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Abstract: This work is aimed at numerical studies of inverse problems of experiment processing
(identification of unknown parameters of mathematical models from experimental data) based
on the balanced identification technology. Such problems are inverse in their nature and often
turn out to be ill-posed. To solve them, various regularization methods are used, which differ
in regularizing additions and methods for choosing the values of the regularization parameters.
Balanced identification technology uses the cross-validation root-mean-square error to select the
values of the regularization parameters. Its minimization leads to an optimally balanced solution,
and the obtained value is used as a quantitative criterion for the correspondence of the model and
the regularization method to the data. The approach is illustrated by the problem of identifying the
heat-conduction coefficient on temperature. A mixed one-dimensional nonlinear heat conduction
problem was chosen as a model. The one-dimensional problem was chosen based on the convenience
of the graphical presentation of the results. The experimental data are synthetic data obtained on the
basis of a known exact solution with added random errors. In total, nine problems (some original)
were considered, differing in data sets and criteria for choosing solutions. This is the first time such a
comprehensive study with error analysis has been carried out. Various estimates of the modeling
errors are given and show a good agreement with the characteristics of the synthetic data errors. The
effectiveness of the technology is confirmed by comparing numerical solutions with exact ones.

Keywords: modeling; regularization; inverse problems; balanced identification; error analysis; one-
dimensional heat equation

MSC: 93B30

1. Introduction

The experiment preparation and processing of the results involve an extensive use
of mathematical models of the objects under study. To save costs, they must be carefully
planned: one should determine what, when, where and with what accuracy is to be
measured to estimate the sought parameters with the given accuracy. These questions can
be answered by “rehearsing” the experiment and its processing on a mathematical model
simulating the behavior of the object.

Usually, the purpose of an experiment is to evaluate some of the object’s parameters.
In the case of an indirect experiment, some parameters are measured, while others are
to be evaluated. The relationship between the parameters can be described by complex
mathematical models. The formalization of this approach leads to identification problems
that are by their nature inverse. Those problems often turn out to be ill-posed, and specific
approaches using regularization methods are required for the solution [1]. One of the
problems with regularization methods is the choice of regularization weights (penalties):
weights that are too large lead to unreasonable simplification (and distortion) of the model,

Mathematics 2022, 10, 4221. https://doi.org/10.3390/math10224221 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10224221
https://doi.org/10.3390/math10224221
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-0107-2519
https://doi.org/10.3390/math10224221
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10224221?type=check_update&version=2


Mathematics 2022, 10, 4221 2 of 16

and those that are too small lead to overtraining, an excessive fitting of the model’s trajectory
to experimental data. In the balanced identification method [2], the choice of regularization
weights is carried out by minimizing the cross-validation error. This makes it possible
to find a balanced solution that implements the optimal (in the sense of minimizing the
cross-validation error) compromise between the proximity of the model to the data and the
simplicity of the model [3], formalized in a regularizing additive.

Usually, for each specific identification problem (see examples of modeling pollu-
tants moving in the river corridor [4], parameter identification in nonlinear mechanical
systems [5], identification of conductivity coefficient in heat equation [6–8]), a separate spe-
cial study is carried out, including goal setting, mathematical formalization of the problem,
its study, creating a numerical model, preparing a computer program, solving a numerical
problem and studying the results, including error estimation, etc.

However, such problems have much in common: the mathematical model description,
assignment of operators linking measurements with model variables, formalization of
the solution selection criterion, program preparation, error estimation, etc. Additionally,
the abundance of similar tasks invariably necessitates a technology that summarizes the
accumulated experience.

Balanced Identification Technology or SvF (Simplicity versus Fitting) technology is a
step in this direction.

