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Abstract: Bitcoin is yet to be assumed as a worthy cryptocurrency and rewarding asset in the global
market. As polynomial-based neural networks (PBNNs) are very robust and more accurate in
modeling stock price prediction, their advantage in Bitcoin pricing needs to be analyzed. In this
study, the robustness of PBNNs, based on Chebyshev (CPBNN) and Legendre (LPBNN), is blended
with the proposed algorithm, coined as the mutated climb monkey algorithm (MCMA), to control
the estimation of network parameters to accurately predict the one-day-ahead Bitcoin price. The
performance was evaluated by a comparative analysis of the testing of both CPBNN and LPBNN with
each of the six algorithms under consideration on three different datasets collected within the same
time interval. As the use of a few evaluation criteria will not be able to identify an efficient predictor
model, this study also proposes the use of a Multi-Criteria Decision-Making (MCDM) framework to
rank all models using 15 different evaluation criteria. The ranking of the models clearly indicates
that the proposed MCMA algorithm outperforms all other algorithms under study. The convergence
plots of the top two models for the datasets also indicate that the PBNN using MCMA for learning
predicts better results.

Keywords: Bitcoin price prediction; Chebyshev polynomials; Legendre polynomials; Monkey algo-
rithm; TOPSIS

MSC: 68T07

1. Introduction

Bitcoin is a well-known cryptocurrency on the global market. It was first formulated
and presented in accordance with the structural guidelines specified by Nakamoto [1]. This
was the first of its kind to propose the use of a decentralized manager for transactions
using cryptography. The network involved in transactions is a chain of nodes called a
blockchain. Each time a transaction is initiated, the blocks in the blockchain are modified
by using different hashing techniques. The transactions were validated using cryptography.
Blockchain mining is used to give away Bitcoins as rewards which can then be used in
the exchange of commodities, services, and other monetary benefits. Although Bitcoin
is moving forward in a very positive way for some economies, there are still countries
like India that are yet to accept it. With a giant ledger such as blockchain, a high level
of security imposed by cryptography and growing computing capacities are helping in
the success of such cryptofinance [2]. Many researchers have analyzed the hedge and
safe-haven properties of Bitcoin. It has been observed that Bitcoin can act as a hedge as well
as a safe-haven in some specific horizons but may be a huge diversifier in most cases [3]. In
a study, it was proposed that Bitcoin can be a potential safe-haven asset after the market
matures [4]. This depends heavily on the liquidity of Bitcoin. Although Bitcoin is being
accepted worldwide, its high volatility and high computing cost obstruct its maturity in full
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swing. Harey [5] sheds light on many myths and facts about Bitcoin, starting from its origin
to its future scope. The high volatility of Bitcoin is the greatest hindrance to its growth.
Bitcoin is eight times more volatile than the stock market, and hence, its prediction can
play a crucial role in paving the way for its success. The Bitcoin market is still in a transient
state and needs a huge fueling by regression analysis to efficiently predict the Bitcoin price
and its high volatility. The highly volatile feature of Bitcoin prices needs to be analyzed to
improve the prediction of its prices in the future. This is an interesting area of research, both
in the financial sector and computer science. Boguslavsky et al. [6] analyzed the impact
of the COVID-19 pandemic on the crypto-market and stated that cryptocurrencies can be
epidemiologically safe for transactions. This is positive feedback for accepting Bitcoin as
an economically safe asset. However, there is a lack of sufficient theoretical propositions
supporting Bitcoin implementation in the sustainable development of society. Therefore,
this study is an attempt to develop the theoretical approach for predictive analytics for
Bitcoin prices. A stable Bitcoin pricing strengthens the ESG goals and so provides support
for sustainable development.

This is the first paper to perform a detailed performance evaluation to rank various
models with 15 sets of evaluation criteria in Bitcoin price analysis. The major contributions
of the paper are listed below.

• Twelve different predictor models were developed using six learning algorithms (five
available algorithms, along with a newly proposed algorithm) in two polynomial-
based neural networks.

• The predictor models are ranked in the testing phase to determine the best model that
performs well in designing a Bitcoin price predictor.

• A TOPSIS-based approach is applied for ranking the models using fifteen error metrics.
• A new mutated climb monkey algorithm (MCMA) was proposed for training and

testing the two neural networks under study.

Section 2 provides a detailed survey of the literature used in this study, such as
Bitcoin pricing, neural networks, MA, and TOPSIS. Section 3 introduces the architecture
of this study, along with explanations of related techniques and the TOPSIS methodology.
Section 4 explains the proposed work and analyzes the experimental setup of the model.
In Section 5, the experimental results are thoroughly analyzed. In Section 6, the study is
extensively discussed and Section 7 describes the best model in this study and the future
scope of this work.

2. Materials and Methods
2.1. Literature Review

Bitcoin pricing is an active research area, as very little work has been done as the Bitcoin
market is not yet mature. Many studies have been conducted to understand the pricing
mechanism of Bitcoin. Jang and Lee [7] proposed the use of a Bayesian neural network
simulated using blockchain information as a reliable predictor model for Bitcoin prices.
This study indicates that the model provides a more accurate prediction of the direction
of Bitcoin prices. It also provides promising results for the recent data. Huang et al. [8]
efficiently predicted the daily return ranges of Bitcoin prices. They used a classification-tree-
based model to generate accurate price intervals. In addition to closing prices, many other
features of Bitcoin prices have been used in different studies. Mallqui and Fernandes [9]
used various machine-learning techniques for different types of price prediction. Artificial
neural networks (ANNs), support virtual machines (SVMs), and recurrent neural networks
(RNN) are used to predict the maximum, minimum, and closing prices. They used an
SVM and an ensemble approach to analyze the direction prediction for the classification
of Bitcoin directions. The highly volatile nature of cryptocurrencies, such as Bitcoin, is
revealed by a study that compares the performance of Bitcoin with traditional currency.
Peng et al. [10] proposed an SVM-based model to present this comparison and prove
the volatility of Bitcoin prices. Aggarwal et al. [11] explained Bitcoin prediction using
an SVM and complete empirical ensemble mode decomposition. Recently, when deep
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learning has dominated the research scenario, Liu et al. [12] have justified that stacked
denoising autoencoders predict the Bitcoin price better than SVM and back-propagation
neural networks.

