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Abstract: Current graph-embedding methods mainly focus on static homogeneous graphs, where
the entity type is the same and the topology is fixed. However, in real networks, such as academic
networks and shopping networks, there are typically various types of nodes and temporal interactions.
The dynamical and heterogeneous components of graphs in general contain abundant information.
Currently, most studies on dynamic graphs do not sufficiently consider the heterogeneity of the
network in question, and hence the semantic information of the interactions between heterogeneous
nodes is missing in the graph embeddings. On the other hand, the overall size of the network
tends to accumulate over time, and its growth rate can reflect the ability of the entire network to
generate interactions of heterogeneous nodes; therefore, we developed a graph dynamics model to
model the evolution of graph dynamics. Moreover, the temporal properties of nodes regularly affect
the generation of temporal interaction events with which they are connected. Thus, we developed
a node dynamics model to model the evolution of node connectivity. In this paper, we propose
DHGEEP, a dynamic heterogeneous graph-embedding method based on the Hawkes process, to
predict the evolution of dynamic heterogeneous networks. The model considers the generation
of temporal events as an effect of historical events, introduces the Hawkes process to simulate
this evolution, and then captures semantic and structural information based on the meta-paths of
temporal heterogeneous nodes. Finally, the graph-level dynamics of the network and the node-level
dynamics of each node are integrated into the DHGEEP framework. The embeddings of the nodes are
automatically obtained by minimizing the value of the loss function. Experiments were conducted
on three downstream tasks, static link prediction, temporal event prediction for homogeneous nodes,
and temporal event prediction for heterogeneous nodes, on three datasets. Experimental results show
that DHGEEP achieves excellent performance in these tasks. In the most significant task, temporal
event prediction of heterogeneous nodes, the values of precision@2 and recall@2 can reach 30.23%
and 10.48% on the AMiner dataset, and reach 4.56% and 1.61% on the DBLP dataset, so that our
method is more accurate at predicting future temporal events than the baseline.

Keywords: dynamic heterogeneous graph; graph embedding; link prediction

MSC: 68T07

1. Introduction

Complex networks provide an effective paradigm for studying the complexity and
interactions of the real world, and have thus attracted considerable attention. Traditional
mathematical methods have a limited ability to express the complex characteristics of
large-scale networks, making it difficult to express many networks found in the real
world [1]. In real-world scenarios, various aspects of the network change over time,
including the structure, scale, and information contained in the network. Static networks
cannot describe this general phenomenon, but the representation of dynamic networks
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reflects the dynamics of real-world situations [2]. However, most existing studies have
focused on the static networks, and relatively little attention has been given to dynamic
networks. Early researchers tried to use mathematical methods to study the evolution
of dynamic graphs. Shang extended the static Estrada index to the dynamic setting [3],
and based on this, Laplacian Estrada and normalized Laplacian Estrada indices of evolving
graphs were proposed, and then he verified the indexes on the synthetic, randomly evolving
small-world networks [4]. Unfortunately, this kind of approach requires manual extraction
of the characteristics of dynamic networks. In recent years, graph-embedding techniques
have been widely used for learning graph representations, allowing the structure and
attribute information of a network to be input into a neural network formulation to obtain
a low-dimensional representation vector. This has led to a significant improvement in
network representation capabilities. These techniques have been applied to both static
networks and dynamic networks. Dynamic network embedding is the current research
hotspot [5], which can be divided into discrete and continuous approaches.

• Discrete-Time Dynamic Graph

Generally, a discrete-time dynamic graph is generated by accumulating evolution
across a window of consecutive timestamps to extract the desired information or apply static
graph modeling techniques on the snapshots [6]. One idea is to improve the node embed-
ding methods for static networks to adapt to the dynamic ones—for instance, incorporating
random walks around dynamic networks into Bernoulli embeddings [7] and utilizing the
novel dynamic personalized PageRank vectors based on the local network embedding
on a static graph [8]. Another idea is to change the structure of a static graph neural
network (GNN) to enable the structural and temporal features of discrete dynamic graphs
to be automatically learned in a unified GNN framework. Many novel frameworks have
been proposed, such as general temporal network-diffusion convolutional networks [9],
an encoder–decoder architecture combined with long short-term memory (LSTM) [10],
an automatic deep graph encoder [11], and an implicit hierarchical learning framework in
hyperbolic space [12]. In addition, some researchers have introduced dynamic knowledge
graphs as a perspective for studying dynamic graphs [13,14].

However, another difficult problem is whether it is appropriate to divide the time axis
into equal lengths and perform aggregation to create a discrete time dynamic graph. It can
be known that the density of events in the dynamic network is not evenly distributed over
time. If the time division length is treated equally, the network size in some snapshots may
be too large, whereas the network size in some snapshots will be too small, resulting in low
correlation between snapshots and difficulties in mining dynamic network characteristics.
Therefore, researchers have studied the method of dividing the time axis and the method
of distinguishing the importance of snapshots. A temporal attention mechanism has been
introduced [15], and a joint structural and temporal self-attention mechanism has been
developed [16]. Based on the attention mechanism, Ma et al. proposed an adaptive graph
convolution framework combined with an LSTM for feature extraction [17].

For different graphs and tasks, embedding different attributes of a dynamic graph will
have different effects. Researchers have proposed algorithms to embed various character-
istics of dynamic networks according to different research objects. Some have embedded
the topology and evolutionary patterns of the dynamic network in a dynamic graph rep-
resentation [18,19]. In addition, there are targeted methods to embed other features, such
as the structural changes of the subgraph related to the target node [20], the long- and
short-term dependencies, the spectrum of the Laplacian matrix of the graph structure at
each snapshot [21], and the dynamic interests of users over a long period [22]. Graph-level
features can usually indicate overall changes in structure and attributes. By embedding
graph level features via multiple random walks, Beladev et al. jointly learned temporal
graph-level representations and temporal node representations [23], and Hou et al. intro-
duced an incremental learning paradigm and considered inactive subnetworks to better
preserve the global topology at each time step [24].
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Discrete dynamic networks “slice” continuous time into several discrete epochs, effec-
tively mapping nodes and edges generated over a period of time to a sequence of snapshots.
This paradigm is in line with people’s general understanding of dynamic graphs but ig-
nores the dynamics in the snapshot, so it is difficult to realize the dynamic representation in
the real sense, because the generation time of temporal edges in the discrete time dynamic
graph is set to be the same as the timestamp of the graph snapshot, whereas in a real
network, temporal edges can be generated at any time.

