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Abstract: In this paper, a relaxed variable metric primal-dual fixed-point algorithm is proposed for
solving the convex optimization problem involving the sum of two convex functions where one is
differentiable with the Lipschitz continuous gradient while the other is composed of a linear operator.
Based on the preconditioned forward–backward splitting algorithm, the convergence of the proposed
algorithm is proved. At the same time, we show that some existing algorithms are special cases of
the proposed algorithm. Furthermore, the ergodic convergence and linear convergence rates of the
proposed algorithm are established under relaxed parameters. Numerical experiments on the image
deblurring problems demonstrate that the proposed algorithm outperforms some existing algorithms
in terms of the number of iterations.
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1. Introduction

In this paper, we focus on the following convex optimization problem:

min
x∈H

f (x) + h(Lx), (1)

where f : H → R is convex differentiable and its gradient ∇ f is 1
β−Lipschitz-continuous

for some β > 0, h : G → (−∞,+∞] is a proper lower semi-continuous convex function,
L : H → G is a bounded linear operator, and H and G are real Hilbert spaces. This
problem is widely used in signal and image processing [1,2], compressed sensing [3], and
machine learning [4]. For instance, a classical model in image restoration and medical
image reconstruction is:

min
x∈Rn

1
2
‖Ax− b‖2 + µ‖x‖TV , (2)

where A : Rn → Rm is a blurring operator, b ∈ Rm is the observed image, µ > 0 is the
regularization parameter, and ‖x‖TV is the total variation, which can be represented by a
composition of a convex function with a discrete gradient operator.

The corresponding dual problem of (1) is

max
v∈G
− f ∗(−L∗v)− h∗(v), (3)

and the associated saddle point problem of (1) and (3) is

min
x∈H

max
v∈G
{K(v, x) = f (x) + 〈Lx, v〉 − h∗(v)}. (4)
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We say that (x∗, v∗) is a saddle point of (4) if and only if x∗ is a solution of (1) and v∗

is a solution of (3), respectively. The optimal solution set of problem (4) is denoted by Ω. In
this paper, we always assume that Ω is nonempty.

Many efficient algorithms have been proposed for solving problem (1) in the last
decades. Most of them are based on the alternating direction method of multipliers
(ADMM) [5–7] and the forward–backward splitting (FBS) algorithm [8]. In [9,10], the
authors showed that ADMM is equivalent to the Douglas–Rachford splitting algorithm [8].
The proximal gradient algorithm (PGA, also known as FBS) [11] is an efficient algorithm
to solve (1) if L = I, and some accelerated versions of PGA had been studied [12–14].
The primal dual hybrid gradient algorithm [15,16] was proposed to solve (1) without the
smoothness of f . Combining the FBS algorithm [11] with the fixed-point algorithm based
on the proximity operator (FP2O) [17], Argyriou et al. [18] proposed a FBS_FP2O to solve (1).
Note that the FBS_FP2O algorithm needs to solve a subproblem. Thus, it involves inner and
outer iterations. To avoid choosing the number of inner iterations, Chen et al. [19] first a
proposed the primal-dual fixed-point algorithm based on the proximity operator (PDFP2O)
to solve (1). Compared with the FBS_FP2O, PDFP2O only performs one inner iteration and
reduces to the generalized iterative soft-thresholding algorithm [20] when f = ‖Ax− b‖2.
The PDFP2O provided desirable performances to solve MRI reconstruction and TV-L1
wavelet inpainting [21,22]. In contrast, Combettes et al. [23] proposed a variable metric
forward–backward splitting (VMFBS) algorithm to solve the saddle-point problem (4). By
choosing a special variable metric, the PDFP2O could be recovered by the VMFBS algo-
rithm. Moreover, the proximal alternating predictor-corrector (PAPC) algorithm [24] was
proposed to solve the equivalent minimization problem of (1) and was proved to converge
linearly [25]. To speed up the PDFP2O, Chen et al. [26] proposed an adapted metric version
of PDFP2O, which is termed as PDFP2O_AM. The key feature of the PDFP2O_AM is that it
uses a symmetric positive matrix to replace the stepsize of the PDFP2O. In contrast, Wen
et al. [27] generalized the stepsize in the PDFP2O to the dynamic stepsize. Later, a larger
stepsize of PDFP2O was proved [28]. Recently, Zhu and Zhang [29] introduced an inertial
PDFP2O (IPDFP2O).

In Table 1, we summarize some variants of PDFP2O.

Table 1. Listing of existing primal-dual fixed point type algorithms.

