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Abstract: Through this article, we will discuss a new extension of the incomplete Wright hyper-
geometric matrix function by using the extended incomplete Pochhammer matrix symbol. First,
we give a generalization of the extended incomplete Wright hypergeometric matrix function and
state some integral equations and differential formulas about it. Next, we obtain some results about
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we discuss an application of the extended incomplete Wright hypergeometric matrix function in the
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1. Introduction and Preliminaries

In this century, special functions have an important place in many branches of mathe-
matics because some sciences such as mathematical physics, probability theory, computer
science, engineering and others consider the special functions as an essential tool for
it (see [1–5]).

The recent advances in fractional order calculus are dominated by its multidisciplinary
applications. Undoubtedly, fractional calculus has become an exciting new mathematical
approach to solving various problems in mathematics, model physical, engineering, and
many branches of science (see, for example [6–9] and the references therein).

Special matrix functions have an important place in solving some physics problems,
and their applications are increasing and becoming an active area in recent literature
including statistics, lie group and differential equations. New extensions of matrix special
functions such as beta, gamma matrix functions and Gaussian hypergeometric matrix
function are studied independently. In this article, Ch×h is the vector space of h square
matrices with complex entries, and we will denote the null matrix and identity matrix
in Ch×h by 0 and I, respectively. If a matrix E ∈ Ch×h, then, the spectrum of E is the set
of all eigenvalues of E and is denoted by σ (E). A matrix E ∈ Ch×h is a positive stable if
Re(µ) > 0 for all µ ∈ σ(E).

If w(z) and s(z) are holomorphic functions defined on an open set D ⊆ C and if E is a
matrix in Ch×h such that σ(E) ⊂ D, then w(E)s(E) = s(E)w(E) (see [10]). Furthermore, if
F is a matrix in Ch×h such that σ(E) ⊂ D and EF = FE, then w(E)s(F) = s(F)w(E).
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If E is a positive stable matrix in Ch×h, then the matrix gamma function Γ(E) as defined
by (see [10–12])

Γ(E) =
∫ ∞

0
tE−Ie−t dt, where tE−I = e(E−I) ln t. (1)

If E in Ch×h, such that

E + mI is invertible for all m ≥ 0 , (2)

then, the version Pochhammer matrix symbol is defined by (see [10,13]):

(E)m = E(E + I)(E + 2I) . . . (E + (m− 1)I) where m ≥ 1 and (E)0 = I. (3)

From [14], if E and P are positive stable matrices in Ch×h and E satisfy condition (2),
then the extended Gamma matrix function is defined by:

Γ(E, P) =


∫ ∞

0
tE−Ie−It− P

t dt i f P 6= 0 ,

Γ(E) i f P = 0 .
(4)

and the new extended Pochhammer matrix symbol is given by:

(E, P)m =

{
Γ−1(E)Γ(E + mI, P) i f P 6= 0 ,
(E)m i f P = 0 .

(5)

If E is a matrix positive stable in Ch×h and y ∈ R+, then the incomplete and comple-
ment Gamma matrix functions as follows (see [15,16])

γ(E, y) =
∫ y

0
tE−Ie−t dt (6)

and

Γ(E, y) =
∫ ∞

y
tE−Ie−t dt , (7)

respectively, and they satisfy the following decomposition

γ(E, y) + Γ(E, y) = Γ(E) . (8)

In [17], if E is a positive stable matrix in Ch×h and y ∈ R+, then we have the incomplete
Pochhammer matrix symbol (E, y)m and its complement [E, y]m are defined by

(E, y)m = γ(E + mI, y)Γ−1(E) (9)

and

[E, y]m = Γ(E + mI, y)Γ−1(E) , (10)

respectively, and they hold the decomposition formula

(E, y)m + [E, y]m = (E)m . (11)

Let E and P be positive stable matrices in Ch×h and y ∈ R+, then the extended incom-
plete Gamma matrix function γ(E, P; y) matrix function and its complement Γ(E, P; y) are
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defined in [18] as follows

