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Abstract: Modern computational mathematics and informatics for Digital Environments deal with
the high dimensionality when designing and optimizing models for various real-world phenomena.
Large-scale global black-box optimization (LSGO) is still a hard problem for search metaheuristics,
including bio-inspired algorithms. Such optimization problems are usually extremely multi-modal,
and require significant computing resources for discovering and converging to the global optimum.
The majority of state-of-the-art LSGO algorithms are based on problem decomposition with the
cooperative co-evolution (CC) approach, which divides the search space into a set of lower dimen-
sional subspaces (or subcomponents), which are expected to be easier to explore independently
by an optimization algorithm. The question of the choice of the decomposition method remains
open, and an adaptive decomposition looks more promising. As we can see from the most recent
LSGO competitions, winner-approaches are focused on modifying advanced DE algorithms through
integrating them with local search techniques. In this study, an approach that combines multiple
ideas from state-of-the-art algorithms and implements Coordination of Self-adaptive Cooperative
Co-evolution algorithms with Local Search (COSACC-LS1) is proposed. The self-adaptation method
tunes both the structure of the complete approach and the parameters of each algorithm in the
cooperation. The performance of COSACC-LS] has been investigated using the CEC LSGO 2013
benchmark and the experimental results has been compared with leading LSGO approaches. The
main contribution of the study is a new self-adaptive approach that is preferable for solving hard
real-world problems because it is not overfitted with the LSGO benchmark due to self-adaptation
during the search process instead of a manual benchmark-specific fine-tuning.

Keywords: problem decomposition; large-scale global optimization; self-adaptive differential
evolution; memetic algorithm; cooperative co-evolution.

MSC: 90C06; 90C26; 68W50; 49M27

1. Introduction

Modern numerical continuous global optimization problems deal with high dimen-
sionality and the number of decision variables is still increasing because of the need to take
into account more internal and external factors when designing and analyzing complex
systems. This is also facilitated by the development of high-performance hardware and al-
gorithms. “Black-box” large-scale global optimization (LSGO) is one of the most important
and hardest types of optimization problems. The search space of LSGO problems expo-
nentially grows and many state-of-the-art optimization algorithms, including evolutionary
algorithms, lose their efficiency. However, the issue cannot be solved by straightforward
increasing the number of objective function evaluations.

Many researchers note that the definition of a LSGO problem depends on the nature of
the problem and changes over time and with the development of optimization approaches.
For example, the global optimization of Morse clusters is known as a hard real-world
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optimization problem. The best-found solutions for Morse clusters are collected in the
Cambridge Energy Landscape Database [1]. At the moment, the database contains the
highest value equal to 147 atoms, which corresponds to 441 continuous decision variables
only. The most popular LSGO benchmark was proposed within the IEEE Congress on
Evolutionary Computation and is used for the estimation and comparison of new L5SGO
approaches. The benchmark contains 1000-dimensional LSGO problems. There exist
solutions for real-world problems with many thousands of decision variables.
The general LSGO optimization problem is defined as (1):

f(x1,x2,...,%,) = min, f : R" — RY, (1)
X€ER"
here f is an objective function, x; are box-constrained decision variables. We do not impose
any restrictions on the type of the objective function, such as linearity, continuity, convexity,
and the need to be defined at all points requested by the search algorithm. In the general
case, the objective function is defined algorithmically, there is no information about the
properties of its landscape, thus the objective function is a “black-box” model.

As previously mentioned, the performance of many black-box global optimization
algorithms cannot be improved by only increasing the budget of function evaluations
when solving LSGO problems. One of challenges for researchers in the LSGO field is the
development of new approaches, which can deal with the high dimensionality. Various
LSGO algorithms that use fundamentally different ideas and demonstrate different per-
formances for different classes of LSGO problems have been proposed. When solving a
specific LSGO problem, a researcher must choose an appropriate LSGO algorithm and
fine-tune its parameters. Moreover, the algorithm can require different settings at different
states of the optimization process (for example, at exploration and exploitation stages).
Thus, the development of self-adaptive approaches for solving hard LSGO problem is an
actual research task.

In this study, an adaptive hybrid approach that combines three general conceptions,
such as problem decomposition using cooperative co-evolution (CC), global search based
on differential evolution (DE), and local search is proposed. This approach demonstrates
performance comparable with LSGO competition winners and outperforms most of them.
At the same time, it demonstrates the same high efficiency for different classes of LSGO
problems, which makes the proposed approach preferable for “black-box” LSGO problems
when it is not possible to prove the choice of an appropriate search algorithm.

The rest of the paper is organized as follows. Section 2 presents the related works for
reviewing state-of-the-art in the field of LSGO and motivates designing a hybrid approach.
Sections 3 and 4 describe the proposed approach, experimental setups, some general top-
level settings, and implementation. In Section 5, the experimental results, analysis, and
discussion of the algorithm dynamics and convergence, and the comparison of the results
with state-of-the-art and competition-winner approaches are presented. In conclusion, the
proposed methods and the obtained results are summarized and some further ideas are
suggested.

2. Related Work

The complexity of real-world optimization problems has grown in recent years and is
still growing. The class of global “black-box” optimization problems for which the high
dimensionally causes the loss in the performance of a search algorithm is known as Large
Scale Global Optimization or LSGO. Well-known experts in the field of LSGO, Mohammad
Nabi Omidvar and Xiaodong Li, note that the term “large scale” is not definitively deter-
mined because the dimensionality of problems in LSGO grows over time, and it can also
be different in different application areas. Many modern metaheuristics, including EAs,
consider LSGO problems with 1000 real variables.

One of the first discussions on LSGO have been proposed within the special session
of the IEEE CEC conference in 2008 [2,3]. Since 2008, the LSGO scientific community has
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proposed the LSGO benchmark for evaluating and comparing LSGO algorithms. The
first benchmark in 2008 had only 7 test problems, including 2 unimodal and 5 multi-
modal optimization problems [2]. The CEC LSGO 2010 benchmark was extended with
test problems grouped by the separability property and contained 20 optimization prob-
lems, including 3 fully separable, 15 partially non-separable, and 2 fully non-separable
functions [4]. Finally, within the IEEE CEC 2013 special session and completion, a new
benchmark has been proposed, and it is still used today and is known as a hard bench-
mark set for many state-of-the-art LSGO techniques [5]. The CEC LSGO 2013 benchmark
contains 3 fully separable, 8 partially additive non-separable functions, 3 functions with
overlapping components, and 1 fully non-separable function. In 2018, a new online Toolkit
for Automatic Comparison of Optimizers (TACO) has been proposed for a fair independent
comparison of LSGO algorithms [6]. In 2021, the TACO database includes the results of 25
leading and competition-winner LSGO algorithms.

Some extensive studies with surveys of the current state of LSGO and systematizations
of LSGO techniques have been proposed in [7,8]. In [9], LSGO is highlighted as one of
the urgent domains of bio-inspired computation. The recent work on the LSGO review
proposes a large summary of the state of affairs and accumulated experience [10,11]. Within
the proposed systematizations, the following main approaches are developing;:

*  Random (static or dynamic) problem decomposition using cooperative co-evolution,

*  Learning-based decomposition using cooperative co-evolution,

*  Modifications of the standard evolutionary algorithms without problem decomposi-
tion, including hybrid memetic approaches.

The first group of approaches is the largest one. Decomposition divides the search
space into a set of lower-dimensional subspaces by grouping decision variables (or sub-
components), which are expected to be easier to explore independently by an optimization
algorithm. For aggregating the whole candidate-solution from subcomponents, the co-
operative co-evolution framework is used. Therefore, a decomposition-based approach
involves three general components, namely, a decomposition algorithm, a subcomponent
optimizer, and a cooperative co-evolution technique. The number of subcomponents and
appropriate decomposition depend on the properties of the objective function and are
unknown beforehand. Thus, decomposition mechanisms are also a part of the search
approach and must be adaptive. Despite the fact that we optimize lower-dimensional
subproblems, each decomposition can generate a complex landscape, and the subcompo-
nent optimizer should be also adaptive for demonstrating the high performance for any
decomposition. The standard co-evolution framework is also a subject for modification.
Nevertheless, the decomposition-based approaches demonstrate high performance for a
wide range of LSGO problems.