Algorithm ρk λ γ
Variable
Metric Ergodic Rate Linear Rate

PDFP2O [19] (0, 1] (0, 1
λmax(LL∗) ] (0, 2β)

√

VMPD [23] (0, 1] (0, 1
λmax(LQ−1

k L∗)
) (0, 2β)

√

PAPC [24] 1 (0, 1
λmax(LL∗) ] (0, β]

√ √

PDFP2O_AM [26] (0, 1] (0, 1
λmax(LQ−1 L∗) ) (0, 2β)

PDFP2O_DS [27] (0, 1) (0, 1
λmax(LL∗) ) (0, 2β)

√ √

IPDFP2O [29] 1 (0, 1
λmax(LL∗) ) (0, 2β)

From Table 1, we note that the relaxation parameter of these algorithms belongs
to (0, 1]. It is well known that the convergence speed of the iterative algorithm can be
accelerated when the relaxation parameter is greater than 1. This allows us to accelerate
the PDFP2O_AM with larger relaxed parameters. We reformulate the PDFP2O_AM as the
FBS algorithm and propose a primal dual fixed-point algorithm based on the proximity
operator with relaxed parameters and variable metrics (Rv_PDFP2O). Based on the fixed
point theory, we prove the convergence of the proposed algorithm. At the same time, we
point out that PDFP2O_AM [26], PDFP2O_DS [27], and PDFP2O [19] are particular cases
of Rv_PDFP2O. Further, the convergence rates are established under the larger relaxed
parameters, including ergodic and linear convergence. To verify the effectiveness and
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superiority of Rv_PDFP2O, we apply it for solving the image-restoration problem and
compare it with other algorithms.

The rest of the paper is organized as follows. In Section 2, we recall some preliminaries
and related work. In Section 3, we deduce the Rv_PDFP2O from the preconditioned FBS al-
gorithm and provide some convergence results. In Section 4, we show the numerical results
of Rv_PDFP2O on solving image deblurring problem. Finally, we provide the conclusions.

2. Preliminaries and Related Work

In this section, we first provide some notations and definitions. Then, we briefly
review some existing algorithms for solving (1).

Throughout this paper, H denotes a real Hilbert space endowed with scalar product
〈·, ·〉, and the associated norm is ‖ · ‖. Let SH

++ (SH
+) denote the set of the symmetric positive

definite (semi-definite) operator in H. For U ∈ SH
++, the U-weighted inner product is

〈x, y〉U = 〈x, Uy〉 and the corresponding U-weighted norm is defined by ‖x‖U =
√
〈x, x〉U .

H1 and H2 are the real Hilbert space endowed with the scalar product. Let U1 ∈ SH1
++

and U2 ∈ SH2
++, the U1, U2-weighted norm in H1 × H2 is ‖x‖U1,U2 =

√
‖x1‖2

U1
+ ‖x2‖2

U2
for

x = (x1, x2) ∈ H1 × H2. We denote by Γ0(H) the class of all proper, lower semi-continuous,
convex functions from H to (−∞,+∞]. Most of these definitions can be found in [8].

Let A : H → 2H be a set-valued operator. The domain, the graph, the zeros, and the
inverse of A are represented by domA = {x ∈ H : Ax 6= ∅} , graA = {(x, u) ∈ H × H :
u ∈ Ax} and zerA = {x ∈ H : 0 ∈ Ax}, A−1 : H 7→ 2H : u 7→ {x ∈ H : u ∈ Ax}, and the
resolvent of A is

JA = (I + A)−1.

The operator A : H → 2H is monotone, if 〈u − v, x − y〉 ≥ 0 for all (x, u) ∈
graA, (y, v) ∈ graA. The monotone operator A is maximally monotone if there is no
monotone operator B such that graA ⊆ graB 6= graA. Further, A is δ- monotone if
〈u− v, x − y〉 ≥ δ‖x − y‖2 for δ > 0, ∀(x, u), (y, v) ∈ graA. An operator B : H → H is
β-cocoercive, for some β > 0, if 〈x− y, Bx− By〉 ≥ β‖Bx− By‖2, ∀x, y ∈ H.

Let D ⊆ H be nonempty and let T : D → H. The fixed point set of T is denoted by
FixT, i.e., FixT = {x ∈ D : Tx = x}. T is α-averaged, for some α ∈ (0, 1), if

‖Tx− Ty‖2 +
1− α

α
‖(I − T)x− (I − T)y‖2 ≤ ‖x− y‖2, ∀x, y ∈ D.

Let f ∈ Γ0(H), the Fenchel conjugate of f is

f ∗(u) = sup
x∈H
{〈x, u〉 − f (x)},

and the subdifferential of f is the maximally monotone operator

∂ f : x 7→ {u ∈ H : 〈y− x, u〉+ f (x) ≤ f (y), ∀y ∈ H}.

Further, ∂ f (x) = {∇ f (x)} when f is differentiable.
Let f ∈ Γ0(H) and U ∈ SH

++, the scale proximity operator of f with respect to the
metric U is

proxU
f (x) = arg min

u∈H

{
1
2
‖u− x‖2

U + f (u)
}

. (5)

The scale proximity operator is the standard proximity operator when U = I.