γ(E, P; y) =
∫ y

0
tE−Ie−t− P

t dt (12)

and

Γ(E, P; y) =
∫ ∞

y
tE−Ie−t− P

t dt , (13)

respectively, and they achieve the following decomposition

γ(E, P; y) + Γ(E, P; y) = Γ(E, P) . (14)

The Laplace transform of a function φ(t) is defined as follows (see [19])

φ̄(h) = L
[
φ(t)

]
(h) =

∫ ∞

0
e−ht φ(t) dt, Re(h) > 0, (15)

where φ̄(h) denotes the Laplace transform of φ(t).
The essential contribution of this study is to provide a new extension of the incom-

plete Wright hypergeometric matrix function (EIWHMF). We generalize the definition of
incomplete Pochhammer matrix function and its complement. Consequently, we produce
a generalization of the incomplete hypergeometric and the incomplete Wright hyperge-
ometric matrix functions and prove some theorem about them. In a fractional view, we
discuss the Riemann–Liouville fractional integral of (EIWHMF). Further, an application of
the (EIWHMF) for the fractional kinetic equations is implemented.

The rest of this paper is organized as follows. In Section 2, we will give a new
extension of the incomplete Wright hypergeometric matrix function (EIWHMF) and state
some theorems about integral and derivative formula of the (EIWHMF). In Section 3, we
apply some theories of fractional calculus to the (EIWHMF). In the last section, we state
some applications of (EIWHMF) in fractional kinetic equations.

2. Extended Incomplete Wright Hypergeometric Matrix Function EIWHMF

In this section, in terms of the general definition of the incomplete Pochhammer
matrix function and its complement, also we will give a generalization of the incomplete
hypergeometric matrix and the incomplete Wright hypergeometric matrix function and
state some theorem about them.

Definition 1. Let E and P be positive stable matrices in Ch×h and y ∈ R+; then, the extended
incomplete Pochhammer matrix symbols (E, P; y)m and [E, P; y]m are defined as follows:

(E, P; y)m = γ(E + mI, P; y)Γ−1(E) (16)

and

[E, P; y]m = Γ(E + mI, P; y)Γ−1(E). (17)

If we add (16) to (17), then we obtain

(E, P; y)m + [E, P; y]m = (E, P)m. (18)

Remark 1. If P = 0 in (16) and (17), then we have the incomplete Pochhammer matrix symbols
(E; y)m and [E; y]m as defined in (9) and (10).
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Definition 2. The new extended incomplete Gauss hypergeometric matrix function and its comple-
ment are defined by:

2γ1

[
(E, P; y), F; G; z

]
=

∞

∑
m=0

(E, P; y)m(F)m(G)−1
m

zm

m!
(19)

and

2Γ1

[
[E, P; y], F; G; z

]
=

∞

∑
m=0

[E, P; y]m(F)m(G)−1
m

zm

m!
, (20)

where E, F, G and P are positive stable matrices in the space Ch×h such that G satisfies condition
(2) and y ∈ R+.

Definition 3. Let E, F and G be positive stable matrices in Ch×h such that G satisfies condition
(2), in terms of the extended incomplete Pochhammer matrix function γ(E, P, y) and Γ(E, P, y)
defined by (12) and (13), we defined EIWHMF as follows:

2γ
(ζ)
1

[
(E, P, y), F; G; z

]
= Γ−1(F) Γ(G)

∞

∑
m=0

(E, P; y)m Γ−1(G + ζmI) Γ(F + ζmI)
zm

m!
(21)

and

2Γ(ζ)
1

[
[E, P; y], F; G; z

]
= Γ−1(F) Γ(G)

∞

∑
n=m

[E, P; y]m Γ−1(G + ζmI) Γ(F + ζmI)
zm

m!
, (22)

where ζ ∈ R+ = (0, ∞) .