Learning-based techniques are aimed to identify the interaction of variables and to
group them into separable subcomponents. The approaches usually perform well with
fully separable and partially non-separable problems only. At the same time, some recent
algorithms can also efficiently deal with overlapping components, but still demonstrate
poor performance with fully non-separable problems (for example, CC-RDG3, who is the
2019 LSGO competition winner [12]).

Hybrid memetic approaches usually demonstrate high performance for all types of
LSGO problems (for example, SHADE-ILS, the 2018 LSGO competition winner [13]). It
is worth noting the Multiple Offspring Sampling (MOS) algorithm [14], which was the
LSGO competition winner for 5 years (2013-2018). MOS proposes a high-level relay hybrid
approach for adaptive switching between global and local search algorithms (one of the
modifications uses switching only between multiple local search algorithms).

We will briefly review some state-of-the-art and competition-winner LSGO algorithms
for analyzing the general approaches implemented in the algorithms.
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2.1. Approaches without Problem Decomposition

Dynamic Multi-Swarm Particle Swarm Optimizer (DMS-PSO) [15] is one of the early
approaches investigated using the CEC LSGO 2008 benchmark. DMS-PSO uses a multi-
population scheme and combines PSO with a modified neighborhood topology [16] and
the BFGS Quasi-Newton method for local search. Canonical Differential Evolutionary
Particle Swarm Optimization (C-DEEPSO) [17] is based on a combination of DE and PSO
algorithms. Variable Mesh Optimization Differential Evolution (VMODE) [18] uses the
standard DE as the core optimizer and the population distributed in nodes of a mesh. The
mesh nodes can be redistributed for maintaining diversity and for guiding the optimizer to
the best-found solutions.

Multi-trajectory Search (MTS) [19] uses a combination of coordinate-wise random
searches titled MTS-LS1, MTS-LS2, and MTS-LS3. On each iteration, coordinates are ranked
based on the objective improvements, the next step starts with the coordinate that has
provided the highest increment of the objective function. Despite the simple idea, MTS
demonstrates high performance with LSGO problems and is used as the main local search
algorithm in many hybrid memetic approaches.

Iterative Hybridization of Differential Evolution with Local Search (IHDELS) [20] is
one of the first competition-winner memetic evolutionary algorithms (the 2nd place in the
2015 IEEE CEC LSGO competition). IHDELS uses self-adaptive DE (SaDE) [21] and two
local search algorithms: L-BFGSB [22] and MTS-LS1 [19].

Multiple Offspring Sampling (MOS) in the original paper used a combination of
Restart Covariance Matrix Adaptation Evolution Strategy With Increasing Population Size
(IPOPCMA-ES) [23] with a restart and variable population size and the standard DE [24].
The 2013 version of MOS [25] uses a hybridization of 3 algorithms: MTS LS1, Solis and
Wets, and GA.

Success-History Based Parameter Adaptation for Differential Evolution with Iterative
Local Search (SHADE-ILS) [13] is the winner of the 2018 competition. SHADE-ILS combines
SHADE [26] for global search, MTS LS1 and L-BFGS-B for local search, and restart strategies.

Hybrid of Minimum Population Search and Covariance Matrix Adaptation Evolution
Strategy (MPS-CMA-ES) [27,28] has taken second place in the 2019 competition.

The most recent algorithm selection wizard, titled as automated black-box optimiza-
tion (ABBO), can select one or several optimization algorithms from a very large number of
base algorithms based on some input information about the considered optimization prob-
lem [29]. ABBO uses three types of selection techniques: passive algorithm selection, active
algorithm selection, and chaining (several algorithms run in turn). ABBO outperforms
many state-of-the-art algorithms on LSGO benchmarks.

2.2. Decomposition-Based Approaches with Static Grouping

A Cooperative Co-evolutionary approach for Genetic Algorithm (CCGA-1 and CCGA-
2) [30] is the first attempt for improving the standard EA (namely, a binary GA) using the
coordinate-wise decomposition. In [31,32], CC was implemented for improving evolution
programming (Fast Evolutionary Programming with Cooperative Co-evolution, FEPCC).
In Cooperative Co-evolutionary Differential Evolution (CCDE) [33], the approach was
modified for using subcomponents with many variables. There were proposed two modifi-
cations: CCDE-H with 2 subcomponents and CCDE-O with the number of subcomponents
equal to the number of variables.

Some more complicated decompositions have been proposed for PSO algorithms.
Cooperative Approach to Particle Swarm Optimization (CPSO) [34] performed grouping
into k subcomponents (CPSO-Sk) or combined CPSO-Sk with the standard PSO (CPSO-Hk).
A similar idea was used in Cooperative Bacterial Foraging Optimization (CBFO) [35] and
Cooperative Artificial Bee Colony (CABC) [36]. Both approaches had two modifications:
CBFO-S, CBFO-H, CABC-H, and CABC-S.
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2.3. Decomposition-Based Approaches with Random Grouping

In random grouping approaches, subcomponents vary during the search process. One
of the first approaches DECC-G [37] has proposed a combination of random grouping
and Self-adaptive Differential Evolution with Neighborhood Search (5aNSDE) [38] that
demonstrates high performance for LSGO benchmarks and is still used as a base-line for
evaluating and comparing new LSGO approaches.

In Multilevel Cooperative Co-evolution (MLCC) [39], SaNSDE is combined with
modified random grouping, which uses a distribution of probabilities for choosing sub-
components from a decomposition pool based on the success of the previous choices. In
DECC-ML, a modification of MLCC with a better optimizer for the more frequent ran-
dom grouping was proposed [40]. Cooperatively Co-evolving Particle Swarms algorithms
(CCPSO and CCPSO2) [41,42] use random grouping with PSO. CCPSO2 applies a random
search for dynamic regrouping variables. In Cooperative Co-evolution Orthogonal Artifi-
cial Bee Colony (CCOABC) [43], random grouping is combined with the ABC algorithm.

Memetic Framework for Solving Large-scale Optimization Problems
(MLSHADE-SPA) [44] is a multi-algorithms approach, which iteratively applies Success
History-based Differential Evolution with Linear Population Size Reduction
(L-SHADE) [45], two self-adaptive DE algorithms, and a modified version of MTS. All algo-
rithms are applied for the whole optimization problem and for subcomponents. MLSHADE-
SPA has taken second place in the 2018 IEEE CEC LSGO competition.

2.4. Learning-Based Grouping Approaches

The idea behind algorithms of this type is to identify the interaction of decision
variables and group them into the same subcomponent. For some separable test problems,
the algorithms can identify true subcomponents.

Correlation-based Adaptive Variable Partitioning (CCEA-AVP) [46] evaluates the cor-
relation matrix for the best solutions (in the original algorithm, half of the population is
used). Variables for which values of the correlation coefficient are greater than a threshold
are placed in one group. In [47], CCEA-AVP uses NSGA-2 as the core optimizer. Contribu-
tion Based Cooperative Co-evolution (CBCC) applies SaNSDE with Delta Grouping and
Ideal Grouping algorithms [48]. Each subcomponent is optimized using the number of
function evaluations based on the improvement of the objective function obtained by this
component. The delta grouping approach is also applied in Cooperative Co-evolution with
Delta Grouping (DECC-DML) [49]. In Cooperative Co-evolution with Variable Interac-
tion Learning (CCVIL) [50], groups are formed iteratively starting with one-dimensional
subcomponents, which are combined if the interaction between them is detected. CCVIL
uses JADE [51] for optimizing subcomponents. Dependency Identification with Memetic
Algorithm (DIMA) [52] applies the local search algorithm proposed in [53] for detecting
the interaction of variables.