• Continuous-time Dynamic Graph

Continuous dynamic graphs have been developed, which consist of a stream of dyadic
events [25–27]. Continuous-time processing methods can be divided into time-coding-based
methods and attention-mechanism-based methods. Researchers have studied time-coding
technologies for inductive representation learning on dynamic graphs, such as learning a set
of functions for learning communication and association between dynamic nodes [28]. Based
on the functional time encoding proposed by Xu et al. [29], Xia et al. encoded continuous real-
valued timestamps as vectors to preserve fine-grained time information [30], and Rossi et al.
combined memory modules with graph-based operators to store long-term information [31].
Time-coding technology requires complex mathematical skills, and an attention mechanism
is a lightweight and effective continuous-time processing method with strong scalability
that can be combined with many other methods. Implementations include a temporal
collaborative attention mechanism for jointly modeling collaborative signals and temporal
effects [32], a selection mechanism with a dynamic message passing neural network [33],
and a representation method of temporal knowledge graph with attention propagation
using the temporal displacement between each event and the query timestamp [34].

Based on these two types of methods, researchers have attempted to mine and embed
multiplex characteristics of dynamic graphs for enhanced representation learning. For iden-
tifying domain-specific laws within different temporal networks, Huang et al. captured the
triad evolution process that preserves motif-aware high-order proximities [35], Liu et al.
focused on predicting higher-order patterns in temporal hypergraphs [36], and Wang et al.
encoded temporal network motifs via causal anonymous walks [37]. For future link pre-
diction or dynamic graph recommendations, Du et al. exploited a graph-based neural
Hawkes process for event propagation prediction with spatiotemporal characteristics [38],
Yang et al. introduced meta-learning to extract hierarchical knowledge for few-shot dy-
namic link prediction [39], and Yang et at. incorporated temporal information and spatial
information into neighbor embedding learning [40]. In addition, some researchers tried to
learn graph representation from the perspective of the graph level and node level. Sun et al.
generated stochastic representations to model the graph dynamics and uncertainties in
hyperbolic space [41]. By considering the mutual evolution of micro- and macro-dynamics,
Lu et al. captured the formation process and evolution pattern of a network [42]. Some
researchers have modeled events at individual and collective scales and formulated them
as event and node dynamics on a Hawkes process-based GNN [43]. In these studies, it can
be seen that encoding different attributes of the temporal dynamic network can improve
the performance of the model for different problems.

Continuous-time dynamic graphs are composed of streams of temporal events that
can support continuous-time scenarios and thus be truly dynamic. However, most of
the methods find it difficult to deal with the data structure of the event flow. Thus, most
studies only generate the embedding for the final state of the dynamic graph, and it is
difficult to inductively learn from a continuous-time dynamic graph. In addition, embed
multiplex characteristics of dynamic graphs can enhance the performance of a method for
different tasks.

• Continuous-time Dynamic Heterogeneous Graph

One of the important characteristics of a real network is the heterogeneity of the nodes
and their interactions. The heterogeneity of nodes represents entities having different
functions, and the heterogeneity of edges represents different relationships. A dynamic
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heterogeneous graph not only expresses the changes in the topological complex structure
of the graph and rich semantics, but also expresses the temporal evolution of the graph and
various time preferences. This research is still in its infancy. Researchers have improved the
heterogeneous network embedding method to adapt it to dynamic situations and improved
the dynamic network embedding method to adapt it to heterogeneity. For example, Hu et al.
introduced a relative temporal encoding strategy and node- and edge-type-dependent
attention mechanisms for, respectively, handling dynamics and heterogeneity [44], Li et al.
proposed a three-level attention mechanism to take network heterogeneity and dynamics
into account at the same time [45], Xie et al. embedded an dynamic time-series into an
online real-time-updated model [46], and Deng et al. used the heterogeneous fusion of
multiple types of concurrent events for time-knowledge graph learning [47].

From the perspective of multivariate time series forecasting, researchers have studied
dynamic, heterogeneous graph embedding by exploiting rich spatial relation information
and temporal features [48] and converting event signals from dynamic heterogeneous
graphs into event time series [49]. Furthermore, meta-paths are commonly used for dy-
namic heterogeneous graph representations. For example, Lu et al. captured the network
structure and semantics by preserving the meta-path-based first- and second-order proxim-
ities [50], and Shi et al. considered the time dynamics in the evolution process to obtain the
structure and semantics in a dynamic heterogeneous graph, with a meta-path method with
an attention mechanism using the Hawkes process to model the evolution [51].

The research on dynamic heterogeneous graphs is still in its early stages, and there
are many difficulties to be overcome. Firstly, the current dynamic graph model can only
deal with one type of nodes and cannot model the temporal events between heterogeneous
nodes. Secondly, the interactions between heterogeneous nodes often contain rich semantic
information, so how to extract the semantic information contained in the temporal interac-
tions of heterogeneous nodes is a key problem to be solved. Thirdly, from the perspective of
temporal events, historical events have potential influences on the current node interactions,
so it is necessary to consider that the impact of historical events on current interactions atten-
uates over time. Fourthly, from the perspective of the whole graph, the scale of the dynamic
heterogeneous graph will accumulate over time, and the growth rate of the number of edges
represents the trend change in the graph’s link generation, which is a continuous value with
time. Thus, how to maintain the continuity of graph dynamics in dynamic, heterogeneous
graph embedding is a problem that needs to be solved. Finally, from the perspective of
nodes, node interactions at different times often show collective characteristics related to
nodes at both ends. Therefore, when predicting the generation of future temporal events,
the characteristics of nodes at both ends over time should be taken into account.

• Our Work

In view of the above difficulties, we were inspired by a meta-path-based, dynamic
heterogeneous graph-embedding method called THINE [51] and proposed DHGEEP (a Dy-
namic Heterogeneous Graph Embedding method for Evolutionary Prediction). DHGEEP
mainly uses the Hawkes process to simulate the phenomenon that the influences of histori-
cal events will decay over time and introduces a temporal, heterogeneous meta-path and
attention mechanism as the tool to extract semantic information and structural information
to obtain dynamic, heterogeneous graph embedding. Inspired by the two methods for
mining and embedding various characteristics of dynamic homogeneous graphs [42,43],
we attempt to model the graph dynamics and the node dynamics. In [42], the micro-
dynamics of the network consisted of events arranged chronologically, emphasizing the
sequence of temporal events, while ignoring that the sequential events are the causes of
the interaction between nodes, so it cannot model some emergencies in the network. Our
method is more concerned with the relationship between the node’s own dynamics and the
temporal events it produces and can learn the joint distribution between node dynamics
and temporal events. In [43], TREND simulated the dynamics of nodes but did not model
the graph dynamics, which cannot guarantee that the evolution scale of dynamic network
is in line with the due characteristics. In addition, these two methods are only applicable to



Mathematics 2022, 10, 4193 5 of 20

homogeneous dynamic networks. Thus, the most important contribution is the modeling
of graph dynamics in the framework to represent the dynamics of the entire graph—that is,
the scale of edges in the network accumulates over time, and the increasing speed of the
scale represents the trend of the network’s ability to generate edges. In addition, the node
dynamics are modeled in the framework, that is, the temporal edges generated on the same
node show the law of distribution over time. Finally, we designed a loss function and
update the parameters through the Adam optimizer.