Bitcoin price analysis is in its initial phase. Hence, very few networks have been
studied using Bitcoin datasets. The FLANN model is best suited to maintain a simple
architecture. Chebysev, Hermite, or Legendre polynomials can be used to generate the
FLANN. Many studies have been conducted in the field of networks using other financial
data. Troumbis et al. [13] effectively demonstrated a strong approximation of the Chebysev
polynomial neural network models for non-linear and highly complex environmental data.
They compared this model with the Hermite polynomial-based FLANN and radial basis
function neural network (RBFNN). Mohanty and Dash [14] recently demonstrated the
effectiveness of a Chebysev polynomial neural network trained with a flower pollination
algorithm in forecasting net asset values. This was compared with basic particle swarm
optimization (PSO) and differential evolution (DE). The use of Chebyshev networks in the
medical field is promising. Zhou et al. [15] used Chebyshev networks to efficiently link
acute hypertension with intensive care unit (ICU) admission and compared them with
recurrent neural networks and convolutional neural networks. Dash [16,17] demonstrated
the use of Chebyshev network with an improved frog-leaping algorithm and DE to predict
stock prices accurately and also perform better statistically. The performance capability
of Chebyshev FLANN was also described by Nanda et al. [18] for the accurate prediction
of complex time-series models, such as rainfall in India. They have shown that FLANN
gives less absolute average percentage error for the measured rainfall data in comparison
to Auto-Regressive Integrated Moving Average (ARIMA) model.

The prediction capabilities of Legendre polynomial-based neural networks have also
been explored by many researchers. Liu and Wang [19] used an improved Legendre
network with a random time-strength function to efficiently predict the movement of the
stock market index. Dash [20] uses a recurrent Legendre network for efficient foreign
exchange forecasting. The orthogonal behavior of Legendre polynomials contributes to
accurate results. Afifi and Zanaty [21] have also shown that Legendre kernels result in more
efficient SVMs than other kernels, such as GA. Dash and Dash [22] proposed a Legendre
network-based modified differential harmony search (MDHS-LPNN) model as an efficient
and robust hybrid predictor for foreign exchange forecasting.

In 2008, Zhao and Tang [23] proposed a population-based nature-inspired algorithm
which modeled the mountain climbing of monkeys to solve global numerical optimization
problems. It is called the Monkey algorithm (MA). It consists of three processes: climb,
watch-jump, and somersault. This results in a faster convergence rate for non-linear and
high-dimensional problems. It uses very few parameters and, hence, is easy to implement.
Soon after many researchers explored the effectiveness of MA in diverse areas, many mod-
ifications have been proposed. Zhou et al. [24] proposed an improved version of MA to
solve the 0–1 knapsack problem. They introduced a greedy strategy, followed by a coop-
eration process immediately after Watch-Jump. The feasibility and convergence rates are
improved. Marichelvam et al. [25] proposed a hybrid MA with two sub-populations work-
ing in different processes to model the scheduling of a flow shop. This algorithm is flexible,
reliable, and natural. Abiyev and Tunay [26] proposed a modified monkey algorithm
(MA2) to study certain benchmarking functions for solving optimization problems. This
algorithm adds two additional processes: one-component perturbation and all-component
perturbation. It significantly decreased the training time but provided better learning with
faster convergence than MA. Zheng [27] proposed an improved monkey algorithm with
dynamic adaptation (DAMA). This algorithm makes use of the chaotic search instead of
a random initialization of parameters. This algorithm allowed the dynamic updating of
parameters based on their runtime performance, and hence was adaptive in its operation.
Chen et al. [28] proposed the use of an artificial bee colony algorithm (ABCMA) search
operator with the climb process to reduce the number of climbs, and hence, become faster.
This algorithm showed improved performance compared with the basic MA. Sun et al. [29]
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explored the hierarchical arrangement of the Climb, Watch, and Somersault processes and
allowed self-organizing of the hierarchical structure as a result of adapting to the working
environment. It uses a time-varying parameter to initiate the process of self-organization.
The proposed algorithm is highly effective and robust.

Zulqamain et al. [30] demonstrated the step-by-step use of the technique for order of
preference by similarity to an ideal solution (TOPSIS) approach to select the best automated
car based on multiple criteria. Cocis et al. [31] compared the TOPSIS ranking of 22 airline
industries based on 8 financial indicators with Fortune Ranking and concluded that TOPSIS
provided accurate rankings for 3 airlines. Batrancea et al. [32] explained that the increase
in a number of financial indicators generated better ranks for airline industries under
study using an MCDM ranking. Sabaghi et al. [33] proposed a modified TOPSIS method
that can be used to add or remove alternatives during the study by compromising the
reliability to some extent. Samal and Dash [34] proposed a TOPSIS-based extreme learning
machine (TOPSIS_ELM) framework to predict stock price movements. This network
is quite robust in nature and is more reliable, as it uses evaluations based on multiple
criteria. Dash et al. [35] demonstrated the use of TOPSIS in ranking 13 classifiers and
seven evaluation measures to select the best classifier ensemble for forecasting stock-
price movements.

2.2. Theoretical Background

In the literature, very few applications of computational techniques have appeared for
different aspects of crypto-market analysis, such as forecasting Bitcoin price, its movement,
its volatility, and so on. Among the various techniques, artificial neural networks (ANNs)
are more widely used. Although various types of ANN have provided good results in
regression analysis, most of them suffer from diminished generalization, complex network
structures, continuous parameter tuning, and the need for efficient training algorithms.
Determining the architecture of the network, learning algorithms to be used, and selecting
proper evaluation strategies have always been challenging for researchers.

Many studies have been conducted to efficiently predict Bitcoin prices using machine-
learning and deep-learning techniques. However, to address the high volatility and large
solution space, new learning algorithms need to be explored.

Neural networks are more flexible for teaching large datasets and provide more accu-
rate approximations. Functional link neural networks (FLANNs) are simple to implement
because of their clear architecture. Because the Bitcoin market requires a faster and more ac-
curate evaluation, the features of FLANN can help in designing an efficient model. Machine
learning algorithms have been implemented in FLANNs for stock price prediction, gold
price prediction, and many more. However, the efficacy of FLANN in Bitcoin prediction
is yet to be analyzed. This study utilizes the simple architecture of polynomial-based
FLANNs to predict Bitcoin prices.

