
Citation: Wang, Q.; Li, W.; Bao, W.;

Zhang, F. Accelerated Randomized

Coordinate Descent for Solving

Linear Systems. Mathematics 2022, 10,

4379. https://doi.org/10.3390/

math10224379

Academic Editor: Maria Isabel

Berenguer

Received: 20 October 2022

Accepted: 12 November 2022

Published: 21 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Accelerated Randomized Coordinate Descent for Solving
Linear Systems
Qin Wang , Weiguo Li *, Wendi Bao and Feiyu Zhang

College of Science, China University of Petroleum, Qingdao 266580, China
* Correspondence: liwg@s.upc.edu.cn

Abstract: The randomized coordinate descent (RCD) method is a simple but powerful approach to
solving inconsistent linear systems. In order to accelerate this approach, the Nesterov accelerated
randomized coordinate descent method (NARCD) is proposed. The randomized coordinate descent
with the momentum method (RCDm) is proposed by Nicolas Loizou, we will provide a new conver-
gence boundary. The global convergence rates of the two methods are established in our paper. In
addition, we show that the RCDm method has an accelerated convergence rate by choosing a proper
momentum parameter. Finally, in numerical experiments, both the RCDm and the NARCD are faster
than the RCD for uniformly distributed data. Moreover, the NARCD has a better acceleration effect
than the RCDm and the Nesterov accelerated stochastic gradient descent method. When the linear
correlation of matrix A is stronger, the NARCD acceleration is better.

Keywords: Nesterov-accelerated; momentum; Kaczmarz method; large linear system

MSC: 65F10; 65F45

1. Introduction

Consider a large-scale overdetermined linear system

Ax = b, (1)

where A ∈ Rm×n, m ≥ n. We can solve the least-squares problem minx‖b − Ax‖2. We
assume that the columns of A are normalized:

‖Ai‖ = 1. (2)

This assumption has no substantial impact on the implementation costs. We could just
normalize each Ai the first time the algorithm encounters it. However, we do not assume (2)
about the algorithms, and include factors Ai as needed. Regardless of whether normaliza-
tion is performed, our randomized algorithms yield the same sequence of iterates.

The coordinate descent (CD) technique [1], which can also be produced by applying the
conventional Gauss—Seidel iteration method to the following normal equation [2], is one
of the iteration methods that may be used to solve the problem (1) cheaply and effectively.

AT Ax = ATb,

and it is also the same as the quadratic programming problem with no constraints.

min f (x) =
1
2

xT AT Ax− bT Ax, x ∈ Rn.

From [1], we can obtain

xk+1 = xk +
〈Ai, b− Ax〉
‖Ai‖2 ei. (3)

Mathematics 2022, 10, 4379. https://doi.org/10.3390/math10224379 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10224379
https://doi.org/10.3390/math10224379
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math10224379
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10224379?type=check_update&version=2

Mathematics 2022, 10, 4379 2 of 20

In solving problem (1), the coordinate descent approach has a long history of addressing
optimization issues and various applications in a wide range of fields such as biological
feature selection [3], machine learning [4], protein structure [5], tomography [6,7], and
so on. Inspired by the randomized coordinate descent (RCD) method, a lot of related
works were presented, such as greedy versions of the randomized coordinate descent [8,9]
and block versions of the randomized coordinate descent [10–12]. The coordinate descent
method is a column projection method and the Kaczmarz [13] method is a row projection
method. The RCD method is inspired by the randomized Kaczmarz(RK) [14] method. For
the Kaczmarz-type approach; a lot of relevant work has also been conducted. Readers can
refer to [15–20].

In this paper, for solving large systems of linear equations, we use two methods to
accelerate the RCD method. First, we obtained an accelerated RCD method by adding
Nesterov’s acceleration mechanism to the traditional RCD algorithm, called the Nesterov
accelerated randomized coordinate descent method (NARCD). It is commonly known
that by using an appropriate multi-step technique [21], the traditional gradient method
may be turned into a quicker system. To solve the number of unconstrained minimization
problems with strongly convex objectives, Nesterov improved this accelerated format [22].
Second, we can apply the heavy ball method (momentum method) to accelerate the RCD.
Polyak invented the heavy ball method [23], which is a common approach for speeding up
the convergence rate of gradient-type algorithms. Many researchers looked into variations
of the heavy ball method, see [24]. By these two methods—to accelerate the RCD—the Nes-
terov accelerated randomized coordinate descent method (NARCD) and the randomized
coordinate descent with momentum method (RCDm) were obtained.