Differential grouping is based on the mathematical definition of a partially additively
separable function that is used for the identification of the interaction of variables. Coop-
erative Co-Evolution with Differential Grouping (DECC-DG) [54], Extended Differential
Grouping (DECC-XDG) [55], and modified DECC-DG2 [56] use the SaNSDE algorithm
for evolving subcomponents. A competitive divide and-conquer algorithm (CC-GDG-
CMAES) [57] combines differential grouping with the CMA-ES optimizer. In Differential
Grouping with Spectral Clustering (DGSC) [58], SaNSDE is applied for subcomponents
discovered using clustering of the identified interactions in variables.

Some original approaches are proposed in Scaling Up Covariance Matrix Adaptation
Evolution Strategy (CC-CMA-ES) [59], Cooperative co-evolution with Sensitivity Analysis-
based Budget Assignment Strategy (SACC) [60], Bi-space Interactive Cooperative Co-
evolutionary Algorithm (BICCA) [61], and Cooperative Co-evolution with Soft Grouping
(SGCCQ) [62]. All approaches, except CC-CMA-ES, use self-adaptive DE algorithms.

A recursive decomposition method (RDG) [63] proposes a new approach for better
differential grouping. CC-RDG3 [12] combines CMA-ES with RDG for the efficient identi-
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fication of overlapping subcomponents. Authors have shown that CC-RDG3 can greatly
improve LSGO algorithms. CC-RDG3 has taken first place in the 2019 IEEE CEC LSGO
competition and it is still the leading LSGO approach. An Incremental Recursive Ranking
Grouping (IRRG) is one of the recent approaches that uses monotonicity checking for
more accurate identification of variable linkages [64]. IRRG requires more fitness function
evaluations than RDG3, but never reports false linkages.

2.5. LSGO State-of-the-Art Algorithms

We have summarized all approaches mentioned above in Table 1 to highlight their
main features, such as the type of decomposition, and the global and local search algorithms
used. As we can see from the proposed review, many state-of-the-art LSGO algorithms
contain, in different combinations, three main components: problem decomposition with
cooperative co-evolution, a global optimizer, and a local search algorithm. The majority
of the algorithms apply a self-adaptive DE as the global search technique. In Table 2, all
participants of the IEEE CEC LSGO competitions of different years are collected. In the
table, one can find out the winners of the competitions and what components (CC, DE,
and LS) are implemented in the algorithms (a “plus” sign indicates that the corresponding
components are used).

Table 1. The summary of the reviewed LSGO approaches.

Approach Decomposition Type Global Search Local Search
ABBO [29] No miniLHSDE No
BICCA [61] Learning L-SHADE No
CBCC [48] Learning SaNSDE No
CC-CMA-ES [59] Learning CMA-ES No
CCDE-H [33] Static DE No
CCDE-O [33] Static DE No
CCEA-AVP [46] Learning NSGA-2 No
CCGA [30] Static GA No
CC-GDG-CMAES [57] Learning CMA-ES No
CC-RDG3 [12] Learning CMA-ES No
CCVIL [50] Learning JADE No
C-DEEPSO [17] Random EP, PSO, and DE No
DECC-DG [54] Learning SaNSDE No
DECC-DG2 [56] Learning SaNSDE No
DECC-DML [49] Learning SaNSDE No
DECC-G [37] Random SaNSDE No
DECC-XDG [55] Learning SaNSDE No
DGSC [58] Learning SaNSDE No
. Self-directed Local
DIMA [52] Learning GA Search
DMS-PSO [15] No PSO Quasi-Newton method
IHDELS [20] No SaDE MTS-LS1, L-BFGS-B
IPOPCMA-ES [23] No CMA-ES No
IRRG [64] Learning CMA-ES No
MLCC [39] Random SaNSDE No
MLSHADE-SPA [44] Random L-SHADE MTS-LS1
Solis and Wets,
MOS [14] No No MTS-LS1
MOS 2013 [25] No GA Solis Wets, MTS-LS1
MPS-CMA-ES [27] No CMA-ES No
MTS-LS1, MTS-LS2,
MTS [19] No No MTS-1S3
SACC [60] Learning SaNSDE No
SGCC [62] Learning SaNSDE No
SHADE-ILS [13] No SHADE MTS-LS1, L-BFGS-B

VMODE [18] Static DE No
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Table 2. LSGO state-of-the-art algorithms.

Algorithm Year Winner 2nd 3rd CC DE LS
CC-CMA-ES 2015 2015 + — —
DEEPSO 2015 - + —
IHDELS 2015 2015 - + +
SACC 2015 + + +
VMODE 2015 — + —
BICCA 2018 + — —

MPS 2019 2019 - - -

SGCC 2019 2019 + + -
DECC-G 2015, 2018 + + —

MOS 2015, 2018 2015 2018 — + +
MLSHADE-SPA 2018 2018 - + +
SHADE-ILS 2018 2018 — + +
CC-RDG3 2019 2019 + — —
DGSC 2019 + + —

As we can see from Table 2, 10 of 14 participants use DE as a core global optimizer,
7 algorithms apply problem decomposition with CC, and 5 algorithms are memetic. All
winners use DE and all winners, except CC-RDG3, use local search. The current leader,
CC-RDGS3, applies problem decomposition with CC. From a historical perspective, we can
notice that leading approaches improve global and local algorithms and develop more
advanced frameworks for problem decomposition and adaptive control of the interaction
of global and local search. This fact motivates us to design new approaches that combine
all 3 components.

3. The Proposed Approach

As we can see from the review in the previous section, the majority of state-of-the-
art approaches use CC. At the same time, many CC approaches apply an additional
learning stage before the main subcomponents’ optimization stage. The learning stage
is used for identifying interconnected and independent variables. The identification of
non-separable groups of variables usually takes a sufficiently large number of function
evaluations (FEVs), which could be utilized for the main optimization process. However,
the finding of all non-separable groups does not guarantee the high efficiency of solving
the obtained optimization sub-problems.

The proposed approach uses an adaptive change of the number of subcomponents,
which leads to a dynamic redistribution of the use of computational resources. The set of
values of the number of subcomponents is predefined and it is a parameter of the algorithm,
which can be set based on the limitations of FEVs. As it was shown in [65,66], it is better
to use different decompositions for different stages of the optimization process while
exploring different regions of the search space instead of using the only decomposition
even it is correct. We have discovered that, in general, an optimizer better operates small
subcomponents at the early stages and the whole solution vector at the final stage, when a
basin of a global optimum is discovered. Additionally, the way of adaptive changing the
number of subcomponents can vary for different types of LSGO problems.

We will use the following algorithm for adaptive change of the number of subcompo-
nents. We will run many optimizers, which use decompositions with subcomponents of
different sizes. Each algorithm uses its number of FEVs based on its success in the previous
generations. Thus, we dynamically redistribute resources in favor of a more preferable
decomposition variant.

A set of M values of the number of subcomponents is defined as
{CCy,CCy,...,CCp}, where all elements should be different, i.e., CC; # CCy # ... #
CCp. At the initialization stage, for each of M algorithms, we assign equal resources de-
fined as the number of generations (G;,i = 1,..., M). After all resources are exhausted by
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algorithms, we start a new cycle by redistributing the resources. In each cycle, algorithms
are applied consequently in random order.
At the end of the run of each algorithm, we evaluate the improvement rate (2):

(best_foundbefm - best_foundafter)

, @

improvment_rate; = best_found ft
— arter

here  best_found,, fore is the Dbest-found solution before the run, and
best_found ,,,, is the best-found solution after the run,andi = 1,..., M.

After each cycle, all algorithms are ranked by their improvement rates. The best
algorithm increases its resource by G,;;, generations, which is a sum of Gy,s, generations
subtracted from resources of all the rest algorithms. For all algorithms, we define G,,;,
for preventing the situation when the current-winner algorithm takes all resources and
eliminates all other participants.

