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Abstract: This article presents the results of the implementation of a forecasting model, to predict
the relief materials needed for assisting in decisions prior to natural disasters, thus filling a gap in
the exploration of Generalized Linear Mixed Models (GLMM) in a humanitarian context. Demand
information from the State of Sao Paulo, Brazil was used to develop the Zero Inflated Negative
Binomial Multilevel (ZINBM) model, which gets to handle the excess of zeros in the count data and
considers the nested structure of the data set. Strategies for selecting predictor variables were based
on the understanding of the needs for relief supplies; consequently, they were derived from vulnera-
bility indicators, demographic factors, and occurrences of climatic anomalies. The model presents
coefficients that are statistically significant, and the results show the importance of considering the
nested structure of the data and the zero-inflated nature of the outcome variable. To validate the
fitness of the ZINBM model, it was compared against the Poisson, Negative Binomial (NB), Zero
Inflated Poisson (ZIP), and Zero Inflated Negative Binomial (ZINB) models.

Keywords: zero-inflated models; count data models; multilevel models; hierarchical models; random
effects; nested models; relief demand forecasting model; humanitarian logistics

MSC: 62J12

1. Introduction

In the aftermath of a disaster, scarcity or mismanagement of relief supplies can com-
promise the emergency response. Therefore, precise information about relief supplies is
highly important for humanitarian operations and for the reduction of post-disaster losses.

However, there are few works about demand forecasting in the humanitarian area [1,2];
according to [3], some possible causes are the low awareness and understanding by social
organizations of the value of demand prediction.

Most previous studies focused on forecasting food demand after a disaster. Ref. [4]
proposed a model to calculate the probability of starvation. Ref. [5] predicted food donation
by type of donor and location. Refs. [6,7] estimated the food demand after an earthquake.
In addition, Ref. [8] focused on the demand of agricultural products.

Another group of studies addressed the prediction of relief materials demand. Ref. [9]
analyzed demand by type of material. Ref. [10] evaluated demand by type of donor. In
addition, Ref. [11] predicted the overall demand.

Finally, Refs. [12,13] developed models to predict the number of affected people
by earthquakes. Refs. [14,15] predicted the blood demand and fuel demand after a
disaster, respectively.
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Earthquakes were the most addressed disaster type; hurricanes, floods, avalanches,
and other sudden onset disasters were less common. Furthermore, the preference to apply
Artificial Intelligence (AI) models was evident. Support Vector Machine (SVM), Neural
Network (NN), Case-Based Reasoning (CBR), Principal Component Analysis (PCA) and
hybrid models were employed in ten of fourteen papers. Four papers proposed time series
based models, the Autoregressive integrated moving average (ARIMA) model being the
most common.

All of these past studies addressed demand forecasting in the response phase of the
disaster, so they took as a fact the existence of demand for relief supplies. When predicting
that demand before a disaster in a large, country-size area, for each of the many counties or
provinces, historical data shows that many of their outputs are zero, as most sudden onset
disasters have limited geographical scope. This adds to the complexity to recognize the
presence (or absence) of demand.

With this motivation, the present study aims to implement a relief supply demand
forecasting model using actual data from the state of Sao Paulo, Brazil, which has the same
size of the United Kingdom. Although the state of Sao Paulo is not susceptible to large-scale
disasters, smaller-scale disasters are frequent, especially in vulnerable regions with extreme
social inequalities [16,17].

As demand values present an excessive amount of zeros, Zero-Inflated (ZI) and hurdle
models can be appropriated for the study’s goal [18,19]. Hurdle models assume that all
zeros are generated by a structural source, which adds a strong restriction in the model.
On the other hand, the zero values from ZI models can be generated either by a structural
source or a sampling source [20]. Relief supply demand’s structural source of zeros is
concerning the occurrence of a disaster. However, it is possible to obtain sampling zeros
when a disaster occurs.

Thus, the main contribution of this study is to approach a little explored phenomenon-
supply demand forecasting for disaster response by employing an innovative Zero-Inflated
Negative Binomial Multilevel (ZINBM) model, which considers not only the structural and
sample zeros, but also the hierarchic groupings of the dataset.