Related Work

To solve (1), Argyriou et al. [18] considered the following forward–backward split-
ting algorithm:

xk+1 = proxγ(h◦L)(xk − γ∇ f (xk)), (6)
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where γ ∈ (0, 2β). By the definition of proximity operator, (6) is equivalent to

xk+1 = arg min
x

{
1
2
‖x− (xk − γ∇ f (xk))‖2 + γh(Lx)

}
. (7)

Then, Argyriou et al. [18] employed the FBS_FP2O algorithm to solve (7):vk+1 = arg min
v

{
1
2
‖L∗v− 1

γ
(xk − γ∇ f (xk))‖2 +

1
γ

h∗(v)
}

,

xk+1 = xk − γ∇ f (xk)− γL∗vk+1.
(8)

In (8), one needs to solve the subproblem of v to obtain the update of {vk+1}. More
precisely, we obtain the following inner–outer iterative algorithm:vk+1,j = prox λ

γ h∗(v
k,j − λL(L∗vk,j − 1

γ
(xk − γ∇ f (xk)))),

xk+1 = xk − γ∇ f (xk)− γL∗vk+1,J ,
(9)

where λ ∈ (0, 2
λmax(LL∗) ), j denotes the inner iteration, and J represents the maximum

number of inner iteration. Here, λmax(L) denotes the largest eigenvalue of L when L is
a matrix.

Chen et al. [19] proposed the PDFP2O as follows:
ṽk+1 = (I − prox γ

λ h)(L(xk − γ∇ f (xk)) + (I − λLL∗)vk),

x̃k+1 = xk − γ∇ f (xk)− λL∗ṽk+1,

(vk+1, xk+1) = (1− ρk)(vk, xk) + ρk(ṽk+1, x̃k+1).

(10)

where λ ∈ (0, 1
‖L‖2 ], γ ∈ (0, 2β), and ρk ∈ (0, 1]. Let ρk = 1, and with the help of the

Moreau decomposition, we obtain from (10) thatvk+1 =
γ

λ
prox λ

γ h∗(
λ

γ
L(xk − γ∇ f (xk)) +

λ

γ
(I − λLL∗)vk),

xk+1 = xk − γ∇ f (xk)− λL∗vk+1.
(11)

Let vk = λ
γ vk, we havevk+1 = prox λ

γ h∗(
λ

γ
L(xk − γ∇ f (xk)) + (I − λLL∗)vk),

xk+1 = xk − γ∇ f (xk)− γL∗vk+1.
(12)

Compared with FBS_FP2O (9), PDFP2O (12) performs only one inner iteration to
calculate vk+1(vk+1). On the other hand, if we add a proximal term 1

2‖v− vk‖2
1
λ I−LL∗

to the

subproblem of v in (8), i.e.,

vk+1 = arg min
v

{
1
2
‖L∗v− 1

γ
(xk − γ∇ f (xk))‖2 +

1
γ

h∗(v) +
1
2
‖v− vk‖2

1
λ I−LL∗

}
,

after simple calculation, we could also recover the PDFP2O (12).



Mathematics 2022, 10, 4372 5 of 16

3. Relaxed Variable Metric Primal-Dual Fixed-Point Algorithm Based on
Proximity Operator

In this section, we propose Rv_PDFP2O for solving the minimization problem (1). The
Rv_PDFP2O is

ṽk+1 = proxPk
h∗((I − P−1

k LQ−1
k L∗)vk + P−1

k L(xk −Q−1
k ∇ f (xk))),

x̃k+1 = xk −Q−1
k ∇ f (xk)−Q−1

k L∗ṽk+1,

(vk+1, xk+1) = (1− ρk)(vk, xk) + ρk(ṽk+1, x̃k+1).

(13)

3.1. Convergence Analysis

First, let us introduce the product space K = G× H and define the operators:

A : K → 2K (v, x) 7→ (∂h∗(v)− Lx)× (L∗v),

and
B : K → K (v, x) 7→ (0,∇ f (x)).

Notice that u∗ = (v∗, x∗) ∈ Ω if and only if 0 ∈ Au∗ + Bu∗. Although A is maximally
monotone and B is cocoercive in K, the forward–backward splitting algorithm could not be
applicable since (I + τA)−1, τ > 0 does not have a closed-form solution. To overcome this
difficulty, we consider a preconditioned forward–backward splitting algorithm as follows:

uk+1 = (1− ρk)uk + ρk JUk A(uk −UkBuk), (14)

where Pk ∈ SG
++, Qk ∈ SH

++, ρk > 0 and

U−1
k =

(
Pk − LQ−1

k L∗ 0
0 Qk

)
. (15)

After simple calculation, we recover (13) from (14). In order to analyze the theoretical
convergence of Rv_PDFP2O, we make the following assumptions:

(A1): ‖P−1
k ‖2 ∈ (0, 1

λmax(LQ−1
k L∗)

), ‖Q−1
k ‖2 ∈ (0, 2β);

(A2): ρk ∈ [ρ, 4β−‖Q−1
k ‖2

2β − ξk], for ρ, ξk > 0;

(A3): Uk+1 −Uk ∈ SK
++, ∀k ∈ N;

(A4): ϑ = supk∈N‖Uk‖2 < +∞.