Here is the general “human–computer” scheme of the SvF technology, which imple-
ments the balanced identification method (a more detailed description of the technical
issues of the technology implementation and the corresponding flowchart can be found
in [2]). At the user level, an expert (with knowledge about the object under study) prepares
data files and a task file. The data files contain tables with experimental data (as plain
text or in MS Excel or MS Access formats). The task file usually contains the data file
names, a mathematical description of the object (formalization of the model in a notation
close to mathematical, see Appendix A), including a list of unknown parameters, as well
as specifications of the cross-validation procedure (CV). These files are transferred to the
client program, which replaces the variational problems with discrete ones, creates various
sets (training and testing) for the CV procedure, formulates a number of NLP (nonlinear
mathematical programming) problems and writes (formalizes) them in the Pyomo package
language [9]. The constructed data structures are transferred to a two-level optimization
routine that implements an iterative numerical search for unknown model parameters and
regularization coefficients to minimize the error of cross-validation. This subroutine can use
the parallel solution of mathematical programming problems in a distributed environment
of Everest optimization services [10], namely SSOP applications [11]. The Pyomo package
converts the NLP description into so-called NL files, which are processed at the server level
by special Ipopt solvers [12]. The solutions are then collected and sent back to the client
level and subsequently analyzed (for example, complete iterative process conditions are
checked). If the iterative process is completed, the program prepares the results (calculates
errors, creates solution files, draws graphs of the functions found) and presents them to the
researcher (who may not know about the long chain of the tasks preceding the result).

The experts then utilize the results (especially the values of modeling errors–root-
mean-square errors of cross validation) for choosing a new (or modified) model or deciding
to cease calculations.

The software package together with examples (including some examples of this article)
is freely available online (file SvF-2021-11.zip in the Git repository https://github.com/
distcomp/SvF, accessed on 1 September 2022).

SvF technology has been successfully applied in various scientific fields (mechanics,
plasma physics, biology, plant physiology, epidemiology, meteorology, atmospheric pol-
lution transfer, etc., and a more detailed enumeration can be found in [2]) as an inverse
problem solving method. In these studies, the main attention was paid to the construction
of object models using specific regularization methods. This article, in contrast, focuses on
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the study of the regularization methods themselves, and the problem of heat conduction is
chosen as a convenient example.

The problem of thermal conductivity is chosen to illustrate the technology. This is a
classic problem in mathematical physics. It is well studied, and the one-dimensionality
allows you to present the results in the form of graphs. Literature reviews can be found
in [7,8]. The main task is to find the dependence of the thermal conductivity coefficient
on temperature based on an array of experimental data. In total, nine problems were
considered, differing in data sets and criteria for choosing solutions. Some of them are
original. This is the first time such a comprehensive study with error analysis has been
carried out. Various estimates of the modeling errors are given and turn out to be in good
agreement with the characteristics of the synthetic data errors.

2. Mixed One-Dimensional Thermal Conductivity Problem

Let us denote M = 0 a set of mathematical statements defining the investigated model
of thermal conductivity:

M = 0 :



x ∈ [0, 2], t ∈ [0, 5]
∂T
∂t = ∂

∂x

(
K(T) ∂T

∂x

)
T(x, 0) = ϕ(x)

T(0, t) = l(t)

T(2, t) = r(t)

(1)

where x and t are the spatial and temporal coordinates, T(x,t) is the temperature, K(T) is the
(temperature-dependent) thermal conductivity coefficient, ϕ(t) is the initial condition, l(t)
and r(t) are the left and right boundary conditions.

In what follows, all functions in various (non-difference) statements are considered
twice continuously differentiable.

Remark. The formulas in (1) actually coincide with the records (descriptions of the
model) in the text of the task file (a set of instructions for obtaining a numerical solution)
given in Appendix A.

When conducting numerical experiments, the exact solution of the mathematical
model (1)

Ts(x, t) = 200(t+1)
(x+1)2+(t+1)2

Ks(T) = 100
T

ϕs(x) = 200
(x+1)2+1

ls(t) = 200(t+1)
1+(t+1)2

rs(t) = 200(t+1)
9+(t+1)2

(2)

is used for the generation of pseudo-experimental data sets (observations) and for compari-
son with the numerical solution (calculation of errors).

In the notation of the functions of the exact solution, ‘s’ is used (short for solution).
The functions of the exact solution are shown in Figure 1.



Mathematics 2022, 10, 4221 4 of 16Mathematics 2022, 10, x FOR PEER REVIEW 4 of 16 
 

 

   
(T) (T6) (K) 

  
(φ) (l&r) 

Figure 1. Functions of the exact solution: (T) contour lines of Ts(x,t); (T6) 6 time slices of Ts(x,t): 
Ts(x,0), Ts(x,1),..., Ts(x,5); (K) thermal conductivity K(T); (φ) initial condition φs(t); (l&r) left ls(x) 
and right rs(x) boundary conditions. 
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4 data sets were chosen as the most illustrative. 