One of the key features of this study is to consider the hierarchical character presented
by the municipalities of Sao Paulo through a multilevel model that allows us to combine
information at the individual and group levels, allowing greater efficiency when estimating
coefficients for specific groups or identifying effects at the aggregate level, as evidenced
in the study [21]. Another important contribution is that this is the first study in the
humanitarian area that addresses the demand forecasting from an accumulative perspective,
having to deal with the excess of zeros in the data.

To validate the suitability of the ZINBM model, a Poisson model was implemented at a
first stage to determine whether the data presented over-dispersion; finally, the performance
of the proposed model was compared against some base models: Negative Binomial (NB),
Zero-Inflated Poisson (ZIP), and Zero-Inflated Negative Binomial (ZINB).

The principal challenges in the study were the limited amount of data and the com-
plexity of the features for prediction and the uncertainty, typical of these kinds of models.

2. Materials and Methods
2.1. Data

The data employed for this study include the aggregated demand in kilograms of
relief supplies in the municipalities of Sao Paulo from 2015 to 2020. The data set was
constituted by 443 registers with the name of the municipality, the year of the event and
the amount of the demand. All years that each municipality did not require relief supplies
were considered as demand equal to zero. From the 645 municipalities of the state, only
161 needed supplies at some point in the five years. These data were obtained from the
Coordenadoria Estadual de Proteção e Defesa Civil do Estado de São Paulo (CEPDEC-SP),
the Sao Paulo Civil Defense Coordination.
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More of the 80% of the demand is composed of basic food baskets and cleaning kits.
Other products were requested in smaller proportions, as shown in Figure 1.

Figure 1. Composition of the demand by type of relief supply.

Figure 2 displays the number of requests by municipality in the five-year period. Here,
it is possible to observe the great quantity of zero values and the over-dispersion in the
demand, factors that made it necessary to apply Generalized Linear Models (GLM)s, which
are specific for count data regression models.

Figure 2. Histogram of the average demand for relief supplies.

2.2. Predictor Variables

The predictor variables were selected considering the vulnerability of the munici-
palities (IPVS), demographic aspects, and climatic anomalies caused by the El Niño phe-
nomenon. Table 1 describes each variable.
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Table 1. Description of the predictor variables.

Predictor Variable Description Source

IPVS
Composite indicator of socioeconomic

characterization of census sectors in the
State of São Paulo

Governo Aberto SP

Climatic anomaly

Monitoring variations in temperature,
precipitation, air pressure, and

atmospheric circulation in the equatorial
Pacific Ocean

ENSO

Estimated population Population projections based on the 2010
Demographic Census IBGE

The IPVS contemplates the inequality of the municipalities and the localization of their
poverty areas. Among the factors considered by the vulnerability level IPVS are the income,
literacy, health, job opportunities, and access to services offered by the state and social
mobility opportunities. The seven vulnerability levels of the IPVS were aggregated in three
groups: very high, high and moderate vulnerability, to improve the statistical significance
of the predictor variables in the model.

The climatic anomaly variable is related with the happening of the phenomenon El
Niño, so it is mapped as a categorical variable with values “yes” and “no”. This value was
taken from the result of the prevision system ENSO, which annually publishes an alert of
the phenomenon.

The Brazilian Institute of Geo-Statistics IBGE issues each year an estimation of the
population for each municipality. The methodology employed for the estimation is based on
the tendency of the population growth observed in the last two census, for each municipality.
Due the scale of the populations in the municipalities, the final predictor was obtained by
taking the logarithm of the value.

To determine the levels in the ZINBM model, a categorical variable was generated
applying the K-means clustering method [22]. The disaster susceptibility of each munici-
pality was considered as the only variable to calculate the distance among observations
and generate the clusters. A different number of clusters were tested and scored calculating
the Silhouette Coefficient [23]; Figure 3 shows the silhouette values; it can be evidenced
that the optimum value of clusters is three.