The main contributions can be summarized as follows:

• For the first time, we embed the dynamics of a whole graph into a dynamic heteroge-
neous network representation vector. In the past, the dynamic heterogeneous network-
embedding methods have only focused on the semantic and time decay effects contained
in the meta-path, while the dynamics of the whole network would affect the local em-
bedding. As the so-called “collective influence individuals,” the traditional methods
rarely modeled the evolutionary periodic effects from the overall perspective of the dy-
namic heterogeneous network. In this method, the current scale and trend of the whole
graph are embedded into the representation vector so that the graph representation can
represent the properties of the network from the perspective of the whole network.

• For the first time, we embed node dynamics into the representation of the dynamic
heterogeneous network. We have observed that in dynamic heterogeneous networks, al-
though each event has its own individual characteristics, the temporal events generated
on the associated nodes will be affected by the connectivity of shared heterogeneous
nodes, and the connectivity of nodes changes with time, resulting in the similarity and
collective characteristics between temporal edges changing with time. We define the
collective characteristics of events at the same node as node dynamics. It provides a
regularization mechanism that goes beyond a single event to ensure that the temporal
edges on the node can conform to the joint distribution of node dynamics and time.

• The experimental results on three real datasets show that DHGEEP is superior to
several baselines.

The remainder of this paper is organized as follows. In Section 2, we formalize the
problem. Section 3 describes the dynamic heterogeneous network embedding method
proposed in this paper. Section 4 presents the experimental setup and results of the three
downstream tasks. Section 5 summarizes the conclusions of this study.

2. Related Work

There has been relatively little research on prediction for heterogeneous dynamic
networks, and so we have investigated 12 existing prediction strategies as baselines, which
can be divided into two categories, shallow embedding models and deep embedding models.
The shallow model is a machine learning model with few hidden layers. It first initializes
the graph-embedding vector and then treats each element in the graph-embedding vector
as a parameter to learn directly from the data. Compared with the shallow model, the deep
model is a machine learning model with multiple hidden layers, which can better model the
nonlinear relationship. The deep model is used to learn more complex features, and then
the information is jointly encoded and fused to obtain the low-dimensional representation
vectors of graphs. The first nine are shallow embedding models, and the last three are deep
embedding models. The details of the methods are described below.

• Deepwalk [52] and LINE [53]: Two static-homogeneous-network shallow-embedding
methods based on the neighborhood information of nodes to obtain the representa-
tions, which were inspired by NLP problems.

• Metapath2vec [54]: A static-heterogeneous-network shallow-embedding method
based on the metapath to capture semantics and structure. The random swimming
based on meta-path specifies the neighbor of a node and then uses a heterogeneous
skip-gram model to implement embedding.

• DySAT [16]: A dynamic-homogeneous-network shallow-embedding method. DySAT
divides the dynamic network into different subgraphs of snapshots and then ag-
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gregates the information of each subgraph. It captures dynamics from two sources,
structural neighborhood and temporary dynamics, and uses multiple heads of atten-
tion to capture multiple dynamics.

• HTNE [55]: A dynamic-homogeneous-network shallow-embedding method based on
the Hawkes process. HTNE integrates the Hawkes process into network embedding
to discover the influence of historical neighbors on current neighbors.

• MTNE [35]: A dynamic-homogeneous-network shallow-embedding method that sim-
ulates the evolution of networks. MTNE considers the effect of mesoscopic dynamics,
especially the temporal dynamics of the particular motifs when the network evolves.

• DHNE [56]: A dynamic-heterogeneous-network shallow-embedding method which
constructs comprehensive historical-current networks based on subgraphs of snap-
shots in time step. Additionally, meta-paths are used to capture semantics.

• StHNE [50]: A static-heterogeneous-network shallow-embedding method which can
capture a network representation of the structure and semantics in the static heteroge-
neous map based on the first-order and second-order approximation of the meta-path.

• DyHNE [50]: A dynamic-heterogeneous-network shallow-embedding method based on
StHNE, which can learn the nodes’ embedding based on perturbation theory when the
structure and semantics of the augmented adjacency matrix of the meta-path change.

• MAGNN [57]: A static-heterogeneous-network deep-embedding method based on
meta-path aggregation for static heterogeneous graphs.

• HDGNN [58]: A dynamic-heterogeneous-network deep-embedding method which
can integrate the characteristics of time evolution and capture the structural character-
istics of attribute graphs and the dynamic complex relationships between nodes.

• THINE [51]: A dynamic-heterogeneous-network deep-embedding method, which
uses the Hawkes process to simulate the evolution of the temporal network and
combines the attention mechanism and meta-paths.

3. Problem Formalization

In this section, we formalize the evolutionary model of dynamic heterogeneous net-
works. Consider a graph G = (V , E , T , φ, ϕ), where V , E , and T represent the node set,
edge set, and timestamp set, respectively. The heterogeneity of the network is reflected
in the different types of nodes and edges, i.e., φ : V → A, ϕ : E → R, where A is the
node-type set and R represents the edge-type set, |A|+ |R| > 2. The dynamics of the
network are reflected in the nodes and edges at different time steps; i.e., edge et

ij ∈ E
indicates that vi establishes a link relationship with node vj at t. Nodes may establish
multiple relationships at different times, so there may be a large number of relationships
between two nodes in the network.

In studying dynamic heterogeneous networks, the problem to be solved can be described
as follows: for a dynamic heterogeneous network G = (V , E , T , φ, ϕ), we must learn a
mapping function f : V → Rd by comprehensively considering the temporal dynamics and
heterogeneous structure information of the network, where d is the embedding dimension,
d� |V|. Finally, a low-dimensional vector of multi-type node embeddings is obtained.

4. Methods

In this section, we describe the details of the proposed dynamic heterogeneous graph-
embedding method for evolutionary prediction (DHGEEP). The framework of DHGEEP is
shown in Figure 1.