 A basic data set was generated on a regular 11 × 11 grid (11 points in space 0, 0.2, 0.4 
…, 2 and 11 points in time 0, 0.5, 1, … 5) 
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where Ts(xi,ti) are the values of the exact solution, εi is the random error with variance 

𝜎𝜎𝑑𝑑 = ‖𝜀𝜀‖𝐷𝐷.  

To generate εi, a normal distribution random number generator (gauss (0.2)) with 
zero mean and variance equal to 2 (degrees) was used. As a result, the distribution εi was 
obtained with average md = −0.10 (degrees) and variance σd = 2.06 (degrees). These char-
acteristics of errors are not used in calculations but are taken into account when consid-
ering the results.  

By analogy, we introduce a data set of exact measurements: 

D_reg11x11(ε = 0)  

Figure 1. Functions of the exact solution: (T) contour lines of Ts(x,t); (T6) 6 time slices of Ts(x,t):
Ts(x,0), Ts(x,1), . . . , Ts(x,5); (K) thermal conductivity K(T); (ϕ) initial condition ϕs(t); (l&r) left ls(x)
and right rs(x) boundary conditions.

3. Data Sets

Formalizing the concept of a data set (observations or measurements set):

D : {xi, ti, Ti,}, i ∈ I, I = 0..imax,

where Ti is the temperature measurement at point xi at time ti.
For vectors of dimension |D|, introduce the notation

‖ai‖D = ||a ||D =

√
1
|D|∑i∈I

a2
i

Below, for numerical experiments, pseudo-experimental data are used, prepared on
the basis of the exact solution (2) using pseudo-random number generators. The prepared
4 data sets were chosen as the most illustrative.

A basic data set was generated on a regular 11 × 11 grid (11 points in space 0, 0.2, 0.4
. . . , 2 and 11 points in time 0, 0.5, 1, . . . 5)

D_reg11x11 : {xi = n ∗ 0.2, ti = j ∗ 0.5, Ti = Ts(xi, ti) + εi},

i = 11 ∗ j + n, n = 0..10, j = 0..10,

where Ts(xi,ti) are the values of the exact solution, εi is the random error with variance

σd = ||ε||D.

To generate εi, a normal distribution random number generator (gauss (0.2)) with
zero mean and variance equal to 2 (degrees) was used. As a result, the distribution εi
was obtained with average md = −0.10 (degrees) and variance σd = 2.06 (degrees). These
characteristics of errors are not used in calculations but are taken into account when
considering the results.
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By analogy, we introduce a data set of exact measurements:

D_reg11x11(ε = 0)

with zero errors εi = 0.

Let us define a data set containing 121 points randomly distributed on the x,t plane:

D_rnd121 : {xi = uni f orm(0, 2), ti = uni f orm(0, 5), Ti = Ts(xi, ti) + εi}, j = 0..121.

To do this, use uniform(a, b)—a generator of random numbers uniformly distributed
over the interval (a,b). The obtained characteristics of the normal distribution of temperature
measurements are: md = −0.19 (degrees) and σd = 2.14 (degrees).

Finally, let us define a data set containing 1000 points, distributed in a random way:

D_rnd1000 : {xi = uni f orm(0, 2), ti = uni f orm(0, 5), Ti = Ts(xi, ti) + εi}, j = 0..1000,

with the characteristics of the normal distribution of temperature measurements: md = −0.02
(degrees) and σd = 2.01 (degrees).

The location of the measurement points of the D_reg11x11, D_rnd121 and D_rnd1000
sets on the x, t plane can be seen in Figure 2.
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The data set files can be found in file SvF-2021-11.zip in the Git repository https:
//github.com/distcomp/SvF (accessed on 1 September 2022).

4. Method of Balanced Identification

The general problem is finding a function T(x,t) (and other functions of model (1))
that approximates the data set D and, possibly, satisfies additional conditions (for example,
the heat equation). To formalize it, we define an objective function (or selection criterion),
which is a weighted sum of two terms: one formalizing the concept of the proximity of
the model trajectory to the corresponding observations, the other formalizing the concept
of the complexity of the model, expressed in this case through the measure of curvature
included in the statement of functions.