In the proposed approach, we will run the MTS-LS1 algorithm after CC-based SHADE.
Usually, MTS-LS1 can find a new best-found solution that becomes far from other indi-
viduals in the population. In this case, SHADE cannot improve the best-found solution
for a long time but improves the average fitness in the population. Criterion (2) becomes
insensitive to differences in the behavior of algorithms if the improving rate is calculated
using the best-found solution. To overcome this difficulty, we will calculate the improving
rate using the median fitness before and after an algorithm run using (3) instead of (2).

medianFitnesspefore — medianFitness,sier

, ®)

improving_rate, = - -
P 8-t medianFitness, e,

here medianFitness is the median fitness of individuals in the population, and
i=1,...,M.

We will use the following approach for changing the number of generations assigned
for each algorithm in the cooperation (4)—(8):

IR = {i timprovment_rate; = maXM{improvment_mtej}} (4)
=1
NI = ‘1R| ®)
pOOZ = % Glose/ if (Gi _. Glose > Gmin) Ni & IR (6)
=10 otherwise
ool
Guwin = {%J 7)
Gi+ Gyin, ifi € IR
G; = G; — Glose, if (Gl - Glose > Gmin) Ni & IR (8)

sz'n/ if (Gi - Glose < Gmin) Ai & IR

here IR is a set of indexes of algorithms with the best improving rate, N1 is the number of
algorithms with the best improving rate, pool is a pool of resources for redistribution, and
i=1,...,M.

We will use SHADE as a core optimizer for subcomponents in CC-based algorithms.
In our review, we have shown that almost all competition winners and state-of-the-art
algorithms use one of the modifications of DE. The main benefit of the SHADE algorithm
in solving “black-box” optimization problems is that it has only two control parameters,
which can be automatically tuned during the optimization process [67].

The main parameters of DE (scale factor F and crossover rate Cr) in SHADE are self-
configuring. SHADE uses a historical memory, which contains H pairs of the parameters
from the previous generations. A mutant vector is created using a random pair of the
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parameters from the historical memory. When applying SHADE with CC, we will use
specific parameters Cr and F for each subcomponent.

SHADE, like many other DE algorithms, uses an external archive for saving some
promising solutions from the previous generations. SHADE records the parameter values
and the corresponding function increments when a better solution is found. After each
generation, SHADE calculates new values of the control parameters using the weighted
Lehmer mean [67]. New calculated values of Cr and F are placed in the historical memory.

SHADE uses the current-to-pbest/l mutation scheme. The archived solutions can be
chosen and reused at the mutation stage for maintaining the population diversity.

Our experimental results have shown that the use of independent populations and
archives for each of the algorithms does not increase the overall performance of the pro-
posed approach. In this work, all algorithms in the cooperation use the same population
and archive.

One of the important control parameters of EA-based algorithms is the population
size. A large population is more preferable at the exploration stage, when the algorithm
converges, it loses the population diversity and the population size can be increased. If the
variance of coordinates is high (individuals are well distributed in the search space), we
reduce the population size and drop out randomly chosen solutions except the best one.
We will use an adaptive size of the population based on the analysis of the diversity. The
following diversity measure (9) is used [68]:

1 NP n 2
DI = ﬁzg(xij—xj) k=1,...,M, )
= ]:
here NP is the population size, n is the dimensionality of the objective function, ¥; is the
average value of the j-th variable of all individuals in the population.

After each cycle, we define a new population size for each algorithm using (10)-(13).

DI
RD = (10)
DlIipjt
FEVs
RFES = ———— 11
S maxFEVs (1)
RFES
RD=1— —— 12
' 0.9 (12)
NP+1, if (NP+1<maxNP)A (RD <0.9-rRD)
NP = {NP—-1, if (NP—12>minNP)A(RD >1.1-rRD) (13)
NP, otherwise

here RD is relative diversity, RFES is a relative spend of the FEV budget (maxFEVs),
rRD is the required value of RD, minNP, and maxNP are low and upper bounds for the
population size.

The relationship between RD and RFES is presented in Figure 1.

If the variance of coordinates is high (individuals are well distributed in the search
space), we reduce the population size and drop out randomly chosen solutions except the
best one. If the variance is low (individuals are concentrated in some region of the search
space), we increase the population size by adding new random solutions. The approach
tries to keep relative diversity close to rRD, which linearly decreases with spending FEVs.
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Figure 1. Diversity-based mechanism of population size adaptation.

The proposed above ideas are implemented in our new algorithm titled COSACC-LS1.
One of the hyper-parameters of COSACC-LSI1 is the number of algorithms with different
subcomponents (M). Because of the high computational cost of LSGO experiments, in
this research we have tried M = 3 and the following combinations of the number of
subcomponents: {1,2,4}, {1,2,8}, {1,2,10}, {1,4,8}, {1,4,10}, {1,8,10}, {2,4,8}, and
{2,4,10}. Thereafter, we will use the notation “COSACC-LS1 {x,y,z}”, where x, y, and
z stands for the number of subcomponents, which are used in three DE algorithms: CC-
SHADE(x), CC-SHADE(y), and CC-SHADE(z).

We have tried different mutation schemes and have obtained that the best performance
of COSACC-LSI1 is reached using the following scheme (14):

u;=x;+F- (prest - xl-) + F; - (Xt — xr),i =1,...,NP, (14)

here, u; is a mutant vector, F; is the scale factor, x ;s is a random solution chosen from
the p best solutions, x; is an individual chosen using the tournament selection from the
population (the tournament size is 2), x, is a random solution chosen from the union of the
current population and the archive, and all solutions chosen for performing mutation must
be different, i.e., i # pbest # t # r.

The size of the archive is set two times larger than the initial population size. The size
of historical memory in SHADE is set to 6 (the value is defined using grid search).

We have chosen MTS-LS1 for implementing local search in COSACC, because it
demonstrates high performance in solving LSGO problems both alone and when applied
with a global search algorithm [19]. We use the following settings for MTS-LS1. The
maximum number of FEVs is 25000 (the value is defined by numerical experiments). MTS-
LS1 searches along each i-th coordinate using the search range SR[i]. The initialization of
SR[i] is the same as in the original MTS: (SR[i] = (b — a) - 0.4), where [a, ] is low and high
bounds for the i-th variable. If a better solution is not found using the current value of SR[i],
itis reduced (SR[i] = SR[i]/2). If SR[i] becomes less than 1E-18 (the original threshold was
1E-15), the value is reinitialized.

MTS-LS1 is applied after each main cycle starting with the current best-found solution
until maximum FEVs are reached.

The initial number of generations for all algorithms is 15, the minimum value is 5,
respectively. After a cycle, we will add (M — 1) generation to G for the algorithm with
the highest improving rate. All other algorithms will reduce the number of generations
by one. The initial population size is 100, minimum and maximum values are 25 and 200,
respectively. After the algorithm spends 90% of its computational resource, the population
size is set to its minimum value as proposed in [68] (in this work the value is 25).
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The whole implementation scheme for the proposed approach is presented using
pseudocode in Algorithm 1.

