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Abstract: The novel concept of focality is introduced for Borel probability measures on compact
Hausdorff topological spaces. We characterize focal Borel probability measures as those Borel
probability measures that are strictly positive on every nonempty open subset. We also prove the
existence of focal Borel probability measures on compact metric spaces. Lastly, we prove that the set
of focal (regular) Borel probability measures is convex but not extremal in the set of all (regular) Borel
probability measures.
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1. Introduction

The notions of depth and focality appear naturally in the optimal design of transcranial
magnetic stimulation (TMS) coils. In such a context, these ideas refer to how deeply an
electromagnetic field can be induced to a certain 3-dimensional body. In the excellent work
of [1], the electric field penetration was quantified with the half-value depth, d1/2, focality
with the tangential spread, S1/2, defined as the half-value volume (V1/2) divided by the
half-value depth:

S1/2 =
V1/2

d1/2
. (1)

Formula (1) was implemented in [2] (Equation (4.1)) as part of a constraint in a single-
optimization problem that pretends to minimize the stored energy in the coil:{

min ψT Lψ
subject to S1/2 = S0

1/2, (2)

where L ∈ RN×N is the inductance matrix (symmetric and positive definite), ψ ∈ RN , S1/2
is the focality, and S0

1/2 is the corresponding focality of the coil 0.
The Euclidean metric and the Lebesgue measure are implicitly used in Formula (1).

Those are the standard metric and measure employed in physics and engineering because,
among other reasons, the Euclidean metric and the Lebesgue measure do not satisfy
pathological properties such as vanishing on nonempty open subsets. However, in abstract
topology and abstract measure theory, the existence of pathological metrics and measures is
quite normal. Despite this, abstract measure theory has many applications not only in other
areas of mathematics, but also in different disciplines such as physics or bioengineering.
This manuscript takes the concept of focality as the motivating basis to add it to a more
general and abstract scope. We introduce the novel concepts of focal continuous real-valued
mappings and focal (regular) Borel probability measures, unveiling their geometric and
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topological properties. The novelty of this approach consists in the relationship with focal
continuous real-valued functions and in establishing connections to regular Borel measures
with finite variation. Among other results, we prove the existence of focal Borel probability
measures on compact metric spaces (Theorem 3). We also demonstrate that the set of
focal (regular) Borel probability measures is a convex but not extremal subset of the set of
(regular) Borel probability measures (Theorem 5). In this way, we give an example that
provides interesting information about the geometry of the unit ball of the dual of the
space of real-valued continuous functions on K, C (K), where K is a compact Hausdorff
topological space.

2. Preliminaries

If X is a topological space, then B(X), or simply B if there is no confusion with X,
stands for the Borel σ-algebra of X, that is, the smallest σ-algebra of X containing the
closed subsets of X. The elements of B(X) are called the Borel subsets of X. A Borel
measure µ on X is a σ-additive measure defined on B(X) with values in a Hausdorff
topological left-module M over a Hausdorff topological ring R, that is, a mapping µ:
B(X)→ R M satisfying that for every pairwise-disjoint sequence (An)n∈N of Borel subsets
of X, µ(

⋃
n∈N An) = ∑n∈N µ(An). We focus on regular Borel probability measures on

compact Hausdorff topological spaces. Explicit examples are given in Appendix B.
If K is a compact Hausdorff topological space, then C (K) stands for the Banach space

of real-valued continuous functions on K. If f ∈ C (K), then ‖ f ‖∞ := max | f |(K) (see [3]
for further reading on the spaces of continuous functions). P(K) denotes the set of all Borel
probability measures on K, that is, countably additive measures µ: B(K)→ [0, 1] such that
µ(K) = 1. P(K) is trivially a convex subset of the vector space M(K) of real-valued Borel
measures on K. According to [4,5] (see also [6] (Chapter 4)), C (K)∗ can be isometrically
identified with the Banach space

rca(K) := {µ ∈M(K) : µ is a regular Borel measure of finite variation}, (3)

endowed with the total variation via the action given by

µ( f ) :=
∫

K
f dµ. (4)

P(K) ∩ rca(K) is a convex subset of the unit sphere of rca(K) (see Appendix A for
more details). Indeed, given µ1, µ2 ∈ P(K) ∩ rca(K) and t ∈ [0, 1], we have that tµ1 +
(1− t)µ2 ∈ rca(K) because rca(K) is a linear space, and tµ1 + (1− t)µ2 ∈ P(K) because
tµ1(K)+ (1− t)µ2(K) = 1 and tµ1(A)+ (1− t)µ2(A) ∈ [0, 1] for all Borel subset A ∈ B(K).
Moreover, if µ ∈ P(K) ∩ rca(K), then its total variation is µ(K) = 1, so P(K) ∩ rca(K) is a
convex subset of the unit sphere of rca(K). We refer the reader to [7] for a wider perspective
on these concepts.