One can notice that

2γ
(ζ)
1

[
(E, P, y), F; G; z

]
+ 2Γ(ζ)

1

[
[E, P; y], F; G; z

]
= 2R(ζ)

1

[
(E, P), F; G; z

]
, (23)

where the extended Wright hypergeometric matrix function as

2R(ζ)
1

[
(E, P), F; G; z

]
= Γ−1(F)Γ(G)

∞

∑
m=0

(E, P)mΓ−1(G + ζmI)Γ(F + ζmI)
zm

m!
, (24)

where ζ ∈ (0, ∞).
In view of the composition Formula (18), it is sufficient to discuss the properties of

2Γ(ζ)
1

[
[E, P; y], F; G; z

]
.

Remark 2.

(i) When ζ = 1, the Formulas (21) and (22) are reduced to the extended matrix version of the
incomplete Gauss hypergeometric functions defined in (19) and (20), respectively.

(ii) When ζ = 1 and y = 0, Formulas (21) and (22) are reduced to the extended Gauss
hypergeometric matrix function as

2F1[(E, P), F; G; z] =
∞

∑
n=0

(E, P)n(F)n[(G)n]
−1 zn

n!
. (25)

(iii) If we put ζ = 1 and P = 0 in (21) and (22), then we obtain the incomplete Gauss hypergeo-
metric matrix function (see [17]) .
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Integral Representation and Differentiation Formulas

Theorem 1. Suppose that E, F, G and P are positive stable matrices in Ch×h satisfying the condition
(2), then for |z| < 1, we have

2Γ(ζ)
1

[
[E, P; y], F; G; z

]
= Γ−1(E)

( ∫ ∞

y
tE−Ie−t− P

t 1R(ζ)
1 (F; G; zt) dt

)
, (26)

where

1R(ζ)
1 (F; G; zt) = Γ−1(F) Γ(G)

∞

∑
m=0

Γ−1(G + mζ I)Γ(F + mζ I)
(zt)m

m!
.

Proof. By using (17) and (22), we find that

2Γ(ζ)
1

[
[E, P; y], F; G; z

]
= Γ−1(E) Γ−1(F) Γ(G)×

∞

∑
m=0

Γ−1(G + mζ I) Γ(F + mζ I)
zm

m!

∫ ∞

y
tE+(m−1)Ie−t− P

t dt.

Which can be written as

2Γ(ζ)
1

[
[E, P; y], F; G; z

]
= Γ−1(E)

∫ ∞

y
tE−Ie−t− P

t

[
Γ−1(F) Γ(G)

∞

∑
m=0

Γ−1(G + mζ I) Γ(F + mζ I)
(zt)m

m!

]
dt

= Γ−1(E)

( ∫ ∞

y
tE−Ie−t− P

t 1R(ζ)
1 (F; G; zt) dt

)
,

this completes the proof.

Remark 3. Note that when y = 0 in (26), then the following relation holds true

2R(ζ)
1

[
(E, P), F; G; z

]
= Γ−1(E)

( ∫ ∞

0
tE−Ie−t− P

t 1R(ζ)
1 (F, G; zt) dt

)
. (27)

Theorem 2. All E, F, G and P are matrices in Ch×h such that GF = FG and P, G, F, E satisfy
condition (2), then for |z| < 1, we find:

2Γ(ζ)
1

[
[E, P; y], F; G; z

]
= Γ−1(F) Γ−1(G− F) Γ(G)×

( ∫ 1

0
1Γ0

[
[E, P; y];−,−; ztζ

]
tF−I (1− t)G−F−I dt

)
,

(28)

where 1Γ0

[
[E, P; y];−,−; ztζ

]
=

∞

∑
m=0

[E, P; y]m
(ztζ)

m

m!
.

Proof. First, we notice that

Γ−1(F) Γ−1(G + mζ I) Γ(G)Γ(F + mζ I)

=Γ−1(F) Γ−1(G− F) Γ(G)Γ(F + mζ I) Γ(G− F)Γ−1(G + mζ I)

=Γ−1(F) Γ−1(G− F) Γ(G)
∫ 1

0
tF+(mζ−1)I (1− t)G−F−I dt ,
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Now, we can write

2Γ(ζ)
1

[
[E, P; y], F; G; z

]
=Γ−1(F) Γ(G)

∞

∑
m=0

[E, P; y]m Γ−1(G + ζmI) Γ(F + ζmI)
zm

m!