Under the assumption (A1), we have U−1
k ∈ SK

++. Denote JUk A(I −UkB) by T̂(k).

Lemma 1. Suppose that (A1) holds. Then the following statements hold:

(1) I −UkB is ‖Q
−1
k ‖2
2β -averaged under ‖ · ‖U−1

k
;

(2) T̂(k) is 2β

4β−‖Q−1
k ‖2

-averaged under ‖ · ‖U−1
k

.

Proof. (1) Let u1 = (v1, x1), u2 = (v2, x2) ∈ K; we have

〈UkBu1 −UkBu2, u1 − u2〉U−1
k

=〈∇ f (x1)−∇ f (x2), x1 − x2〉
≥β‖∇ f (x1)−∇ f (x2)‖2

≥ β

‖Q−1
k ‖2

‖Q−1
k ∇ f (x1)−Q−1

k ∇ f (x2)‖2
Qk

=
β

‖Q−1
k ‖2

‖UkBu1 −UkBu2‖2
U−1

k
,
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which means that UkB is β

‖Q−1
k ‖2

-cocoercive. Hence, I −UkB is ‖Q
−1
k ‖2
2β -averaged.

(2) Since Uk ∈ SK
++, Uk A is maximally monotone and JUk A is 1

2 -averaged. Hence,

JUk A(I −UkB) is 2β

4β−‖Q−1
k ‖2

-averaged.

Now, we are ready to present the main convergence theorem of Rv_PDFP2O (13).

Theorem 1. Suppose that (A1)–(A4) hold. Let {uk = (vk, xk)} be generated by (13). Then,
we have the following:
(1) For any u∗ ∈ Ω, {‖uk − u∗‖U−1

k
} is monotonically decreasing and limk→+∞ ‖uk − u∗‖U−1

k
exists;

(2) limk→+∞ ‖uk − T̂(k)(uk)‖ = 0;
(3) {uk} converges weakly to a point in Ω.

Proof. (1) Let αk =
2β

4β−‖Q−1
k ‖2

. Notice that ‖u‖U−1
k+1
≤ ‖u‖U−1

k
, ∀u ∈ G×H. Then, we obtain

‖uk+1 − u∗‖2
U−1

k+1

≤‖uk+1 − u∗‖2
U−1

k

=(1− ρk)‖uk − u∗‖2
U−1

k
+ ρk‖T̂(k)(u

k)− u∗‖2
U−1

k
− ρk(1− ρk)‖uk − T̂(k)(u

k)‖2
U−1

k

≤‖uk − u∗‖2
U−1

k
− ρk(

1
αk
− ρk)‖uk − T̂(k)(u

k)‖2
U−1

k
, (16)

which implies that ‖uk − u∗‖U−1
k

is decreasing and limk→+∞ ‖uk − u∗‖U−1
k

exists.
(2) Summing (16) from k = 0 to N − 1, we obtain

N−1

∑
k=0

ρk(
1
αk
− ρk)‖uk − T̂(k)(u

k)‖2
U−1

k
≤ ‖u0 − u∗‖U−1

0
. (17)

It follows from (17) that

lim
k→+∞

‖uk − T̂(k)(u
k)‖ = 0. (18)

(3) Let {ukj} ⊂ {uk} such that ukj ⇀ û∗. It follows from Lemma 2.3 in [30] that there
is U−1 ∈ SK

++ such that U−1
k → U−1. Define T = JUA(I −UB), we have

‖ukj − T(u(kj))‖
≤‖ukj − T̂(kj)

(ukj)‖+ ‖T̂(kj)
(ukj)− T(ukj)‖

≤‖ukj − T̂(kj)
(ukj)‖+ 1

λmin(U−1
kj

)
‖(U−1

kj
−U−1)(ukj − T(ukj)‖

≤‖ukj − T̂(kj)
(ukj)‖+ ϑ‖(U−1

kj
−U−1)(ukj − T(ukj)‖, (19)

which implies that limj→∞ ‖ukj − T(ukj)‖ = 0. The second inequality in (19) holds by
Lemma 3.4 of [31]. It follows from the demiclosedness of T that û∗ ∈ Ω. By Opial’s lemma,
we conclude that uk ⇀ û∗. This completes the proof.

3.2. Connections to Existing Algorithms

In this subsection, we present a series of special cases of the proposed algorithm and
point out connections to other existing algorithms.
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(i) Let Pk =
1
λ I, Qk = Q; then, (13) reduces to the PDFP2O_AM [26].

ṽk+1 = proxλh∗(
1
λ

L(xk −Q−1∇ f (xk)) + (I − λLQ−1L∗)vk),

x̃k+1 = xk −Q−1∇ f (xk)−Q−1L∗ṽk+1,

(vk+1, xk+1) = (1− ρk)(vk, xk) + ρk(ṽk+1, x̃k+1).