In this paper, given a positive semidefinite matrix M, ‖x‖M is defined as
√

xT Mx,
〈.〉and ‖.‖ stands for the scalar product and the spectral norm, where the column vector is
denoted by ei, with 1 at the ith position and 0 elsewhere. In addition, for a given matrix A,
Ai, ‖A‖F, σmin(A), and AT are used to denote its ith column, Frobenius norm, the smallest
nonzero singular value, and the transpose of A respectively. A+ is the Moore–Penrose
pseudoinverse of A. Note that λ1 = 1

‖(AAT)+‖ . Let us denote i(k) as the index randomly
generated at iteration k, and let I(k) denote all random indices that occurred or before
iteration k, so that

I(k) = {i(k), i(k− 1), ..., i(0)},

the sequences xk+1,yk+1,vk+1 are determined by I(k). In the following part of the proof, we
use Ei(k)|I(k−1)(.) to denote the expectation of a random variable condition of I(k− 1) with
respect to the index i(k). So that

EI(k)(.) = EI(k−1)(Ei(k)|I(k−1)(.)). (4)

The organization of this paper is as follows. In Section 2, we propose the NARCD
method naturally and prove the convergence of the method. In Section 3, we propose the
RCDm method and prove its convergence. In Section 4, to demonstrate the efficacy of
our new methods, several numerical examples are offered. Finally, we present some brief
concluding remarks in Section 5.

2. Nesterov’s Accelerated Randomized Coordinate Descent

The NARCD algorithm applies the Nesterov accelerated procedure [22], which is
more well-known in terms of the gradient descent algorithm. Moreover, the Nesterov
acceleration scheme creates the sequences {xk}, {yk}, and {vk}. When applied to minx f (x),
gradient descent sets xk+1 = xk − θk∇ f (x), where ∇ f is the objective gradient and θk is
the step-size. We define the following iterative scheme:

Mathematics 2022, 10, 4379 3 of 20

yk = αkvk + (1− αk)xk,

xk+1 = yk − θk∇ f (yk),

vk+1 = βkvk + (1− βk)yk − γk∇ f (yk).

The aforementioned scheme’s key addition is that it employs acceptable values for the
parameters αk, βk, and γk, resulting in improved convergence in traditional gradient descent.
In [25], the Nesterov-accelerated procedure is applied to the Kaczmarz method, which is
a row action method. The RCD is a column action method and the Nesterov-accelerated
procedure can be applied in the same way. The relationship between parameters αk, βk, and
γk is given in [22,25]. Now, using the general setup of Nesterov’s scheme, we can obtain
the NARCD algorithm (Algorithm 1).

The framework of the NARCD method is given as follows.

Algorithm 1 Nesterov’s accelerated randomized coordinate descent method (NARCD)

Input: A ∈ Rm×n, b ∈ Rm, K ∈ R, x(0) ∈ Rn, λ ∈ [0, λ1].
1: Initialize v0 = x0, γ−1 = 0, k = 0.
2: while k < K do
3: Choose γk to be the larger root of

γ2
k −

γk
n

= (1− γkλ

n
)γ2

k−1 (5)

4: Set αk and βk as follows:

αk =
n− γkλ

γk(n2 − λ)
(6)

βk = 1− λγk
n

(7)

5: Set yk = αkvk + (1− αk)xk
6: Choose i = i(k) from {1, 2, ..., n} with equal probability
7: xk+1 = yk +

〈Ai ,b−Ayk〉
‖Ai‖2 ei

8: Set vk+1 = βkvk + (1− βk)yk + γk
〈Ai ,b−Ayk〉
‖Ai‖2 ei

9: k = k + 1
10: end while
Output: xK

Remark 1. In order to avoid the calculation of the product of matrix and vector (Ayk in steps 7
and 8), we adopt the following

Yk = αkVk + (1− αk)Xk,

Zk = b−Yk,

µk =
〈Ai, Zk〉
‖Ai‖2 ,

Xk+1 = Yk + µk Ai,

Vk+1 = βkVk + (1− βk)Yk + (γkµk)Ai,

and X0 = Ax0, V0 = X0. At the same time, we can use rk = b−Yk to estimate the residue.

Lemma 1. For any solution x∗ to AT Ax∗ = ATb, y ∈ Rn and P(y) = y+ 〈Ai ,b−Ay〉
‖Ai‖2 ei, ‖Ai‖2 =

1. We can obtain

Mathematics 2022, 10, 4379 4 of 20

Ei(‖A(P(y)− x∗)‖2) = ‖A(y− x∗)‖2 − 1
n
‖AT(Ay− b)‖2

. (8)

where a random variable i satisfies the uniform distribution of the set {1,2,..,n}.