Algorithm 1 The general scheme of COSACC-LS1

Require: The number of algorithms M in CC , the number of subcomponents for each
algorithm, n, NP, minNP, maxNP, Ginit, Gloses Gmin, maxFEVs.
Ensure:
population <— RandomPopulation(n, NP)
DIt < CalculateDiversity(population) > Using Equation (9)
foralli=1,...,Mdo
Gi < Ginit
end for
while FEVs < maxFEV's do
for all i € RandomPermutation(1,..., M) do
medianFitness_be fore <— Get MedianFitness(population)
forg < 1,G; do
best_found <— CC-SHADE(population, NP, i)

RD < EvalRD(DlI;yj;, population, NP) > Equation (10)
NP < EvalPopsize(RD, maxFEVs, NP, maxNP) > Equation (13)
end for

medianFitness_after <— GetMedianFitness(population)
medianFitness_before—medianFitness_after
medianFitness_after

improving_rate; <

end for
foralli=1,...,Mdo

G; < EvalNumGenerations(improving_rate;) > Equation (8)
end for

best_found < GetBestFound(population)
best_found < MTS-LS1(best_found)
end while

4. Experimental Setups and Implementation

We have investigated the performance of COSACC-LS1 and have compared the results
with other state-of-the-art approaches using the actual LSGO benchmark, proposed at the
special session of IEEE Congress on Evolutionary Computation in 2013 [5]. The bench-
mark proposes 15 “black-box” real-valued LSGO problems. There are 4 types of problems,
namely fully-separable functions (F1-F3), partially separable functions (F4-F11), functions
with overlapping subcomponents (F12-F14), and fully-nonseparable functions (F15). The
functions have many features, which complicate solving the problems using standard EAs
and other metaheuristics. Some of the features are non-uniform subcomponent sizes, imbal-
ance in the contribution of subcomponents, overlapping subcomponents, transformations
to the base functions, ill-conditioning, symmetry breaking, and irregularities [48,69].

The performance measure for LSGO algorithms is the error of the best-found solution
averaged over 25 independent runs. The error is an absolute difference between the best-
found solution and the true value of a global optimum. The maximum FEVs in a run is
3.0E+06. Based on the benchmark rules, the following additional data is collected: for
each problem, the best-found fitness values averaged over 25 runs are saved after 1.2E+05,
6.0E+05, and 3.0E+06 FEVs. We also will estimate the variance of the results using the best,
median, worst, mean, and standard deviation of the results.

Authors of the LSGO CEC 2013 benchmark propose software implementation using
C++, Java, and Python programming languages. For a fair comparison of the results with
other state-of-the-art algorithms, the Toolkit for Automatic Comparison of Optimizers
(TACO) [6,70] is used. TACO is an online database, which proposes the automatic compari-
son of the results uploaded by users with the results of selected LSGO algorithms stored
in the database. TACO presents reports of the results of ranking the selected algorithms
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based on the Formula 1 ranking system. The ranking is presented for the whole benchmark
and each of the 4 types of problems.

Experimental analysis of new LSGO approaches is very expensive in terms of com-
putational time. For all computational experiments, the proposed approach has been
implemented using C++. The C++ language usually demonstrates higher computing speed
and has wide possibilities for parallelization using many computers with many CPU cores.
We have designed and assembled our computational cluster based on 8 AMD Ryzen Pro
CPUs, which, in total, supply 128 threads for parallel computing. The MPICH2 (Message
Passing Interface Chameleon) framework for connecting all PCs in the cluster is used. The
Master-Slave communication scheme with the queue is applied. The operating system is
Ubuntu LTS 20.04. One series of experiments using the LSGO benchmark using the cluster
takes about 2 h compared to 265 h when using a single computer with regular sequential
computing. The source codes and additional information on our cluster are available on
https:/ /github.com /VakhninAleksei/COSACC-LS]1 (accessed on 01 September 2022).

5. The Experimental Results

The results of evaluating COSACC-LS1 with the best configuration {1,2,4} on the IEEE
CEC LSGO benchmark are presented in Table 3. The results contain the best, median, worst,
mean, and standard deviation values of the best-found solutions from 25 independent runs
after 1.2E+05, 6.0E+05, and 3.0E+06 FEVs (following the benchmark rules).

Table 3. The experimental results on the IEEE CEC 2013 LSGO benchmark.

Problems: F1 F2 F3 F4 F5 F6 F7 F8
Best 2.82E-06 1.02E+03 2.00E+01 1.28E+10 1.55E+06 1.04E+06 1.14E+09 6.24E+14
Median 5.13E-06 1.14E+03 2.00E+01 1.23E+11 3.06E+06 1.05E+06 2.33E+09 2.05E+15
1.20E+05 Worst 1.05E-05 1.29E+03 2.00E+01 2.52E+11 4.88E+06 1.06E+06 4.86E+09 1.24E+16
Mean 5.68E-06 1.14E+03 2.00E+01 1.32E+11 3.34E+06 1.05E+06 2.51E+09 2.92E+15
StDev 2.10E-06 7.60E+01 1.91E-04 5.99E+10 9.76E+05 4.11E+03 9.57E+08 2.48E+15
Best 0.00E+00 1.00E+03 2.00E+01 2.33E+09 9.08E+05 1.04E+06 2.62E+07 5.97E+13
Median 0.00E+00 1.12E+03 2.00E+01 8.63E+09 1.07E+06 1.04E+06 6.26E+07 2.94E+14
6.00E+05 Worst 6.53E-24 1.24E+03 2.00E+01 3.95E+10 1.76E+06 1.05E+06 1.50E+08 7.11E+14
Mean 2.61E-25 1.12E+03 2.00E+01 1.34E+10 1.13E+06 1.05E+06 6.74E+07 3.04E+14
StDev 1.31E-24 7.42E+01 1.91E-04 1.09E+10 2.15E+05 3.34E+03 2.94E+07 1.69E+14
Best 0.00E+00 1.00E+03 2.00E+01 1.21E+08 9.08E+05 1.04E+06 2.00E+02 1.36E+13
Median 0.00E+00 1.11E+03 2.00E+01 1.27E+09 1.07E+06 1.04E+06 1.00E+04 6.58E+13
3.00E+06 Worst 0.00E+00 1.22E+03 2.00E+01 7.76E+09 1.76E+06 1.05E+06 1.80E+05 2.99E+14
Mean 0.00E+00 1.11E+03 2.00E+01 2.17E+09 1.13E+06 1.04E+06 3.16E+04 8.02E+13
StDev 0.00E+00 7.29E+01 1.57E-04 2.07E+09 2.15E+05 1.80E+03 5.38E+04 6.86E+13
F9 F10 F11 F12 F13 F14 F15
Best 1.78E+08 9.26E+07 2.35E+10 9.62E+02 3.22E+09 1.62E+11 6.37E+07
Median 3.36E+08 9.38E+07 1.15E+11 1.95E+03 2.66E+10 3.55E+11 1.10E+08
1.20E+05 Worst 4.30E+08 9.47E+07 3.11E+11 8.24E+03 4.65E+10 6.76E+11 2.21E+08
Mean 3.22E+08 9.38E+07 1.21E+11 2.48E+03 2.84E+10 3.87E+11 1.16E+08
StDev 6.69E+07 5.68E+05 8.24E+10 1.92E+03 8.76E+09 1.49E+11 3.84E+07
Best 8.42E+07 9.23E+07 7.22E+08 1.43E+02 1.09E+08 7.61E+08 1.11E+07
Median 1.23E+08 9.32E+07 1.34E+09 7.37E+02 1.90E+09 6.60E+09 1.54E+07
6.00E+05 Worst 1.62E+08 9.38E+07 1.18E+10 1.62E+03 3.09E+09 2.68E+10 2.86E+07
Mean 1.25E+08 9.31E+07 1.71E+09 7.13E+02 1.97E+09 8.37E+09 1.67E+07
StDev 2.09E+07 4.27E+05 2.15E+09 3.23E+02 6.42E+08 6.58E+09 4.69E+06
Best 8.42E+07 9.23E+07 1.34E+06 7.72E-09 5.52E+04 6.53E+06 1.10E+06
Median 1.23E+08 9.27E+07 2.69E+06 1.20E+01 1.42E+06 9.11E+06 1.48E+06
3.00E+06 Worst 1.62E+08 9.32E+07 3.70E+07 2.58E+02 2.60E+06 1.61E+07 2.26E+06
Mean 1.25E+08 9.27E+07 6.74E+06 5.02E+01 1.42E+06 9.25E+06 1.52E+06
StDev 2.10E+07 2.17E+05 1.06E+07 7.25E+01 6.37E+05 2.07E+06 2.94E+05

At first, the results of COSACC-LS1 have been compered with its component algo-
rithms, COSACC and LS1, to prove the benefits of their cooperation. Both component
algorithms have been evaluated using their best settings obtained with the grid search. All
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comparisons have been performed using the median of the best-found solutions in the
runs after spending the full FEVs budget. Table 4 contains the medians and the results of
the Mann-Whitney—Wilcoxon (MWW) tests and ranking. High values of ranks are better.
When the difference in the results is not statistically significant, algorithms share ranks.
The average ranks are presented in Figure 2.