(20)

(ii) Let Pk =
γk
λk

I and Qk =
1

γk
I ; then, we obtain from (13) that

ṽk+1 = prox λk
γk

h∗
(

λk
γk

L(xk − γk∇ f (xk)) + (I − λkLL∗)vk),

x̃k+1 = xk − γk∇ f (xk)− γkL∗ṽk+1,

(vk+1, xk+1) = (1− ρk)(vk, xk) + ρk(ṽk+1, x̃k+1),

(21)

which recovers the PDFP2O_DS [27].
(iii) Let Pk =

γ
λ I and Qk =

1
γ I; then, (13) becomes

ṽk+1 = prox λ
γ h∗(

λ

γ
L(xk − γ∇ f (xk)) + (I − λLL∗)vk),

x̃k+1 = xk − γ∇ f (xk)− γL∗ṽk+1,

(vk+1, xk+1) = (1− ρk)(vk, xk) + ρk(ṽk+1, x̃k+1),

(22)

which is the original PDFP2O (12).
Rv_PDFP2O (13) reduces to the above three algorithms (20)–(22) for different Pk and

Qk. It is eailsy confirmed that Rv_PDFP2O (13) generalizes these algorithms.

3.3. Convergence Rates

In this subsection, we discuss convergence rates of (13).

3.3.1. O( 1
k )−Ergodic Convergence Rate

First, we establish the ergodic convergence rate.

Lemma 2. Suppose that (A1) holds. Let {ũk+1 = (ṽk+1, x̃k+1)} be generated by (13). Then, for
any u = (v, x) ∈ K, it holds that

K(v, x̃k+1)− K(ṽk+1, x)

≤1
2
(‖uk − u‖2

U−1
k
− ‖ũk+1 − u‖2

U−1
k
− ‖ũk+1 − uk‖2

U−1
k
) +

1
2β
‖x̃k+1 − xk‖2. (23)

Proof. It follows from the property of proximity operator that

h∗(v) ≥h∗(ṽk+1) + 〈L(xk −Q−1
k L∗vk −Q−1

k ∇ f (xk)), v− ṽk+1〉

+
1
2
(‖ṽk+1 − vk‖2

Pk
+ ‖ṽk+1 − v‖2

Pk
− ‖vk − v‖2

Pk
). (24)

By the differentiability of f , we have

f (x) ≥ f (x̃k+1) + 〈∇ f (xk), x− x̃k+1〉 − 1
2β
‖x̃k+1 − xk‖2

≥ f (x̃k+1) +
1
2
‖x̃k+1 − xk‖2

Qk
+

1
2
‖x− x̃k+1‖2

Qk
− 1

2
‖x− xk‖2

Qk

+〈ṽk+1, L(x̃k+1 − x)〉 − 1
2β
‖x̃k+1 − xk‖2. (25)
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Adding (24) and (25) and rearranging to arrive at (23).

Theorem 2. Suppose that (A1)–(A3) hold with ξk =
‖Q−1

k ‖2
2β . Let {ũk+1 = (ṽk+1, x̃k+1)} be

generated by (13). Then, for u∗ = (v∗, x∗) ∈ Ω, it holds that

K(v∗, XN
)− K(VN+1, x∗) ≤ 1

2ρN
‖u0 − u∗‖2

U−1
0

, (26)

where XN
= 1

N ∑N−1
k=0 x̃k+1, VN

= 1
N ∑N−1

k=0 ṽk+1.

Proof. Note that ũk+1 = uk + 1
ρk
(uk+1 − uk). Substituting it back into (23), we have

K(v∗, x̃k+1)− K(ṽk+1, x∗)

≤ 1
2ρk

(‖uk − u∗‖2
U−1

k
− ‖uk+1 − u∗‖2

U−1
k+1

)− 2− ρk

2ρ2
k
‖xk+1 − xk‖2

Qk− I
β(2−ρk)

≤ 1
2ρ

(‖uk − u∗‖2
U−1

k
− ‖uk+1 − u∗‖2

U−1
k+1

). (27)

Summing (27) from k = 0, . . . , N − 1, we obtain

N−1

∑
k=0

(K(v∗, x̃k+1)− K(ṽk+1, x∗)) ≤ 1
2ρ
‖u0 − u∗‖2

U−1
0

.

The final estimation (26) follows directly from the Jensen inequality.

3.3.2. Linear Convergence Rate

Next, we establish a linear convergence rate of (13) with Pk = P and Qk = Q. Therefore,
T̂(k) = T. For convenience, we give an equivalent formulation of T as follows:

T1(v, x) = proxP
h∗((I − P−1LQ−1L∗)v + P−1L(x−Q−1∇ f (x))), (28)

T2(v, x) = x−Q−1∇ f (x)−Q−1L∗ ◦ T1(v, x), (29)

T(v, x) = (T1(v, x), T2(v, x)). (30)

In addition, we make some additional assumptions. More precisely,

(A5): ∂h∗ is τh−strongly monotone under ‖ · ‖I−P−1LQ−1L∗ , i.e.,

∀(x1, v1), (x2, v2) ∈ gra ∂h∗, 〈x1 − x2, v1 − v2〉 ≥ τh‖x1 − x2‖2
I−P−1LQ−1L∗ .