Let us introduce a measure of the proximity of the trajectory of the model to measure-
ments (data set D) or the approximation error:

MSD(D, T) =
1
|D|∑i∈I

(Ti − T(xi, ti))
2 = ‖Ti − T(xi, ti)‖2

D,

where |D| is the number of elements of the set D,

https://github.com/distcomp/SvF
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and a measure of curvature (complexity) of functions of one variable

Curv( f (x), α) = α
∫ b

a

(
f ′′(x)

)2dx ,

where [a, b] is the domain of the function f(x), and two variables

Curv
(

f (x, y), αx, αy
)
=

xmax∫
xmin

ymax∫
ymin

(α2
x
(

f ′′xx
)2

+ 2αxαy
(

f ′′xy
)2

+ α2
y
(

f ′′yy
)2
)dxdy.

The objective function is a combination of the measures introduced above. Let us give,
as an example, the objective function

Obj(T, D, αx, αt) = MSD(D, T) + Curv(T(x, y), αx, αt).

The second term is the regularizing addition that makes the problem (of the search for
a continuous function) correct. The choice of its value determines the quality of the solution.
Figure 2 shows two unsuccessful options (A—weights that are too large, C—too small) and
one successful (B—optimal weights chosen to minimize the cross-validation error).

Hereinafter, the following designations are used:

rmsd = ‖ Ti – T(xi,ti) ‖D – the standard deviation of the solution from the measurements;
rmsd* – standard deviation of the balanced solution from measurements;
Err(x,t) = T(x,t) − Ts(x,t) – deviation of the solution from the exact solution;
∆ = ‖ Err(xi,ti) ‖D – the standard deviation of the SvF solution from the exact solution;
∆* – estimation of ∆;
σcv = ‖Ti − Ti

α(xi, ti)‖D – error (mean square error) of cross-validation,

where Ti
α(xi, ti) is the solution obtained by minimizing the objective functional for given α

on the set D without point (xi,ti). A more detailed (and more general) description of the
cross-validation procedure can be found in [2].

An optimally balanced SvF solution is obtained by minimizing the cross-validation
error by regularization coefficients (α):

σ∗cv = min
α
‖Ti − Ti

α(xi, ti)‖D

As a justification for using the minimization of σcv to choose a model (regularization
weights), we present the following reasoning (here (·i) stands for (xi,ti)):

σ2
cv =

1
|D|∑i∈I

(
Ti − Ti

α(·i)
)2

=
1
|D|∑i∈I

(
Ti − Ts(·i)−

(
Ti

α(·i)− Ts(·i)
))2

σ2
cv =

1
|D|∑i∈I

(εi)
2 − 2
|D|∑i∈I

εi·
(

Ti
α(·i)− Ts(·i)

)
+

1
|D|∑i∈I

(
Ti

α(·i)− Ts(·i)
)2

The second term represents the sum of the products of random variables εi by an
expression in parentheses, with the value of εi excluded from the calculation (point i
was removed from the data set). It is expected to tend to zero with an increase of the
observations’ number. Similarly, with an increase of the observations’ number (everywhere
dense in space (x,t)), the third term tends to ∆2, since Ti

α(·i)→ T(·i) . As a result, we obtain
the estimate

σ2
cv ≈ σ2

D + ∆2.
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Thus, cross-validation error minimizing leads (if a number of observations go to
infinity) to minimizing the deviation of the solution found from the (unknown) exact
solution. To assess such a deviation, introduce the designation:

∆∗ =
√

σ∗2cv − σ2
D. (3)

Remark. The payment for the problem regularization, as a rule, is the distortion of the
solution. Moreover, the greater the weight of the regularization, the greater the distortion.
In the case under consideration, the distortion consists in “straightening” the solution. The
extreme case of “straightening” is shown in Figure 2A.

