

Article Relaxed Variable Metric Primal-Dual Fixed-Point Algorithm with Applications

Wenli Huang ¹, Yuchao Tang ², Meng Wen ³ and Haiyang Li ^{1,*}

- ¹ School of Mathematics and Information Science, Guangzhou University, Guangzhou 510006, China
- ² Department of Mathematics, Nanchang University, Nanchang 330031, China
- ³ School of Science, Xi'an Polytechnic University, Xi'an 710048, China

* Correspondence: haiyangli@gzhu.edu.cn

Abstract: In this paper, a relaxed variable metric primal-dual fixed-point algorithm is proposed for solving the convex optimization problem involving the sum of two convex functions where one is differentiable with the Lipschitz continuous gradient while the other is composed of a linear operator. Based on the preconditioned forward–backward splitting algorithm, the convergence of the proposed algorithm is proved. At the same time, we show that some existing algorithms are special cases of the proposed algorithm. Furthermore, the ergodic convergence and linear convergence rates of the proposed algorithm are established under relaxed parameters. Numerical experiments on the image deblurring problems demonstrate that the proposed algorithm outperforms some existing algorithms in terms of the number of iterations.

Keywords: primal-dual; variable metric; proximity operator; total variation

MSC: 65K05; 68Q25; 68U10

Citation: Huang, W.; Tang, Y.; Wen, M.; Li, H. Relaxed Variable Metric Primal-Dual Fixed-Point Algorithm with Applications. *Mathematics* **2022**, 10, 4372. https://doi.org/10.3390/ math10224372

Academic Editors: Kuo Tian, Weizhu Yang and Shiyao Lin

Received: 14 September 2022 Accepted: 17 November 2022 Published: 20 November 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

1. Introduction

In this paper, we focus on the following convex optimization problem:

$$\min_{x \in H} f(x) + h(Lx),\tag{1}$$

where $f : H \to R$ is convex differentiable and its gradient ∇f is $\frac{1}{\beta}$ -Lipschitz-continuous for some $\beta > 0$, $h : G \to (-\infty, +\infty]$ is a proper lower semi-continuous convex function, $L : H \to G$ is a bounded linear operator, and H and G are real Hilbert spaces. This problem is widely used in signal and image processing [1,2], compressed sensing [3], and machine learning [4]. For instance, a classical model in image restoration and medical image reconstruction is:

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} \|Ax - b\|^2 + \mu \|x\|_{TV},$$
(2)

where $A : \mathbb{R}^n \to \mathbb{R}^m$ is a blurring operator, $b \in \mathbb{R}^m$ is the observed image, $\mu > 0$ is the regularization parameter, and $||x||_{TV}$ is the total variation, which can be represented by a composition of a convex function with a discrete gradient operator.

The corresponding dual problem of (1) is

$$\max_{v \in G} -f^*(-L^*v) - h^*(v), \tag{3}$$

and the associated saddle point problem of (1) and (3) is

$$\min_{x \in H} \max_{v \in G} \{ K(v, x) = f(x) + \langle Lx, v \rangle - h^*(v) \}.$$
(4)

We say that (x^*, v^*) is a saddle point of (4) if and only if x^* is a solution of (1) and v^* is a solution of (3), respectively. The optimal solution set of problem (4) is denoted by Ω . In this paper, we always assume that Ω is nonempty.

Many efficient algorithms have been proposed for solving problem (1) in the last decades. Most of them are based on the alternating direction method of multipliers (ADMM) [5–7] and the forward–backward splitting (FBS) algorithm [8]. In [9,10], the authors showed that ADMM is equivalent to the Douglas–Rachford splitting algorithm [8]. The proximal gradient algorithm (PGA, also known as FBS) [11] is an efficient algorithm to solve (1) if L = I, and some accelerated versions of PGA had been studied [12–14]. The primal dual hybrid gradient algorithm [15,16] was proposed to solve (1) without the smoothness of f. Combining the FBS algorithm [11] with the fixed-point algorithm based on the proximity operator (FP^2O) [17], Argyriou et al. [18] proposed a FBS_FP²O to solve (1). Note that the FBS_FP^2O algorithm needs to solve a subproblem. Thus, it involves inner and outer iterations. To avoid choosing the number of inner iterations, Chen et al. [19] first a proposed the primal-dual fixed-point algorithm based on the proximity operator (PDFP²O) to solve (1). Compared with the FBS_FP²O, PDFP²O only performs one inner iteration and reduces to the generalized iterative soft-thresholding algorithm [20] when $f = ||Ax - b||^2$. The PDFP²O provided desirable performances to solve MRI reconstruction and TV-L1 wavelet inpainting [21,22]. In contrast, Combettes et al. [23] proposed a variable metric forward-backward splitting (VMFBS) algorithm to solve the saddle-point problem (4). By choosing a special variable metric, the PDFP²O could be recovered by the VMFBS algorithm. Moreover, the proximal alternating predictor-corrector (PAPC) algorithm [24] was proposed to solve the equivalent minimization problem of (1) and was proved to converge linearly [25]. To speed up the PDFP²O, Chen et al. [26] proposed an adapted metric version of PDFP²O, which is termed as PDFP²O_AM. The key feature of the PDFP²O_AM is that it uses a symmetric positive matrix to replace the stepsize of the $PDFP^2O$. In contrast, Wen et al. [27] generalized the stepsize in the PDFP²O to the dynamic stepsize. Later, a larger stepsize of PDFP²O was proved [28]. Recently, Zhu and Zhang [29] introduced an inertial PDFP²O (IPDFP²O).

In Table 1, we summarize some variants of $PDFP^2O$.

Algorithm	$ ho_k$	λ	γ	Variable Metric	Ergodic Rate	Linear Rate
PDFP ² O [19]	(0,1]	$(0, \frac{1}{\lambda_{\max}(LL^*)}]$	$(0, 2\beta)$			\checkmark
VMPD [23]	(0,1]	$\left(0, \frac{1}{\lambda_{\max}(LO_{L}^{-1}L^{*})}\right)$	$(0, 2\beta)$	\checkmark		
PAPC [24]	1	$(0, \frac{1}{\lambda_{\max}(LL^*)}]$	$(0, \beta]$		\checkmark	\checkmark
PDFP ² O_AM [26]	(0,1]	$(0, \frac{1}{\lambda_{max}(LQ^{-1}L^*)})$	$(0, 2\beta)$			
PDFP ² O_DS [27]	(0,1)	$\left(0, \frac{1}{\lambda_{\max}(LL^*)}\right)$	$(0, 2\beta)$	\checkmark		\checkmark
IPDFP ² O [29]	1	$(0, \frac{1}{\lambda_{\max}(LL^*)})$	$(0, 2\beta)$			

Table 1. Listing of existing primal-dual fixed point type algorithms.