(A6): ∇ f is τf−strongly monotone under the norm ‖ · ‖Q, i.e.,

∀x1, x2 ∈ H, 〈x1 − x2,∇ f (x1)−∇ f (x2)〉 ≥ τf ‖x1 − x2‖2
Q.

(A7): There is θ1, θ2 ∈ (0, 1) such that ‖I − P−1LQ−1L∗‖2 ≤ θ1 and ‖x1 − Q−1∇ f (x1)−
x2 −Q−1∇ f (x2)‖Q ≤

√
θ2‖x1 − x2‖Q for all x1, x2 ∈ H.

Lemma 3. Suppose that (A1), (A5), and (A6) hold. Then,

‖T(u1)− T(u2)‖2
(P+2τh I)(I−P−1LQ−1L∗),Q

≤θ‖u1 − u2‖2
(P+2τh I)(I−P−1LQ−1L∗),Q,

for u1 = (v1, x1), u2 = (v2, x2) ∈ K, where θ ∈ (0, 1).
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Proof. Let uh1 = Mv1 + L(x1 − Q−1∇ f (x1))− PT1(u1) ∈ ∂h∗(T1(u1)) and uh2 = Mv2 +

L(x2 −Q−1∇ f (x2))− PT1(u2) ∈ ∂h∗(T1(u2)). Then, we have

‖T(u1)− T(u2)‖2
P−LQ−1L∗ ,Q

=‖u1 − u2‖2
P−LQ−1L∗ ,Q − 2〈∇ f (x1)−∇ f (x2), T2(u1)− T2(u2)− (x1 − x2)〉

−‖T(u1)− T(u2)− (u1 − u2)‖2
P−LQ−1L∗ ,Q − 2〈∇ f (x1)−∇ f (x2), x1 − x2〉

−2〈T1(u1)− T1(u2), uh1 − uh2〉

≤‖u1 − u2‖2
P−LQ−1L∗ ,Q − (2− ‖Q

−1‖2

β
)〈∇ f (x1)−∇ f (x2), x1 − x2〉

−2〈T1(u1)− T1(u2), uh1 − uh2〉
≤‖u1 − u2‖2

P−LQ−1L∗ ,(1−(2− ‖Q
−1‖2
β )τf )Q

− 2τh‖T1(u1)− T1(u2)‖2
I−P−1LQ−1L∗ ,

which concludes the proof with θ = max{1− (2− ‖Q
−1‖2
β )τf , 1

1+2τhλmin(P−1)
}.

Lemma 4. Suppose that (A1) and (A7) hold. Then, for u1 = (v1, x1), u2 = (v2, x2) ∈ K,

‖T(u1)− T(u2)‖2
P,Q ≤ θ‖u1 − u2‖2

P,Q,

where θ ∈ (0, 1).

Proof. Define M = P− LQ−1L∗. It follows from the fact that proxP
h∗ is firmly nonexpan-

sive that

‖T(u1)− T(u2)‖2
P,Q

≤‖x1 −Q−1∇ f (x1)− x2 −Q−1∇ f (x2)‖2
Q − ‖T1(u1)− T1(u2)‖2

M

+2〈T1(u1)− T1(u2), M(v1 − v2)〉
=‖x1 −Q−1∇ f (x1)− x2 −Q−1∇ f (x2)‖2

Q + ‖v1 − v2‖2
M

−‖T1(u1)− T1(u2)− (v1 − v2)‖2
M

≤θ2‖x1 − x2‖2
Q + θ1‖v1 − v2‖2

P

≤θ‖u1 − u2‖2
P,Q,

where θ = max{θ1, θ2} ∈ (0, 1).

Theorem 3. Suppose that (A1) holds. Suppose that (A5)–(A6) hold or (A7) holds. Let {uk+1 =

(vk+1, xk+1)} be generated by (13). Let ρk ∈ (0, ρ) for ρ = min{ 2
1+
√

θ
, 4β−‖Q−1‖2

2β }. Then,

{uk+1} converges linearly to the unique point u∗ ∈ Ω, i.e.,

‖uk+1 − u∗‖ ≤ cηk+1,

where c > 0, η ∈ (0, 1).

Proof. Define T(ρk)
= (1− ρk)I + ρkT. Note that uk+1 = T(ρk)

(uk) and FixT(ρk)
= FixT =

Ω. It is clear that T(ρk)
is ηk-contractive for ηk = |1− ρk|+ρk

√
θ. Therefore, {uk+1} con-

verges linearly to the unique fixed point of T(ρk)
.