=Γ−1(F) Γ−1(G− F) Γ(G)
∞

∑
m=0

∫ 1

0
tF+(mζ−1)I(1− t)G−F−I [E, P; y]m

zm

m!
dt

=Γ−1(F) Γ−1(G− F) Γ(G)
∫ 1

0
tF−I(1− t)G−F−I

∞

∑
m=0

[E, P; y]m
(ztζ)m

m!
dt

=Γ−1(F) Γ−1(G− F) Γ(G)×
( ∫ 1

0
1Γ0

[
[E, P; y];−,−; ztζ

]
tF−I (1− t)G−F−I dt

)
.

These end the proof.

Theorem 3. The derivative formula for 2Γ(ζ)
1

[
[E, P; y], F; G; z

]
holds true

dm

dzm

{
2Γ(ζ)

1

[
[E, P; y], F; G; z

]}
= (E)m Γ−1(G + mζ I) Γ−1(F) Γ(G) Γ(F + mζ I) 2Γ(ζ)

1

[
[E + mI, P; y], F + mζ I, G + mζ I; z

]
.

(29)

Proof. By differentiating both sides of (22), we find that

d
dz

{
2Γ(ζ)

1

[
[E, P; y], F; G; z

]}

= Γ−1(F) Γ(G)
∞

∑
m=1

[E, P; y]m Γ−1(G + mζ I) Γ(F + mζ I)
zm−1

(m− 1)!

= Γ−1(F) Γ(G)
∞

∑
m=0

[E, P; y]m+1Γ−1(G + (m + 1)ζ I)Γ(F + (m + 1)ζ I)
zm

m!

= E Γ−1(F) Γ−1(G + ζ I) Γ−1(F + ζ I) Γ(G) Γ(F + ζ I) Γ(G + ζ I)

×
∞

∑
m=0

[E + I, P; y]m Γ−1(G + (m + 1)ζ I) Γ(F + (m + 1)ζ I)
zm

m!

= E Γ−1(F) Γ−1(G + ζ I)Γ(G) Γ(F + ζ I) 2Γ(ζ)
1

[
[E + I, P; y], F + ζ I, G + ζ I; z

]
.

By using the mathematical induction on m, we obtain the required result (29). This
finishes the proof.

Theorem 4. Assume that E, F, G and P are positive stable matrices in Ch×h. Then, we have the
following derivative formula,(

d
dz

)n
{

zG−I
2Γ(ζ)

1

[
[E, P; y], F; G; αzζ

]}
(30)

= Γ−1(G− nI) Γ(G) zG−(n+1)I
2Γ(ζ)

1

[
[E, P; y], F; G− nI; αzζ

]
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Proof. From using Definition 3 and differentiating term by term, we obtain(
d
dz

)n
{

zG−I
2Γ(ζ)

1

[
[E, P; y], F; G; αzζ

]}

= Γ−1(F) Γ(G)
∞

∑
m=0

[E, P; y]m Γ−1(G + ζmI) Γ(F + ζmI)
αm

m!

(
d
dz

)n
zG+(ζm−1)I

= Γ−1(F) Γ(G)
∞

∑
m=0

[E, P; y]mΓ−1(G + (ζm− n)I)Γ(F + ζmI)
αm

m!
zG+(ζm−n−1)I

= zG−(n+1)I Γ−1(F) Γ(G)
∞

∑
m=0

[E, P; y]m Γ−1(G + ζm− n)I) Γ(F + ζmI)
(αzζ)m

m!

= zG−(n+1)I Γ−1(G− nI) Γ(G) 2Γ(ζ)
1

[
[E, P; y], F; G− nI; αzζ

]
.

This finishes the proof.