The search domain of Bitcoin prices is very large, owing to its high volatility. Hence, a
learning algorithm which can predict a larger search domain is essential. Several nature-
inspired algorithms have been successfully used to model real-world problems. Such
algorithms can also help in forecasting Bitcoin prices. In addition, the need to use a nature-
inspired algorithm with a broader search domain is the motivation to select the monkey
algorithm (MA). Hence, each of the six learning techniques used in the two different neural
networks resulted in 12 different models for Bitcoin price forecasting. Therefore, developing
an efficient predictor by analyzing the effect of 12 different models that can produce better
results with respect to multiple performance criteria can be considered a Multi-Criteria
Decision-Making (MCDM) problem. In this study, the 12 models were evaluated using
15 performance metrics and the multi-criteria decision-making algorithm TOPSIS. The
15 error measures included the root mean square error (RMSE), mean absolute error (MAE),
mean square error (MSE), R-square error (RSQR), Theil’s U error (TU), mean percentage
error (MPE), mean absolute error percentage (MAEP), symmetric mean absolute percentage
error (SMAPE), mean absolute square error (MASE), sum square error (SSE), root squared
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sum error (RSSE), mean relative absolute error (MRAE), mean signed deviation (MSD),
root relative square error (RRSE), and average relative variance (ARV). Therefore, this
paper presents a 12 × 15 MCDM problem with 12 models and 15 criteria. The models
were evaluated by ranking them during the testing phase. The study is carried out by
using historical closing prices of Bitcoin in three currencies: US Dollar (USD), European
Euro (EUR), and Japanese YEN (JPY). The new mutated climb monkey algorithm (MCMA)
provides impressive results compared with other models.

3. Related Work
3.1. PBNN

A polynomial-based neural network (PBNN) is a breakthrough in neural network
implementation. Unlike having multiple hidden layers, the PBNN provides a devoted
input-widening unit which converts the input data into a wide spectrum of values using a
defined polynomial representation. By doing this, the non-linear relationship between the
input and output data is mapped. This study used two PBNN: Chebyshev PBNN (CPBNN)
and Legendre PBNN (LPBNN). Figure 1 depicts the architecture of the PBNN.
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Figure 1. Architecture of Polynomial Based Neural Network.

In a PBNN, the input data are expanded using an input widening unit (IWU) based
on the underlying Chebyshev or Legendre polynomials. These expanded inputs are then
passed through a summation and activation unit to generate predicted outputs. In this
study, tanh() was used as the activation function. The predicted output was compared to
the actual output to generate an error measure. This error had been used by different weight
optimization algorithms for efficient weight updates. The optimized weights generated by
each model after training can be further utilized for testing.

The CPBNN uses Chebyshev polynomials for input expansion. These polynomials are
represented recursively as in Equation (1).

CPj+1(i) = 2iCPj(i)−CPj−1(i) (1)

where CPj(i) represents the Chebyshev polynomial of order j and input −1 < i < 1. The
initial values were CP0(i) = 1 and CP1(i) = i.
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The LPBNN uses Legendre polynomials for input expansion. These polynomials are
represented recursively as in Equation (2).

LPj+1(i) =
1

j + 1

[
(2j + 1)iLPj(i)− jLPj−1(i)

]
(2)

where LPj(i) represents the Legendre polynomial of order j and input −1 < i < 1. The initial
values were LP0(i) = 1 and LP1(i) = i.

3.2. Mutated Climb Monkey Algorithm

The MCMA algorithm proposed in this study was inspired by a meta-heuristic opti-
mization process which imitates the behavior of monkeys. The basic MA consists of three
steps: the Climb, Watch-Jump, and Somersault steps.

3.2.1. Climb Process

In this process, the climbing behavior of monkeys was modeled to reach the mountain
top. The maximum number of climbs represents the strength of the monkey to climb in one
go. This is also affected by the length of each step when the monkey climbs. A significant
amount of time is spent on the climbing process if the step length is very small and the
number of climbs is greater.

The climb process is used to modify the positions of monkeys from the starting
positions to the updated positions by adding an improvement to the objective function.
Initially, let each monkey has an initial position xi, for i = 1,2, . . . ,M, for M monkeys. The
climbing process of monkey i is as follows:

1. Randomly generate ri for each monkey position such that ri = s or ri = −s with equal
probability, where s is the step length.

2. Calculate the pseudo-gradient of the fitness function f(x) using Equation (3).

gradfi(xi) =
f(xi + ri)− f(xi − ri)

2ri
(3)

3. Calculate a new monkey position y using

yi = xi + s.gradfi(xi) (4)

4. Update the monkey position to yi (a climb) if its fitness value of a new position is
better than that of the previous position.

5. Repeat Steps 1 to 4 until the maximum number of climbs is reached.

3.2.2. Watch-Jump Process

After reaching the local mountain top, each monkey uses its eyesight to look for more
high mountains (watch), and then jumps to the best one (jump). Again, the monkey starts
climbing to the top of the jumped mountain. This is repeated until the number of jumps is
available. The steps of the watch-jump are as follows:

1. Randomly generate a new location yi from the interval (xi + e, xi − e) where e
represents the eyesight of the monkey.

2. If the fitness of the monkey at yi is better than that of current position then update the
monkey position to yi (A Jump).

3. Repeat steps 1 and 2 till maximum number of jump is reached.

3.2.3. Somersault Process

After obtaining the optimal solution in a search domain, the monkey searches for a
new domain that is available to explore the global best position. To do a somersault, the
barycenter of the current positions of all monkeys was identified as a pivot. After this, the
rest of the monkeys somersault in the pivot direction. The somersault steps are as follows:
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1. Generate a random number z from the somersault interval (a, b).
2. Considering M as the monkey population find a pivot location Pi given by Equation (5).

Pi =

(
∑M

i=1 xi

)
M

(5)

3. Find a new position yi using Equation (6).

yi = xi + z× (Pi − xi) (6)

4. If the fitness of the monkey at yi is better than that of the previous position then
update the monkey position to yi.

5. Repeat steps 1–4 until the maximum number of somersaults is reached.

The working of the MA greatly depends on the climbing process. The MA algorithm
requires more time for climbing if the step-length is smaller, whereas a larger step-length
can miss some optimal positions. Many researchers have used updated climbs to generate
good MA results. In the DE algorithm, the mutation operation generates a mutated position
which can provide optimized results. Hence, if we apply a mutation on the climb feature,
the mutated monkey position can result in a better solution and can converge faster,
instead of moving each step-length. The MCMA algorithm proposed here improves the
performance of the basic MA algorithm by adding a mutated version of climb such that
the best climb is used in the optimization process. The mutated climb position mxi is
calculated using

mxi = xr3 + mscale × (r1 − r2) (7)

Here, r1, r2, and r3 are three random numbers between 1 and M and mscale represents
the mutation scale. In the proposed algorithm, a mutated climb position is generated before
each climb. If the fitness value of the mutated climb is better than that of the previous
climb, the mutated climb position mxi is attained by the monkey i. This results in faster
convergence and faster climbing of the monkeys.

The stepwise representation of MCMA is presented in Algorithm 1.

3.3. TOPSIS

In this study, models for Bitcoin price prediction were evaluated using 15 different
evaluation criteria. Hence, it can be described as a multi-criteria decision-making (MCDM)
problem with 12 models and 15 criteria. This problem is solved using the TOPSIS approach.