For a general metric space X, notations BX(x, r) and SX(x, r) stand for the closed
ball of center x ∈ X and radius r > 0 and the sphere of center x ∈ X and radius r > 0,
respectively. If X is a normed space, then BX and SX stand for the closed unit ball and the
unit sphere, respectively.

3. Results

This section is divided into four subsections. In the first, a classical measure theory
result on the measure of the union of increasing countable families of measurable subsets
is extended to uncountable families. In the second, we define focality for real-valued
continuous functions on a compact Hausdorff topological space. The third subsection
focuses on the focality of (regular) Borel probability measures. Lastly, the fourth subsection
shows that the set of focal (regular) Borel probability measures is a convex but not extremal
subset of the set of (regular) Borel probability measures.
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3.1. Increasing/Decreasing Families of Measurable Subsets

A classical measure theory result establishes that the measure of the union a countable
increasing family of measurable subsets can be computed as the limit of the sequence of
the measures of the subsets. This result was transported in [8] to the scope of measures
defined on a effect algebra and valued on a topological module over a topological ring.
Here, we extend [8] to uncountable families with countable cofinal subsets. However, we
first recall [8] and prove it for the sake of completeness.

Theorem 1. Let (Ω, Σ) be a measurable space. Let M be a Hausdorff topological module over a
Hausdorff topological ring R. Let µ: Σ→ M be a countably additive measure. If (An)n∈N ⊆ Σ is
an increasing sequence of measurable subsets of Ω, then (µ(An))n∈N converges to µ(

⋃
n∈N An).

Proof. For every k ≥ 2, ∑k
n=2(µ(An)− µ(An−1)) = µ(Ak)− µ(A1). Therefore

µ

(⋃
n∈N

An

)
= µ

(
A1 ∪

⋃
n≥2

(An \ An−1)

)
= µ(A1) + µ

(⋃
n≥2

(An \ An−1)

)

= µ(A1) +
∞

∑
n=2

(µ(An)− µ(An−1)) = µ(A1) + lim
n→∞

(µ(An)− µ(A1))

= lim
n→∞

µ(An).

Corollary 1. Let (Ω, Σ) be a measurable space. Let M be a Hausdorff topological module over a
Hausdorff topological ring R. Let µ: Σ→ M be a countably additive measure. If (An)n∈N ⊆ Σ is a
decreasing sequence of measurable subsets of Ω, then (µ(An))n∈N converges to µ(

⋂
n∈N An).

Proof. Through Theorem 1, (µ(Ω \ An))n∈N converges to

µ

(⋃
n∈N

(Ω \ An)

)
= µ

(
Ω \

⋂
n∈N

An

)
= µ(Ω)− µ

(⋂
n∈N

An

)
.

Lastly, it only suffices to observe that µ(Ω \ An) = µ(Ω)− µ(An) for all n ∈ N.

If I is a directed set, and J ⊆ I is cofinal (see, for example, [9] (p. 461)), then any
decreasing family of sets indexed by I satisfies that

⋂
i∈I Ai =

⋂
j∈J Aj. Indeed, it is clear

that
⋂

i∈I Ai ⊆
⋂

j∈J Aj and if a ∈ ⋂j∈J Aj, then for every i ∈ I there exists j ∈ J with i ≤ j,
so Aj ⊆ Ai, hence a ∈ Aj ⊆ Ai. Using the notion of cofinal set, we extend Corollary 1 to
nets as follows.

Corollary 2. Let (Ω, Σ) be a measurable space. Let M be a Hausdorff topological module over a
Hausdorff topological ring R. Let µ: Σ→ M be a countably additive measure. Let I be a nonempty
directed set that has a countable cofinal subset J ⊆ I. If (Ai)i∈I is a decreasing family of measurable
subsets of Ω such that

⋂
i∈I Ai is measurable, then the net (µ(Ai))i∈I converges to µ(

⋂
i∈I Ai).

Proof. Suppose, on the other hand, that (µ(Ai))i∈I does not converge to µ(
⋂

i∈I Ai). Then,
we can find a neighborhood W of µ(

⋂
i∈I Ai), such that, for all i ∈ I. there exists k ∈ I

with k ≥ i, such that µ(Ak) /∈ W. Let us write J = (jn)n∈N. We construct an increasing
sequence (kn)n∈N on I using induction. For n = 1, we choose a k1 ∈ I, such that k1 ≥ j1
and µ(Ak1) /∈W. Assume that, for some n ∈ N, we had already defined k1, . . . , kn, and take
kn+1 ∈ I, such that

kn+1 ≥ jn+1, kn+1 ≥ kn, µ
(

Akn+1

)
/∈W.
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Since jn ≤ kn for all n ∈ N, and J is cofinal in I, then (kn)n∈N is cofinal in I. Therefore,⋂
i∈I Ai =

⋂
n∈N Akn and (Akn)n∈N is decreasing. Via Corollary 1,

µ

(⋂
n∈N

Akn

)
= lim

n→∞
µ(Akn).