From Table 1, we note that the relaxation parameter of these algorithms belongs to (0, 1]. It is well known that the convergence speed of the iterative algorithm can be accelerated when the relaxation parameter is greater than 1. This allows us to accelerate the PDFP²O_AM with larger relaxed parameters. We reformulate the PDFP²O_AM as the FBS algorithm and propose a primal dual fixed-point algorithm based on the proximity operator with relaxed parameters and variable metrics (Rv_PDFP²O). Based on the fixed point theory, we prove the convergence of the proposed algorithm. At the same time, we point out that PDFP²O_AM [26], PDFP²O_DS [27], and PDFP²O [19] are particular cases of Rv_PDFP²O. Further, the convergence rates are established under the larger relaxed parameters, including ergodic and linear convergence. To verify the effectiveness and

superiority of Rv_PDFP²O, we apply it for solving the image-restoration problem and compare it with other algorithms.

The rest of the paper is organized as follows. In Section 2, we recall some preliminaries and related work. In Section 3, we deduce the Rv_PDFP²O from the preconditioned FBS algorithm and provide some convergence results. In Section 4, we show the numerical results of Rv_PDFP²O on solving image deblurring problem. Finally, we provide the conclusions.

2. Preliminaries and Related Work

In this section, we first provide some notations and definitions. Then, we briefly review some existing algorithms for solving (1).

Throughout this paper, *H* denotes a real Hilbert space endowed with scalar product $\langle \cdot, \cdot \rangle$, and the associated norm is $\|\cdot\|$. Let $S_{++}^H(S_{+}^H)$ denote the set of the symmetric positive definite (semi-definite) operator in *H*. For $U \in S_{++}^H$, the *U*-weighted inner product is $\langle x, y \rangle_U = \langle x, Uy \rangle$ and the corresponding *U*-weighted norm is defined by $\|x\|_U = \sqrt{\langle x, x \rangle_U}$. H_1 and H_2 are the real Hilbert space endowed with the scalar product. Let $U_1 \in S_{++}^{H_1}$ and $U_2 \in S_{++}^{H_2}$, the U_1, U_2 -weighted norm in $H_1 \times H_2$ is $\|x\|_{U_1, U_2} = \sqrt{\|x_1\|_{U_1}^2 + \|x_2\|_{U_2}^2}$ for $x = (x_1, x_2) \in H_1 \times H_2$. We denote by $\Gamma_0(H)$ the class of all proper, lower semi-continuous, convex functions from *H* to $(-\infty, +\infty]$. Most of these definitions can be found in [8].

Let $A : H \to 2^H$ be a set-valued operator. The domain, the graph, the zeros, and the inverse of A are represented by $domA = \{x \in H : Ax \neq \emptyset\}$, $graA = \{(x, u) \in H \times H : u \in Ax\}$ and $zerA = \{x \in H : 0 \in Ax\}$, $A^{-1} : H \mapsto 2^H : u \mapsto \{x \in H : u \in Ax\}$, and the resolvent of A is

$$J_A = (I+A)^{-1}.$$

The operator $A : H \to 2^H$ is monotone, if $\langle u - v, x - y \rangle \ge 0$ for all $(x, u) \in graA$, $(y, v) \in graA$. The monotone operator A is maximally monotone if there is no monotone operator B such that $graA \subseteq graB \neq graA$. Further, A is δ -monotone if $\langle u - v, x - y \rangle \ge \delta ||x - y||^2$ for $\delta > 0$, $\forall (x, u), (y, v) \in graA$. An operator $B : H \to H$ is β -cocoercive, for some $\beta > 0$, if $\langle x - y, Bx - By \rangle \ge \beta ||Bx - By||^2$, $\forall x, y \in H$.

Let $D \subseteq H$ be nonempty and let $T : D \to H$. The fixed point set of T is denoted by FixT, i.e., $FixT = \{x \in D : Tx = x\}$. T is α -averaged, for some $\alpha \in (0, 1)$, if

$$||Tx - Ty||^{2} + \frac{1 - \alpha}{\alpha} ||(I - T)x - (I - T)y||^{2} \le ||x - y||^{2}, \quad \forall x, y \in D$$

Let $f \in \Gamma_0(H)$, the Fenchel conjugate of f is

$$f^*(u) = \sup_{x \in H} \{ \langle x, u \rangle - f(x) \},\$$

and the subdifferential of f is the maximally monotone operator

$$\partial f: x \mapsto \{u \in H: \langle y - x, u \rangle + f(x) \le f(y), \, \forall y \in H\}.$$

Further, $\partial f(x) = \{\nabla f(x)\}$ when *f* is differentiable.

Let $f \in \Gamma_0(H)$ and $U \in S_{++}^H$, the scale proximity operator of f with respect to the metric U is

$$prox_{f}^{U}(x) = \arg\min_{u \in H} \left\{ \frac{1}{2} \|u - x\|_{U}^{2} + f(u) \right\}.$$
(5)

The scale proximity operator is the standard proximity operator when U = I.

Related Work

To solve (1), Argyriou et al. [18] considered the following forward–backward splitting algorithm:

$$x^{k+1} = prox_{\gamma(h \circ L)}(x^k - \gamma \nabla f(x^k)), \tag{6}$$

where $\gamma \in (0, 2\beta)$. By the definition of proximity operator, (6) is equivalent to

$$x^{k+1} = \arg\min_{x} \left\{ \frac{1}{2} \|x - (x^k - \gamma \nabla f(x^k))\|^2 + \gamma h(Lx) \right\}.$$
(7)

Then, Argyriou et al. [18] employed the FBS_FP²O algorithm to solve (7):

$$\begin{cases} v^{k+1} = \arg\min_{v} \left\{ \frac{1}{2} \| L^* v - \frac{1}{\gamma} (x^k - \gamma \nabla f(x^k)) \|^2 + \frac{1}{\gamma} h^*(v) \right\}, \\ x^{k+1} = x^k - \gamma \nabla f(x^k) - \gamma L^* v^{k+1}. \end{cases}$$
(8)

In (8), one needs to solve the subproblem of v to obtain the update of $\{v^{k+1}\}$. More precisely, we obtain the following inner–outer iterative algorithm:

$$\begin{cases} v^{k+1,j} = prox_{\frac{\lambda}{\gamma}h^*} (v^{k,j} - \lambda L(L^* v^{k,j} - \frac{1}{\gamma} (x^k - \gamma \nabla f(x^k)))), \\ x^{k+1} = x^k - \gamma \nabla f(x^k) - \gamma L^* v^{k+1,J}, \end{cases}$$
(9)

where $\lambda \in (0, \frac{2}{\lambda_{max}(LL^*)})$, *j* denotes the inner iteration, and *J* represents the maximum number of inner iteration. Here, $\lambda_{max}(L)$ denotes the largest eigenvalue of L when L is a matrix.