Theorem 5. The extended incomplete gamma matrix function achieves the following relation:

2Γ(ζ)
1

[
[E, P; y], F; F; z

]
= Γ−1(E)(1− z)−E Γ

(
E, P(1− z); y(1− z)

)
, (|z| < 1, y ≥ 0) (31)

Proof. If we put G = F in (26), then we find that

2Γ(ζ)
1

[
[E, P; y], F; F; z

]
= Γ−1(E)×

∞

∑
n=0

∫ ∞

y

(zt)n

n!
tE−Ie−t− P

t dt

= Γ−1(E)×
∫ ∞

y
tE−Ie−t− P

t
∞

∑
n=0

(zt)n

n!
dt

= Γ−1(E)×
∫ ∞

y
tE−Ie−t(1−z)− P

t dt.

Substitute t(1− z) = u, we have

= Γ−1(E)(1− z)−E ×
∫ ∞

y(1−z)
uE−Ie−u− P(1−z)

u du

= Γ−1(E)(1− z)−E Γ
(

E, P(1− z); y(1− z)
)

.

This completes the proof.

3. Fractional Calculus of the EIWHMF

In this section, we will discuss some theorems about the fractional Riemann–Liouville
integral of the EIWHMF.

The fractional integral and derivative of Riemann–Liouville of order µ and y > 0 are
given, respectively, as follows (see [1,12]):

0D−µ
y [ f (y)] = Iµ[ f (y)] =

1
Γ(µ)

∫ y

0
(y− t)µ−1 f (t) dt (32)

and

Dµ f (y) = Dn
[

In−µ f (y)
]

, D =
d

dy
. (33)
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In [19], the Laplace transform for Riemann–Liouville fractional integral is given as
follows

L
[

0D−µ
t φ(t)

]
(h) = h−µφ̄(h), (34)

where φ̄(h) denotes the Laplace transform of φ(t).
If E is a positive stable matrix in Ch×h, and Re(µ) > 0, then the following relation

holds true (see [20,21]):

Iµ
(

yE−I
)
= Γ(E) Γ−1(E + µI) yE+(µ−1)I . (35)

Theorem 6. Assume that E, F, G are positive stable matrices in Ch×h and ζ > 0, µ ∈ C such that
Re(µ) > 0 and |wzζ | < 1, then we obtain

Iµ

{
zG−I

2Γ(ζ)
1

[
[E, P; y], F; G; wzζ

]}
= Γ(G) Γ−1(G + µI) zG+(µ−1)I ×2 Γ(ζ)

1

[
[E, P; y], F; G + µI; wzζ

]
.

(36)

Proof. Substituting (22) in the left-hand side of (36), we find that

Iµ

{
zG−I

2Γ(ζ)
1

[
[E, P; y], F; G; wzζ

]}

= Iµ

{
Γ−1(F) Γ(G)×

∞

∑
m=0

[E, p; y]mΓ−1(G + ζmI) Γ(F + ζmI)
wm

m!
zG+(ζm−1)I

}

= Γ−1(F) Γ(G)×
∞

∑
m=0

[E, p; y]m Γ−1(G + ζmI) Γ(F + ζmI)
wm

m!
Iµ

{
zG+(ζm−1)I

}

= Γ−1(F) Γ(G)×
∞

∑
m=0

[
[E, p; y]mΓ−1(G + ζmI)Γ(F + ζmI)

wm

m!

× Γ(G + mζ I)Γ−1(G + (ζm + µ)I) zG+(µ+ζm−1)I

]

= Γ−1(F) Γ(G)×
∞

∑
m=0

[
[E, p; y]mΓ(F + ζmI)× Γ−1(G + (ζm + µ)I)

(wzζ)m

m!
zG+(µ−1)I

]
= zG+(µ−1)I Γ(G) Γ−1(G + µI)

×
[

Γ(G + µI) Γ−1(F)×
∞

∑
m=0

[E, p; y]mΓ−1(G + µI + ζmI) Γ(F + ζmI)
wm

m!

]
= Γ(G) Γ−1(G + µI) zG+(µ−1)I

2Γ(ζ)
1

[
[E, P; y], F; G + µI; wzζ

]
.