In the TOPSIS approach, the best model is selected based on the minimum distance
from the positive-ideal model and the maximum distance from the negative-ideal model.
Positive model values are the best values for each criterion, and the negative model values
represent the worst values for each criterion. The steps of ranking the 12 predictors using
15 different criteria in the TOPSIS approach can be summarized as follows:

1. Generate a standardized decision table (SDT) for 12 rows representing each model
and 15 columns representing each criterion.

2. Assign weights to each criterion and generate a weighted SDT.
3. Create a positive ideal model with the best values for each criterion and a negative

ideal model with the worst values.
4. Calculate the distance of each model from the positive and negative ideals using

15-dimensional Euclidean distance.
5. Find the relative closeness of each model.
6. Relative closeness is arranged in decreasing order to generate the ranking of the

models.
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Algorithm 1: MCMA.

Input: Initial monkey positions (weights), say, xi, max-iterations, expanded training input, and
output.
Output: Updated weight values (monkey positions)
Begin
1. Initialize the parameter step-length s, eyesight e, somersault interval (a,b), max-climb Nc,
max-jump Nj, and max-somersault Ns.
2. Calculate the fitness value of the initial population and determine the current best solution,
for example, g_best.
3. while (max-iterations not reached) do
4. while (Nc not reached) do
5. for (each monkey position xi) do
6. Apply mutation to generate a mutated position mxi by using (7).
7. if (fitness of mxi is better than xi) then
8. Update xi with mxi.
9. end if
10. Calculate the pseudo-gradient by using (3).
11. Calculate a new position yi by using (4).
12. if (fitness of yi is better than xi) then
13. Update xi with yi.
14. end if
15. end for
16. end while
17. Find the current best solution c_best.
18. if (c_best<g_best) then
19. g_best = c_best;
20. end if
21. while (Nj not reached) do
22. for (each monkey position xi) do
23. Randomly Generate a new location yi from the interval (xi + e, xi − e)
24. if (fitness of yi is better than xi) then
25. Update xi with yi.
26. end if
27. end for
28. end while
29. Find the current best solution c_best.
30. if (c_best<g_best) then
31. g_best = c_best;
32. goto step 4 with climb = 1(counting the climbs again)
33. end if
34. while (Ns not reached) do
35. Generate a random number z from the interval (a, b).
36. Find a pivot location Pi by using (5).
37. Find a new position yi by using (6).
38. if (fitness of yi is better than xi) then
39. Update xi with yi.
40. end if
41. end while
42. Find the current best solution c_best.
43. if (c_best<g_best) then
44. g_best = c_best;
45. end if
46. end while
47. The monkey position g_best giving the best fitness value is the optimized result.
End

The TOPSIS approach used in this study determines a better predictor using the
following performance criteria:
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Assume that P(i) and A(i) represent the ith predicted price and ith actual price,
respectively.

• Root Mean Square Error (RMSE)

RMSE =

√
∑n

i=1(P(i)−A(i))2

n
(8)

• Mean Absolute Error (MAE)

MAE =
∑n

i=1|P(i)−A(i)|
n

(9)

• Mean Square Error (MSE)

MSE =
∑n

i=1(P(i)−A(i))2

n
(10)

• R-Square Error (R2)

R2 = 1− ∑n
i=1(A(i)− P(i))2

∑n
i=1
(
A(i)−A

)2 (11)

• Theil’sU Error (TU)

TU =

√
1
n ×∑n

i=1(P(i)−A(i))2√
1
n ×∑n

i=1 A(i)2 +
√

1
n ×∑n

i=1 P(i)2
(12)

• Mean Percentage Error (MPE)

MPE =
100
n
×

n

∑
i=1

A(i)− P(i)
A(i)

(13)

• Mean Absolute Error Percentage (MAEP)

MAEP =
∑n

i=1|P(i)−A(i)|
n

× 100 (14)

• Symmetric Mean Absolute Percentage Error (SMAPE)

SMAPE =
100
n
×

n

∑
i=1

|P(i)−A(i)|
|A(i)|+|P(i)|

2

(15)

• Mean Absolute Scaled Error (MASE)

MASE =
1
n ×∑n

i=1|A(i)− P(i)|
1

n−1 ×∑n
i=2|A(i)−A(i− 1)|

(16)

• Sum Squares Error (SSE)

SSE =
n

∑
i=1

(A(i)− P(i))2 (17)

• Root Squared Sum Error (RSSE)
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RSSE =

√
n

∑
i=1

(A(i)− P(i))2 (18)

• Mean Relative Absolute Error (MRAE)

MRAE =
1
n
×

n

∑
i=2

∣∣∣∣ A(i)− P(i)
A(i)−A(i− 1)

∣∣∣∣ (19)

• Mean Signed Deviation (MSD)

MSD =
1
n
×

n

∑
i=1

(A(i)− P(i)) (20)

• Root Relative Square Error (RRSE)

RRSE =

√√√√∑n
i=1(P(i)−A(i))2

∑n
i=1
(
P(i)−A

)2 (21)

• Average Relative Variance (ARV)

ARV =
∑n

i=1(P(i)−A(i))2

∑n
i=1
(
P(i)−A

) (22)

The listed error measures were evaluated to identify the best models. The R2 measure
is a positively oriented error measure, as higher values are better. The remaining 14 error
measures were negatively oriented, as lower values were preferred.

4. Proposed Work

Figure 2 depicts the architecture of the proposed model for Bitcoin pricing.
The work starts with the collection of Bitcoin closing price data and uses it as a

Bitcoin dataset. This dataset is then passed through the data pre-processing steps which
include data normalization using the max-min normalization technique, followed by the
creation of input data and output data using the windowing technique. Then, the data
were further divided into training and testing data in a 2:1 ratio. The training data acts
as an input for the next step. Here, each of the CPBNN and LPBNN networks is trained
using six learning algorithms: PSO, DE, MA, MA2, ABCMA, and the newly proposed
MCMA. The optimized weight generated after training the network is used to predict the
Bitcoin price in the next step. In the next step, the expanded testing data were used to
test the predictive capabilities of 12 models, that is, CPSO, CDE, CMA, CMA2, CABCMA,
CMCMA, LPSO, LDE, LMA, LMA2, LABCMA, and LMCMA models. Then, in the next
step, the 15 performance measures, that is, RMSE, MAE, MSE, R2, TU, MPE, MAEP, SMAPE,
MASE, SSE, RSSE, MRAE, MSD, RRSE, and ARV were calculated. To obtain the best model
for prediction and analyze the prediction features of the proposed learning technique a
15-criterion-based MCDM approach called TOPSIS was used. This approach ranks all the
12 models under consideration. The new mutated climb monkey algorithm (MCMA) was
proposed as the best Bitcoin predictor after analysis. All experiments were performed in
a system with an Intel® Core(TM) i3-4005U CPU @ 1.70 GHz processor, 4 GB RAM, and
Windows 8.1 pro 64-bit operating system. The implementation of all models and their
ranking were performed using MATLAB R2014a.
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4.1. Experimental Setup
4.1.1. Datasets