Chen et al. [19] proposed the PDFP²O as follows:

$$\begin{cases} \tilde{v}^{k+1} = (I - prox_{\frac{\gamma}{\lambda}h})(L(x^{k} - \gamma \nabla f(x^{k})) + (I - \lambda LL^{*})v^{k}), \\ \tilde{x}^{k+1} = x^{k} - \gamma \nabla f(x^{k}) - \lambda L^{*} \tilde{v}^{k+1}, \\ (v^{k+1}, x^{k+1}) = (1 - \rho_{k})(v^{k}, x^{k}) + \rho_{k}(\tilde{v}^{k+1}, \tilde{x}^{k+1}). \end{cases}$$
(10)

where $\lambda \in (0, \frac{1}{\|L\|^2}]$, $\gamma \in (0, 2\beta)$, and $\rho_k \in (0, 1]$. Let $\rho_k = 1$, and with the help of the Moreau decomposition, we obtain from (10) that

$$\begin{cases} v^{k+1} = \frac{\gamma}{\lambda} prox_{\frac{\lambda}{\gamma}h^*} (\frac{\lambda}{\gamma} L(x^k - \gamma \nabla f(x^k)) + \frac{\lambda}{\gamma} (I - \lambda LL^*) v^k), \\ x^{k+1} = x^k - \gamma \nabla f(x^k) - \lambda L^* v^{k+1}. \end{cases}$$
(11)

Let $\overline{v}^k = \frac{\lambda}{\gamma} v^k$, we have

$$\begin{cases} \overline{v}^{k+1} = prox_{\frac{\lambda}{\gamma}h^*}(\frac{\lambda}{\gamma}L(x^k - \gamma\nabla f(x^k)) + (I - \lambda LL^*)v^k), \\ x^{k+1} = x^k - \gamma\nabla f(x^k) - \gamma L^*\overline{v}^{k+1}. \end{cases}$$
(12)

Compared with FBS_FP²O (9), PDFP²O (12) performs only one inner iteration to calculate $v^{k+1}(\overline{v}^{k+1})$. On the other hand, if we add a proximal term $\frac{1}{2} ||v - v^k||_{\frac{1}{\lambda}I - LL^*}^2$ to the subproblem of v in (8), i.e.,

$$v^{k+1} = \arg\min_{v} \left\{ \frac{1}{2} \|L^*v - \frac{1}{\gamma} (x^k - \gamma \nabla f(x^k))\|^2 + \frac{1}{\gamma} h^*(v) + \frac{1}{2} \|v - v^k\|_{\frac{1}{\lambda}I - LL^*}^2 \right\}$$

after simple calculation, we could also recover the $PDFP^2O(12)$.

3. Relaxed Variable Metric Primal-Dual Fixed-Point Algorithm Based on Proximity Operator

In this section, we propose Rv_PDFP^2O for solving the minimization problem (1). The Rv_PDFP^2O is

$$\begin{cases} \tilde{v}^{k+1} = prox_{h^*}^{P_k}((I - P_k^{-1}LQ_k^{-1}L^*)v^k + P_k^{-1}L(x^k - Q_k^{-1}\nabla f(x^k))), \\ \tilde{x}^{k+1} = x^k - Q_k^{-1}\nabla f(x^k) - Q_k^{-1}L^*\tilde{v}^{k+1}, \\ (v^{k+1}, x^{k+1}) = (1 - \rho_k)(v^k, x^k) + \rho_k(\tilde{v}^{k+1}, \tilde{x}^{k+1}). \end{cases}$$
(13)

3.1. Convergence Analysis

First, let us introduce the product space $K = G \times H$ and define the operators:

$$A: K \to 2^{K} (v, x) \mapsto (\partial h^{*}(v) - Lx) \times (L^{*}v),$$

and

$$B: K \to K(v, x) \mapsto (0, \nabla f(x)).$$

Notice that $u^* = (v^*, x^*) \in \Omega$ if and only if $0 \in Au^* + Bu^*$. Although *A* is maximally monotone and *B* is coccercive in *K*, the forward–backward splitting algorithm could not be applicable since $(I + \tau A)^{-1}$, $\tau > 0$ does not have a closed-form solution. To overcome this difficulty, we consider a preconditioned forward–backward splitting algorithm as follows:

$$u^{k+1} = (1 - \rho_k)u^k + \rho_k J_{U_k A}(u^k - U_k B u^k), \tag{14}$$

where $P_k \in S^G_{++}, Q_k \in S^H_{++}, \rho_k > 0$ and

$$U_k^{-1} = \begin{pmatrix} P_k - LQ_k^{-1}L^* & 0\\ 0 & Q_k \end{pmatrix}.$$
 (15)

After simple calculation, we recover (13) from (14). In order to analyze the theoretical convergence of Rv_PDFP²O, we make the following assumptions: (A1): $||P_k^{-1}||_2 \in (0, \frac{1}{\lambda_{\max}(LQ_k^{-1}L^*)}), ||Q_k^{-1}||_2 \in (0, 2\beta);$

(A2): $\rho_k \in [\rho, \frac{4\beta - \|Q_k^{-1}\|_2}{2\beta} - \xi_k]$, for $\rho, \xi_k > 0$; (A3): $U_{k+1} - U_k \in S_{++}^K, \forall k \in \mathbb{N}$; (A4): $\overline{\vartheta} = \sup_{k \in \mathbb{N}} \|U_k\|_2 < +\infty$.

Under the assumption (A1), we have $U_k^{-1} \in S_{++}^K$. Denote $J_{U_kA}(I - U_kB)$ by $\hat{T}_{(k)}$.

Lemma 1. Suppose that (A1) holds. Then the following statements hold: (1) $I - U_k B$ is $\frac{\|Q_k^{-1}\|_2}{2\beta}$ -averaged under $\|\cdot\|_{U_k^{-1}}$; (2) $\hat{T}_{(k)}$ is $\frac{2\beta}{4\beta - \|Q_k^{-1}\|_2}$ -averaged under $\|\cdot\|_{U_k^{-1}}$.

Proof. (1) Let $u_1 = (v_1, x_1), u_2 = (v_2, x_2) \in K$; we have

$$\langle U_k B u_1 - U_k B u_2, u_1 - u_2 \rangle_{U_k^{-1}} = \langle \nabla f(x_1) - \nabla f(x_2), x_1 - x_2 \rangle \ge \beta \| \nabla f(x_1) - \nabla f(x_2) \|^2 \ge \frac{\beta}{\|Q_k^{-1}\|_2} \| Q_k^{-1} \nabla f(x_1) - Q_k^{-1} \nabla f(x_2) \|_{Q_k}^2 = \frac{\beta}{\|Q_k^{-1}\|_2} \| U_k B u_1 - U_k B u_2 \|_{U_k^{-1}}^2,$$

which means that $U_k B$ is $\frac{\beta}{\|Q_k^{-1}\|_2}$ -cocoercive. Hence, $I - U_k B$ is $\frac{\|Q_k^{-1}\|_2}{2\beta}$ -averaged.

(2) Since $U_k \in S_{++}^K$, $U_k A$ is maximally monotone and $J_{U_k A}$ is $\frac{1}{2}$ -averaged. Hence, $J_{U_k A}(I - U_k B)$ is $\frac{2\beta}{4\beta - \|Q_k^{-1}\|_2}$ -averaged. \Box

Now, we are ready to present the main convergence theorem of Rv_PDFP²O (13).

Theorem 1. Suppose that (A1)–(A4) hold. Let $\{u^k = (v^k, x^k)\}$ be generated by (13). Then, we have the following: (1) For any $u^* \in \Omega$, $\{\|u^k - u^*\|_{U_k^{-1}}\}$ is monotonically decreasing and $\lim_{k\to+\infty} \|u^k - u^*\|_{U_k^{-1}}$ exists; (2) $\lim_{k\to+\infty} \|u^k - \hat{T}_{(k)}(u^k)\| = 0$;

(3) $\{u^k\}$ converges weakly to a point in Ω .