This finishes the proof

Theorem 7. Suppose that E, F, G are positive stable matrices in Ch×h and ζ > 0, µ ∈ C such that
Re(µ) > 0 and |wzζ | < 1, then, the following holds true

Dµ

{
zG−I

2Γ(ζ)
1

[
[E, P; y], F; G; wzζ

]}
= Γ(G) Γ−1(G− µI) zG−(µ+1)I ×2 Γ(ζ)

1

[
[E, P; y], F; G− µI; wzζ

]
.

(37)
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Proof. Applying (33), we find that

Dµ

{
zG−I

2Γ(ζ)
1

[
[E, P; y], F; G; wzζ

]}

=

(
d
dz

)n
{

In−µ

[
zG−I

2Γ(ζ)
1

[
[E, P; y], F; G; wzζ

]]}
,

by using Theorem (6), we obtain

Dµ

{
zG−I

2Γ(ζ)
1

[
[E, P; y], F; G; wzζ

]}

=

(
d
dz

)n
{

zG+(n−µ−1)I Γ(G) Γ−1(G + (n− µ)I) 2Γ(ζ)
1

[
[E, P; y], F; G + (n− µ)I; wzζ

]}
.

Applying Theorem (4), we obtain

Dµ

{
zG−I

2Γ(ζ)
1

[
[E, P; y], F; G; wzζ

]}
= Γ(G) Γ−1(G− µI) zG−(µ+1)I ×2 Γ(ζ)

1

[
[E, P; y], F; G− µI; wzζ

]
.

This completes the proof

4. Applications: Kinetic Equations

In recent years, the solution of the fractional kinetic equations has attracted the atten-
tion many workers due to their importance in the field of applied science, such as physics,
dynamical systems, control systems, and engineering, to create the mathematical model of
many physical phenomena and mathematical physics. In certain astrophysical problems,
the kinetic equations describe the continuity of motion of substance and are the basic
equations of mathematical physics and natural science. The extension and generalization
of fractional kinetic equations involving various fractional calculus operators were found
(for example [22,23]).

Haubold and Mathai in [22] have established a functional differential equation between
rate of change of reaction, the destruction rate, and the production rate as follows

dR
dt

= −d(Rt) + p(Rt), (38)

where R = R(t) is the rate of reaction, d = d(R) is the rate of destruction, p = p(R) is the
rate of production, and Rt denotes the function defined by Rt(t∗) = R(t− t∗), t∗ > 0.

A special case of (38), when spatial fluctuations or inhomogeneities in the quantity
R(t) are neglected, is given by the following differential equation as

dR
dt

= −m iRi(t), (39)

together with the initial condition that Ri(t = 0) = R0, is the number of density of species i
at time t = 0, mi > 0.

If the index i is dropped, and the typical kinetic Equation (39) is integrated, we receive

R(t)− R0 = −m 0D−1
t R(t), (40)
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where m is a constant, and 0D−1
t is the Riemann–Liouville integral operator of order µ = 1.

The fractional kinetic equation (FKE) is redefined by Haubold and Mathai as following
(see [22])

R(t)− R0 = −mµ
0D−µ

t R(t), (41)

where 0D−µ
t defined in (32).

Then, the solution for R(t) is given by

R(t) = R0

∞

∑
r=0

(−1)r

Γ(µr + 1)
(mt)µr = R0 Eµ(−mµtµ), (42)

where Eµ(−mµtµ) denotes the Mittag–Leffler function (see [24,25]).
In addition, Saxena Kalla thought about the subsequent fractional kinetic equation

(see [23,26–28])

R(t)− R0 f (t) = −mµ
0D−µ

t R(t), m > 0, Re(µ) > 0, (43)

where R(t) denotes the number density of a given species at time t, R0 = R(0) is the
number density of that species at time t = 0, m is a constant, and f is an integrable function
on (0, ∞).

Very recently, several different papers appeared to solve the fractional kinetic equations
by using different integral transforms, such as Laplace, Fourier, Sumudu and Mellin
transforms with special functions and a matrix function, (see [26,29–33]).

Now, in the following section, we derive the solutions of fractional kinetic equations
involving the extension of the incomplete Wright Hypergeometric matrix functions. Further,
we established various special cases.