However, the previous equality contradicts the fact that µ(Akn) /∈W for every n ∈ N.

The final corollary of this first subsection displays the version of the previous result
for increasing uncountable families with a countable cofinal subset. We spare the reader
the details of the proof.

Corollary 3. Let (Ω, Σ) be a measurable space. Let M be a Hausdorff topological module over a
Hausdorff topological ring R. Let µ: Σ→ M be a countably additive measure. Let I be a nonempty
directed set that has a countable cofinal subset J ⊆ I. If (Ai)i∈I is an increasing family of measurable
subsets of Ω such that

⋃
i∈I Ai is measurable, then net (µ(Ai))i∈I converges to µ(

⋃
i∈I Ai).

3.2. Focality of Continuous Functions

We begin by defining the notion of focality for continuous real-valued functions with
respect to a certain measure. However, we first need to introduce the regions of interest.

Definition 1 (α-Region). Let K be a compact Hausdorff topological space. If f ∈ C (K) and
α ∈ [0, 1], then

Kα( f ) := {x ∈ K : | f (x)| ≥ α‖ f ‖∞} (5)

is usually called an α-region.

Obviously, the net of α-regions (Kα( f ))α∈[0,1] decreases from K0( f ) = K to K1( f ) =
{x ∈ K : | f (x)| = ‖ f ‖∞}. Clearly, every α-region is closed in K and hence compact. The
open α-regions are defined as the topological interior of the α-regions.

Definition 2 (Open α-region). Let K be a compact Hausdorff topological space. If f ∈ C (K) and
α ∈ [0, 1], then Oα( f ) := int(Kα( f )) is usually called an open α-region.

Notice that
{x ∈ K : | f (x)| > α‖ f ‖∞} ⊆ Oα( f ). (6)

As a consequence, if 0 ≤ α < 1, then every α-region has a nonempty interior because
{x ∈ K : | f (x)| > α‖ f ‖∞} is a nonempty open subset of K contained in Kα( f ).

The next result shows that, if µ is a Borel probability measure on K, then µ(K1( f )) can
be obtained as the limit of the net (µ(Kα( f )))α∈[0,1).

Proposition 1. Let K be a compact Hausdorff topological space. Let f ∈ C (K). Let µ be a Borel
probability measure on K. Then, net (µ(Kα( f )))α∈[0,1) converges to µ(K1( f )).

Proof. We apply Corollary 2. In the first place, the interval [0, 1) is totally ordered and
has a countable cofinal subset

{
1− 1

n : n ∈ N
}

. Next, (Kα( f ))α∈[0,1) is a decreasing family
of Borel subsets of K, in such a way that

⋂
α∈[0,1) Kα( f ) = K1( f ) is a Borel subset of K.

In accordance with Corollary 2,

µ(K1( f )) = lim
α∈[0,1)

µ(Kα( f )).
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In many physics problems [2], α-regions that are of interest are those with a positive
measure. This motivates the following definition.

Definition 3 (Focal function). Let K be a compact Hausdorff topological space. Let µ be a Borel
probability measure on K. Function f ∈ C (K) is µ-focal if there exists α ∈ (0, 1), such that
µ(Kα( f )) > 0.

Now, focal mappings allow for extending Formula (1) to abstract settings.

Definition 4 (Depth and focality). Let K be a compact metric space. Let µ be a Borel probability
measure on K. Let f ∈ C (K) be µ-focal, and take α ∈ (0, 1) such that µ(Kα( f )) > 0; then, we can
define the α-depth as

ρα := max{d(k, K1( f )) : k ∈ Kα( f )} (7)

and the α-focality as
φα :=

ρα

µ(Kα( f ))
. (8)

From [10] (Theorem IX.4.3, p. 185), we have the following remark (see also [11] for
metrics in linear spaces).

Remark 1. Let X be a metric space. Let A ⊆ X a nonempty subset of X. Function

d(•, A) : X → [0, ∞)
x 7→ d(x, A)

(9)

is nonexpansive.