5. Various Identification Problems and Their Numerical Solution

Nine different identification tasks are discussed below. They differ in choices of data
sets, minimization criteria (various regularizing additives) and additional conditions. For
example, in Problem 5.1 MSD(D_reg11x11) + Curv(T):M = 0, the minimization criterion
is used:

(T, K, ϕ, l, r) = Argmin
T,K,ϕ,l,r

{MSD(Dreg11x6, T) + Curv(T, αx, αt) : M = 0},

which means for the given regularization weights αx,αt and a given data set D_reg11x11, find a
set of functions (T, K, ϕ, l, r) that minimizes the functional MSD(D_reg11x11,T) + Curv(T,αx,αt),
and the sought functions must satisfy the equations of the model M = 0. This criterion is used
to minimize the error of cross-validation, which makes it possible to find the regularization
weights and the corresponding balanced SvF solution (T, K, ϕ, l, r).

To reduce the size of the formulas, a more compact notation for the selection criterion
is used:

MSD(D_reg11x11,T) + Curv(T,αx,αy)→ min:(M = 0).

The same notation will be used for the other problems.
The mathematical study of the variational problems is not the subject of the article.

Note that even the original inverse problems of this type can have a non-unique solution,
in particular, there are different heat conductivity coefficients leading to the same solution
T(x,t) [7,8]. Only Problem 5.0 (a spline approximation problem) is known to have a unique
solution under rather simple conditions [13].

To find approximate solutions, we will use numerical models, which are obtained from
analytical ones by replacing arbitrary mathematical functions with functions specified on
the grid or polynomials (only for K(T)), derivatives with their difference analogs, integrals
with the sums. Note that the grid used for the numerical model (41 points in x with a step
equal to 0.05 and 21 points in t with a step equal to 0.25) is not tied to the measurement
points in any way. For simplicity (and stability of calculations), an implicit four-point
scheme was chosen [14]. The choice of scheme requires a separate study and is not carried
out here. However, apparently, the optimization algorithm used for solving the problem as
a whole (residual minimization) makes it possible to avoid a number of problems associated
with the stability of calculations.

For the graphs of the exact solution, blue lines will be used, and for the SvF solution, red.
5.0. Problem MSD(D_reg11x11) + Curv(T)
Generally speaking, this simplest problem has nothing to do with the heat equation

(therefore, its number is 0). It consists of finding a compromise between the proximity of
the surface T(x,t) to observations and its complexity (expressed in terms of the curvature
T(x,t)) based on the minimization functional:

MSD(D_reg11x11,T) + Curv(T,αx,αy)→ min (4)
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The results of the numerical solution of the identification problem are shown in
Figure 3. The estimates obtained (resulting errors)

σ∗cv 2.38, rmsd ∗ = 1.44, ∆∗ = 1.19

are benchmarks for assessing the errors of further problems.
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5.1. Problem MSD(D_reg11x11) + Curv(T): M = 0
Now, the identification problem is related to the heat conduction equation. It consists

of minimizing the cross-validation error, provided that the solution sought satisfies the
thermal conductivity equation (M = 0), based on the criterion:

MSD(D_reg11x11,T) + Curv(T,αx,αy)→ min:(M = 0)

The results are shown in Figure 4.
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Errors: σ∗cv = 2.24, rmsd* = 1.58, ∆* = 0.86.
5.2. Problem MSD(D_reg11x11) + Curv(T): M = 0, l = ls, r = rs
Two additional conditions l = ls, r = rs mean that the SvF solution must coincide with

the exact one on the boundaries:

MSD(D_reg11x11,T) + Curv(T,αx,αy)→ min:(M = 0, l = ls, r = rs)

Here and below, the figures show not the entire set of functions, but only the essential
ones (the rest do not change much). The results are shown in Figure 5.
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Errors: σ∗cv = 2.15, rmsd* = 1.86, ∆* = 0.61.
5.3. Problem MSD(D_reg11x11) + Curv(T): M = 0, l = ls, r = rs, ϕ = ϕs
Suppose that the initial condition is also known:

MSD(D_reg11x11,T) + Curv(T,αx,αy)→ min:(M = 0, l = ls, r = rs, ϕ = ϕs)

Some results are shown in Figure 6.
Errors: σ∗cv = 2.06, rmsd* = 2.01, ∆* = 0.49.
5.4. Problem MSD(D_reg11x11) + Curv(ϕ) + Curv(l) + Curv(r) + Curv(K):M = 0
The problem differs from Problem 5.1 by the penalties of four functions ϕ, l, r and K,

that determine the solution, replacing the penalty for the curvature of the solution T(x,t):

MSD(D_reg11x11,T) + Curv(ϕ,α1) + Curv(l,α2) + Curv(r,α3) + Curv(K,α4)→ min:(M = 0).

