ] , length =102)
# S e l f − s i m i l a r i t y property
Bf=fbm ( hurst=H) * dates [1 ]^H
Xt=X0* exp (mu* temps −0.5 * sigma2 * ( temps ^(2 *H) ) + s q r t ( sigma2 ) * c ( 0 , Bf ) )
Xt [102]= Xt [ 1 0 2 ] * (1+ sauts [ 1 ] )
X=Xt
temps2=temps
# For i from 2 to n , s imulat ion between dates [ i −1] and dates [ i ]
f o r ( i in 2 : n ) {
temps=seq ( dates [ i −1] , dates [ i ] , length =103)[ −1]
#Unique Gaussian process which i s s e l f − s i m i l a r and s t a t i o n a r y
Bf=Bf [101]+ fbm ( hurst=H) * ( dates [ i ] − dates [ i −1])^H
Xt=Xt [ 1 0 2 ] * exp (mu* temps −0.5 * ( sigma2 ) * temps ^(2 *H)+ s q r t ( sigma2 ) * c ( 0 , Bf ) )
Xt [102]= Xt [ 1 0 2 ] * (1+ sauts [ i ] )
X=c (X , Xt )
temps2=c ( temps2 , temps )
}
# Simulat ion between dates [ n ] and t
temps=seq ( dates [ n ] , t , length =103)[ −1]
Bf=Bf [101]+ fbm ( hurst=H) * ( t −dates [ n ] ) ^H
Xt=Xt [ 1 0 2 ] * exp (mu* temps −0.5 * ( sigma2 ) * temps ^(2 *H)+ s q r t ( sigma2 ) * c ( 0 , Bf ) )
X=c (X , Xt )
temps2=c ( temps2 , temps )
miny=min (X)
m= t h e t a [ 1 ]
d e l t a = s q r t ( t h e t a [ 2 ] )
#MAX=exp ( log ( X0)+mu* t −0.5 * ( sigma2 ) * ( t ^(2 *H) ) + lambda * t *m
# +1.96 * s q r t ( sigma2 * ( t ^(2 *H) ) + lambda * t * (m^2+ d e l t a ^ 2 ) ) )
p l o t ( temps2 , X , type=" l " , x lab=" time t " , ylab=" Process value a t time t " ,
ylim=c ( 0 ,MAX) , c o l =1)
# Simulat ions of the other t r a j e c t o r i e s
f o r ( j in 2 : Nsim ) {
n=rpois ( 1 , lambda * t ) #drawing of one r e a l i z a t i o n of the Poisson law
dates= s o r t ( r u n i f ( n , max= t ) )
#Drawing of $n$ jump amplitudes
sauts=rlnorm ( n , meanlog= t h e t a [ 1 ] , sdlog= s q r t ( t h e t a [ 2 ] ) ) − 1
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# Simulat ion between dates 0 and dates [ 1 ]
temps=seq ( 0 , dates [ 1 ] , length =102)
Bf=fbm ( hurst=H) * dates [1 ]^H # a u t o s i m i l a r i t y property
Xt=X0* exp (mu* temps −0.5 * sigma2 * ( temps ^(2 *H) ) + s q r t ( sigma2 ) * c ( 0 , Bf ) )
Xt [102]= Xt [ 1 0 2 ] * (1+ sauts [ 1 ] )
X=Xt
temps2=temps
# For i from 2 to n , s imulat ion between dates [ i −1] and dates [ i ]
f o r ( i in 2 : n ) {
temps=seq ( dates [ i −1] , dates [ i ] , length =103)[ −1]
#Unique Gaussian process which i s s e l f − s i m i l a r and s t a t i o n a r y
Bf=Bf [101]+ fbm ( hurst=H) * ( dates [ i ] − dates [ i −1])^H
Xt=Xt [ 1 0 2 ] * exp (mu* temps −0.5 * sigma2 * temps ^(2 *H)+ s q r t ( sigma2 ) * c ( 0 , Bf ) )
Xt [102]= Xt [ 1 0 2 ] * (1+ sauts [ i ] )
X=c (X , Xt )
temps2=c ( temps2 , temps )
}
# Simulat ion between dates [ n ] and t
temps=seq ( dates [ n ] , t , length =103)[ −1]
Bf=Bf [101]+ fbm ( hurst=H) * ( t −dates [ n ] ) ^H
Xt=Xt [ 1 0 2 ] * exp (mu* temps −0.5 * sigma2 * temps ^(2 *H)+ s q r t ( sigma2 ) * c ( 0 , Bf ) )
X=c (X , Xt )
temps2=c ( temps2 , temps )
miny=min (X)
l i n e s ( temps2 , X , type=" l " , x lab=" t " , ylab=" Xt " , c o l = j )
}
}
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