To combine the dynamic and heterogeneous information of the network, we adopt
the same idea as many studies [35,55], and in a simple way, that is, using the negative
Euclidean distance square for describing the contributions of two nodes vi, vj ∈ V to the
establishment of an edge between the two as

βx,y = −|ux − uy|2 (1)
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where βx,y is the influence of the node pair, and ux and uy represent the embedding vectors
of nodes vx and vy. Based on this assumption, we decided to use temporal meta-paths
to obtain the mutual influences between various types of nodes. The meta-path-based
approach has been proven to be effective in dynamic heterogeneous networks [50,51].
Similarly to decomposition and autoencoder-based approaches, one of the major advan-
tages of the encoders based on random walks is that they provide an embedding function
without needing to be combined with a decoder [2]. The meta-path M is defined as

a1
r1−→ a2

r2−→ a3
r3−→ . . .

rl−1−→ al , where ri ∈ R represents the node type and ai ∈ A
represents the edge type. Obviously, a meta-path is a complex relationship; for example,
an instance m of M consists of a node sequence (v1, v2, . . . , vl), which describes the semantic
information contained from v1 to vl . In our method, we define meta-paths with specific
information and structures in heterogeneous networks to capture node embeddings. Taking
academic networks as an example, we pick five well-established meta-paths to capture the
network information. For example, for two authors collaborating on a paper, we adopt
the author–paper–author meta-path, whereas two authors publishing papers at the same
conference is represented by the meta-path author–paper–conference–paper–author. We
define candidate meta-paths S(t) for temporal edge et

ij ∈ E . This refers to a meta-path set
that contains all temporal edges generated before time t that involve source node vi and all
temporal edges in the meta-path instance m. The embedding of a node is determined by
the candidate meta-path and the properties of the node itself.

Final representation vectors of
dynamic heterogeneous network 

Author Paper Conference
APCPA

APA

……

Predefined Metapath  Modeling the evolution process

Extracted Meta-path Instances

……

Random Walk

history present

The influence of meta-paths decays with time

Structural-level    Attention Mechanism

Candidate Meta-path Set

Semantic-level    Attention Mechanism

Node dynamics

Full-graph dynamics

Initialize node embedding

Node Embedding

Graph Embedding

Probability of establishing 
a connection between nodes

Loss

Update 
parameters

Figure 1. The overall framework of the DHGEEP.

However, not all meta-paths in the entire time period have the same impact on the
node embedding representation at the current moment. Obviously, a shorter time period
means that an event has a greater impact on the node embedding, so we consider the
Hawkes process to model the impact of historical events on the current node representation
vector. Typically, the earlier an event occurs, the less of an impact it has on the present
time. We apply the Hawkes process to each node, with ηs, ηm, and ηe denoting the effect
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of candidate meta-path sets, meta-path instances, and timing edges. Note that for tm < t,
the impact of a candidate meta-path set is given by

ηs(t) = ∑
tm<t

ηm(t) (2)

Specifically, in a dynamic heterogeneous network, every meta-path contains its own
semantics, and for different downstream tasks, different meta-paths have slightly different
roles. Thus, we use an attention mechanism to capture differences in the semantics contained
in the meta-path. Formally, the weights of different types of meta-paths are defined as

ωb =
eωb

∑c eωc
(3)

where the meta-paths pre-defined by prior knowledge are represented by c and ωb repre-
sents the weight of meta-path b. Thus, Equation (1) becomes

ηs(t) = ∑
tm<t

ωM × ηm(t) (4)

where ωM represents the weight of M. Similarly to Equation (1), the effect of a meta-path
instance ηm(t) is the synthesis of the effect of all temporal edges et

ij that make up meta-path
instance m. Therefore, we write

ηm(t) = ∑
et

ij∈m

ηet
i,j
(t) (5)

Specifically, et
ij indicates that nodes vi and vj generate a connection at time ti,j, so edge et

ij
can be represented by the current nodes at both ends, i.e., vi and vj. Similarly to Equation (2),
the different numbers of hops to the target edge mean that each edge has a different effect.
Therefore, we use another attention mechanism for structurally differentiated influences,
and calculate the edge weights as

θhoq =
eθhoq

∑z′ eθh
(6)

where hoq represents the number of hops from edge eoq to the source node, and the weight
of hop hoq is θhoq . We use z to represent the number of candidate edges, and z′ increases
with z. That is, the effect of a meta-path instance can be redefined as

ηm(t) = θhij
× ∑

eij∈m
ηei,j(t) (7)

We must also consider the influence of the Hawkes process, that is, the attenuation ef-
fect of historical events. Therefore, the influence of the final timing edge can be expressed as

ηeij(t) = ηi,j × ∑
ti,j<t

κ
(
t− ti,j

)
(8)

where κ
(
t− ti,j

)
represents the time decay effect; generally, an exponential function is

used, and here we use e−δi(t−ti,j), where δ is a trainable node-related parameter used to
adjust the scale of the temporal decay effect. The impacts of previous events decrease
with time, so the influences of events over a certain age on the present can be ignored.
To reduce the computational complexity, we select the n meta-path instances generated at
time t. However, the level of influence ηm(t) at which these meta-path instances can be
omitted is difficult to determine, so we use n as a hyperparameter for learning. Similarly,
for each meta-path instance m, we only need to select some candidate edges closest to the
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selected node for training. Considering that the impact of the edges ηeij(t) is also difficult
to estimate, the number of candidate edges z is used as a hyperparameter.

Through the above methods, we model the edges in dynamic heterogeneous networks
and obtain multi-type node embeddings including semantic information, structural in-
formation, and temporal dynamic information. The ability to generate temporal edges
between any pair of nodes vx and vy at t is then calculated as the following conditional
strength function:

λ̃x,y(t) = ηx,y + ηs(t) = ηx,y + ∑
tm<t

(ωM × ∑
eij∈m

θhi j × ηei j(t)) (9)

where λ̃x,y(t) is the conditional strength function representing the possibility of a connection
between nodes vx and vy at time t. We transform this to λx,y(t) = exp(λ̃x,y(t)), so that
λx,y(t) takes values from 0 to 1.