Theorem 8. Assume that E, F, G and M are positive stable matrices in Ch×h such that F, G and
M satisfy condition (2), and ζ ∈ R+. Then, for Re(µ) > 0 and t ∈ C, the generalized fractional
kinetic matrix equation

R(t)I − R0 2Γ(ζ)
1

[[
E, P; y

]
, F; G; t

]
= −Mµ

0D−µ
t R(t), (44)

has a solution

R(t)I = R0 Γ−1(F) Γ(G)

×
∞

∑
m=0

[
E, P; y

]
m Γ−1(G + ζmI) Γ(F + mI)

× tm Eµ,m+1(−Mµtµ), (45)

where Eµ,m+1(−Mµtµ) =
∞

∑
r=0

(−1)r Mµr tµr

Γ(µr + m + 1)
and called the generalized the Mittag–

Leffler function (see [25]).

Proof. From (15), (34) and by using Laplace transform in Equation (44), we obtain

L
[

R(t)I
]
(h) = R0 L

[
2Γ(ζ)

1

[[
E, P; y

]
, F; G; t

]]
(h)−Mµ L

[
0D−µ

t R(t)
]
(h)

R̄(h)I = R0

∫ ∞

0
e−ht Γ−1(F) Γ(G)

∞

∑
m=0

[
E, P; y

]
mΓ−1(G + ζmI)Γ(F + ζmI)

tm

m!
dt−Mµh−µR(h),
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and we can write[
I + Mµh−µ

]
R̄(h)

= R0 Γ−1(F) Γ(G)
∞

∑
m=0

[
E, P; y

]
mΓ−1(G + ζmI)Γ(F + ζmI)

1
m!

∫ ∞

0
e−httm dt

= R0 Γ−1(F) Γ(G)
∞

∑
m=0

[
E, P; y

]
m Γ−1(G + ζmI) Γ(F + ζmI)

1
hm+1

= R0 Γ−1(F) Γ(G)
∞

∑
m=0

[
E, P; y

]
mΓ−1(G + ζmI)Γ(F + ζmI)

[
h−(m+1)

]
,

this can be writen as

R̄(h)I

= R0 Γ−1(F) Γ(G)
∞

∑
m=0

[
E, P; y

]
m Γ−1(G + ζmI) Γ(F + ζmI)

[
h−(m+1)

]
×
[

I + Mµh−µ
]−1

= R0 Γ−1(F) Γ(G)
∞

∑
m=0

[
E, P; y

]
m Γ−1(G + ζmI) Γ(F + ζmI)

[
h−(m+1)

]
×

∞

∑
r=0

(−1)r

[(
M
h

)µ
]r

.

Taking the inverse Laplace transform to the above result, we obtain

L−1
{

R(h)I
}
= R0 Γ−1(F) Γ(G)

∞

∑
m=0

[
E, P; y

]
m Γ−1(G + ζmI) Γ(F + ζmI)

× L−1

{
∞

∑
r=0

(−1)r Mµrh−(µr+m+1)

}

R(t)I = R0 Γ−1(F) Γ(G)
∞

∑
m=0

[
E, P; y

]
m Γ−1(G + ζmI) Γ(F + ζmI)

×
{

∞

∑
r=0

(−1)r Mµr tµr+m

Γ(µr + m + 1)

}

= R0 Γ−1(F) Γ(G)
∞

∑
m=0

[
E, P; y

]
m Γ−1(G + ζmI) Γ(F + ζmI) tm

×
{

∞

∑
r=0

(−1)r Mµr tµr

Γ(µr + m + 1)

}

= R0 Γ−1(F) Γ(G)
∞

∑
m=0

[
E, P; y

]
m Γ−1(G + ζmI) Γ(F + ζmI) tm

× Eµ,m+1(−Mµtµ),

this finishes the proof.
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Remark 4.