The formulation seems to be more consistent with the physics of the phenomenon—
regularization occurs at the level of functions that determine the solution, and not at the
solution itself.
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Errors: σ∗cv = 2.22, rmsd* = 1.82, ∆* = 0.83.
Attention should be paid to the incorrect behavior of the thermal conductivity coeffi-

cient near the right border of the graph in Figure 7K.
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Figure 7. SvF solution of Problem 5.4: (ϕ) the initial condition; (l&r) boundary conditions; (K) the
thermal conductivity coefficient.

5.5. Problem MSD(D_reg11x11) + Curv(ϕ) +Curv(l) + Curv(r) + Curv(K): M = 0, dK/dT <= 0
Let it be additionally known that the thermal conductivity does not increase with

increasing temperature dK/dT <= 0:

MSD(D_reg11x11,T) + Curv(ϕ,α1) + Curv(l,α2) + Curv(r,α3) + Curv(K,α4)→ min:(M =0, dK/dT <= 0)

This is an attempt to correct the solution by adding to the formulation of the minimiza-
tion problem an additional condition formalizing a priori knowledge of the behavior of the
coefficient K(T) (see Figures 7K and 8K).

Mathematics 2022, 10, x FOR PEER REVIEW 11 of 17 
 

 

  
(Err) (K) 

Figure 8. SvF solution of Problem 5.5: (Err) Err(x,t) = T(x,t)-Ts(x,t); (K) the thermal conductivity co-
efficient.  
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Errors: σ∗cv = 2.23, rmsd* = 1.80, ∆* = 0.85.
5.6. Problem MSD(D_rnd121) + Curv(T): M = 0, l = ls, r = rs, ϕ = ϕs
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The problem is similar to Problem 5.3, except the data set consists of 121 points on an
irregular grid:

MSD(D_rnd121,T) + Curv(T,αx,αy)→ min:(M = 0, l = ls, r = rs, ϕ = ϕs)

Some results are shown in Figure 9.
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Figure 9. SvF solution of Problem 5.6: (Err) Err(x,t) = T(x,t)-Ts(x,t); (K) the thermal
conductivity coefficient.

Errors: σ∗cv = 2.13, rmsd* = 2.05, ∆* = 0.39.
5.7. Problem MSD(D_rnd1000) + Curv(T): M = 0, l = ls, r = rs , ϕ = ϕs
The problem is similar to problem 5.6, except the data set consists of 1000 points:

MSD(D_rnd1000,T) + Curv(T,αx,αy)→ min:(M = 0, l = ls, r = rs, ϕ = ϕs)

The results are shown in Figure 10.
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Figure 10. SvF solution of Problem 5.7: (Err) Err(x,t) = T(x,t)-Ts(x,t); (K) the thermal
conductivity coefficient.

Errors: σ∗cv = 2.02, rmsd* = 2.01, ∆* = 0.15.
5.8. Problem MSD(D_reg11x11(ε = 0)) + Curv(ϕ) + Curv(l) + Curv(r) + Curv(K):M = 0
The problem is similar to Problem 5.4, but with a set of exact measurements (εi = 0):

MSD(D_reg11x11(ε = 0)),T) + Curv(ϕ,α1) + Curv(l,α2) + Curv(r,α3) + Curv(K,α4)→ min:(M = 0).

Some results are shown in Figure 11.
Errors: σ∗cv = 0.06, rmsd* = 0.004, ∆* = 0.
The graphs of the boundary and initial conditions are not shown, since the SvF

solutions actually coincide with the exact one.
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6. Discussion

The errors obtained during problem solving are summarized in Table 1. Analyzing the
table allowed us to identify some of the patterns that appeared during problem modification.

Table 1. Errors: σ∗cv –error of cross-validation, the main indicator of the “quality” of the constructed
model; rmsd* is the standard deviation of the SvF solution from observations, σd is the data error, ∆ is
the standard deviation of the SvF solution from the exact solution, ∆* is the estimate of ∆ determined
by Formula (3).