The datasets used in this study are accessed from http://www.investing.com/crypto/
bitcoin/historical-data, accessed on 15 June 2021. The datasets indicate the daily closing
price of Bitcoin in US dollars (BTC/USD), European euro (BTC/EUR), and Japanese yen
(BTC/JPY) for the time range from 14 May 2017 to 14 June 2021. As the research idea
was formulated in May 2021, the most recent Bitcoin prices then were considered for the
study. It was observed that Bitcoin prices started to have a steady growth from April 2017
and followed a constant upward trend till March 2021 and were then gradually falling
till the date of data collection. Therefore, this time frame was selected to get the most
volatile prices. This timeframe can also provide the effect of the COVID-19 pandemic on

http://www.investing.com/crypto/bitcoin/historical-data
http://www.investing.com/crypto/bitcoin/historical-data


Mathematics 2022, 10, 4370 12 of 23

the crypto-market. Each dataset was divided into training and testing data. The details of
each dataset are listed in Table 1.

Table 1. Dataset Descriptions.

Data Sets Total Samples Training Samples Testing Samples

BTC/USD 1493 992 496
BTC/EUR 1493 992 496
BTC/JPY 1493 992 496

4.1.2. Parameter Setup

The values assigned to each parameter for the various learning techniques used in this
study are listed in Table 2.

Table 2. Parameter Descriptions.

Learning Methods Parameters Values

PSO
Inertia 0.4

C1 0.9
C2 0.9

DE
Mutation Factor 0.4

Crossover coefficient 0.9

MA/MA2/ABCMA

Maximum Climb 10
Maximum Jump 5

Maximum Somersault 2
Eyesight 0.4

Step-length 0.1
Somersault-Interval 0.4–0.6

MCMA

Maximum Climb 10
Maximum Jump 5

Maximum Somersault 2
Eyesight 0.4

Step-length 0.1
Somersault-Interval 0.4–0.6

Mutation Factor 0.4

4.1.3. Procedural Analysis

To study the forecasting ability of the proposed algorithm, datasets of Bitcoin prices
in dollar, euro, and yen were collected and processed. The datasets used are listed in
Table 1. To obtain a uniform search space, the data were normalized using the maximum
and minimum values in each dataset. The uniform data were then divided into training
and testing data at a ratio of 2:1. A neural network with five input neurons and one output
neuron was designed to train the datasets. Such a network uses the windowing technique
to predict the sixth-day Bitcoin price by using the last five days’ price. Similarly, a sliding
window of size 5 slides through the entire dataset with prediction horizon 1 to generate
the input and output datasets. Initially, the CPBNN and LPBNN trained each of the three
datasets using PSO, DE, MA, MA2, ABCMA, and MCMA algorithms. This resulted in
12 trained models on the three different training datasets. The RMSE value was used as the
fitness function for each model. Each model uses a population size of 20 and is executed
hundred times iteratively to predict the one-day-ahead Bitcoin price on the three testing
datasets. The performance of each model was evaluated using 15 performance measures:
RMSE, MAE, MSE, RSQR, TU, MPE, MAEP, SMAPE, MASE, SSE, RSSE, MRAE, MSD,
RRSE, and ARV. The minimum value of each performance measure was used as the final
error measure value after executing the models ten times each.

The third phase of the proposed procedure uses the TOPSIS algorithm to rank the
12 models using the 15 error measure values as the criteria for evaluation. This process
acts as a multi-criteria ranking method for the 12 models: CPSO, CDE, CMA, CMA2,
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CABCMA, CMCMA, LPSO, LDE, LMA, LMA2, LABCMA, and LMCMA. In the literature,
there are many forecasting models which are evaluated based on certain error measures.
However, models may result in different efficiency for these measures. In this study, there
are 12 models for comparison but the value of the 15 error measures used for evaluation
vary from model to model as shown in Tables 3–5. Therefore, to choose the best model a
multi-criteria decision-making algorithm can be useful.

Many applications of the MCDM technique have been studied in the automobile and
airline industries [30,31]. It has been observed that TOPSIS is a highly reliable and accurate
MCDM method as compared to other MCDM methods [31,33]. Additionally, the TOPSIS
ranking considers the distance from both the positive ideal solution and negative ideal
solution for selecting the fittest alternative and hence gives a better decision. Though
TOPSIS has to be redone if more alternatives are included or excluded, this study uses
a fixed 12 set of models as alternatives. TOPSIS has proved to compare regression and
classification models more accurately and robustly [33–35]. Therefore, to select the most
accurate and reliable Bitcoin pricing model out of the 12 different models under study, a
15-criterion-based TOPSIS analysis was used. The models were ranked using TOPSIS for
all three datasets.

Table 3. Performance Metrics for BTC/USD dataset.