4. Numerical Experiments

In this section, we apply the proposed Rv_PDFP2O (13) to solve the L2 +TV deblurring
problem (2) and compare it with those of the ADMM [5], PDS [32], PDFP2O [19], and
PDFP2O_AM [26]. All of the experiments are performed under Windows 7 and MATLAB
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7.2 (R2014a) running on a laptop with an Intel Core 2 Quad CPU 2.3 GHz with 4 GB
of memory.

The test images are the standard “Text” image with a size of 256× 256, and “Barbara”
and “Goldhill” with a size 512× 512, which are shown in Figure 1. We report numerical
results on the image restoration for blurred images, corrupted by the Gaussian noise and
the average kernel; a is the size of average kernel, and η is the standard variance of the
Gaussian noise. To evaluate the ability of the algorithm to remove different noises, we
set four kinds of a, η: (1) a = 3, η = 0.01; (2) a = 3, η = 0.05; (3) a = 7, η = 0.01; and
(4) a = 7, η = 0.05.

(a) (b) (c)

Figure 1. These are the test images: (a) Text, (b) Barbara, and (c) Goldhill.

For the two common parameters γ and λ in PDS, and PDFP2O, we set γ = 1.9 and
λ = 0.125. Similarly to the literature [26], we choose Q = AT A + ζLT L, where ζ = 0.1. In
particular, Q−1 can be easily computed by FFT with periodic boundary conditions. We tune
the regularization parameter µ to achieve the maximum SNR, which is listed in Table 2.

Table 2. The best selection of µ in the current noise level.

Images
a = 3 a = 7

η = 0.01 η = 0.05 η = 0.01 η = 0.05

“Text” 0.0013 0.0078 0.0003 0.0027
“Barbara” 0.0004 0.0101 0.0004 0.009
“Goldhill” 0.0011 0.0148 0.0006 0.0085

The relative error of the iterative sequences is defined as the stopping criteria:

‖xk+1 − xk‖2

‖xk‖2
< ε,

where ε > 0 is a prescribed tolerance value. In the experiment, we choose ε = 10−4, 10−6,
10−8. The quality of the restored images is evaluated by signal-to-noise (SNR), which is
defined by

SNR = 10log
‖x‖2

‖xr − x‖2 ,

where x and xr denote the original and the recovered images. The obtained numerical
results are listed in Tables 3 and 4.
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Table 3. The performance of a = 3 of the compared algorithms in terms of SNR (dB) and the number
of iterations k for given tolerance values ε.

η Image Method ε = 10−4 ε = 10−6 ε = 10−8

SNR (dB) k SNR (dB) k SNR (dB) k

0.01 Text ADMM 26.6288 289 27.6605 813 27.6686 1537
PDS 26.4334 296 27.6402 933 27.6500 1693

PDFP2O 27.0279 182 27.6455 521 27.6500 915
PDFP2O_AM 27.1659 178 27.6650 456 27.6686 831
Rv_PDFP2O 27.1838 173 27.6615 441 27.6686 803

Barbara ADMM 21.8641 138 21.6752 1423 21.6704 5332
PDS 21.8186 152 21.6783 1499 21.6733 5338

PDFP2O 21.7928 118 21.6757 958 21.6733 3022
PDFP2O_AM 21.8115 109 21.6727 911 21.6704 3058
Rv_PDFP2O 21.8075 108 21.6726 887 21.6704 2962

Goldhill ADMM 26.6924 68 26.5822 513 26.5807 1554
PDS 26.6686 79 26.5769 510 26.5754 1471

PDFP2O 26.5980 95 26.5761 306 26.5754 829
PDFP2O_AM 26.6467 51 26.5814 314 26.5807 878
Rv_PDFP2O 26.6448 50 26.5814 305 26.5807 849

0.05 Text ADMM 14.7157 150 14.7797 511 14.7801 1048
PDS 14.6905 161 14.7623 533 14.7626 1904

PDFP2O 14.7341 103 14.7627 384 14.7626 1892
PDFP2O_AM 14.7510 96 14.7800 308 14.7801 1185
Rv_PDFP2O 14.7520 93 14.7800 296 14.7801 1184

Barbara ADMM 18.3425 47 18.3337 231 18.3336 883
PDS 18, 3496 74 18.3454 349 18.3454 1683

PDFP2O 18.3459 95 18.3453 342 18.3454 1681
PDFP2O_AM 18.3362 42 18.3336 226 18.3336 1154
Rv_PDFP2O 18.3359 42 18.3336 226 18.3336 1154

Goldhill ADMM 22.7421 47 22.7367 260 22.7367 1134
PDS 22.7033 84 22.7015 524 22.7014 2529

PDFP2O 22.7027 97 22.7015 508 22.7014 2527
PDFP2O_AM 22.7383 53 22.7367 328 22.7367 1571
Rv_PDFP2O 22.7382 53 22.7367 328 22.7367 1568

Table 4. The performance of a = 7 of the compared algorithms in terms of SNR (dB) and the number
of iterations k for given tolerance values ε.