Proof. (1) Let $\alpha_k = \frac{2\beta}{4\beta - \|Q_k^{-1}\|_2}$. Notice that $\|u\|_{U_{k+1}^{-1}} \le \|u\|_{U_k^{-1}}, \forall u \in G \times H$. Then, we obtain

$$\begin{aligned} \|u^{k+1} - u^*\|_{U_{k+1}}^2 \\ \leq \|u^{k+1} - u^*\|_{U_k}^{2^{-1}} \\ = (1 - \rho_k) \|u^k - u^*\|_{U_k}^{2^{-1}} + \rho_k \|\hat{T}_{(k)}(u^k) - u^*\|_{U_k}^{2^{-1}} - \rho_k (1 - \rho_k) \|u^k - \hat{T}_{(k)}(u^k)\|_{U_k}^{2^{-1}} \\ \leq \|u^k - u^*\|_{U_k}^{2^{-1}} - \rho_k (\frac{1}{\alpha_k} - \rho_k) \|u^k - \hat{T}_{(k)}(u^k)\|_{U_k}^{2^{-1}}, \end{aligned}$$
(16)

which implies that $||u^k - u^*||_{U_k^{-1}}$ is decreasing and $\lim_{k \to +\infty} ||u^k - u^*||_{U_k^{-1}}$ exists.

(2) Summing (16) from k = 0 to N - 1, we obtain

$$\sum_{k=0}^{N-1} \rho_k (\frac{1}{\alpha_k} - \rho_k) \| u^k - \hat{T}_{(k)}(u^k) \|_{U_k^{-1}}^2 \le \| u^0 - u^* \|_{U_0^{-1}}.$$
(17)

It follows from (17) that

$$\lim_{k \to +\infty} \|u^k - \hat{T}_{(k)}(u^k)\| = 0.$$
(18)

(3) Let $\{u^{k_j}\} \subset \{u^k\}$ such that $u^{k_j} \rightharpoonup \hat{u}^*$. It follows from Lemma 2.3 in [30] that there is $U^{-1} \in S_{++}^K$ such that $U_k^{-1} \rightarrow U^{-1}$. Define $T = J_{UA}(I - UB)$, we have

$$\begin{aligned} &\|u^{k_{j}} - T(u^{(k_{j})})\| \\ \leq &\|u^{k_{j}} - \hat{T}_{(k_{j})}(u^{k_{j}})\| + \|\hat{T}_{(k_{j})}(u^{k_{j}}) - T(u^{k_{j}})\| \\ \leq &\|u^{k_{j}} - \hat{T}_{(k_{j})}(u^{k_{j}})\| + \frac{1}{\lambda_{min}(U_{k_{j}}^{-1})} \|(U_{k_{j}}^{-1} - U^{-1})(u^{k_{j}} - T(u^{k_{j}})\| \\ \leq &\|u^{k_{j}} - \hat{T}_{(k_{j})}(u^{k_{j}})\| + \overline{\vartheta} \|(U_{k_{j}}^{-1} - U^{-1})(u^{k_{j}} - T(u^{k_{j}})\|, \end{aligned}$$
(19)

which implies that $\lim_{j\to\infty} ||u^{k_j} - T(u^{k_j})|| = 0$. The second inequality in (19) holds by Lemma 3.4 of [31]. It follows from the demiclosedness of *T* that $\hat{u}^* \in \Omega$. By Opial's lemma, we conclude that $u^k \rightharpoonup \hat{u}^*$. This completes the proof. \Box

3.2. Connections to Existing Algorithms

In this subsection, we present a series of special cases of the proposed algorithm and point out connections to other existing algorithms.

(i) Let $P_k = \frac{1}{\lambda}I$, $Q_k = Q$; then, (13) reduces to the PDFP²O_AM [26].

$$\begin{cases} \tilde{v}^{k+1} = prox_{\lambda h^*} (\frac{1}{\lambda} L(x^k - Q^{-1} \nabla f(x^k)) + (I - \lambda L Q^{-1} L^*) v^k), \\ \tilde{x}^{k+1} = x^k - Q^{-1} \nabla f(x^k) - Q^{-1} L^* \tilde{v}^{k+1}, \\ (v^{k+1}, x^{k+1}) = (1 - \rho_k) (v^k, x^k) + \rho_k (\tilde{v}^{k+1}, \tilde{x}^{k+1}). \end{cases}$$
(20)

(ii) Let $P_k = \frac{\gamma_k}{\lambda_k} I$ and $Q_k = \frac{1}{\gamma_k} I$; then, we obtain from (13) that

$$\begin{cases} \widetilde{v}^{k+1} = prox_{\frac{\lambda_k}{\gamma_k}h^*} (\frac{\lambda_k}{\gamma_k} L(x^k - \gamma_k \nabla f(x^k)) + (I - \lambda_k L L^*) v^k), \\ \widetilde{x}^{k+1} = x^k - \gamma_k \nabla f(x^k) - \gamma_k L^* \widetilde{v}^{k+1}, \\ (v^{k+1}, x^{k+1}) = (1 - \rho_k) (v^k, x^k) + \rho_k (\widetilde{v}^{k+1}, \widetilde{x}^{k+1}), \end{cases}$$

$$(21)$$

which recovers the PDFP²O_DS [27].

(iii) Let $P_k = \frac{\gamma}{\lambda}I$ and $Q_k = \frac{1}{\gamma}I$; then, (13) becomes

$$\begin{cases} \widetilde{v}^{k+1} = prox_{\frac{\lambda}{\gamma}h^*}(\frac{\lambda}{\gamma}L(x^k - \gamma\nabla f(x^k)) + (I - \lambda LL^*)v^k), \\ \widetilde{x}^{k+1} = x^k - \gamma\nabla f(x^k) - \gamma L^*\widetilde{v}^{k+1}, \\ (v^{k+1}, x^{k+1}) = (1 - \rho_k)(v^k, x^k) + \rho_k(\widetilde{v}^{k+1}, \widetilde{x}^{k+1}), \end{cases}$$
(22)

which is the original $PDFP^2O(12)$.

Rv_PDFP²O (13) reduces to the above three algorithms (20)–(22) for different P_k and Q_k . It is eaily confirmed that Rv_PDFP²O (13) generalizes these algorithms.

3.3. Convergence Rates

In this subsection, we discuss convergence rates of (13).

3.3.1. $O(\frac{1}{k})$ – Ergodic Convergence Rate

First, we establish the ergodic convergence rate.