4.1. Modeling the Dynamics of Nodes

In the study of dynamic networks, the events represented by each temporal edge show
strong individual characteristics, but do not occur in isolation and often have correlations
that are reflected in multiple events. Regarding the connections of common nodes at both
ends, different nodes exhibit different trends, and individual nodes may also produce
different trends in different periods. In real networks, the events related to the network are
the edges generated by the nodes. For example, in a social network, user1 and user2 have
different degrees of activity at time t0; specifically, user1 has a narrower social profile, and
user2 is more socially adept. At some later time t1, user2 becomes more active (possibly
because he has more followers). Thus, each node’s event set matches its own arrival rate,
which is a time-varying property of the node itself, which we call the node dynamics.
Unlike event dynamics for the individual characteristics of an event, the node dynamics are
used to model the event’s collective characteristics at a node at different periods. In other
words, the node dynamics provide a mechanism for the generation of defined collective
events. Specifically, the node dynamics of a node at time t can be calculated by the number
of new events occurring at that node at t, denoted as ∆Ni(t). We introduce the following
estimator with fully connected layers for the node dynamics:

∆N̂i(t) = FCLn(ht
i ; θn) (10)

where the input is the time representation ht
i and the output ∆N̂i(t) is the new event that

occurs at node i at time t. The number of predictions θn contains the parameters of FCLn.

4.2. Modeling the Dynamics of the Entire Graph

In this section, we describe how to model the dynamics of the whole graph. The dy-
namics of the whole graph reflect the overall scale of the network changes with time from a
macro perspective. Here, the scale refers to the number of active nodes or active edges in
the network, which usually exhibits an obvious change distribution, such as an S-shaped
sigmoid curve or power-law form. This phenomenon describes the periodicity that is
common in real-world networks: from increasing to decreasing, or from small to huge.
The changes in network scale at each time follow a certain trend, and the change law
provided by this trend describes overall evolution information and structural information.
Modeling the whole graph’s dynamics allows us to improve the representation ability of
dynamic heterogeneous networks.

The dynamics of the whole graph represent the evolutionary process at the network
scale. The appearance (or disappearance) of nodes will inevitably result in the generation
(or deletion) of edges. Here, we focus on the changes in scale of the edges. Let G = (V , E , T )
be a dynamic network, and let the full-graph dynamics be expressed as A = {e(t)}|T |t=t1

,
where e(t) represents the number of edges generated by all nodes up to time t. We use n(t)
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to represent the number of nodes at time t. Each node i connects to some other node j at
time t with a connection rate of r(t).

In addition, we assume that the average number of reachable neighbors of node i can
be expressed as ι(t). Therefore, we define the dynamics of the whole graph as

∆e′(t) = n(t)r(t)ι(t) (11)

where n(t) is the number of nodes added to the network at time t, the value of which can
be obtained. Here, we make an assumption about the expression of ι(t). Considering the
dense power law in network evolution, the average number of reachable neighbors of node
i can be obtained as ι(t) = ζ(n(t)− 1)γ, where ζ represents the linear sparse coefficient
and γ represents the power-law coefficient exponent. Thus, at the next moment, each node
attempts to connect with another ζ(n(t)− 1)γ nodes at a connection rate of r(t), where ζ
and γ are hyperparameters to be learned.

We also modeled the connection rate r(T), which is related to the timing information
and structural information of the network. As the initial edges disappear with the evolution
of the network, the connection rate should be a decreasing function of time. The structural
changes of the network also affect the connection rate and play a significant role in the
dynamics of the whole graph. The connection rate can be written as

r(t) =
1
|E | ∑(i,j,t)∈E σ

(
−
∥∥ui − uj

∥∥2
2

)
tθ

(12)

where θ represents the temporal index and σ(x) is a sigmoid function. The numerator
models the maximum connection rate of the network, which decays over time.

4.3. Design of the Loss Function

In this section, we design a novel comprehensive loss function to update the parameters
of the model. At time t, the probability that nodes vx and vy produce a connecting edge is

p
(
vx, vy | S(t)

)
=

λx,y(t)
∑y′ λx,y′(t)

(13)

where S(t) represents the set of candidate meta-paths before time t and y′ = V \ {vx}. Due
to the exp(·) transfer function introduced in the Equation (9), p

(
vx, vy | S(t)

)
is actually

a softmax unit applied to λ̃x,y(t), which can be optimized approximately via negative
sampling [59]. Obviously, to calculate the above formula, we need to the node information
throughout the network, so we apply the negative sampling technique to reduce the
computational cost [55]. We collect K negative samples according to Pn(v), which is
positively related to d3/4

v , where dv represents the degree of node v. The probability of
establishing a connection between all node pairs can be written as

log L = ∑
(vx ,vx)∈E

log p(vx, vy | S(t)) (14)

We define the semantic loss Ls as

Ls = − log σ
(

λ̃x,y(t)
)
−

K

∑
k=1

Evk∼Pn(v)

[
log σ

(
−λ̃x,k(t)

)]
(15)

where the sigmoid function σ(x) = 1
1+e−x . The generation of events should be consistent

with the evolution of the node dynamics, so the loss of node dynamics must be defined in
such a way that ∆Ni(t) accurately estimates the probability of node occurrence at the current
moment, ∆N̂i(t). In real scenarios, nodes with great quantities of new links may suddenly
appear at some time. For example, many users may buy a new product immediately after it
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is launched. To prevent our model from focusing on these nodes, we employ the following
combination of smoothed L1 and L2 losses [60]:

Ln(i, t) =

{
0.5(∆N̂i(t)− ∆Ni(t))2, |∆N̂i(t)− ∆Ni(t)| < 1
|∆N̂i(t)− ∆Ni(t)| − 0.5. otherwise

(16)

When the input is large, the loss function is less sensitive to outliers, and when the
input is small, the oscillation of the loss function is relatively small.

We also need to consider the constraints of the full-graph dynamics. In a dynamic het-
erogeneous network, the alignment of the amount of edges is expressed as A = {e(t)}|T |t=t1

,
and the change in the number of sides is expressed as {∆e(t1), ∆e(t2), ∆e(t3), · · · }, where
∆e(ti) = e(ti+1)− e(ti). These parameters are learned by minimizing the following expres-
sion:

Lma = ∑
t∈T

(
∆e(t)− ∆e′(t)

)2 (17)

Finally, we obtain the total loss function L in the form

L = Ls + εLn(i, t) + τLma (18)

where ε and τ are predefined scaling factors. In our algorithm, the graph representation
vector is initialized at the beginning. In the training, the graph representation vector and
model parameters are updated using the Adam method to minimize the loss function.
DHGEEP implements the propagation of deep information over shallow models, so there
is no explicit formula to calculate the representation vector of the dynamic heterogeneous
network, but the representation vector is learned together with the model to finally obtain
a satisfactory graph representation. The algorithmic details of DEGEEP are shown in
Algorithm 1 below.

Algorithm 1 DEGEEP: Algorithm for dynamic heterogeneous network embedding.

1: Input: dynamic heterogeneous network G = (V , E , T , φ, ϕ); the meta-path set M,
epoch.