In general, it is clear that not all real-valued nonexpansive mappings on a metric space
have the form described in (9). Nevertheless, distance functions combined with translations
allow for us to obtain a wide variety of properties. For example, every nonexpansive real
function on a metric space is bounded by a distance function and a constant:

Remark 2. Let X be a metric space and x0 ∈ X. Then, every Lipschitz function f : X → R
satisfies that | f (x)| ≤ | f (x0)|+ L( f )d(x, x0) for all x ∈ X, where L( f ) is the Lipschitz constant
of f .

Furthermore, in connection with the α-regions, we have the following result. If K is a
compact metric space, then K is bounded, that is, it has finite diameter
diam(K) := sup{d(k, l) : k, l ∈ K} < ∞.

Proposition 2. Let K be a nonsingleton compact metric space. Let u ∈ K and α ∈ (0, 1). Function

ψu : K → [0, diam(K)]
k 7→ ψu(k) := diam(K)− d(k, u)

(10)

satisfies the following:

1. ψu is positive and nonexpansive.
2. ‖ψu‖∞ = diam(K).
3. K1(ψu) = {u}.
4. Kα(ψu) = BK(u, (1− α)diam(K)) = {k ∈ K : d(k, u) ≤ (1− α)diam(K)}.
As a consequence, the collection {Oα( f ) : α ∈ (0, 1), f ∈ C (K) nonexpansive} of all open α-
regions forms a base of open subsets of K.
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Proof. We only prove item 4. We spare the reader the details of the rest of the items. We
have that

Kα(ψu) = {k ∈ K : αdiam(K) ≤ diam(K)− d(k, u)} = BK(u, (1− α)diam(K)).

Lastly, given u ∈ K and r > 0, taking α = 1−min{r, diam(K)}/(2diam(K)), we obtain

u ∈ {k ∈ K : α‖ψu‖∞ < |ψu(k)|} ⊆ Oα(ψu) ⊆ Kα(ψu) ⊆ BK
(
u, r

2
)
⊆ {k ∈ K : d(k, u) < r}.

Then, every open subset of K is a union of sets Oα(ψu).

3.3. Focality of Measures

There exist Borel probability measures on compact Hausdorff topological spaces that
vanish at certain nonempty open subsets. For instance, if K is a nonsingleton compact
Hausdorff topological space and k ∈ K, we can consider the regular Borel probability
measure

δk : B(K) → {0, 1}

A 7→ δk(A) :=
{

1 k ∈ A,
0 k /∈ A.

(11)

Since K is Hausdorff and not a singleton, U := K \ {k} is a nonempty open subset of
K satisfying δk(U) = 0.

Definition 5 (Focal measure). Let K be a compact Hausdorff topological space. A Borel probability
measure µ on K is focal if every f ∈ C (K) is µ-focal. The set of focal Borel probability measures on
K are denoted by Pf(K).

We characterize focal Borel probability measures as those that do not vanish on
nonempty open sets.

Theorem 2. Let K be a compact Hausdorff topological space. A Borel probability measure µ on K
is focal if and only if µ(U) > 0 for every nonempty open subset U ⊆ K.

Proof. If µ(U) > 0 for every nonempty open subset U ⊆ K, then µ is clearly focal since
every α-region Kα( f ) = {x ∈ K : | f (x)| ≥ α‖ f ‖∞}, for α ∈ (0, 1) and f ∈ C (K), contains a
nonempty open subset of K, {x ∈ K : | f (x)| > α‖ f ‖∞}. Conversely, suppose that µ is focal.
Fix an arbitrary nonempty open subset U ⊆ K. We show that µ(U) > 0. Take any u ∈ U.
Through Urysohn’s Lemma, there exists a function f ∈ C(K), such that f (x) = 0 for all
x ∈ K\U and f (u) = 1. Since f is µ-focal, there is α ∈ (0, 1) with µ(Kα( f )) > 0. Clearly,
Kα( f ) ⊆ U, so µ(U) ≥ µ(Kα( f )) > 0.

The following theorem assures the existence of focal Borel probability measures in
compact metric spaces (see (3) to remember the notation rca(K) and [6] (Chapter 4) for
more information). For this, we remind that compact metric spaces are separable (see,
for example, [10] (Theorem VIII.7.3 and Theorem XI.4.1)).

Theorem 3. If K is a compact metric space, then Pf(K) ∩ rca(K) 6= ∅.

Proof. Let (kn)n∈N ⊆ K be a dense sequence in K and define µ: = ∑∞
n=1

δkn
2n . µ ∈ C (K)∗ =

rca(K) because C (K)∗ is a Banach space and ∑∞
n=1

δkn
2n is an absolutely convergent series

in C (K)∗ (keep in mind that
∥∥δkn

∥∥ = 1 for all n ∈ N). We show that µ ∈ Pf(K). Let U be
a nonempty open subset of K. Since (kn)n∈N is dense in K, there exists n0 ∈ N such that
kn0 ∈ U. Then

µ(U) =
∞

∑
n=1

δkn(U)

2n ≥
δkn0

(U)

2n0
=

1
2n0

> 0.
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Lastly, Theorem 2 ensures that µ ∈ Pf(K).