Lemma 2. Suppose that (A1) holds. Let $\{\tilde{u}^{k+1} = (\tilde{v}^{k+1}, \tilde{x}^{k+1})\}$ be generated by (13). Then, for any $u = (v, x) \in K$, it holds that

$$K(v, \tilde{x}^{k+1}) - K(\tilde{v}^{k+1}, x) \le \frac{1}{2} (\|u^{k} - u\|_{U_{k}^{-1}}^{2} - \|\tilde{u}^{k+1} - u\|_{U_{k}^{-1}}^{2} - \|\tilde{u}^{k+1} - u^{k}\|_{U_{k}^{-1}}^{2}) + \frac{1}{2\beta} \|\tilde{x}^{k+1} - x^{k}\|^{2}.$$
(23)

Proof. It follows from the property of proximity operator that

$$h^{*}(v) \geq h^{*}(\tilde{v}^{k+1}) + \langle L(x^{k} - Q_{k}^{-1}L^{*}v^{k} - Q_{k}^{-1}\nabla f(x^{k})), v - \tilde{v}^{k+1} \rangle$$

+
$$\frac{1}{2}(\|\tilde{v}^{k+1} - v^{k}\|_{P_{k}}^{2} + \|\tilde{v}^{k+1} - v\|_{P_{k}}^{2} - \|v^{k} - v\|_{P_{k}}^{2}).$$
(24)

By the differentiability of f, we have

$$f(x) \ge f(\tilde{x}^{k+1}) + \langle \nabla f(x^k), x - \tilde{x}^{k+1} \rangle - \frac{1}{2\beta} \| \tilde{x}^{k+1} - x^k \|^2$$

$$\ge f(\tilde{x}^{k+1}) + \frac{1}{2} \| \tilde{x}^{k+1} - x^k \|_{Q_k}^2 + \frac{1}{2} \| x - \tilde{x}^{k+1} \|_{Q_k}^2 - \frac{1}{2} \| x - x^k \|_{Q_k}^2$$

$$+ \langle \tilde{v}^{k+1}, L(\tilde{x}^{k+1} - x) \rangle - \frac{1}{2\beta} \| \tilde{x}^{k+1} - x^k \|^2.$$
(25)

Adding (24) and (25) and rearranging to arrive at (23). \Box

Theorem 2. Suppose that (A1)–(A3) hold with $\xi_k = \frac{\|Q_k^{-1}\|_2}{2\beta}$. Let $\{\tilde{u}^{k+1} = (\tilde{v}^{k+1}, \tilde{x}^{k+1})\}$ be generated by (13). Then, for $u^* = (v^*, x^*) \in \Omega$, it holds that

$$K(v^*, \overline{X}^N) - K(\overline{V}^{N+1}, x^*) \le \frac{1}{2\rho N} \|u^0 - u^*\|_{U_0^{-1}}^2,$$
(26)

where $\overline{X}^N = \frac{1}{N} \sum_{k=0}^{N-1} \widetilde{x}^{k+1}, \overline{V}^N = \frac{1}{N} \sum_{k=0}^{N-1} \widetilde{v}^{k+1}.$

Proof. Note that $\tilde{u}^{k+1} = u^k + \frac{1}{\rho_k}(u^{k+1} - u^k)$. Substituting it back into (23), we have

$$K(v^{*}, \tilde{x}^{k+1}) - K(\tilde{v}^{k+1}, x^{*})$$

$$\leq \frac{1}{2\rho_{k}} (\|u^{k} - u^{*}\|_{U_{k}^{-1}}^{2} - \|u^{k+1} - u^{*}\|_{U_{k+1}^{-1}}^{2}) - \frac{2 - \rho_{k}}{2\rho_{k}^{2}} \|x^{k+1} - x^{k}\|_{Q_{k} - \frac{1}{\beta(2 - \rho_{k})}}^{2}$$

$$\leq \frac{1}{2\rho} (\|u^{k} - u^{*}\|_{U_{k}^{-1}}^{2} - \|u^{k+1} - u^{*}\|_{U_{k+1}^{-1}}^{2}).$$
(27)

Summing (27) from k = 0, ..., N - 1, we obtain

$$\sum_{k=0}^{N-1} (K(v^*, \tilde{x}^{k+1}) - K(\tilde{v}^{k+1}, x^*)) \le \frac{1}{2\rho} \|u^0 - u^*\|_{U_0^{-1}}^2.$$

The final estimation (26) follows directly from the Jensen inequality. \Box

3.3.2. Linear Convergence Rate

Next, we establish a linear convergence rate of (13) with $P_k = P$ and $Q_k = Q$. Therefore, $\hat{T}_{(k)} = T$. For convenience, we give an equivalent formulation of *T* as follows:

$$T_1(v,x) = prox_{h^*}^P((I - P^{-1}LQ^{-1}L^*)v + P^{-1}L(x - Q^{-1}\nabla f(x))),$$
(28)

$$T_2(v,x) = x - Q^{-1} \nabla f(x) - Q^{-1} L^* \circ T_1(v,x),$$
(29)

$$T(v, x) = (T_1(v, x), T_2(v, x)).$$
(30)

In addition, we make some additional assumptions. More precisely, **(A5)**: ∂h^* is τ_h -strongly monotone under $\|\cdot\|_{I-P^{-1}LO^{-1}L^*}$, i.e.,

$$\forall (x_1, v_1), \ (x_2, v_2) \in gra \ \partial h^*, \langle x_1 - x_2, v_1 - v_2 \rangle \geq \tau_h \| x_1 - x_2 \|_{I - P^{-1}LQ^{-1}L^*}^2.$$

(A6): ∇f is τ_f -strongly monotone under the norm $\|\cdot\|_Q$, i.e.,

$$\forall x_1, x_2 \in H, \langle x_1 - x_2, \nabla f(x_1) - \nabla f(x_2) \rangle \ge \tau_f \|x_1 - x_2\|_Q^2.$$

(A7): There is $\theta_1, \theta_2 \in (0, 1)$ such that $||I - P^{-1}LQ^{-1}L^*||_2 \le \theta_1$ and $||x_1 - Q^{-1}\nabla f(x_1) - x_2 - Q^{-1}\nabla f(x_2)||_Q \le \sqrt{\theta_2} ||x_1 - x_2||_Q$ for all $x_1, x_2 \in H$.

Lemma 3. Suppose that (A1), (A5), and (A6) hold. Then,

$$\|T(u_1) - T(u_2)\|_{(P+2\tau_h I)(I-P^{-1}LQ^{-1}L^*),Q}^2$$

$$\leq \theta \|u_1 - u_2\|_{(P+2\tau_h I)(I-P^{-1}LQ^{-1}L^*),Q'}^2$$

for $u_1 = (v_1, x_1), u_2 = (v_2, x_2) \in K$, where $\theta \in (0, 1)$.