Models RMSE MSE MAE TU R2 MPE MAPE SMAPE MASE SSE RSSE MRAE MSD ARV RRSE

CPSO 0.0557 0.0031 0.0328 0.1227 0.6517 −45.81 9.4172 9.4828 2.8193 1.5374 1.2399 12.778 −0.028 −0.154 0.1757

CDE 0.0405 0.0016 0.0246 0.0893 0.1054 −11.86 6.3815 6.0784 2.1163 0.8132 0.9018 14.615 −0.146 −0.522 0.1396

CMA 0.0499 0.0025 0.0272 0.11 0.7809 −12.66 7.0582 6.6907 2.342 1.2358 1.1117 25.392 0.0145 0.1576 0.1617

CMA2 0.0624 0.0039 0.039 0.1376 0.8833 −13.27 10.046 9.2536 3.353 1.9315 1.3898 12.91 0.0339 0.1025 0.193

CABCMA 0.0508 0.0026 0.0295 0.1119 0.8885 −15.17 7.1978 6.7071 2.54 1.2792 1.131 12.91 0.0245 0.0845 0.1626

CMCMA 0.0359 0.0013 0.021 0.0792 0.9025 −13.95 5.2051 5.265 1.8049 0.6398 0.7998 7.3807 −0.014 −0.091 0.1317

LPSO 0.0451 0.002 0.0257 0.0995 0.7096 −28.58 7.2755 6.983 2.2127 1.0099 1.0049 9.945 −0.0039 −0.731 0.1507

LDE 0.0367 0.0013 0.0215 0.0809 0.4597 −12.32 5.4609 5.3083 1.8512 0.6684 0.8175 9.6553 −0.126 −1.832 0.1327

LMA 0.0718 0.0052 0.0438 0.1582 0.8498 −11.149 10.596 10.098 3.7643 2.5557 1.5986 14.376 0.0341 0.1511 0.2117

LMA2 0.0344 0.0012 0.0221 0.0758 0.8097 −14.18 6.2822 6.0527 1.9033 0.586 0.7655 39.278 0.0081 0.1464 0.1197

LABCMA 0.0749 0.0056 0.0445 0.1651 0.8365 −15.84 10.318 9.3598 3.8257 2.7811 1.6677 54.048 0.0376 0.1307 0.2231

LMCMA 0.032 0.001 0.0201 0.0706 0.5256 −12.34 6.7771 6.5198 1.7257 0.5085 0.7131 7.4666 -0.094 −0.429 0.106

Table 4. Performance Metrics for BTC/EUR dataset.

Models RMSE MSE MAE TU R2 MPE MAPE SMAPE MASE SSE RSSE MRAE MSD ARV RRSE

CPSO 0.0378 0.0014 0.0237 0.0838 −0.461 −22.57 6.9309 6.8292 2.0818 0.7089 0.842 11.224 −0.2 −0.605 0.1344

CDE 0.0478 0.0023 0.0259 0.106 0.8704 −7.929 5.2931 5.3937 2.2681 1.1347 1.0652 34.467 −0.023 −0.123 0.1709

CMA 0.0398 0.0016 0.0242 0.0881 0.8807 −16.16 6.8146 6.73 2.126 0.7839 0.8854 14.084 −0.01 −0.163 0.1395

CMA2 0.0409 0.0017 0.0246 0.0906 0.8888 −16.25 6.7622 6.3639 2.1573 0.8283 0.9101 12.368 0.0206 0.0811 0.1361

CABCMA 0.0332 0.0011 0.0198 0.0736 0.8617 −14.73 5.7277 5.546 1.7412 0.5475 0.74 12.368 0.0048 0.0636 0.1133

CMCMA 0.0331 0.0011 0.0233 0.0733 0.8648 −17.584 7.5087 7.4859 2.0443 0.5432 0.737 11.374 −0.0178 −0.1443 0.12

LPSO 0.0648 0.0042 0.0412 0.1436 0.6894 −34.16 10.68 9.7407 3.6146 2.0816 1.4428 21.439 −0.079 −0.235 0.197

LDE 0.036 0.0013 0.0225 0.0797 0.9295 −12.65 6.8651 6.9805 1.9711 0.6414 0.8009 11.291 −0.022 −0.155 0.1182

LMA 0.0568 0.0032 0.0334 0.1258 0.8195 −15.78 8.5525 7.9187 2.9327 1.5996 1.2647 18.921 0.0314 0.1027 0.1805

LMA2 0.0586 0.0034 0.0344 0.1299 0.8335 −11.49 8.5829 8.2202 3.0164 1.7053 1.3059 54.641 0.0257 0.1336 0.1815

LABCMA 0.0357 0.0013 0.0213 0.0792 0.8062 −13.97 6.2202 6.0306 1.8668 0.6339 0.7961 81.493 0.0038 0.1292 0.123

LMCMA 0.0345 0.0012 0.0206 0.0764 0.911 −6.8701 5.3417 5.1317 1.803 0.5902 0.7683 29.463 0.0045 0.1056 0.1189



Mathematics 2022, 10, 4370 14 of 23

Table 5. Performance Metrics for BTC/JPY dataset.

Models RMSE MSE MAE TU R2 MPE MAPE SMAPE MASE SSE RSSE MRAE MSD ARV RRSE

CPSO 0.04 0.0016 0.0229 0.0893 0.7435 −20.41 7.1597 6.7312 2.0012 0.7942 0.8912 7.9884 −0.019 −0.53 0.132

CDE 0.0333 0.0011 0.0206 0.0744 0.7234 −11.18 6.0212 5.859 1.8033 0.5513 0.7425 6.3123 −0.071 −0.33 0.1161

CMA 0.0316 0.001 0.0183 0.0705 0.8729 −12.64 4.871 4.8051 1.5977 0.4956 0.704 5.5411 −0.009 −0.106 0.1144

CMA2 0.0377 0.0014 0.0214 0.0841 0.8071 −9.796 5.9668 5.7162 1.8714 0.7045 0.8394 18.197 0.0104 0.1035 0.1245

CABCMA 0.0421 0.0018 0.0241 0.0939 0.9108 −8.599 6.5601 6.2543 2.1139 0.8772 0.9366 5.5411 0.012 0.0871 0.1361

CMCMA 0.0307 0.0009 0.0176 0.0685 0.6492 −9.8339 4.7559 4.5433 1.5386 0.4676 0.6838 4.178 −0.0844 −0.3528 0.1039

LPSO 0.0322 0.001 0.0188 0.0718 0.7548 −17.44 5.0267 4.9054 1.6428 0.5139 0.7169 5.9969 −0.055 −0.827 0.1127

LDE 0.0336 0.0011 0.019 0.0751 0.9013 −6.1986 5.1167 4.9142 1.6598 0.5611 0.749 14.101 0.0022 0.1091 0.1115

LMA 0.0518 0.0027 0.0298 0.1157 0.8547 −11.645 8.1008 7.8012 2.6073 1.3334 1.1547 8.9738 0.0199 0.1137 0.166

LMA2 0.045 0.002 0.025 0.1004 0.826 −13.79 6.759 6.5186 2.1881 1.0034 1.0017 29.062 0.0135 0.1218 0.1455

LABCMA 0.0557 0.0031 0.0345 0.1244 0.8505 −10.12 8.3642 7.8741 3.0162 1.2414 1.5412 42.573 0.0299 0.0909 0.1773

LMCMA 0.0274 0.0008 0.0179 0.0612 0.7484 −28.57 5.972 6.0598 1.5634 0.373 0.6108 7.1639 −0.004 −0.201 0.0947

5. Result Analysis

As this study uses a supervised learning technique, all 12 models, that is, CPSO, CDE,
CMA, CMA2, CABCMA, CMCMA, LPSO, LDE, LMA, LMA2, LABCMA, and LMCMA,
were trained using the training samples available for each of the three datasets under
consideration. After training the models, the optimized weights were used to generate the
predicted Bitcoin prices for the test samples. This prediction was repeated 10 times for each
model. The minimum error measure values for the 15 performance metrics after 10 runs of
each of the 12 models in the testing samples of the BTC/USD, BTC/EUR, and BTC/JPY
datasets used in this study are listed in Table 3, Table 4, and Table 5, respectively.