Figure 3. Silhouette-coefficient.

Table 2 shows descriptive statistics for quantitative and qualitative variables.
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Table 2. Descriptive statistics or frequency of variables involved in the model.

Demand Population Logarithm Climate Anomaly Vulnerability Clusters

Min.: 0.0 Min.: 6.7
1Q.: 0.0 1Q.: 8.7 Freq.“moderate”: 270 Freq.“a”: 15

Median: 0.0 Median: 9.6 Freq.“no”: 645 Freq.“high”: 942 Freq.“b”: 1124
3Q.: 0.0 3Q.: 10.7 Freq.“yes”: 645 Freq.“very high”: 78 Freq.“c”: 151

Max.: 22,847 Max.: 16.3
Average: 241.9 Average: 9.7

Note 1: Q. stands for quartile. Note 2: Freq. stands for Frequency.

2.3. Methodology

The predictor variables and the demand show nonlinear relationships, which points to
the use of GLMs that apply advanced statistical techniques for parameters adjustment. As
the demand is a positive integer number, a Poisson regression and a NB models were con-
sidered. Both models belong to a subgroup of the GLMs, known as count data models [24].

To select the appropriated counting model, it is necessary to identify the characteristics
of the dispersion of the data. The existence of over-dispersion was identified in the data
of the outcome variable, through the test proposed by [25], making the NB model more
suitable than the Poisson model. The result is shown in Table 3.

Table 3. Results of the test for over-dispersion verification.

Lambda t Test Score p-Value

4.4755 8.3 × 10−6

To confirm the excess of zeros in the outcome variable of the demand for relief supplies,
the Vuong test [26] was applied, which compares the likelihood functions between the
zero-inflated model with the traditional analogue model. Table 4 displays the result of the
Vuong test and the corrections proposed in the paper [27] when comparing the NB model
with the ZINB.

Table 4. Results of the Vuong test NB × ZINB.

Vuong z-Statistic p-Value

original 40.6094 0.0000
AIC-corrected 40.6088 0.0000
BIC-corrected 40.6073 0.0000

The value of the Vuong test estimate is z = 40.6094, and the corrected statistics AIC
and Bayesian Information Criterion (BIC) are z = 40.6088 and z = 40.6073, respectively. All
the results have p-values lower than 0.05. Therefore, the ZINB model is more suitable in
comparison with the NB model.

The ZI models combine a binary model with a data count model. This way, the
binary element helps to determine the presence of a zero response, known as structural zero.
Meanwhile, the data count element determines the occurrence of a phenomenon, it being
possible to output a zero response, known as sample zero [18].

The existence of different vulnerabilities of the municipalities, related to geographic,
social, and economic factors, that reduce the opportunities for preventing natural disasters,
suggests a nested structure in the data. This characteristic limits the good fitness of the
GLM models, creating the need of the application of Generalized Linear Mixed Models
(GLMM), also called “multi-level” models, which take into consideration the existence of
dependence among observations of the same group [28].
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Consequently, for the purpose of the study, a ZINBM model was implemented for the
supply demand forecasting because it is capable of handling count data with the excess of
zeros, taking into account the hierarchical structure of the dataset.

The Poisson, NB, ZIP, and ZINB models were implemented, to compare and validate
the fitness of the ZINBM model.

In this work, all estimates are obtained using the R software version 4.0.4, with the
MASS package for the Poisson and NB models, the pscl package for the ZINB model, and
the glmmTMB package for the model ZINBM.

3. Results

The results of the estimations of the models NB, ZINB, and ZINBM are presented in
Table 5.

Table 5. Estimations of NB, ZINB, and ZINBM.