Table 4. The comparison of algorithms.

Problems: F1 F2 F3 F4 F5 Fé F7 F8
The median of the best-found solution
COSACC (A1) 2.22E-14 6.70E+03 2.02E+01 3.02E+09 1.31E+06 1.06E+06 7.46E+05 3.04E+13
LS1 (A2) 0.00E+00 1.10E+03 2.00E+01 1.21E+11 2.05E+07 1.05E+06 1.44E+09 1.07E+16
COSACC-LS1 (A3) 0.00E+00 1.11E+03 2.00E+01 2.17E+09 1.13E+06 1.04E+06 3.16E+04 8.02E+13
The MWW test
Al vs. A3, p-value 5.96E-08 5.96E-08 5.96E-08 1.34E-01 2.36E-02 5.96E-08 5.96E-08 1.40E-04
Al vs. A2, p-value 5.96E-08 5.96E-08 5.96E-08 5.96E-08 5.96E-08 5.96E-08 5.96E-08 5.96E-08
A2 vs. A3, p-value 0.00E+00 3.25E-01 5.49E-02 5.96E-08 5.96E-08 7.50E-05 5.96E-08 5.96E-08
The ranking of algorithms
COSACC (A1) 1 1 1 2.5 2 1 2 3
LS1 (A2) 2.5 2.5 2.5 1 1 2 1 1
COSACC-LS1 (A3) 25 2.5 2.5 2.5 3 3 3 2
F9 F10 F11 F12 F13 F14 F15
The median of the best-found solution
COSACC (A1) 1.38E+08 9.39E+07 1.18E+07 1.85E+03 8.23E+06 2.07E+07 4.51E+05
LS1 (A2) 1.76E+09 9.42E+07 2.21E+11 1.23E+03 1.35E+10 3.20E+11 7.59E+07
COSACC-LS1 (A3) 1.25E+08 9.27E+07 6.74E+06 5.02E+01 1.42E+06 9.25E+06 1.52E+06
The MWW test
Al vs. A3, p-value 9.03E-02 5.96E-08 1.05E-02 5.96E-08 5.96E-08 2.98E-07 5.96E-08
Al vs. A2, p-value 5.96E-08 7.55E-02 5.96E-08 1.36E-02 5.96E-08 5.96E-08 5.96E-08
A2 vs. A3, p-value 5.96E-08 5.96E-08 5.96E-08 5.96E-08 5.96E-08 5.96E-08 5.96E-08
The ranking of algorithms
COSACC (A1) 2.5 1.5 2 1 2 2 3
LS1 (A2) 1 15 1 2 1 1 1
COSACC-LS1 (A3) 2.5 3 3 3 3 3 2
3.0 277

COSACC (A1) LS1 (A2) COSACC-LS1 (A3)

Figure 2. Average ranks of COSACC, LS1, and COSACC-LS] algorithms.

As we can see from the results, COSACC-LS1 has won 8 times, 5 times has shared first
place with a component algorithm, and 2 times has taken second place. On easy separable
problems (F1-F6), single COSACC yields to both algorithms, because it spends the budget
for exploration of the search space while LS1 greedy converges to an optimum. On average,
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COSACC-LSI1 obtains the best ranks, thus, in the case of black-box LSGO problems, the
choice of the hybrid approach is preferable.

The following statistical data for each benchmark problem collected during indepen-
dent runs of COSACC-LS1 have been visualized: convergence, dynamics of the population
size, and redistribution of the computational resources for algorithms with the different
number of subcomponents. Each plot presents the mean and standard deviation of 25 runs.
The whole set of plots is presented in Appendix A (Figures A1-A15).

6. Discussion

In this section, we have analyzed 3 general situations in the algorithm behavior based
on plots for F3, F8, and F10 problems.

LSGO problems are hard for many search techniques when they optimize the complete
solution vector, and the problem decomposition can ease this issue. In our previous
studies, we have discovered that the cooperation of multiple algorithms with a different
number of subcomponents usually demonstrates the following usage of decompositions.
At the initial generations, the best performance is obtained using many subcomponents
of small sizes. Such component-wise search performs the exploration strategy. After
that, the approach usually chooses algorithms with a smaller number of subcomponents
and at the final generations, it optimizes the complete solution vector. Optimization
without decomposition tries to improve the final solution and performs the exploitation
strategy [65]. A similar behavior we can see for COSACC-LSI.

Figure A3 (see Appendix A) shows the dynamics of the algorithms on the F3 problem.
F3 is a fully separable problem based on the Ackley function. At the same time, the problem
is one of the hardest in the benchmark. The basin of global optimum is narrow. F3 has
a huge number of local optima with almost the same values, which cover most of the
search space.

As we can see in Figure A3a, the algorithm demonstrates fast convergence at the
initial generations and after that, there are no significant improvements in the best-found
value. The population size at the initial generations is big because the population diversity
(DI) becomes less than the required relative diversity (rRD). This is the result of the fast
convergence, and the algorithm tries to increase the population size up to the threshold
value (Figure A3b). When the algorithm falls into stagnation, individuals save their
positions, and the diversity becomes greater than rRD, thus the population size decreases.
As we can see from low STD values, the situation is repeated in every run. The resource
redistribution plots (Figure A3c) show that at the initial generations the algorithm prefers
to use many subcomponents, but when it falls into stagnation, the algorithm takes this as
the end of the exploration and gives resources for optimizing the complete solution vector.

Figure A8 shows the dynamics of the algorithms on the F8 problem, which is a
combination of 20 non-separable shifted and rotated elliptic functions. The problem
is assumed to be a good test function for decomposition-based approaches, but each
subcomponent is a hard optimization problem, which is non-separable and has local
irregularities.

As we can see in Figure A8a, the proposed approach demonstrates good convergence
at the beginning of the optimization process and then stagnates. Figure A8b shows that the
fast convergence leads to a loss in diversity (DI) and the algorithm increases the population
size until 50% of FEVs is reached. In the middle of the budget spend, individuals have
almost the same fitness values and do not improve the best-found value (plateau area in
Figure A8b). Finally, the diversity (DI) becomes less than the required relative diversity
(rRD) and the population size decreases. In contrast with the results on F3, before the
algorithm falls into stagnation, the fast improvements in the objective lead to an increase in
the population size for preventing local convergence.

Figure A8c shows that the algorithm distributes computational resources almost in
equal portions on average. We can see an example of the true cooperative search when all
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component algorithms support each other. The standard deviation of the redistribution is
high because the algorithm permanently adapts G; values in the run.

Figure A10 presents the convergence on the F10 problem. F10 is a combination of 20
non-separable shifted and rotated Ackey’s functions. As it was said previously, the Ackley
function is one of the hardest in the benchmark and all Ackley-based problems are also
very challenging tasks for LSGO approaches.

As we can in Figure A10a, the algorithm improves the fitness value permanently
during the run. At the same time, the relative value of the improvements is low, and
coordinates of individuals remain almost the same. The DI value becomes less than rRD at
the early generations and the algorithm decreases the population size (Figure A10b). As we
have mentioned previously, slow convergence and stagnation usually are the result of the
end of the exploration stage and the algorithm prefers to optimize the complete solution
vector instead of decomposition-based subcomponents. As we can see in Figure Al0c,
COSACC-LS1 gives all resources to the component algorithm with no decomposition.