From Table 3, representing the BTC/USD dataset, it can be observed that the LMCMA
model provided the minimum values for RMSE, MSE, MAE, TU, MASE, SSE, RSSE, and
RRSE. However, the performance of the CMCMA model on this dataset was the best in
terms of R2, MAPE, SMAPE, and MRAE. However, it can be clearly seen that the LMA
model gives the best value for the MPE, the LPSO model minimizes the MSD metric, and
the CABCMA model gives the best ARV value.

From Table 4, which represents the BTC/EUR dataset, it can be seen that the CMCMA
model resulted in the minimum values for RMSE, MSE, TU, SSE, RSSE, and RRSE. For the
same dataset, the CABCMA model showed the minimum MSE, MAE, MASE, and ARV. In
addition, the LMCMA model provides the minimum values for MPE, SMAPE, and MSD.
However, the CPSO model gives the minimum MRAE value, the LDE model gives the best
R2 value, and the CDE model provides the minimum MAPE value.

From Table 5, which represents the BTC/JPY dataset, the CMCMA model provided the
minimum MAE, MAPE, SMAPE, MASE, and MRAE. Here, the LMCMA model provides
the minimum values for RMSE, TU, SSE, RSSE, and RRSE. In addition, CABCMA provides
a minimum value for R2 and ARV. However, the LDE model yielded the minimum MPE
and MSD. In addition, both the LPSO and CMA models provided the minimum MSE value.

After the analysis of all 15 performance measures of each predictor, it was observed
that none of the models performed the best. Although a few models give better results in a
few criteria, they do not perform well in the rest of the criteria. Therefore, a multiple-criteria-
based evaluation strategy is required to obtain the best model for Bitcoin price prediction.
A TOPSIS approach was used to provide a robust analysis of the performance of each
model and rank the 12 models. Hence, Tables 3–5 are used as 12 × 15 decision matrices for
the BTC/USD, BTC/EUR, and BTC/JPY datasets, respectively. Then, it follows the TOPSIS
approach to generate the ranks of each model. In addition, the evaluation of the 12 predictor
models in terms of multiple criteria can provide a better explanation of the best Bitcoin
predictor. Although the minimum values for each of the three datasets are promising for
MCMA models, the error measurement values for the other models are also very close
to the minimum value. Therefore, to identify the best predictor model in this study, the
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TOPSIS approach was used. The final matrix showing the relative closeness of each model,
and hence, the final ranking of models based on the 15 performance metrics using the
TOPSIS approach for each of the three datasets under study are shown in Tables 6–8.

Table 6. Ranking for BTC/USD dataset.

Models Relative Closeness Rank

CPSO 0.6635 10
CDE 0.7062 7
CMA 0.7398 5
CMA2 0.7484 3

CABCMA 0.6646 9
CMCMA 0.7642 2

LPSO 0.7263 6
LDE 0.6848 8
LMA 0.6050 11

LMA2 0.5387 12
LABCMA 0.7436 4
LMCMA 0.8210 1

Table 7. Ranking for BTC/EUR dataset.

Models Relative Closeness Rank

CPSO 0.6912 8
CDE 0.7176 5
CMA 0.7146 6
CMA2 0.7408 4

CABCMA 0.7431 3
CMCMA 0.8119 1

LPSO 0.6827 9
LDE 0.7122 7
LMA 0.6252 11

LMA2 0.4993 12
LABCMA 0.6325 10
LMCMA 0.7938 2

Table 8. Ranking for BTC/JPY dataset.

Models Relative Closeness Rank

CPSO 0.6534 10
CDE 0.7893 5
CMA 0.7846 6
CMA2 0.6926 8

CABCMA 0.8304 2
CMCMA 0.8524 1

LPSO 0.6394 11
LDE 0.7707 7
LMA 0.6854 9

LMA2 0.7945 4
LABCMA 0.6361 12
LMCMA 0.8058 3

As inferred from Table 6, in the BTC/USD dataset, the LMCMA model ranked first in
the analysis, followed by the CMCMA and CABCMA models. In addition, in the BTC/EUR
dataset, the CMCMA model was the first, followed by the CABCMA model. In this dataset,
the LMCMA model ranked third. Table 8 shows that the CMCMA model is ranked first
followed by the LMCMA and CABCMA models in the BTC/JPY dataset. The model in the
top three ranks for each dataset under consideration is presented in Table 9.
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Table 9. Top 3 predictor models ranked using TOPSIS for three datasets.

Rank of Models BTC/USD BTC/EUR BTC/JPY

1 LMCMA CMCMA CMCMA
2 CMCMA CABCMA LMCMA
3 MA2 LMCMA CABCMA

To address the stability issues, the CMCMA model was executed for three different
expansion orders (p = 2, p = 3, and p = 4). The minimum RMSE value for each dataset for
the corresponding value of p was recorded. The values are shown in Table 10.

Table 10. Minimum RMSE for datasets using CMCMA model with different expansion order.

Models RMSE for p = 2 RMSE for p = 3 RMSE for p = 4

BTC/USD 0.0260 0.0408 0.0468
BTC/EUR 0.0265 0.0360 0.0569
BTC/JPY 0.0278 0.0383 0.551

Table 10 indicates that the CMCMA model performs the best in an expansion order
of 2. To further check the stability of the proposed model, the parameters of the MCMA
model are further tuned using expansion order 2. The minimum RMSE value for each
dataset with different values of Nc (maximum number of climbs) is shown in Table 11.

Table 11. Minimum RMSE for CMCMA model using different values for maximum number of climb.

MODELS NC = 10 NC = 20 NC = 30

BTC/USD 0.0241 0.0288 0.0300
BTC/EUR 0.0273 0.0279 0.0277
BTC/JPY 0.0263 0.0271 0.0281

Table 11 clearly shows that the CMCMA model gives the minimum error for Nc = 10
for all the datasets under study. By using the number of maximum climbs as 10, the
CMCMA model was evaluated for three different values of the climb step length parameter
s. The minimum RMSE values obtained for each dataset are shown in Table 12.

Table 12. Minimum RMSE for CMCMA model using different climb step length.

MODELS s = 0.05 s = 0.1 s = 0.15

BTC/USD 0.0250 0.0236 0.0246
BTC/EUR 0.0256 0.0256 0.0285
BTC/JPY 0.0256 0.0245 0.0249

Table 12 indicates that the CMCMA model performs the best with a climb step length
of 0.1. The CMCMA model was tested for stability by changing the values of various input
parameters.