2: Output: Optimized model parameters θ; the node represents the vector u.
3: Initialize the node representation vectors u.
4: Initialize the parameters to be learned θ.
5: Initialize the Iterations = 0.
6: While Iterations ≤ epoch do:
7: By using random walk, all sequential meta-path instances before time t are extracted
8: from G according to the defined set of meta-path M.
9: f or each node in V do:

10: Extract the most recently generated s edges on the node
11: f or each edge do:
12: The candidate meta-paths S(t) are obtained according to the sampling strategy
13: f or each metapath instance m of S(t) do:
14: f or each edge of m do:
15: Using Hawkes process, as Equation (8) to calculate the influence of each

edge
16: end f or
17: Using attention mechanism to calculate the influence of the meta-path
18: instance m as Equations (5)–(7)
19: end f or
20: Using attention mechanism to get the influence of the meta-path instance m
21: Calculate the influence of candidate meta-path set S(t) according to

Equations (2)–(4)
22: end f or
23: end f or
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Algorithm 1 Cont.

24: The intensity of temporal edges between nodes is calculated as Equation (9)
25: the semantic loss Ls is calculated as Equations (13)–(15)
26: % Macro and micro constraints
27: f or node in V do:
28: The dynamic estimator of the node is calculated as Equation (10)
29: end f or
30: Calculate the loss at the node level as Equation (16)
31: f or every time in G do:
32: Calculating the dynamic estimator of the whole graph as Equations (11) and (12)
33: end For
34: Calculate the loss on the change trend of the whole map as Equation (17)
35: Calculate the loss value as Equation (18)
36: Based on Adam to minimize losses, the parameters is optimized and the node

represents u is updated
37: Iterations = Iterations + 1
38: End While

5. Experiments
5.1. Datasets

We investigated three datasets: AMiner, DBLP, and Yelp. The three datasets are
described below:

• AMiner: This dataset contains data on papers published in top-level journals and
presented at conferences in the computer science field. The data are provided by the
scientific and technological information and mining platform of Tsinghua University
and include author, paper, and venue nodes from research fields such as data min-
ing, medical information, theory, visualization, and databases. There are two types
of temporal heterogeneous events, cooperative relationships (A-A) and submission
relationships (A-V). The temporal link prediction task aims to predict temporal events
in the latest period of time.

• DBLP: This dataset contains data relating to top-level conference papers in the com-
puter field, including author, paper, conference, and other nodes. Events include
cooperation (A-A) and participation (A-V) and subsequent events involving databases,
data mining, information retrieval, artificial intelligence, and others. The tasks are the
same as for AMiner.

• Yelp: This dataset consists of comments between users and merchants published by
the Yelp comment platform. The network consists of user, business, and star nodes;
and there are three types of sequential events. The link prediction task involves
predicting the temporal events in the latest period of time.

Details of the datasets are presented in Table 1.

Table 1. Datasets.

Datasets Aminer DBLP Yelp

Node Types Author(A)Paper(P)Conference(C) Author(A)Paper(P)Conference(C) Star(S)User(U)Business(B)
Nodes 10,206 10,457 2584 22,662 22,670 2938 5 24,586 800

Meta-path APA APPA APCPA APA APPA APCPA USU BSB BUB BSUSB UBSBU
Time Steps 10 15 15

5.2. Offline Training

All experiments were performed on a dual-core computer with 128 GB RAM and
an 11 GB NVIDIA GeForce RTX 2080ti GPU, with an Intel(R) Xeon(R) Platinum 8260 L
CPU @ 2.40 GHz and CUDA version 11.0. The model was written in Pytorch 1.7.0. The
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following describes the parameter settings in the experiment. The Adam optimizer’s
learning rate was set to 0.001, the batch size was set to 1000, the epoch number was set to
100, the embedded dimensions numbered 100, the number of walks of each node was set
to 15, the walk length was 30, the number of candidate meta-path instances was n = 25,
the number of candidate edges was 6 (z = 6), and the number of negative samples was 6.
The baseline algorithms were introduced in the related work, and in the experiment, we
changed the form of dynamic heterogeneous graph data to adapt to the application scope
of the baseline algorithms. The results for the baseline methods were obtained from [51].

5.3. Results and Analysis

First, we applied DHGEEP for training and output of the current graph representation
vector afterward, and then embedded the resulting graph into the downstream task. We
verified the advantages of the proposed method through three experiments, one based on a
static task and two based on dynamic tasks. The static task involved link prediction, which
tests the capability of the graph-embedding method to capture structural information.
The two dynamic tasks were homogeneous-temporal-event prediction and heterogeneous-
temporal-event prediction, which examine the ability of graph-embedding methods to
capture network dynamics.

1. In the link prediction task, according to Equation (1), the embedding vector of the edge
is represented by the embedding vector of the two nodes, namely, ex,y =

∥∥ux − uy
∥∥.

In this task, a link prediction task can be regarded as a classification task. The test
data consist of positive and negative links. Positive links are the actual links present
in the future subgraph or test graph. Additionally, a test graph is split chronologi-
cally from the training graph to evaluate the model’s performance. Therefore, edges
in this test graph or subgraph are considered positive examples. From the sample
test graph, an equal number of non–edge node pairs are sampled as negative links.
Based on these settings, we used a logistic regression classifier for the link prediction
task with input ex,y. In the logical regression classifier, we established a regression
formula for the classification boundary according to the sampling results. A common
gradient boosting method was used in the process of fitting parameters. After train-
ing, we found the best regression coefficient for classification. For the Yelp dataset,
the link prediction task is to predict the co-user relationships regarding goods, that
is, whether two users have purchased and used the same goods. As for the two aca-
demic networks, AMiner and DBLP, the prediction task is to predict the relationship
between authors, that is, the co-author relationship. The datasets do not contain the
co-author edges; that is, there are no edges between authors. During training, 25%
of author–paper (AP) edges were randomly deleted, because the meta-path author–
paper–author (APA) implies co-author information, and there may be problems with
information leakage. For Yelp, the connections between users were determined by
whether they were friends in the original dataset. Similarly, we removed 25% of
user–business (UB) edges and then trained a logistic regression classifier to predict
the connections between users. In each dataset, we randomly selected 25,000 edges as
positive edges and 25,000 as negative edges. In this task, we selected three common
indicators of static network link prediction, AUC, f1, and acc. The link prediction
results are listed in Table 2.
In Table 2, we can see that the methods using time information (DySAT, HTNE, MTNE,
DHNE, DyHNE, HDGNN, THINE, and DHGEEP) are obviously better than the static-
graph methods (Deepwalk, LINE, Metapath2vec, StHNE, and MAGNN), which
further illustrates the importance of time information. As for network heterogeneity,
the method considering network heterogeneity is not better than the method based
on a homogeneous network, which shows that the influence of network heterogeneity
is not as great as that of network dynamics in this task.
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Table 2. Comparison of different algorithms in the link prediction task.