Here it should be noted that in all experiments all component algorithms have a mini-
mum guarantee amount of the computational resource. Even when one of the algorithms
is leading, this can still be the result of the cooperation of multiple decompositions, and
their small contribution essentially increases the performance of the leading algorithm.

As we can see from the presented convergence plots, COSACC-LS1 demonstrates the
self-configuration capability. The approach can adaptively select the best decomposition
option using redistribution of the computational resource. Different behavior for different
LSGO problems ensures that COSACC-LS1 adapts to the topology of the given objective
function. Another feature of the proposed approach is the adaptive control of the population
size that maintains the population diversity and prevents the premature convergence.

Finally, the results of COSACC-LS1 have been compared with state-of-the-art ap-
proaches using the TACO online database. For the comparison, we have selected all
algorithms, which were winners and prize-winners of all previous IEEE CEC LSGO com-
petitions: CC-CMA-ES, CC-RDG3, IHDELS, MLSHADE-SPA, MOS, MPS, SGCC, and
SHADEILS (see Table 2). Additionally, we have added DECC-G as it is used as a baseline
in the majority of studies and experimental comparisons. Table 5 and Figure 3 show the
results of the comparison. For all algorithms, we can see the sum of scores obtained on
all benchmark problems and the sum of scores for each type of LSGO problems. The
following notation for classes of LSGO problems is used: non-separable functions (Class
1), overlapping functions (Class 2), functions with no separable subcomponents (Class 3),
functions with a separable subcomponent (Class 4), and fully-separable functions (Class 5).

Table 5. Comparison of state-of-the-art algorithms.

Class1 Class2 Class3 Class4 Class5 Sum Mean Std

SHADEILS 25 61 49 57 33 225 45 15.49
COSACC-LS1 15 58 48 45 43 209 41.8 16.05
CC-RDG3 12 35 76 68 14 205 41 29.83
MLSHADE-SPA 4 36 56 48 60 204 40.8 2252
MOS 10 32 37 46 58 183 36.6 17.85
IHDELS 8 32 33 28 27 128 256 10.16
MPS 6 7 28 46 13 100 20 16.99
SGCC 18 20 33 23 4 98 19.6  10.45
CC-CMA-ES 2 14 32 19 28 95 19 11.87

DECC-G 1 8 15 24 30 78 156 11.72
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Figure 3. Summary scores of state-of-the-art algorithms.

The LSGO benchmark contains only one fully non-separable problem and three prob-
lems with overlapping components, which are the hardest problems. At the same time,
an algorithm can obtain high summary scores if it has high scores for the type of LSGO
problem, which contains many problems.

As we can see from the comparison, CC-RDG3, SHADE-SPA, and MOS have average
scores for non-separable and overlapping problems but perform well for other types of
LSGO problems. SGCC is the second-best in solving non-separable problems and yields
in solving all the rest. SHADEILS is still the competition winner, but it demonstrates
low performance when solving fully separable problems because it does not use any
decomposition approach that can improve the results for this type.

To better investigate the results for each class of LSGO problems, we have adjusted the
given scores by the number of problems of each class. Table 6 shows the results adjusted
for the number of problems in each class. Figure 4 demonstrates the variance of scores for
the 5 best algorithms. MLSHADE-SPA and MOS obtain high scores for fully-separable
functions (outliers in Figure 4), although the results for all other classes have low variance,
they are below median values of leading approaches. Median values of SHADEILS and
COSACC-LS1 are close, but, as we can see, COSACC-LS1 has less variance thus the results
are more stable. We can see that the variance in SHADEILS is towards larger ranks, at the
same time this is true only with this benchmark set, because the approach is fine-tuned for
the benchmark.

Table 6. Comparison of state-of-the-art algorithms.

Class1 Class2 Class3 Class4 Class5 Sum Mean Std

SHADEILS 25 20.33 12.25 14.25 11 82.83 16.57 5.92
COSACC-LS1 15 19.33 12 11.25 1433 7192 1438 3.18
CC-RDG3 12 11.67 19 17 4.67 64.33 1287 5.57
MLSHADE-SPA 4 12 14 12 20 62 124 573
MOS 10 10.67 9.25 11.5 1933 6075 1215 4.1
IHDELS 8 10.67 8.25 7 9 4292 858 137
SGCC 18 6.67 8.25 5.75 1.33 40 8 6.15
MPS 6 2.33 7 11.5 4.33 3117 623 344
CC-CMA-ES 2 4.67 8 4.75 9.33 2875 575 292

DECC-G 1 2.67 3.75 6 10 2342 468 348
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Figure 4. Variance of the adjusted scores.

Taking into account the number of problems of each type, we can conclude that the
proposed algorithm performs well with all types of LSGO problems. This fact makes
COSACC-LS1 preferable in solving “black-box” LSGO problems when information on
the problem type is not available. At the same time, COSACC-LS]1 proposes a general
framework for hybridization of multiple problem decomposition schemes, a global opti-
mizer, and a local search algorithm, thus it has great potential for further improving its
performance by applying other component approaches.

7. Conclusions

In this paper, a framework for solving LSGO problems has been proposed and a new
optimization algorithm COSACC-LS1 based on the framework has been designed and
investigated. The performance of COSACC-LS1 has been evaluated and compared with
state-of-the-art approaches using the IEEE CEC LSGO 2013 benchmark and the TACO
database. The proposed approach outperforms all LSGO competition winners except for
one approach—SHADEILS. At the same time, COSACC-LS1 performs well with all types
of LSGO problems, while SHADEILS shows poor results on fully-separable problems.

COSACC-LS1 proposed an original hybridization of three main LSGO techniques:
CC, DE, and LS. In this work, we have applied SHADE as a DE component, MTS LS1
as LS, and a new approach for the adaptive selection of problem decomposition (several
variants with different sizes of subcomponents). The proposed framework does not specify
the exact choice of component algorithms, and the user may apply any global and local
search algorithm. In that sense, the proposed approach has potential for improvement.
In our further research we will examine the proposed framework with other stochastic
population-based metaheuristics.

Interaction of three CC-based algorithms demonstrates high performance due to
adaptive redistribution of computational resources. We have visualized the redistribution
and have found that the approach can adapt to a new environment (new landscape of a
LSGO problem). Instead of selecting one variant of decomposition, the interaction allows
the component algorithm with the least amount of resources to still participate in the
optimization process, and we can see that the algorithm contributes to the optimization
process in some regions of the search space.

The well-known “No free lunch” theorem says that it is not possible to choose one
optimization algorithm that performs well for all types and instances of optimization
problems. At the same time, we can relax the theorem by introducing self-adaptive control
of multiple approaches. The approach can adaptively design an effective algorithm (by
giving more computations to the best component algorithm) for a specific optimization
problem, as well as for a specific region of the search space within the optimization process.