In compact metric spaces, in order to check whether a measure is focal, it is only
necessary to look at the nonexpansive mappings.

Definition 6 (Weakly focal measure). Let K be a compact metric space. A Borel probability
measure µ on K is weakly focal (w-focal) if every nonexpansive f ∈ C (K) is µ-focal. The set of
weakly focal Borel probability measures on K are denoted by Pwf(K).

We show that w-focal Borel probability measures coincide with focal probability mea-
sures.

Theorem 4. Let K be a compact metric space. A Borel probability measure µ on K is w-focal if and
only if µ is focal.

Proof. By definition, if µ is focal, then it is w-focal. Conversely, suppose that µ is weakly
focal. We prove that µ(U) > 0 for every nonempty open subset U ⊆ K and then call on
to Theorem 2. Indeed, fix an arbitrary nonempty open subset U ⊆ K. We may assume
that U ( K since µ(K) = 1. Take f := d(•, K \U). Since U is not empty, for every u ∈ U,
f (u) = d(u, K \U) > 0 since {u} is compact and K \U is closed. Therefore, ‖ f ‖∞ > 0.
Since f is nonexpansive in view of Remark 1, there exists α ∈ (0, 1) with µ(Kα( f )) > 0.
Clearly, Kα( f ) ⊆ U, so µ(U) ≥ µ(Kα( f )) > 0.

3.4. Extremal Structure of the Set of Focal Borel Probability Measures

The following result on this manuscript shows that Pf(K) is a convex subset of P(K),
but it is not extremal in P(K). In the next definition we recall the notion of extremal subset.

Definition 7 (Extremal subset). A subset E of a subset D of a real vector space Z is extremal in
D if E satisfies the extremal condition with respect to D: if d1, d2 ∈ D and there exists α ∈ (0, 1)
such that αd1 + (1− α)d2 ∈ E, then d1, d2 ∈ E.

We refer the reader to Appendix A for a further view on extremality theory and the
geometry of normed spaces.

Theorem 5. Let K be a nonsingleton compact Hausdorff topological space. If Pf(K) 6= ∅, then
Pf(K) is a convex subset of P(K) but it is not extremal in P(K).

Proof. We show first that Pf(K) is convex. Indeed, let µ1, µ2 ∈ Pf(K) and t ∈ [0, 1]. It
is clear that tµ1 + (1 − t)µ2 is a Borel probability measure on K. Even more, if U is a
nonempty open subset of K, then (tµ1 + (1− t)µ2)(U) = tµ1(U) + (1− t)µ2(U) > 0. As a
consequence, tµ1 + (1− t)µ2 ∈ Pf(K) and hence Pf(K) is convex. Let us prove now that
Pf(K) is not extremal in P(K). Fix any µ ∈ Pf(K). Since K is Hausdorff and has more
than one points, there are two nonempty open subsets U, V in K such that U ∩ V = ∅.
Since µ ∈ Pf(K), we have that µ(U), µ(V) > 0, therefore µ(U), µ(V) < 1 and hence
µ(K \U), µ(K \ V) > 0. Consider the conditional probabilities of µ on U and K \U, µU
and µK\U , respectively, given by

µU : B(K) → [0, 1]

A 7→ µU(A) :=
µ(A ∩U)

µ(U)
,

(12)

and
µK\U : B(K) → [0, 1]

A 7→ µK\U(A) :=
µ(A ∩ (K \U))

µ(K \U)
.

(13)
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Then, µU , µK\U ∈ P(K) \ Pf(K) because µK\U(U) = 0 and µU(V) = 0. We demon-
strate that 1

2 µU + 1
2 µK\U ∈ Pf(K), reaching the conclusion that Pf(K) is not extremal in

P(K). Indeed, let W be any nonempty open subset of K. We have two options:

• U ∩W 6= ∅. Then(
1
2

µU +
1
2

µK\U

)
(W) =

1
2

µU(W) +
1
2

µK\U(W) ≥ 1
2

µU(W) =
1
2

µ(U ∩W)

µ(U)
> 0

because U ∩W is a nonempty open subset of K and µ ∈ Pf(K).
• U ∩W = ∅. In this case, W ⊆ K \U, therefore(

1
2

µU +
1
2

µK\U

)
(W) ≥ 1

2
µ(W)

µ(K \U)
> 0

because W is a nonempty open subset of K and µ ∈ Pf(K).

As a consequence,
1
2

µU +
1
2

µK\U ∈ Pf(K).