Datasets Aminer DBLP Yelp
Metrics AUC f1 acc AUC f1 acc AUC f1 acc

Deepwalk 77.07% 71.19% 71.09% 85.59% 81.28% 81.28% 50.32% 63.28% 52.78%
LINE 68.49% 64.79% 63.54% 75.11% 71.24% 70.09% 58.30% 57.56% 55.57%

DySAT 80.25% 67.91% 66.14% 82.16% 75.61% 75.03% 53.67% 54.27% 52.88%
HTNE 76.53% 73.18% 72.55% 90.77% 83.16% 82.87% 65.27% 64.77% 60.65%
MTNE 82.78% 75.23% 74.72% 94.06% 86.74% 86.61% 67.75% 65.34% 61.69%

Metapath2vec 70.20% 65.43% 64.83% 79.17% 74.02% 73.17% 51.18% 46.99% 51.03%
StHNE 79.19% 73.66% 69.61% 81.58% 76.02% 72.47% 73.60% 70.30% 63.50%
DHNE 63.86% 76.89% 64.97% 75.46% 70.82% 69.27% 50.41% 50.52% 50.53%

DyHNE 72.06% 74.25% 74.25% 82.77% 76.54% 72.97% 75.58% 71.33% 66.67%
MAGNN 66.34% 63.90% 62.83% 67.80% 70.02% 63.62% 73.29% 69.19% 60.88%
HDGNN 89.80% 82.33% 82.09% 92.03% 84.37% 84.17% 76.87% 71.86% 71.04%

MTNE 91.16% 88.08% 88.25% 94.65% 90.66% 90.71% 79.33% 72.36% 72.51%
DHGEEP 91.57% 88.85% 88.98% 94.72% 91.67% 91.71% 79.99% 72.41% 72.93%

2. In the task of predicting temporal events of homogeneous nodes, we predicted the
connections generated by the nodes of the same type. Taking the academic networks
as an example, we predicted the future cooperative relationship between authors, that
is, the co-author relationship. For the relationships contained in some specific meta-
paths, such as APA, we selected the first 80% of all instances in the dataset, recorded
these as time t, and used the events before this as the training set. The remaining data
were used as the test set. In the experiment, the node embeddings obtained by various
methods were used as input, and the negative square Euclidean distance was used to
estimate the probability of generating edges between nodes to predict the connecting
edge with the highest probability of generating nodes after t. We only conducted this
experiment on the two academic datasets. Finally, we evaluated the performances
of the various algorithms. In this task, predicting temporal events of homogeneous
nodes is seen as a ranking problem. For every test node, its most probable future
neighbors are ranked and compared with actual future neighbors. With our settings,
the top K possible edges are ranked in a test graph and compared with the ground
truth edges. Finally, the metrics chosen for this ranking problem were precision@K
and recall@K. For the task of predicting temporal events of homogeneous nodes,
we set K = 5 or K = 10. The experimental results are presented in Table 3. Some
of the baseline methods are only suitable for homogeneous networks and therefore
cannot accurately represent the characteristics of dynamic heterogeneous networks.
In addition, for the Yelp dataset, the differences are too large among the numbers of
nodes of the three types. For example, there are 24,586 user nodes and only 5 star
nodes. Thus, there are too few predictable results for predicting temporal events, so
this dataset was not used in the experiment.
It can be seen from the experimental results in Table 3 that our DHGEEP method is
effective at predicting temporal events at homogeneous nodes. Additionally, we can
see that the methods considering time information (DySAT, HTNE, MTNE, DHNE,
DyHNE, HDGNN, THINE and DHGEEP) are better than those with static graphs
(Deepwalk, LINE, Metapath2vec, StHNE, and MAGNN). On average, this advantage
is not as obvious as that in the last task. In addition, we can see that the deep methods
(MAGNN, HDGNN, THINE, and DHGEEP) are generally superior to the shallow
methods (Deepwalk, LINE, DySAT, HTNE, MTNE, Metapath2vec, StHNE, DHNE,
and DyHNE). This means that the deep models can obtain more comprehensive
information than the shallow models.
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Table 3. Comparison of different algorithms in homogeneous-temporal-event prediction.

Datasets Aminer DBLP
Metrics Precision Recall Precision Recall

Top @5 @10 @5 @10 @5 @10 @5 @10

Deepwalk 9.81% 8.03% 2.29% 4.50% 9.80% 7.98% 2.19% 4.25%
LINE 7.51% 6.11% 2.24% 3.66% 5.23% 4.12% 1.47% 2.31%

DySAT 3.35% 2.74% 0.96% 1.59% 1.80% 1.13% 0.48% 0.62%
HTNE 9.98% 8.20% 3.01% 4.94% 7.75% 6.46% 2.25% 3.68%
MTNE 10.45% 8.38% 3.15% 5.06% 7.96% 6.39% 2.30% 3.65%

Metapath2vec 2.21% 2.46% 0.67% 1.49% 2.33% 2.07% 0.69% 1.23%
StHNE 4.60% 3.40% 1.40% 2.03% 3.67% 2.91% 1.01% 1.60%
DHNE 3.32% 2.24% 1.02% 1.34% 6.34% 4.87% 1.96% 2.91%

DyHNE 6.04% 4.04% 1.74% 2.40% 3.89% 3.09% 1.12% 1.75%
MAGNN 2.65% 2.18% 0.81% 1.33% 1.62% 1.26% 0.45% 0.69%
HDGNN 12.04% 10.85% 3.82% 6.45% 9.13% 8.79% 2.03% 4.78%
THINE 14.05% 12.07% 4.31% 7.25% 11.67% 9.47% 3.48% 5.51%

DHGEEP 14.59% 13.65% 4.81% 7.68% 11.94% 9.98% 3.67% 5.85%

3. In order to prove that DHGEEP can well handle the heterogeneity of the network, we
applied DHGEEP to the temporal event prediction of heterogeneous nodes in addition
to the temporal event prediction of homogeneous nodes. This task was essentially the
same as Task 2, except that the objects for predicting temporal events were different.
As in the above task, the metrics chosen in this ranking problem were precision@K
and recall@K. In the task of predicting temporal events of heterogeneous nodes, we set
K = 2 or K = 4. Specifically, we predicted the connections generated by different types
of nodes. Taking the academic networks as an example, we predicted an author’s
future participation in a conference, that is, the A–C relationship. The training process
and testing methods were the same as those in Experiment 2. We only conducted this
experiment using the two academic datasets. The experimental results are presented
in Table 4. Our method achieved the highest precision and recall, which shows that
DHGEEP can well handle the heterogeneity of the dynamic network. The pattern
shown in Table 4 for the AMiner dataset is less obvious than that for the DBLP dataset.
We could still find a pattern similar to that shown in the above tasks. The methods
considering time information (DySAT, HTNE, MTNE, DHNE, HDGNN, THINE
and DHGEEP) are better than the methods using static graphs (Deepwalk, LINE,
Metapath2vec, and MAGNN). In addition, the deep methods (MAGNN, HDGNN,
THINE and DHGEEP) are generally superior to the shallow methods (Deepwalk,
LINE, DySAT, HTNE, MTNE, Metapath2vec, and DHNE). This means that the deep
models can obtain more comprehensive information than the shallow models.