(1) If P = 0, then the extended incomplete Wright hypergeometric matrix function

2Γ(ζ)
1

[[
E, p; y

]
, F; G; t

]
is reduced to the incomplete Wright hypergeometric matrix function

2Γ(ζ)
1

[[
E; y
]
, F; G; t

]
(see [20]), and Equations (44) and (45) become as following

Corollary 1. Assume that E, F, G and M are positive stable matrices in Ch×h such that F,
G and M satisfy condition (2), and ζ ∈ R+, then for Re(µ) > 0 and t ∈ C, the generalized
fractional kinetic matrix equation

R(t)I − R0 2Γ(ζ)
1

[[
E; y
]
, F; G; t

]
= −Mµ

0D−µ
t R(t), (46)

has a solution

R(t)I =R0Γ−1(F) Γ(G)
∞

∑
m=0

[
E; y
]

m Γ−1(G + ζmI) Γ(F + ζmI) tm

× Eµ,m+1(−Mµtµ).

(2) If P = 0 and ζ = 1, then the extended incomplete Wright hypergeometric matrix function

2Γ(ζ)
1

[[
E, p; y

]
, F; G; t

]
is reduced to the incomplete Gauss hypergeometric matrix function

2Γ1

[[
E; y
]
, F; G; t

]
(see [17]), and Equations (44) and (45) reduce to the following forms

Corollary 2. Suppose that E, F, G and M are positive stable matrices in Ch×h such that F,
G and M satisfy condition (2), and ζ ∈ R+, then for Re(µ) > 0 and t ∈ C, the generalized
fractional kinetic matrix equation

R(t)I − R0 2Γ1

[[
E; y
]
, F; G; t

]
= −Mµ

0D−µ
t R(t), (47)

has a solution

R(t)I = R0

∞

∑
m=0

[
E; y
]

m (F)m [(G)m]
−1 tm × Eµ,m+1(−Mµtµ).

(3) If ζ = 1 and y = 0, then the extended incomplete Wright hypergeometric matrix function

2Γ(ζ)
1

[[
E, p; y

]
, F; G; t

]
reduces to the Gauss hypergeometric matrix function 2F1

[
(E, P), F; G; t

]
defined in (25), and Equations (44) and (45) reduce to the following forms

Corollary 3. Suppose that E, F, G and M are positive stable matrices in Ch×h such that F, G
and M satisfy condition (2), then for Re(µ) > 0 and t ∈ C, the generalized fractional kinetic
matrix equation

R(t)I − R0 2F1

[
E, F; G; t

]
= −Mµ

0D−µ
t R(t), (48)

has a solution

R(t)I = R0

∞

∑
m=0

(E)m (F)m [(G)m]
−1 tm × Eµ,m+1(−Mµtµ). (49)
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Theorem 9. Suppose that E, F, G and M are positive stable matrices in Ch×h such that F, G and
M satisfycondition (2), and ζ ∈ R+. Then for Re(µ) > 0 and t, α ∈ C the generalized fractional
kinetic matrix equation

R(t)I − R0 2Γ(ζ)
1

[[
E, P; y

]
, F; G; αµtµ

]
= −Mµ

0D−µ
t R(t), (50)

has a solution

R(t)I = R0 Γ−1(F) Γ(G)

×
∞

∑
m=0

[
E, P; y

]
m Γ−1(G + ζmI) Γ(F + ζmI)

Γ(mµ + 1)(αµtµ)m

m!
× Eµ,mµ+1(−Mµtµ),

where Eµ,mµ+1(−Mµtµ) =
∞

∑
r=0

(−1)r Mµr tµr

Γ(µr + mµ + 1)
and called the generalized the Mittag-

Leffler function.

Proof. Applying the same steps of the proof used in theorem (8), we obtain the re-
quired.

5. Conclusions

Recently, matrix functions with their potential applications have a major role in math-
ematical physics, probability theory and engineering. In this paper, we introduce an
extension of incomplete Wright hypergeometric matrix function and we investigate its
properties. Also, we present the Riemann-Liouville fractional integral and derivative of
the new extension of incomplete Wright hypergeometric matrix function function. Further,
many specific cases are considered. We are motivated to obtain apply an application of
fractional kinetic matrix equations involving the new function and we also have many
special cases for these fractional equations.The results appear in this paper are seemed new
to the literature.
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