Even though the LSGO benchmark contains many types of LSGO problems, many
real-world optimization problems are not well studied and can require fine adjustment of
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some COSACC-LS1 parameters. In further work, we will address the issue of developing an
approach for online adaptation of the internal parameters of the subcomponent optimizers.
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Nomenclature

The following abbreviations are used in this manuscript:

best_foundyefore The best found solution before an optimization cycle

best_found, e, The best found solution after an optimization cycle
CalculateDiversity(population) Function for calculating the diversity of the population

CG; The number of subcomponents of the i-th algorithm

cC —  Function for evolving the population using the cooperative co-
SHADE((population, NP, i) evolution algorithm with NP individuals and i subcomponents

Cr Crossover rate

current — to — pbest /1 Mutation scheme in SHADE

DI Population diversity

Eval NumGenerations Function for calculating a new number of generations

EvalPopsize Function for calculating a new value of the population size

EvalRD Function for calculating relative diversity of the population

F Scale factor

FEV The number of function evaluations

G; The number of generations of the i-th algorithm

Giose The minimal number of generations

Giose The number of generations by which the budget of algorithms is
reduced

Guin The number of generations by which the budget of algorithms is
increases

GetBestFound Function that returns the best-found solution from the population

GetMedianFitness(population) Function that returns the median fitness value in the population

H The number of F and Cr pairs in SHADE

improvment_rate; The change of the best-found fitness of the i-th algorithm in an
optimization cycle

IR A set of indexes of algorithms with the best improvement rate

M The number of algorithms

maxFEVs The maximum number of fitness function evaluations

maxNP The upper bound for the population size

minNP The lower bound for the population size

medianFitnessy, fore The median fitness in the population before an optimization cycle

medianFitness, sier
n

The median fitness in the population after an optimization cycle
The number of decision variables

NI The number of algorithms with the best improvement rate
NP The population size
pool The number of generations for redistribution
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RandomPermutation
RandomPopulation(n, NP)

RD
RFES
rRD
SR[i]
STD
u

Xpbest
Xt

Acronyms

Function that randomly permutes values of a vector
Function that generates a random population with NP individuals
of n variables

The relative diversity

The relative spend of the FEV budget

The required value of RD

A search range for the i-th coordinate in MTS-LS1

The standard deviation

A mutant vector

A random solution chosen from the p best individuals
An individual chosen using the tournament selection

The following acronyms are used in this manuscript:

ABBO
BICCA
CABC
CBCC

CBFO

CcC
CC-CMA-ES
CCDE
CCEA-AVP
CCFR2
CCGA
CC-GDG-
CMAES
CCOABC
CCPSO
CC-RDG3
CCVIL
C-DEEPSO
CEC
COSACC-LS1

CPSO
CPSO-Hk

CPSO-Sk
CPU

DE
DECC-DG
DECC-DG2

DECC-DML
DECC-G

DECC-ML
DECC-XDG
DGSC
DIMA
DMS-PSO
EA

FEPCC

GA

Automated Black-box Optimization

Bi-space Interactive Cooperative Co-evolutionary Algorithm

Cooperative Artificial Bee Colony

Contribution Based Cooperative Co-evolution

Cooperative Bacterial Foraging Optimization

Cooperative Co-evolution

Scaling up Covariance Matrix Adaptation Evolution Strategy

Cooperative Co-evolutionary Differential Evolution

Correlation-based Adaptive Variable Partitioning

Extended Cooperative Co-evolution Framework

Cooperative Co-evolutionary Approach for Genetic Algorithm

Competitive Divide-and-conquer Algorithm Covariance Matrix Adaptation
Evolution Strategy

Cooperative Co-evolution Orthogonal Artificial Bee Colony

Cooperatively Co-evolving Particle Swarms Algorithm

Cooperative Co-evolution Recursive Differential Grouping

Cooperative Co-evolution with Variable Interaction Learning

Canonical Differential Evolutionary Particle Swarm Optimization

IEEE Congress on Evolutionary Computation

Coordination of Self-adaptive Cooperative Co-evolution Algorithms with Local
Search

Cooperative Approach to Particle Swarm Optimization

Combination of Cooperative Approach to Particle Swarm Optimization with k
Subcomponents with the Standard Particle Swarm Optimization

Cooperative Approach to Particle Swarm Optimization with k Subcomponents
Central Processing Unit

Differential Evolution

Cooperative Co-Evolution with Differential Grouping

Cooperative Co-Evolution with A Faster and More Accurate Differential Group-
ing

Cooperative Co-evolution with Delta Grouping

Self-Adaptive Differential Evolution with Neighborhood Search with Coopera-
tive Co-evolution

Multilevel Cooperative Co-evolution with More Frequent Random Grouping
Cooperative Co-Evolution with Extended Differential Grouping

Differential Grouping with Spectral Clustering

Dependency Identification with Memetic Algorithm

Dynamic Multi-Swarm Particle Swarm Optimizer

Evolutionary Algorithm

Fast Evolutionary Programming with Cooperative Co-evolution

Genetic Algorithm
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%100

F1

IHDELS
IPOPCMA-ES

IRRG
JADE
L-BFGSB
LSGO
L-SHADE

MLCC
MLSHADE-SPA
MOS

MPICH2
MPS-CMA-ES

MTS
MWW
NSGA-2
PSO
SACC

SaDE
SaNSDE
SGCC
SHADE-ILS

TACO
VMODE

Iterative Hybridization of Differential Evolution with Local Search

Restart Covariance Matrix Adaptation Evolution Strategy with Increasing
Population Size

Incremental Recursive Ranking Grouping

Adaptive Differential Evolution with Optional External Archive
Limited-memory the Broyden—Fletcher-Goldfarb—Shanno algorithm
Large-Scale Global Optimization

Iteratively Applies Success History-Based Differential Evolution with Linear
Population Size Reduction

Multilevel Cooperative Co-evolution

Memetic Framework for Solving Large-scale Optimization Problems
Multiple Offspring Sampling

Message Passing Interface Chameleon

Hybrid of Minimum Population Search and Covariance Matrix Adaptation
Evolution Strategy

Multi-trajectory Search

Mann-Whitney-Wilcoxon

Non-dominated Sorting Genetic Algorithm

Particle Swarm Optimization

Cooperative Co-evolution with Sensitivity Analysis-based Budget Assign-
ment Strategy

Self-Adaptive Differential Evolution

Self-Adaptive Differential Evolution with Neighborhood Search
Cooperative Co-evolution with Soft Grouping

Success-History Based Parameter Adaptation for Differential Evolution with
Iterative Local Search

Toolkit for Automatic Comparison of Optimizers

Variable Mesh Optimization Differential Evolution

Appendix A. Plots of Convergence, the Population Size, and Redistribution of the
Computational Resources
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Figure A1. The dynamics of COSACC-LS1 on the F1 problem: (a) Convergence; (b) Population size;
(c) Redistribution of resources.
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Figure A2. The dynamics of COSACC-LS1 on the F2 problem: (a) Convergence; (b) Population size;
(c) Redistribution of resources.
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Figure A3. The dynamics of COSACC-LS1 on the F3 problem: (a) Convergence; (b) Population size;
(c) Redistribution of resources.
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Figure A4. The dynamics of COSACC-LS1 on the F4 problem: (a) Convergence; (b) Population size;
(c) Redistribution of resources.
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Figure A5. The dynamics of COSACC-LS1 on the F5 problem: (a) Convergence; (b) Population size;
(c) Redistribution of resources.
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Figure A6. The dynamics of COSACC-LS1 on the F6 problem: (a) Convergence; (b) Population size;
(c) Redistribution of resources.
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Figure A7. The dynamics of COSACC-LS1 on the F7 problem: (a) Convergence; (b) Population size;
(c) Redistribution of resources.
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Figure A8. The dynamics of COSACC-LS] on the F8 problem: (a) Convergence; (b) Population size;
(c) Redistribution of resources.
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Figure A9. The dynamics of COSACC-LS1 on the F9 problem: (a) Convergence; (b) Population size;
(c) Redistribution of resources.
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Figure A10. The dynamics of COSACC-LS1 on the F10 problem: (a) Convergence; (b) Population
size; (c) Redistribution of resources.
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Figure A11. The dynamics of COSACC-LS1 on the F11 problem: (a) Convergence; (b) Population
size; (c) Redistribution of resources.
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Figure A12. The dynamics of COSACC-LS1 on the F12 problem: (a) Convergence; (b) Population
size; (c) Redistribution of resources.
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Figure A13. The dynamics of COSACC-LS1 on the F13 problem: (a) Convergence; (b) Population

size; (c) Redistribution of resources.
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Figure A14. The dynamics of COSACC-LS1 on the F14 problem: (a) Convergence; (b) Population
size; (c) Redistribution of resources.
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Figure A15. The dynamics of COSACC-LS1 on the F15 problem: (a) Convergence; (b) Population
size; (c) Redistribution of resources.
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