# Problem σ*
cv rmsd* σd ∆ ∆*

0 MSD(D_reg11x11) + Curv(T) 2.38 1.44 2.06 1.08 1.19

1 MSD(D_reg11x11) + Curv(T): M = 0 2.24 1.58 2.06 1.06 0.89

2 MSD(D_reg11x11) + Curv(T): M = 0, l = ls, r = rs 2.15 1.86 2.06 0.61 0.61

3 MSD(D_reg11x11) + Curv(T): M = 0, l = ls, r = rs, ϕ = ϕs 2.06 2.01 2.06 0.42 0

4 MSD(D_reg11x11) + Curv(ϕ) + Curv(l) + Curv(r) + Curv(K): M = 0 2.22 1.82 2.06 0.83 0.83

5 MSD(D_reg11x11) + Curv(ϕ) + Curv(l) + Curv(r) + Curv(K): M = 0, K/dT<=0 2.23 1.80 2.06 0.83 0.85

6 MSD(D_rnd121) + Curv(T): M = 0, l = ls, r = rs , ϕ = ϕs 2.13 2.05 2.08 0.24 0.39

7 MSD(D_rnd1000) + Curv(T): M = 0, l = ls, r = rs , ϕ = ϕs 2.02 2.01 2.01 0.13 0.15

8 MSD(D_reg11x11(ε = 0)) + Curv(ϕ) + Curv(l) + Curv(r) + Curv(K): M = 0 0.06 0.004 0 0.06 0

Lines 0–3. Lines 0–3 of Table 1 show some patterns of successive model modifications.
As expected, adding the “correct” additional conditions leads to a more accurate (see
column ∆) modification of the model. These conditions reduce the set of feasible solutions
of the optimization problem, while adding “correct” conditions cuts off unnecessary (non-
essential) parts from it. In the technology used, this leads to a decrease in the σ∗cv cross-
validation error.

The growth of the rmsd* error seems paradoxical: the more accurate the model, the
greater its root mean square deviation from observations. However, it is easy to explain.
First of all, rmsd* is within the error limits of the initial data σd. Second, the better the
model, the closer it is to the exact solution, and for the exact solution rmsd = σd. Of course,
if regularization penalties that are too large are chosen, the solution will be distorted so
that rmsd will be greater than σd. This situation is shown in Figure 2A.

During modification, every subsequent model (from 0 to 3) is a follow up of the
previous one. Previously found solutions are used as initial approximations, which allows
us to find solutions faster as well as avoid poorly interpreted solutions.

Lines 4–5. The problems considered differ from Problem 5.1 by the selection criterion:
instead of the solution T, the functions ϕ, l, r, and K (defining the solution) are used
for regularization. This formulation seems to be more consistent with the physics of the
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phenomenon—a penalty imposed on the original functions determining the dynamics of
the process, and not on their consequence (solution). The estimates of the cross-validation
error (σcv) obtained are similar to Problem 5.1 but with smaller deviation from the exact
solution ∆. The decrease in deviation may be associated with a special case of generated
errors. The issue requires further research.

In Problem 5.4, the obtained solution of the thermal conductivity coefficient K (T)
(see Figure 7K) rises sharply to the right border. Suppose it is known in advance that
the coefficient is not to increase. This knowledge can be easily added to the model as an
additional condition (dK/dT <= 0). As a result (Problem 5.5), K(T) changed (see Figure 8K).
At the same time, the accuracy indicators (line 5) practically stayed unchanged, which
indicates that such an additional condition does not contradict the model and observations.

Line 6. Problem similar to Problem 5.3 but with a data set with a random arrangement
of observations in space and time. The same number of observations leads to the same
error estimates but the deviation from the exact solution is noticeably smaller. The use of
such data sets should be carefully considered.

Line 7. Increasing the number of observations to 1000 significantly improves the
accuracy of the solution.

Line 8. Using a data set with precise measurements allows us to get a close-to-exact solution.
General notes. The ∆* estimate generally describes ∆ (the standard deviation of the SvF

solution from the exact one) well enough. Note, that the data error σd (usually unknown) is
used for the calculations.

Figures 4Err, 6Err, 8Err, 9T and 10Err show how the regularization distorts the solution.
As expected, distortions are mainly observed in regions with high curvature (large values
of the squares of the second derivatives).

It is easy to see that almost for all problems (except problem 5.8), the following
inequalities hold:

σ∗cv ≥ σd ≥ rmsd∗.