In the upcoming results, we reproduce Theorem 5 for regular measures to adapt it
to rca(K). Given a topological space X, a countably additive measure µ: B(X)→ [0, ∞] is
inner regular provided that every Borel subset B of X is inner regular: µ(B) = sup{µ(F) :
F ⊆ B, F compact}. µ is also an outer regular if every Borel subset B of X is outer regular:
µ(B) = inf{µ(U) : U ⊇ B, U open}. Lastly, µ is regular if it is inner and outer regular.
If B ∈ B(X) and µ(B) = 0, then B is trivially inner µ-regular, and if µ(B) = µ(X), then
B is trivially outer µ-regular. If X is Hausdorff, and µ is finite and inner regular, then µ
is outer regular. Conversely, if X is compact, and µ is finite and outer regular, then µ is
inner regular.

Lemma 1. Let X be a topological space. Let µ: B(X)→ [0, ∞] be a countably additive measure.
Fix A ∈ B(X) with 0 < µ(A) < ∞. Consider

µA : B(X) → [0, ∞]

B 7→ µA(B) := µ(A∩B)
µ(A)

.
(14)

Then:

1. If µ is inner regular, then so is µA.
2. If µ is outer regular and A is closed, then µA is outer regular.
3. If µ is finite and outer regular, then µA is outer regular.

Proof. Since µ is positive, it is clear that µA(B) ≥ sup{µA(F) : F ⊆ B, F compact} and
µA(B) ≤ inf{µA(U) : U ⊇ B, U open} for each Borel subset B ⊆ X.

1. Fix an arbitrary B ∈ B(X). There exists a sequence (Fn)n∈N of compact subsets of X,
such that Fn ⊆ B ∩ A for every n ∈ N and (µ(Fn))n∈N converges to µ(B ∩ A). Since
Fn = Fn ∩ A for all n ∈ N, we conclude that (µA(Fn))n∈N converges to µA(B). As a
consequence, µA(B) = sup{µA(F) : F ⊆ B, F compact}.

2. Fix an arbitrary B ∈ B(X). There exists a sequence (Un)n∈N of open subsets of
X such that B ∩ A ⊆ Un for every n ∈ N and (µ(Un))n∈N converges to µ(B ∩ A).
For every n ∈ N, Vn := Un ∪ (X \ A) is open and satisfies that B ⊆ Vn, B ∩ A ⊆
Vn ∩ A = Un ∩ A ⊆ Un, and µ(B ∩ A) ≤ µ(Vn ∩ A) = µ(Un ∩ A) ≤ µ(Un). There-
fore, (µ(Vn ∩ A))n∈N converges to µ(B ∩ A), meaning that (µA(Vn))n∈N converges to
µA(B). As a consequence, µA(B) = inf{µA(U) : U ⊇ B, U open}.
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3. Let B ∈ B(X) and denote r = inf{µ(W ∩ A) : W ⊇ B, W open}. We prove that
r ≤ µ(B ∩ A). Since µ is outer regular, we have

µ(B ∩ A) = inf{µ(U) : U ⊇ B ∩ A, U open}.

Suppose that µ(B ∩ A) < r. Then, there exists an open subset U of X with B ∩ A ⊆ U
such that µ(U) < r. Given an open subset W of X with B ⊆ W, since µ is finite, it
holds that

µ(U) + µ(B ∩ (X\A)) < r + µ(B ∩ (X\A)) ≤ µ(W ∩ A) + µ(W ∩ (X\A)) = µ(W).

Therefore,

µ(U) + µ(B ∩ (X\A)) < r + µ(B ∩ (X\A)) ≤ inf{µ(W) : W ⊇ B, W open} = µ(B).

However, we then arrive to the contradiction

µ(B) = µ(B ∩ A) + µ(B ∩ (X\A)) ≤ µ(U) + µ(B ∩ (X\A)) < µ(B).

Hence, µ(B ∩ A) ≥ r = inf{µ(W ∩ A) : W ⊇ B, W open}, that is,

µA(B) ≥ inf{µA(W) : W ⊇ B, W open}.

The following example displays a pathological measure for which there exists an outer
regular Borel subset that is not inner regular for a conditional measure.

Example 1. Let X be a topological space such that there exists a ∈ X with {a} not closed and
X \ {a} 6= ∅. Define a measure

µ : B(X) → [0, ∞]

C 7→ µ(C) :=


∞ C ∩ (X \ {a}) 6= ∅,
1 C = {a},
0 C = ∅.

(15)

Let A := {a} and B := X \ {a}. Notice that B is outer µ-regular since µ(B) = ∞ = µ(X). Next,

µA(B) =
µ(A ∩ B)

µ(A)
=

µ(∅)

µ({a}) =
0
1
= 0.