$$\begin{aligned} \|T(u_{1}) - T(u_{2})\|_{P-LQ^{-1}L^{*},Q}^{2} \\ &= \|u_{1} - u_{2}\|_{P-LQ^{-1}L^{*},Q}^{2} - 2\langle \nabla f(x_{1}) - \nabla f(x_{2}), T_{2}(u_{1}) - T_{2}(u_{2}) - (x_{1} - x_{2})\rangle \\ &- \|T(u_{1}) - T(u_{2}) - (u_{1} - u_{2})\|_{P-LQ^{-1}L^{*},Q}^{2} - 2\langle \nabla f(x_{1}) - \nabla f(x_{2}), x_{1} - x_{2}\rangle \\ &- 2\langle T_{1}(u_{1}) - T_{1}(u_{2}), u_{h_{1}} - u_{h_{2}}\rangle \\ &\leq \|u_{1} - u_{2}\|_{P-LQ^{-1}L^{*},Q}^{2} - (2 - \frac{\|Q^{-1}\|_{2}}{\beta})\langle \nabla f(x_{1}) - \nabla f(x_{2}), x_{1} - x_{2}\rangle \\ &- 2\langle T_{1}(u_{1}) - T_{1}(u_{2}), u_{h_{1}} - u_{h_{2}}\rangle \\ &\leq \|u_{1} - u_{2}\|_{P-LQ^{-1}L^{*},(1 - (2 - \frac{\|Q^{-1}\|_{2}}{\beta})\tau_{f})Q}^{2} - 2\tau_{h}\|T_{1}(u_{1}) - T_{1}(u_{2})\|_{I-P^{-1}LQ^{-1}L^{*}}^{2}, \end{aligned}$$

which concludes the proof with $\theta = \max\{1 - (2 - \frac{\|Q^{-1}\|_2}{\beta})\tau_f, \frac{1}{1 + 2\tau_h \lambda_{\min}(P^{-1})}\}.$

Lemma 4. Suppose that (A1) and (A7) hold. Then, for $u_1 = (v_1, x_1), u_2 = (v_2, x_2) \in K$,

$$||T(u_1) - T(u_2)||_{P,Q}^2 \le \theta ||u_1 - u_2||_{P,Q}^2$$

where $\theta \in (0, 1)$.

Proof. Define $M = P - LQ^{-1}L^*$. It follows from the fact that $prox_{h^*}^p$ is firmly nonexpansive that

$$\begin{aligned} \|T(u_1) - T(u_2)\|_{P,Q}^2 \\ \leq \|x_1 - Q^{-1}\nabla f(x_1) - x_2 - Q^{-1}\nabla f(x_2)\|_Q^2 - \|T_1(u_1) - T_1(u_2)\|_M^2 \\ + 2\langle T_1(u_1) - T_1(u_2), M(v_1 - v_2)\rangle \\ = \|x_1 - Q^{-1}\nabla f(x_1) - x_2 - Q^{-1}\nabla f(x_2)\|_Q^2 + \|v_1 - v_2\|_M^2 \\ - \|T_1(u_1) - T_1(u_2) - (v_1 - v_2)\|_M^2 \\ \leq \theta_2 \|x_1 - x_2\|_Q^2 + \theta_1 \|v_1 - v_2\|_P^2 \\ \leq \theta \|u_1 - u_2\|_{P,Q}^2, \end{aligned}$$

where $\theta = \max{\{\theta_1, \theta_2\}} \in (0, 1)$. \Box

Theorem 3. Suppose that (A1) holds. Suppose that (A5)–(A6) hold or (A7) holds. Let $\{u^{k+1} = (v^{k+1}, x^{k+1})\}$ be generated by (13). Let $\rho_k \in (0, \overline{\rho})$ for $\overline{\rho} = \min\{\frac{2}{1+\sqrt{\theta}}, \frac{4\beta - \|Q^{-1}\|_2}{2\beta}\}$. Then, $\{u^{k+1}\}$ converges linearly to the unique point $u^* \in \Omega$, *i.e.*,

$$|u^{k+1}-u^*|| \le c\eta^{k+1},$$

where $c > 0, \eta \in (0, 1)$.

Proof. Define $T_{(\rho_k)} = (1 - \rho_k)I + \rho_k T$. Note that $u^{k+1} = T_{(\rho_k)}(u^k)$ and $FixT_{(\rho_k)} = FixT = \Omega$. It is clear that $T_{(\rho_k)}$ is η_k -contractive for $\eta_k = |1 - \rho_k| + \rho_k \sqrt{\theta}$. Therefore, $\{u^{k+1}\}$ converges linearly to the unique fixed point of $T_{(\rho_k)}$. \Box

4. Numerical Experiments

In this section, we apply the proposed Rv_PDFP²O (13) to solve the $L_2 + TV$ deblurring problem (2) and compare it with those of the ADMM [5], PDS [32], PDFP²O [19], and PDFP²O_AM [26]. All of the experiments are performed under Windows 7 and MATLAB

7.2 (R2014a) running on a laptop with an Intel Core 2 Quad CPU 2.3 GHz with 4 GB of memory.

The test images are the standard "Text" image with a size of 256×256 , and "Barbara" and "Goldhill" with a size 512×512 , which are shown in Figure 1. We report numerical results on the image restoration for blurred images, corrupted by the Gaussian noise and the average kernel; *a* is the size of average kernel, and η is the standard variance of the Gaussian noise. To evaluate the ability of the algorithm to remove different noises, we set four kinds of *a*, η : (1) *a* = 3, η = 0.01; (2) *a* = 3, η = 0.05; (3) *a* = 7, η = 0.01; and (4) *a* = 7, η = 0.05.

Figure 1. These are the test images: (a) Text, (b) Barbara, and (c) Goldhill.

For the two common parameters γ and λ in PDS, and PDFP²O, we set $\gamma = 1.9$ and $\lambda = 0.125$. Similarly to the literature [26], we choose $Q = A^T A + \zeta L^T L$, where $\zeta = 0.1$. In particular, Q^{-1} can be easily computed by FFT with periodic boundary conditions. We tune the regularization parameter μ to achieve the maximum SNR, which is listed in Table 2.

Images -	<i>a</i> =	= 3	a = 7		
	$\eta = 0.01$	$\eta = 0.05$	$\eta = 0.01$	$\eta = 0.05$	
"Text"	0.0013	0.0078	0.0003	0.0027	
"Barbara"	0.0004	0.0101	0.0004	0.009	
"Goldhill"	0.0011	0.0148	0.0006	0.0085	

Table 2. The best selection of μ in the current noise level.

The relative error of the iterative sequences is defined as the stopping criteria:

$$\frac{\|x^{k+1} - x^k\|_2}{\|x^k\|_2} < \varepsilon$$

where $\varepsilon > 0$ is a prescribed tolerance value. In the experiment, we choose $\varepsilon = 10^{-4}, 10^{-6}, 10^{-8}$. The quality of the restored images is evaluated by signal-to-noise (SNR), which is defined by

$$SNR = 10\log\frac{\|x\|^2}{\|x^r - x\|^2}.$$

where x and x^r denote the original and the recovered images. The obtained numerical results are listed in Tables 3 and 4.