NB ZINB ZINBM

Fixed Effects

Intercept −1.05 1 2.98 1 3.96 1

(0.0000) (0.0000) (5 × 10−6)
Climate anomaly 0.60 1 1.26 1 1.99 1

(0.0000) (0.0000) (0.0000)
Population logarithm 0.59 1 0.35 1 0.26 1

(0.0000) (0.0000) (0.0000)

Logistic Component

High vulnerability - 1.74 1 1.74 1

- (4× 10−6) (4× 10−6)
Moderate vulnerability - 1.62 1 1.62 1

- (0.0000) (0.0000)
Very high vulnerability - −1.43 1 −1.43 1

- (0.0000) (0.0000)

Random Effects

cluster a - - 1.31
cluster b - - −1.21
cluster c - - 0.19

Observations 1290 1290 1290

Log-likelihood −191,674 −1964 −1954

Note: p-values are in parentheses. 1 Statistically significantly different from zero at 99% confidence.

Low p-values (<0.01) suggest that the coefficients are statistically significant consid-
ering a significance level of 1% and tell us how well each predictor variable is capable of
predicting the value of the response variable.

The logistic component of the ZINB and ZINBM models indicates that the increase
of one unit in the moderate vulnerability increases the chance of structural zeros by 3%
(e1.74+1.62/(1 + e(1.74+1.62)) = 0.97), 15% for high vulnerability and 42% for very high vul-
nerability, therefore confirming that the vulnerability variable has a preponderance in the
absence of demand for relief supplies in the municipalities. On the other hand, the NB
model is not capable of identifying the effect of the vulnerability over the demand. The
ZINBM estimation has the ability to estimate random effects for the three generated clusters
for the municipalities of Sao Paulo. Thus, this model presents in the random effects different
error terms related to the intercepts for each group of municipalities that characterize the
hierarchical levels.

Equation (1) corresponds to the NB model. The ZINB model is represented by Equa-
tion (2) showing both the logistic and the count component. Finally, Equation (3) displays
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the ZINBM model, its logistic and count components, and the random error terms for the
intercepts (v0j):

di = −1.04968 + 0.60127climate_anomalyyesi + 0.59088population_logi, (1)

di =

{
1 − 1

1 + e[−(1.74095+1.62079vulmoderatei
−1.43442vulveryhighi

)]

}
∗ e[2.98137+1.26171climate_anomalyyesi−0.34713population_logi ], (2)

dij =

{
1 − 1

1 + e[−(1.74001+1.6208vulmoderateij−1.43433vulveryhighij )]

}
∗ e[3.95972+1.99652climate_anomalyyesij−0.26204population_logij+v0j ], (3)

The fit of the GLM models was evaluated through AIC and log-likelihood. The AIC
metric calculates the response variance penalizing it by the number of features of the model.
Therefore, the model with less variance and features will obtain a lower AIC and will be
considered as the best fit [29].

For comparison purposes, in addition to the ZINBM model, the following models
are presented: Poisson, ZIP, NB, and ZINB. Table 6 presents the value of AIC and the
log-likelihood associated with each model.

Table 6. Comparison of fit measures of models.

Models Log-Likelihood AIC

Poisson −708,513 1,417,033
NB −708,058 1,416,125
ZIP −191,674 383,361

ZINB −1964 3942
ZINBM −1954 3925

The Likelihood Ratio Test (LRT) is applied to compare the goodness of fit of two
statistical models [30]. Table 7 shows the result of the test, comparing the ZINBM model
(Model 1) with the ZINB model (Model 2). The p-value obtained lower than the significance
level (5%) indicates that Model 1 offers a significant improvement in fit over Model 2.

Table 7. Results of the Likelihood Ratio Test (LRT).

Loglink Df Chisq Pr(>Chisq)

Model 1 −1954.7
Model 2 −1964.1 −1 18.833 1.43 × 10−5

Figure 4 presents demand histograms and estimates from the models ZINB and
ZINBM. Both models were able to explain the behavior of excess zeros in demand. However,
high demand values, which can be inferred as a result of disaster occurrences, are better
estimated by the ZINBM model.

There are cases where the ZINBM model presents an overestimation in demand, which
can be reflected in the increase in inventory costs. Overall, in the context of disasters and
emergencies, it is a priority to avoid a lack of relief supplies, which can mean human loss
and suffering.
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Figure 4. Histogram of actual demand × estimated demand.