Table 4. Comparison of different algorithms in heterogeneous temporal event prediction.

Datasets Aminer DBLP
Metrics Precision Recall Precision Recall

Top @2 @4 @2 @4 @2 @4 @2 @4

Deepwalk 10.33% 10.21% 2.28% 6.75% 1.76% 2.55% 0.54% 1.65%
LINE 6.28% 3.60% 1.97% 2.21% 1.65% 1.02% 0.46% 0.63%

DySAT 10.46% 7.56% 3.84% 5.649% 3.90% 3.39% 0.96% 2.09%
HTNE 8.60% 6.51% 2.98% 4.61% 1.95% 1.29% 0.55% 0.72%
MTNE 10.46% 6.98% 3.24% 4.73% 2.20% 1.76% 0.64% 1.03%

Metapath2vec 17.44% 13.83% 5.96% 9.76% 2.72% 2.57% 0.83% 1.68%
DHNE 9.43% 7.23% 4.12% 5.11% 3.40% 3.23% 0.84% 1.84%

MAGNN 8.47% 6.35% 3.14% 4.23% 3.18% 2.97% 0.79% 1.51%
HDGNN 18.30% 14.37% 6.68% 10.94% 4.23% 3.87% 1.26% 2.41%

MTNE 22.79% 18.62% 8.31% 12.91% 4.55% 4.08% 1.53% 2.70%
DHGEEP 30.23% 24.07% 10.48% 16.29% 4.56% 4.34% 1.61% 2.82%
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In this section, we introduced the results and analysis of the experiment. The experi-
mental results showed that DHGEEP can perform well on three tasks with three datasets,
which proves that DHGEEP can effectively capture the information of dynamic heteroge-
neous networks. In addition, we also found that the graph-embedding methods considering
the dynamics are often better than the methods using static graphs, and the deep models are
often better than the shallow models. Unfortunately, our comparison with other methods
did not involve statistical tests but only compared the results. Therefore, we will try to
carry out this part of the work in the future.

6. Conclusions

In this paper, we considered the influence of graph heterogeneity on dynamic graph
evolution and proposed a temporal event prediction method of dynamic heterogeneous
networks, DHGEEP (a dynamic heterogeneous graph embedding method for evolutionary
prediction). Firstly, DHGEEP assumes that the generation of each temporal edge is caused
by historical events, so it uses the Hawkes process to simulate the influences of historical
temporal events on the present. Then, the temporal meta-paths and two-level attention
mechanism are used to capture different structural information and semantic informa-
tion. Finally, by integrating graph dynamics and node dynamics in the graph embedding
framework, the macro evolution of dynamic network and the changes in node connectivity
capability over time are simulated, which influences the generation of future temporal
event prediction from the trend of network scale evolution at the graph level and the trend
of timing events at the node level. Experiments were carried out on three downstream
tasks of static link prediction, homogeneous-temporal-event prediction, and heterogeneous-
temporal-event prediction on three datasets. The experimental results show that DHGEEP
achieved good performance in the three tasks. In the static link prediction task, the value
of AUC reached 91.57% on the AMiner dataset, 94.72% on the DBLP dataset, and 79.99%
on the Yelp dataset. In the homogeneous-temporal-event prediction task, the values of
precision@5 and recall@5 reached 14.59% and 4.81% on AMiner, and 11.94% and 3.67% on
DBLP. In the heterogeneous homogeneous-temporal-event prediction task, the values of
precision@2 and recall@2 reached 30.23% and 10.48% on the AMiner dataset, and reached
4.56% and 1.61% on the DBLP dataset.

Although our method achieved good results in these experiments, some issues remain.
Firstly, our method is essentially transductive, as it relies on predefined meta-paths to
obtain node embedding. However, in some scenarios, the prior knowledge may not be
available. Therefore, in future work, we expect to develop a scalable inductive method
which will not use the temporal meta-paths but other technologies, such as a graph neural
network, to ensure that it can be used in scenarios without prior knowledge and allows
transfer of knowledge to unseen graphs. Secondly, DHGEEP can only predict whether
the timing edge will exist in the future, and cannot predict when the timing edge will
occur. Recently, Rakshit et al. introduced the novel task of predicting the time of the link in
consideration [28], which has great potential for applications in recommendation systems.
Therefore, in future work, we expect to obtain a dynamic heterogeneous graph-embedding
framework that will jointly learn whether and when future links will be generated, that
is, the joint distribution of temporal and structural properties, to automatically predict
the existence of future temporal events and the occurrence time of temporal events. Us-
ing such a method to understand which items a user will buy at a particular time will
lead to better recommendations and higher efficiency. Thirdly, the edges in the network
often exhibit complex connections. Recently, it has been found that designing high-order
patterns of multiple node interactions is important for determining the evolution laws
of dynamic networks [36]. Therefore, in future work, we will consider the high-order
interaction patterns in the network to predict the full-spectrum high-order patterns in dy-
namic heterogeneous hypergraphs. Fourthly, the continuous-time dynamic heterogeneous
networks we studied are defined based on the dynamics and heterogeneity of nodes and
edges, which are different from the discrete-time dynamic networks in terms of model and
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data structure. However, what is interesting is that if we study dynamic heterogeneous
networks from the perspective of dynamic evolution rather than from the perspective
of nodes and edges in the network, the concepts of continuity and discreteness are not
completely separated. For example, in a hybrid multi-agent system, continuous-time
and discrete-time agents concurrently exist and communicate through local interaction.
Based on this, Shang et al. studied resilient group consensus in heterogeneously robust
networks with hybrid dynamics, which broke through the barrier between continuous-time
dynamic heterogeneous networks and discrete-time dynamic heterogeneous networks [61].
Therefore, in future work, we plan to study the representation of dynamic heterogeneous
networks with hybrid dynamics.
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