η	Image	Method	$\varepsilon = 10^{-4}$		$\varepsilon = 10^{-6}$		$\varepsilon = 10^{-8}$	
			SNR (dB)	k	SNR (dB)	k	SNR (dB)	k
0.01	Text	ADMM	26.6288	289	27.6605	813	27.6686	1537
		PDS	26.4334	296	27.6402	933	27.6500	1693
		PDFP ² O	27.0279	182	27.6455	521	27.6500	915
		PDFP ² O_AM	27.1659	178	27.6650	456	27.6686	831
		Rv_PDFP ² O	27.1838	173	27.6615	441	27.6686	803
	Barbara	ADMM	21.8641	138	21.6752	1423	21.6704	5332
		PDS	21.8186	152	21.6783	1499	21.6733	5338
		PDFP ² O	21.7928	118	21.6757	958	21.6733	3022
		PDFP ² O_AM	21.8115	109	21.6727	911	21.6704	3058
		Rv_PDFP ² O	21.8075	108	21.6726	887	21.6704	2962
	Goldhill	ADMM	26.6924	68	26.5822	513	26.5807	1554
		PDS	26.6686	79	26.5769	510	26.5754	1471
		PDFP ² O	26.5980	95	26.5761	306	26.5754	829
		PDFP ² O_AM	26.6467	51	26.5814	314	26.5807	878
		Rv_PDFP ² O	26.6448	50	26.5814	305	26.5807	849
0.05	Text	ADMM	14.7157	150	14.7797	511	14.7801	1048
		PDS	14.6905	161	14.7623	533	14.7626	1904
		PDFP ² O	14.7341	103	14.7627	384	14.7626	1892
		PDFP ² O_AM	14.7510	96	14.7800	308	14.7801	1185
		Rv_PDFP ² O	14.7520	93	14.7800	296	14.7801	1184
	Barbara	ADMM	18.3425	47	18.3337	231	18.3336	883
		PDS	18,3496	74	18.3454	349	18.3454	1683
		PDFP ² O	18.3459	95	18.3453	342	18.3454	1681
		PDFP ² O_AM	18.3362	42	18.3336	226	18.3336	1154
		Rv_PDFP ² O	18.3359	42	18.3336	226	18.3336	1154
	Goldhill	ADMM	22.7421	47	22.7367	260	22.7367	1134
		PDS	22.7033	84	22.7015	524	22.7014	2529
		PDFP ² O	22.7027	97	22.7015	508	22.7014	2527
		PDFP ² O_AM	22.7383	53	22.7367	328	22.7367	1571
		Rv_PDFP ² O	22.7382	53	22.7367	328	22.7367	1568

Table 3. The performance of a = 3 of the compared algorithms in terms of SNR (dB) and the number of iterations *k* for given tolerance values ε .

Table 4. The performance of a = 7 of the compared algorithms in terms of SNR (dB) and the number of iterations *k* for given tolerance values ε .

η	Image	Method	$arepsilon=10^{-4}$		$arepsilon=10^{-6}$		$arepsilon = 10^{-8}$	
			SNR(dB)	k	SNR(dB)	k	SNR (dB)	k
0.01	Text	ADMM	12.8474	832	14.1337	6220	14.1548	19,540
		PDS	12.4021	1114	14.1117	7138	14.1382	19,512
		PDFP ² O	13.1403	835	14.1252	4277	14.1383	10,939
		PDFP ² O_AM	13.4212	646	14.1446	3828	14.1549	11,248
		Rv_PDFP ² O	13.4436	634	14.1450	3718	14.1549	10,899
	Barbara	ADMM	18.5769	145	18.4559	2153	18.4523	9172
		PDS	18.5597	192	18.4592	2549	18.4541	9851
		PDFP ² O	18.5490	161	18.4567	1647	18.4541	5623
		PDFP ² O_AM	18.5445	124	18.4541	1401	18.4523	5288
		Rv_PDFP ² O	18.5429	122	18.4541	1365	18.4523	5124
	Goldhill	ADMM	23.2362	116	23.0522	1475	23.0480	8688
		PDS	23.1623	167	23.0451	1791	23.0395	8417
		PDFP ² O	23.1506	129	23.0424	1146	23.0395	5284
		PDFP ² O_AM	23.1775	92	23.0500	966	23.0480	5608
		Rv_PDFP ² O	23.1739	91	23.0499	943	23.0480	5463
0.05	Text	ADMM	7.0043	374	6.9970	2466	6.9972	6803
		PDS	6.9372	535	6.9771	3074	6.9773	7579
		PDFP ² O	6.9601	373	6.9772	1859	6.9773	4154
		PDFP ² O_AM	6.9997	276	6.9971	1528	6.9972	3737
		Rv_PDFP ² O	6.9995	270	6.9971	1488	6.9972	3611
	Barbara	ADMM	17.1962	95	17.1656	764	17.1653	2939
		PDS	17.2239	161	17.1937	900	17.1932	3370
		PDFP ² O	17.2073	121	17.1933	648	17.1932	3091
		FP ² O_AM	17.1783	80	17.1654	506	17.1653	1955
		Rv_PDFP ² O	17.1776	79	17.1654	501	17.1653	1947
	Goldhill	ADMM	20.4785	83	20.4481	612	20.4477	2441
		PDS	20.4285	153	20.4010	762	20.4005	2684
		PDFP ² O	20.4114	116	20.4006	566	20.4005	2323
		PDFP ² O_AM	20.4595	72	20.4478	430	20.4477	1529
		Rv_PDFP ² O	20.4586	72	20.4478	426	20.4477	1505

It can be seen from Tables 3 and 4 that the proposed Rv_PDFP²O converges faster than other algorithms in terms of the number of iterations. In addition, Figures 2–4 show the recovered images with $\varepsilon = 10^{-8}$. Figures 2–4 show that the visual qualities of these images obtained by the proposed algorithm are slightly better than the compared algorithms.

Figure 2. These are the "Text" images: **Row 1**: the blurry and noisy images, **Row 2**: the images restored by ADMM, **Row 3**: the images restored by PDS, **Row 4**: the images restored by PDFP²O, **Row 5**: the images restored by PDFP²O_AM, and **Row 6**: the images restored by Rv_PDFP²O.

Figure 3. These are the "Goldhill" images: **Row 1**: the blurry and noisy images, **Row 2**: the images restored by ADMM, **Row 3**: the images restored by PDS, **Row 4**: the images restored by PDFP²O, **Row 5**: the images restored by PDFP²O_AM, and **Row 6**: the images restored by Rv_PDFP²O.

Figure 4. These are the "Goldhill" images: **Row 1**: the blurry and noisy images, **Row 2**: the images restored by ADMM, **Row 3**: the images restored by PDS, **Row 4**: the images restored by PDFP²O, **Row 5**: the images restored by PDFP²O_AM, and **Row 6**: the images restored by Rv_PDFP²O.

5. Conclusions

In this article, we proposed a Rv_PDFP²O to solve the convex optimization problem (1). The proposed algorithm combined the over-relaxed parameters and the variable metric. Under a proper preconditioned operator, we derived the Rv_PDFP²O and established the convergence. By defining different stepsizes, we showed that the Rv_PDFP²O recovers some existing algorithms, including PDFP²O, PDFP²O_AM, and PDFP²O_DS, and we provide larger relaxed parameters for these algorithms. Furthermore, we studied the $O(\frac{1}{k})$ ergodic convergence rate in the partial primal-dual gap. Under some strong conditions on the objective functions and the stepsizes, we proved that the iterative sequences converge linearly. We applied the Rv_PDFP²O to solve the TV image-restoration problem (2). The numerical results show that the Rv_PDFP²O performs better than some existing algorithms. As we all know, the self-adaptive stepsize and the inertial variant could improve the algorithm. However, these two accelerated strategies are not introduced to the Rv_PDFP²O algorithm. We would like to derive a self-adaptive Rv_PDFP²O and an inertial Rv_PDFP²O in the future.