Figure 5 shows the demand geographically, where each column corresponds to a
demand interval, and each point represents the demand of a specific municipality.

Both models, ZINB and ZINBM, presented a concentration of estimates in the first
range from 0 to 999 kg, which is caused by the excess of zeros in the real demand data. In
the range from 1000 to 1999 kg, the ZINBM model overestimates the demand for some
municipalities and one can consider a better performance of the ZINB model. In the ranges
from 2000 to 2999 kg and greater than 3000 kg of demand, the ZINBM model generates
more adherent estimates, in relation to the ZINB model.

Figure 5. Geographic view of actual demand vs. estimated demand.

4. Discussion and Conclusions

The present study is the first to address demand forecasting for relief supplies from a
disaster preparedness perspective. We present and evaluate three models, NB, ZINB, and
ZINBM, using exactly the same variables.

Strategies for selecting predictor variables were based on the understanding of the
needs for relief supplies. The predictor variables are derived from vulnerability indicators,
demographic factors, and occurrences of climatic anomalies related to the El Niño phe-
nomenon. To establish the levels of the hierarchical model, the number of disasters was
considered as the only dimension.

When considering the NB model in relation to the ZINB and ZINBM models, an
underestimation of the climatic anomaly parameters and an overestimation of the predictor
variable of the estimated population logarithm can be seen. The NB model is biased because
it does not consider the excess of zeros in the outcome variable, and the estimate of NB
does not identify the effect of the vulnerability. The logistic component of the models ZINB
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and ZINBM shows the effect of vulnerability on the values of structural zeros, confirming
this way that the vulnerability variable has a preponderance in the absence of demand
for relief supplies, that is, the lower the vulnerability level of a given municipality, the
greater the probability of obtaining demands with zero value. Even though the ZINB model
takes zero inflation into account, it fails to capture the natural nesting of data between
municipalities. This bias is not evidenced in the logistical component. The random effects
of each group of municipalities that characterize the hierarchical levels of the ZINBM model
showed different error terms related to intersections, in addition to a slight smoothing in
the logarithm variable of the estimated population. The evaluation of the models through
the metrics of AIC and log-likelihood and the comparison of the values of the estimated
demand with the real demand showed a better fit of the model ZINBM that reached the
lowest values of AIC and log-likelihood and generated the most adherent estimates among
all the models developed, demonstrating the superiority of GLMM models, in relation to
GLM, when there is natural nesting in the data. The proposed model can be easily and
regularly updated with new estimated population information and ENSO predictions.
Such a forecasting model can prove to be a valuable tool for raising awareness of demand
for supplies during the disaster preparedness phase.

Future research may apply the approach for the estimation of zero-inflated generalized
in other regions that present data with similar characteristics, that is, models where the
outcome variable presents an excess number of zeros and the data set has a multilevel
perspective that requires random effects.
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The following abbreviations are used in this manuscript:

GLM Generalized Linear Models
GLMM Generalized Linear Mixed Models
ZI Zero Inflated
NB Negative Binomial
ZINB Zero-Inflated Negative Binomial
ZIP Zero-Inflated Poisson
ZINBM Zero-Inflated Negative Binomial Multilevel
CEPDEC-SP Coordenadoria Estadual de Proteção e Defesa Civil do Estado de São Paulo
IBGE Instituto Brasileiro de Geografia e Estatística
ENSO El Niño Southern Oscillation
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IPVS Índice Paulista de Vulnerabilidade Social
LRT Likelihood Ratio Test
EWMA Exponentially Weighted Moving Average
IF Intuitionistic Fuzzy
CBR Case-Based Reasoning
PCA Principal Component Analysis
SVM Support Vector Machine
SVR Support Vector Regression
MA Moving Average
ETS Exponential Smoothing
EM Ensemble Model
LSTM Long Short-Term Memory
RPCA Robust Principal Component Analysis
AI Artificial Intelligence
NN Neural Network
RBF Radial Basis Function
ARIMA Autoregressive integrated moving average
PCR Principal Component Regression
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