To gain better insight into the stable predictive capability of the top two models in
each of the three datasets under consideration, the predicted prices during both the training
and testing of the models are plotted along with the actual price. Figures 3 and 4 show the
training, testing, and actual prices for the BTC/USD dataset executed using the LMCMA
and CMCMA models, respectively. It was observed that the dynamic changes in Bitcoin
prices were successfully trained using both models. However, during testing, the LMCMA
model provided a better approximation of the Bitcoin price than the CMCMA model for
this dataset.
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Similarly, Figures 5 and 6 provide a clear picture of the prediction capabilities of the
CMCMA and CABCMA models, respectively, for the BTC/EUR dataset. In addition, the
CMCMA model predicts Bitcoin prices with fewer errors than the CABCMA model.
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Figures 7 and 8 show the actual price, the corresponding training and the testing
prices generated by the CMCMA and LMCMA models, respectively, for the BTC/JPY
dataset. Again, the CMCMA and LMCMA model approximate Bitcoin prices with very
few intervals of over-prediction and under-prediction.
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In addition, to determine the learning capability of each model, the RMSE fitness value
was plotted against the number of iterations for all models under study using the three
datasets. Figures 9–11 show the RMSE plots for the BTC/USD, BTC/EUR, and BTC/JPY
datasets, respectively. It is observed that the fitness value is better minimized by the MCMA
models than by the other models.
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6. Discussion

Bitcoin is recently being considered a safe-haven asset by some investors. However, the
high volatility and decentralized governance are acting as the main hindrance to accepting
Bitcoin as a safe asset. The stable prediction of Bitcoin price can help in persuading
investors and stakeholders to consider Bitcoin as a prized possession. This can act as fuel
to the positive socio-economic growth of the crypto-market and hence lead to sustainable
development.

Recently, digital transformation is in full swing. Many industries and organizations
are opting for a strong digital transformation. In this scenario, Bitcoin can play a very
crucial role as it is a completely digital asset. Bitcoin is now available as Bitcoin Cash which
supports digital transactions without any government or centralized control [36]. Addi-
tionally, blockchain is believed to transform industries for complete digitization [37]. Many
industry giants are accepting Bitcoin as a means of payment for various digital transactions.
Therefore, the prediction of Bitcoin prices can also aid in digital transformation.

In this study, a new MCMA algorithm is proposed for the efficient prediction of highly
volatile daily Bitcoin prices. This algorithm is used in the CPBNN and LPBNN to generate
two models for prediction. This study also includes a prediction analysis of ten other
models using three different datasets. As the performance evaluation of these 12 models
is less reliable if a single criterion is used, this study incorporated the TOPSIS framework
to evaluate the models using 15 different criteria. It is visualized and inferred that the
CMCMA model outperforms the other 11 models on two of the datasets, whereas the
LMCMA model is the best predictor model for the remaining dataset. This study indicates
that the prediction capability of the MCMA algorithm outperforms the other compared
algorithms for this experimental setup, with a more promising multi-criteria performance
analysis.

The results displayed in the tables and figures in this study indicate that the CMCMA
model is a stable Bitcoin price prediction model in this scenario. Any change in input
parameters has a subtle effect on its efficiency. The splitting of datasets into training and
testing datasets also aids in the stability issues of the model by predicting prices for both
datasets efficiently even if there is no common data between them.

The novelty of this research paper is compared with certain previously published
papers in this subject area. It is shown in Table 13.

Table 13. Comparison of proposed work with other published work.

Reference No. Method Input Features Metrics

[7] Bayesian Neural
Network

Blockchain
Information

RMSE,
MAPE

[8] Classification
tree-based model

124 technical
indicators Win-ratio, Loss-ratio

[12] Deep Learning
Method

40 determinant
features

MAPE,
RMSE, DA

This Paper Polynomial-based
Neural Network

Closing prices from
14 May 2017 to 14

June 2021

15 error metrics with
TOPSIS ranking

However, this study has certain limitations. This study only focuses on the closing
prices of Bitcoin. As Bitcoin is a stochastic currency that is highly non-stationary in its
behavior, a single closing price prediction may not be sufficient for supporting ESG issues.
It can be further extended for maximum, minimum, and direction prediction. As shown
in Figures 3–8, the training prices predicted by the best two models in this study are
coinciding with the actual prices. However, the testing prices were predicted inefficiently
until around day 1300. After day 1300, the test prices are less coinciding with the actual
prices. This may be the result of the ongoing COVID-19 pandemic. It can be further
analyzed by using a post-COVID-19 dataset. This study relies on parameter tuning of
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many parameters in MCMA. The parameters were tuned and the best values were used
for prediction with positive stability concerns. Still, more effective parameter tuning can
give better test results. This study has not been implemented by any previously designed
Bitcoin prediction models. Therefore, the efficiency of our proposed model is yet to be
compared with other Bitcoin predictors.

7. Conclusions

Bitcoin is emerging as a promising cryptocurrency. This study proposes the use of a
new MCMA algorithm as a way to capture the dynamic changes in Bitcoin prices and hence,
supports the conclusion that Bitcoin is a safe-haven asset in the near future. A PBNN-based
model has been considered for Bitcoin price prediction. To analyze the capability of the
network, two different networks, that is, CPBNN and LPBNN are used. A new MCMA
learning algorithm is proposed for the Bitcoin price prediction. Input weights are assigned
randomly and the final output weight for both networks are calculated using six learning
algorithms, that is, PSO, DE, MA, MA2, ABCMA, and MCMA during the training phase.
Empirical analysis of the 12 predictors (six for each network) is done for three different
datasets, that is, BTC/USD, BTC/EUR, and BTC/JPY. An MCDM method known as TOPSIS
has been executed to rank the twelve models based on the fifteen performance measures
during testing. The MCMA learning approach proposed here showed promising results
in both networks, that is, CPBNN and LPBNN, for all three datasets under consideration.
The prediction capability of the top two models for each dataset is visualized using the
plot of the actual Bitcoin price and predicted Bitcoin price during training and testing. To
visualize the learning capabilities of each model during training, the minimizing process of
RMSE fitness value is also shown.

This study can be used to further examine the learning capabilities of the proposed
MCMA algorithm using other networks. It can be further evaluated against various techni-
cal indicators in the Bitcoin dataset for more accurate prediction. This model successfully
predicts most prices, but there is a case of over-prediction in the most recent prices. This
can be further analyzed using other models as well as other pre-processing techniques.
This model can be used to predict weekly and monthly prices to provide better insight
into the volatile features of Bitcoin. The proposed algorithm can also be used to analyze
dynamic changes in sources other than Bitcoin datasets. The Bitcoin prices considered in
this study use prices till June 2021. Hence, it can be further utilized in a more recent study
on volatile price prediction techniques.
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