Author Contributions: Conceptualization, W.H. and H.L.; methodology, W.H. and H.L.; software, Y.T. and M.W.; validation, W.H., Y.T. and H.L.; formal analysis, W.H. and Y.T.; and writing, W.H., Y.T., M.W. and H.L. All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by the National Science Foundation of China, grant numbers 12271117, 12061045, and 12001416, and the basic research joint-funding project of the university and Guangzhou city, grant number 202102010434.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Antonin, C.; Pock, T. An introduction to continuous optimization for imaging. Acta Numer. 2016, 25, 161–319.
- Rudin, L.I.; Osher, S.; Fatemi, E. Nonlinear total variation based noise removal algorithms. *Phys. D Nonlinear Phenom.* 1992, 60, 259–268. [CrossRef]
- 3. Davenport, M.A.; Duarte, M.F.; Eldar, Y.C.; Kutyniok, G. Introduction to Compressed Sensing; Cambridge University Press: Cambridge, UK, 2012.
- 4. Zou, H.; Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 2005, 67, 301–320. [CrossRef]
- Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; Eckstein, J. Distributed optimization and statistical learning via the alternating direction method of multipliers. *Found. Trends Mach. Learn.* 2010, *3*, 1–122. [CrossRef]
- Chan, R.H.; Tao, M.; Yuan, X.M. Constrained total variation deblurring models and fast algorithms based on alternating direction method of multipliers. SIAM J. Imaging Sci. 2011, 6, 680–697. [CrossRef]
- Han, D.R.; Yuan, X.M. A note on the alternating direction method of multipliers. J. Optimz. Theory Appl. 2012, 155, 227–238. [CrossRef]
- 8. Bauschke, H.H.; Combettes, P.L. *Concex Analysis and Monotone Operator Theory in Hilbert Spaces*, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2017.
- 9. Eckstein, J.; Bertsekas, D.P. On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. *Math. Program.* **1992**, *55*, 293–318. [CrossRef]
- 10. Yan, M.; Yin, W.T. Self equivalence of the alternating direction method of multipliers. In *Splitting Methods in Communication, Imaging, Science, and Engineering*; Glowinski, R., Osher, S.J., Yin, W.T., Eds.; Springer: Cham, Switzerland, 2016; pp. 165–194.
- Combettes, P.L.; Wajs, V.R. Signal recovery by proximal forward-backward splitting. *Multiscale Model. Simul.* 2005, 4, 1168–1200. [CrossRef]
- 12. Beck, A.; Teboulle, M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. *SIAM J. Imaging Sci.* 2009, 2, 183–202. [CrossRef]
- 13. Beck, A.; Teboulle, M. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. *IEEE Trans. Image Process.* **2009**, *18*, 2419–2434. [CrossRef]
- 14. Iutzeler, F.; Malick, J. On the proximal gradient algorithm with alternated inertia. *J. Optimz. Theory App.* **2018**, 176, 688–710. [CrossRef]

- 15. Chambolle, A.; Pock, T. A first-order primal-dual algorithm for convex problems with applications to imaging. *J. Math. Imaging Vis.* **2011**, *40*, 120–145. [CrossRef]
- 16. Komodakis, N.; Pesquet, J.-C. Playing with duality: An overview of recent primal-dual approaches for solving large-scale optimization problems. *IEEE Signal Proc. Mag.* **2015**, *32*, 31–54. [CrossRef]
- 17. Micchelli, C.A.; Shen, L.X.; Xu, Y.S. Proximity algorithms for image models: Denoising. Inverse Probl. 2011, 27, 045009. [CrossRef]
- Argyriou, A.; Micchelli, C.A.; Pontil, M.; Shen, L.X.; Xu, Y.S. Efficient first order methods for linear composite regularizers. *arXiv* 2011, arXiv:1104.1436.
- Chen, P.J.; Huang, J.G.; Zhang, X.Q. A primal-dual fixed-point algorithm for convex separable minimization with applications to image restoration. *Inverse Probl.* 2013, 29, 025011. [CrossRef]
- 20. Loris, I.; Verhoeven, C. On a generalization of the iterative soft-thresholding algorithm for the case of non-separable penalty. *Inverse Probl.* **2011**, *27*, 125007. [CrossRef]
- He, Z.; Zhu, Y.N.; Qiu, S.H.; Wang, T.; Zhang, C.C.; Sun, B.M.; Zhang, X.Q.; Feng, Y. Low-Rank and Framelet Based Sparsity Decomposition for Interventional MRI Reconstruction. *IEEE Bio-Med. Eng.* 2022, 69, 2294–2304. [CrossRef]
- 22. Ren, Z.M.; Zhang, Q.F.; Yuan, Y.X. A Primal–Dual Fixed-Point Algorithm for TVL1 Wavelet Inpainting Based on Moreau Envelope. *Mathematics* **2022**, *10*, 2470. [CrossRef]
- Combettes, P.L.; Condat, L.; Pesquet, J.C.; Vu, B.C. A forward–backward View of Some Primal-dual Optimization Methods in Image Recovery. In Proceedings of the 2014 IEEE International Conference on Image Processing, ICIP 2014 Conference, Paris, France, 27–30 October 2014; pp. 4141–4145.
- 24. Drori, Y.; Sabach, S.; Teboulle, M. A simple algorithm for a class of nonsmooth convex-concave saddle-point problems. *Oper. Res. Lett.* **2015**, *43*, 209–214. [CrossRef]
- Luke, D.R.; Shefi, R. A globally linearly convergent method for pointwise quadratically supportable convex-concave saddle point problems. J. Math. Anal. Appl. 2018, 457, 1568–1590. [CrossRef]
- 26. Chen, D.Q.; Zhou, Y.; Song, L.J. fixed-point algorithm based on adapted metric method for convex minimization problem with application to image deblurring. *Adv. Comput. Math.* **2016**, *42*, 1287–1310. [CrossRef]
- Wen, M.; Tang, Y.C.; Cui, A.G.; Peng, J.G. Efficient primal-dual fixed-point algorithms with dynamic stepsize for composite convex optimization problems. *Multidimens. Syst. Signal Process.* 2019, 30, 1531–1544. [CrossRef]
- 28. Li, Z.; Yan, M. New convergence analysis of a primal-dual algorithm with large stepsizes. *Adv. Comput. Math.* **2019**, *47*, 1–20. [CrossRef]
- 29. Zhu, Y.N.; Zhang, X.Q. Two Modified Schemes for the Primal Dual Fixed Point Method. *CSIAM Trans. Appl. Math.* 2021, 2, 108–130.
- 30. Combettes, P.L.; Wajs, V.R. Variable metric quasi-fejer monotonicity. Nonlinear Anal-Theor. 2013, 78, 17–31. [CrossRef]
- Cui, F.Y.; Tang, Y.C.; Zhu, C.X. Convergence analysis of a variable metric forward–backward splitting algorithm with applications. J. Inequal. Appl. 2019, 2019, 1–27. [CrossRef]
- 32. Condat, L. A primal-dual splitting method for convex optimization involving lipschitzian, proximable and linear composite terms. *J. Optim. Theory Appl.* **2013**, *158*, 460–479. [CrossRef]