Finally, if U ⊆ X is open and contains B, then U = X since B is not open, thus

µA(U) =
µ(A ∩U)

µ(A)
=

µ({a})
µ({a}) = 1.

This way
µA(B) < inf{µA(U) : B ⊆ U open}.

Pf(K) ∩ rca(K) is a convex subset of P(K) ∩ rca(K), which is itself a convex subset
of Srca(K), where Srca(K) denotes the unit sphere of rca(K). As usual, Brca(K) denotes the
(closed) unit ball of rca(K).

Corollary 4. Let K be a nonsingleton compact Hausdorff topological space. If Pf(K) ∩ rca(K) 6=
∅, then Pf(K) ∩ rca(K) is not a face of Brca(K).

Proof. Fix any µ ∈ Pf(K) ∩ rca(K). Since K is Hausdorff and has more than one points,
there are two nonempty open subsets U, V in K such that U ∩ V = ∅. Since µ ∈ Pf(K),
we have that µ(U), µ(V) > 0; therefore, µ(U), µ(V) < 1; hence, µ(K \U), µ(K \ V) > 0.
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Consider the conditional probabilities of µ on F := cl(U) and G := K \ U, µF and µG.
In view of Lemma 1, µF, µG ∈ P(K) ∩ rca(K). Thus, 1

2 µF + 1
2 µG ∈ P(K) ∩ rca(K). Since

µF(V) = 0 = µG(U), we conclude that µF, µG /∈ Pf(K). Let us show that 1
2 µF + 1

2 µG ∈
Pf(K), which finalizes the proof. Indeed, let W be any nonempty open subset of K. We
have two options:

• U ∩W 6= ∅. Then(
1
2

µF +
1
2

µG

)
(W) ≥ 1

2
µF(W) =

1
2

µ(F ∩W)

µ(F)
≥ 1

2
µ(U ∩W)

µ(F)
> 0

because U ∩W is a nonempty open subset of K and µ ∈ Pf(K).
• U ∩W = ∅. In this case, W ⊆ K \U = G, therefore(

1
2

µF +
1
2

µG

)
(W) ≥ 1

2
µ(W)

µ(G)
> 0

because W is a nonempty open subset of K and µ ∈ Pf(K).

Under the settings of Corollary 4, it is well known (see Appendix A and [12] (Theo-
rem 3.7)) that P(K) ∩ rca(K) is, in fact, extremal in Brca(K).

4. Discussion and Conclusions

If K is a nonsingleton compact Hausdorff topological space, then Pf(K) is a convex
subset of P(K) but not a face of P(K). However, as recalled in Appendix A, P(K) ∩ rca(K)
is a face of Brca(K), where Brca(K) denotes the unit ball of rca(K). So, we have the chain of
inclusions

Pf(K) ∩ rca(K) ⊆ P(K) ∩ rca(K) ⊆ Brca(K),

where the first convex set is not a face of the second, whereas the second is a face of the
third. This provides valuable information about the geometry of Brca(K) ≡ BC (K)∗ .

It would be interesting to unveil other geometric or topological pathologies satisfied
by the convex set of focal regular Borel probability measures.
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Appendix A. Geometry of Normed Spaces

For the sake of completeness and to provide a more general vision of extremal theory,
we recall several basic concepts of the geometry of normed spaces. This also boosts the
impact of Theorem 5.

Appendix A.1. Extremal Theory

Let X be a real vector space. Given two subsets E ⊆ F ⊆ X, E is extremal in F if E
satisfies the extremal condition with respect to F, that is, if f1, f2 ∈ F and exists t ∈ (0, 1)
such that t f1 + (1− t) f2 ∈ E, then f1, f2 ∈ E. If F is convex, and E is an extremal convex
subset of F, then E is called a face of F. If e ∈ F and {e} is extremal in F, then e is an extreme
point of F.

Extreme points play a very important role in functional analysis. For instance, to study
certain isometries, the extreme points of the unit ball of the dual of the corresponding
normed space are often useful. Consult, for example, refs. [13,14] and their references to
see some illustrations.

Now, consider a subset F ⊆ X and a convex function f : X → R. The supporting set
of f in F is defined as H( f , F) := {x ∈ F : f (x) = sup f (F)}. If f is unbounded on F or
bounded but the sup is not attained, then obviously H( f , F) = ∅. If H( f , F) 6= ∅, then it is
not hard to show that H( f , F) is extremal in F. Indeed, if x, y ∈ F and exists t ∈ (0, 1) with
tx + (1− t)y ∈ H( f , F), then the chain of inequalities

sup f (F) = f (tx + (1− t)y) ≤ t f (x) + (1− t) f (y) ≤ sup f (F)

forces that f (x) = f (y) = sup f (F), meaning that x, y ∈ H( f , F). In case F is convex and f
is linear, then H( f , F) is convex as well and thus it becomes a face of F. This kind of face is
called an exposed face.