It appears to be true when the model used, the regularization method, and the cho-
sen cross-validation procedure are consistent with the data used and the physics of the
phenomenon. At least, if the wrong model is chosen for describing the data (an incorrect
mathematical description or too severe a regularization penalty), then the right-hand side
of the inequality does not hold. If the errors in setting the data are not random (for example,
space position related) or the cross-validation procedure is chosen incorrectly, the left side
of the inequality will be violated. Thus, the violation of the inequality above is a sign of
something going wrong.

7. Conclusions

The problems (and their solution) considered in the article illustrate the effective-
ness of the application of regularization methods and, in particular, the use of balanced
identification technology.

The results above confirm the thesis: the more data, the higher the accuracy, and
the more knowledge about the object, the more complex and accurate models can be
constructed. The technology used allows us to organize the evolutionary process of building
models, from simple to complex. In this case, the indicator determining “the winner in the
competitive struggle of models” is the error of cross-validation—reducing the error is a big
argument in favor of this model.

In addition, this gradual (evolutionary) modification is highly desirable as the formu-
lations under consideration are complex two-level (possibly multi-extreme) optimization
problems and their solution requires significant resources. Thus, finding a solution without
a “plausible” initial approximation would require computational resources that are too
large and, in addition, one cannot be sure that the solution found (one of the local minima
of the optimization problem) will have a subject interpretation that satisfies the researcher.

This step-by-step complication of the problem, together with specific techniques such
as doubling the number of grid nodes, can significantly save computational resources. All
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of this work’s results were obtained on a modern laptop (CORE i5 processor) within a
reasonable time (up to 1 h). The two-level optimization problem, which in this case allows
parallelization, consumes the majority of the resources. Tools for the solution of more com-
plex resource-intensive tasks exist for high-performance multiprocessor complexes [10,11].

As for computing resources, SvF technology is resource intensive. This is justified as it
is aimed at saving the researcher’s time.

Appendix A contains a listing of the task file. The notation used is close to the
mathematical one—a formal description of the model for calculations practically coincides
with the formulas of the model (1). This allows for an easy model modification (no “manual”
program code rewriting). For example, to take into account the heat flux at the border,
a corresponding condition defining the derivative at the border has to be added to the
task file.

Let us take a look at unsolved problems and possible solutions.
One problem is possible local minima. However, there are special solvers designed

to search for global extrema, for example, SCIP [15] (source codes are available) which
implements the branch-and-bound algorithm, including global optimization problems
with continuous variables. Perhaps, if a previously found solution is used as an initial
approximation, a confirmation that the found minimum is global might be obtained in a
reasonable time.

Finally, the paper considers various errors’ estimates of solution T(x,t) only and not
the other functions’ identification accuracy. The evaluation of the accuracy of determining
the thermal conductivity coefficient is particularly interesting. Another problem is the
formalization of errors that arise when replacing a real physical object with a mathematical
model and real observations with a measurement error model. In the future, these issues
should be researched.
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Appendix A. Task File Sample

The software package together with the considered task file (MSD(D_reg11x11) +
Curv(T):M = 0.odt) is freely available online in the Git repository https://github.com/
distcomp/SvF, accessed on 1 November 2022 (file SvF-2021-11.zip) (accessed on 1 Septem-
ber 2022).

Format: .odt-Open/Libre Office.
The file contains a complete formal description of Problem 5.1 (identification of un-

known functions of the mathematical model MSD(D_reg11x11) + Curv(T):M = 0 and a

https://rscf.ru/project/22-11-00317/
https://github.com/distcomp/SvF
https://github.com/distcomp/SvF
https://github.com/distcomp/SvF
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number of service instructions required for a numerical solution based on the balanced
identification technology.

The first line (see Figure A1) specifies the maximum number of iterations, the second
specifies the difference scheme, the third specifies the data source (data set), and the
fourth specifies the cross-validation procedure parameters. The following describes the
mathematical model: Set: defines the sets, Var: defines unknown variables—functions to
be identified, EQ: equations of the mathematical model, Obj: objective function (selection
criterion). Note that the first equation was made in the formula editor (Tex notation). A
different, less visual encoding of formulas (commented out line, marked with a # symbol)
can be used instead.
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