η Image Method ε = 10−4 ε = 10−6 ε = 10−8

SNR (dB) k SNR (dB) k SNR (dB) k

0.01 Text ADMM 12.8474 832 14.1337 6220 14.1548 19,540
PDS 12.4021 1114 14.1117 7138 14.1382 19,512

PDFP2O 13.1403 835 14.1252 4277 14.1383 10,939
PDFP2O_AM 13.4212 646 14.1446 3828 14.1549 11,248
Rv_PDFP2O 13.4436 634 14.1450 3718 14.1549 10,899

Barbara ADMM 18.5769 145 18.4559 2153 18.4523 9172
PDS 18.5597 192 18.4592 2549 18.4541 9851

PDFP2O 18.5490 161 18.4567 1647 18.4541 5623
PDFP2O_AM 18.5445 124 18.4541 1401 18.4523 5288
Rv_PDFP2O 18.5429 122 18.4541 1365 18.4523 5124

Goldhill ADMM 23.2362 116 23.0522 1475 23.0480 8688
PDS 23.1623 167 23.0451 1791 23.0395 8417

PDFP2O 23.1506 129 23.0424 1146 23.0395 5284
PDFP2O_AM 23.1775 92 23.0500 966 23.0480 5608
Rv_PDFP2O 23.1739 91 23.0499 943 23.0480 5463

0.05 Text ADMM 7.0043 374 6.9970 2466 6.9972 6803
PDS 6.9372 535 6.9771 3074 6.9773 7579

PDFP2O 6.9601 373 6.9772 1859 6.9773 4154
PDFP2O_AM 6.9997 276 6.9971 1528 6.9972 3737
Rv_PDFP2O 6.9995 270 6.9971 1488 6.9972 3611

Barbara ADMM 17.1962 95 17.1656 764 17.1653 2939
PDS 17.2239 161 17.1937 900 17.1932 3370

PDFP2O 17.2073 121 17.1933 648 17.1932 3091
FP2O_AM 17.1783 80 17.1654 506 17.1653 1955

Rv_PDFP2O 17.1776 79 17.1654 501 17.1653 1947

Goldhill ADMM 20.4785 83 20.4481 612 20.4477 2441
PDS 20.4285 153 20.4010 762 20.4005 2684

PDFP2O 20.4114 116 20.4006 566 20.4005 2323
PDFP2O_AM 20.4595 72 20.4478 430 20.4477 1529
Rv_PDFP2O 20.4586 72 20.4478 426 20.4477 1505
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It can be seen from Tables 3 and 4 that the proposed Rv_PDFP2O converges faster than
other algorithms in terms of the number of iterations. In addition, Figures 2–4 show the
recovered images with ε = 10−8. Figures 2–4 show that the visual qualities of these images
obtained by the proposed algorithm are slightly better than the compared algorithms.

PD PD PD PD

Figure 2. These are the “Text” images: Row 1: the blurry and noisy images, Row 2: the images
restored by ADMM, Row 3: the images restored by PDS, Row 4: the images restored by PDFP2O,
Row 5: the images restored by PDFP2O_AM, and Row 6: the images restored by Rv_PDFP2O.
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PD PD PD PD

Figure 3. These are the “Goldhill” images: Row 1: the blurry and noisy images, Row 2: the images
restored by ADMM, Row 3: the images restored by PDS, Row 4: the images restored by PDFP2O,
Row 5: the images restored by PDFP2O_AM, and Row 6: the images restored by Rv_PDFP2O.
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PD PD PD PD

Figure 4. These are the “Goldhill” images: Row 1: the blurry and noisy images, Row 2: the images
restored by ADMM, Row 3: the images restored by PDS, Row 4: the images restored by PDFP2O,
Row 5: the images restored by PDFP2O_AM, and Row 6: the images restored by Rv_PDFP2O.
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5. Conclusions

In this article, we proposed a Rv_PDFP2O to solve the convex optimization problem (1).
The proposed algorithm combined the over-relaxed parameters and the variable metric.
Under a proper preconditioned operator, we derived the Rv_PDFP2O and established the
convergence. By defining different stepsizes, we showed that the Rv_PDFP2O recovers
some existing algorithms, including PDFP2O, PDFP2O_AM, and PDFP2O_DS, and we
provide larger relaxed parameters for these algorithms. Furthermore, we studied the O( 1

k )
ergodic convergence rate in the partial primal-dual gap. Under some strong conditions on
the objective functions and the stepsizes, we proved that the iterative sequences converge
linearly. We applied the Rv_PDFP2O to solve the TV image-restoration problem (2). The
numerical results show that the Rv_PDFP2O performs better than some existing algorithms.
As we all know, the self-adaptive stepsize and the inertial variant could improve the
algorithm. However, these two accelerated strategies are not introduced to the Rv_PDFP2O
algorithm . We would like to derive a self-adaptive Rv_PDFP2O and an inertial Rv_PDFP2O
in the future.
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