Appendix A.2. P(K) ∩ rca(K) Is an Exposed Face of the Unit Ball of rca(K)

Let K be a compact Hausdorff topological space. We showed in the Preliminaries
Section that P(K) ∩ rca(K) is a convex subset of the unit sphere of rca(K). Here, we
demonstrate that P(K) ∩ rca(K) is an exposed face of the unit ball of C (K)∗. Indeed, let
us denote by 1 ∈ C (K) the constant function equal to 1, that is, the unity of the Banach
algebra C (K). We can see 1 as an element of C (K)∗∗ by relying on the canonical injection
of a normed space into its bidual. Then, 1 acts on C (K)∗ following Equation (4):

1 : C (K)∗ → R
µ 7→ µ(1) =

∫
K 1dµ = µ(K).

(A1)

Since ‖1‖∞ = 1, we have that 1 has norm 1 in C (K)∗∗. Notice that P(K) ∩ rca(K) =
H
(

1,BC (K)∗
)

, where BC (K)∗ stands for the unit ball of C (K)∗. Indeed, if µ ∈ P(K)∩ rca(K),

then it is clear that ‖µ‖ = 1 and µ(1) =
∫

K 1dµ = µ(K) = 1. As a consequence, µ ∈
H
(

1,BC (K)∗
)

. Conversely, suppose that µ ∈ H
(

1,BC (K)∗
)

. Then ‖µ‖ = 1 = µ(K). In order
to prove that µ ∈ P(K) it only suffices to show that µ is positive. So, assume, on the other
hand, that there exists A ∈ B(K), such that µ(A) < 0. Then 1 = µ(K) = µ(A) + µ(K \ A),
hence µ(K \ A) > 1, reaching the following contradiction with the total variation of µ:

1 = ‖µ‖ ≥ |µ(A)|+ |µ(K \ A)| > 1.

As a consequence, we lastly conclude that µ ∈ P(K) ∩ rca(K).
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Appendix B. Nontrivial Examples of Focal (Regular) Borel Probability Measures

For the sake of completeness, we present several examples of focal (regular) Borel prob-
ability measures with values on Hausdorff topological modules over Hausdorff topological
rings.

Appendix B.1. Counting Probability Measures

Let R be a Hausdorff topological ring. A series ∑∞
n=1 rn in R is called subseries

convergent if, for every A ⊆ N, the series ∑n∈A rn is convergent. Every subseries convergent
series defines an interesting counting measure.

µ : P(N) → R
A 7→ ∑

n∈A
rn, (A2)

where P(N) stands for the power set of N. Here, it is understood that µ(∅) = 0. Further-
more, if R is partially ordered and ∑∞

n=1 rn is a convex series in the sense that rn ≥ 0 for
all n ∈ N and ∑∞

n=1 rn = 1, then (A2) defines a generalized probability measure, since
µ(A) ≥ 0 for all A ⊆ N and µ(N) = 1. This kind of counting probability measures are
of special interest in quantum mechanics. Lastly, N is endowed with a discrete topology;
therefore, µ is trivially regular, and it is also focal, provided that rn > 0 for every n ∈ N.

Appendix B.2. Counting Probability Measures on Quantum Systems

Let H be an infinite dimensional separable complex Hilbert space. According to the
first postulate of quantum mechanics [15,16], H represents a quantum mechanical system.
The C∗-algebra of bounded linear operators on H, B(H), is trivially a Hausdorff topological
ring. Let (en)n∈N be an orthonormal basis of H. Let (tn)n∈N be a real convex series. For every
n ∈ N, consider the bounded linear operator Tn on H given by Tn(x) := tn(x|en)en.
In accordance with [17] (Section 6), Tn is selfadjoint and positive. Notice that ∑∞

n=1 Tn is
subseries convergent in B(H). Therefore,

µ : P(N) → B(H)
A 7→ ∑

n∈A
Tn, (A3)

defines a counting probability measure on the quantum system H, which is of special
interest in Quantum Mechanics. If another quantum system K interacts with H by means
of a bounded linear operator S : K → H, then the counting probability measure (A3) can
be redefined to take values on the Hausdorff topological B(H)-module B(K, H) as follows:

µ : P(N) → B(K, H)
A 7→ ∑

n∈A
Tn ◦ S. (A4)

Indeed, K is another infinite dimensional separable complex Hilbert space and the
commutative additive group of B(K, H) is clearly a left B(H)-module with left action given
by left composition.
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