Proof. Using Ei to donate the expectation with respect to the index i, we have

Ei(‖A(P(y)− x∗)‖2)

= Ei(‖A(y + 〈Ai, b− Ay〉ei − x∗)‖2)

= Ei(‖(A(y− x∗) + 〈Ai, b− Ay〉Ai)‖2)

= ‖A(y− x∗)‖2 + Ei(‖〈Ai, b− Ay〉Ai‖2) + 2Ei〈A(y− x∗), 〈Ai, b− Ay〉Ai〉

= ‖A(y− x∗)‖2 +
1
n
‖AT A(y− x∗)‖2 +

2
n
〈A(y− x∗), AAT(b− Ay)〉

= ‖A(y− x∗)‖2 − 1
n
‖AT A(y− x∗)‖2,

where the last equality uses AT Ax∗ = ATb.

Lemma 2. For any y ∈ Rn, we have

Ei

(
‖Ai〈Ai, b− Ay〉‖2

(AAT)+

)
≤ 1

n
‖AT A(y− x∗)‖2, (9)

where the random variable i satisfies the uniform distribution of the set {1,2,..,n}.

Proof. We know the compact singular value decomposition of A as A = UΣVT , where
U ∈ Rm×r, V ∈ Rn×r, Σ ∈ Rr×r, r is the rank of A, and UTU = I, VTV = I, Σ is the positive
diagonal, and we can obtain (AAT)+ = UΣ−2UT .

Ei

(
‖Ai〈Ai, b− Ay〉‖2

(AAT)+

)
=

1
n

n

∑
i=1
〈Ai〈Ai, b− Ay〉, (AAT)+Ai〈Ai, b− Ay〉〉

=
1
n

trace[(AAT)+
n

∑
i=1

Ai〈Ai, b− Ay〉2 AT
i]

=
1
n

trace[(AAT)+Adiag(AT(b− Ay))2 AT]

=
1
n

trace[UΣ−2UTUΣVTdiag(AT(b− Ay))2VΣUT]

=
1
n

trace[UΣ−1VTdiag(AT(b− Ay))2VΣUT]

=
1
n

trace[VTdiag(AT(b− Ay))2V]

=
1
n
‖diag(AT(b− Ay))V‖2

F

=
1
n

n

∑
i=1

(〈Ai, b− Ay〉)2‖vi‖2

≤ 1
n
‖AT A(y− x∗)‖2.

As the sixth equation is a consequence of trace(ABC)=trace(BCA), and V = [v1, v2, ..., vn]T ,
‖vi‖2 ≤ 1, so that the last inequality holds.

Mathematics 2022, 10, 4379 5 of 20

Lemma 3. As all n2 − λ > 0, the following definition:

αk =
n− γkλ

γk(n2 − λ)
, βk = 1− λγk

n

for both sequences {αk}, {βk} lie in the interval [0, 1] if and only if γk satisfies the following
property:

1
n
≤ γk ≤

n
λ

,

and γ−1 = 0, if γk−1 ≤ 1√
λ

, then γk ∈ [γk−1, 1√
λ
].

Proof. The first part of the lemma clearly holds. For the second part, recall from (5) that γk
is the larger root of the following convex quadratic function:

g(γ) = γ2 − γ

n
(1− λγ2

k−1)− γ2
k−1,

we note the following:

g(γk−1) = −(γk−1/n)(1− λγ2
k−1) ≤ 0,

g(
1√
λ
) =

1
λ
− 1

n
√

λ
(1− λγ2

k−1)− γ2
k−1

=
1
λ
− 1

n
√

λ
+ γ2

k−1(

√
λ

m
− 1)

≥ 1
λ
− 1

n
√

λ
+

1
λ
(

√
λ

m
− 1) = 0,

which together imply that γk ∈ [γk−1, 1√
λ
].

Lemma 4. Let a, b, and c be any vector in Rn, then the following identity holds:

2〈a− c, c− b〉 = ‖a− b‖2 − ‖a− c‖2 − ‖c− b‖2. (10)

Theorem 1. The coordinate descent method with Nesterov’s acceleration for solving linear equa-
tions, λ ∈ [0, λ1] and x∗ is the least-squares solution. Define σ1 = 1 +

√
λ

2n and σ2 = 1−
√

λ
2n , then

for all k ≥ 0, we have the following

E(‖A(xk+1 − x∗)‖2) ≤ 4λ‖A(x0 − x∗)‖2

(σk+1
1 − σk+1

2)2
(11)

and

E(‖A(vk+1 − x∗)‖2
(AAT)+) ≤

4‖A(x0 − x∗)‖2
(AAT)+

(σk+1
1 + σk+1

2)2
. (12)

Proof. We follow the standard notation and steps shown in [22,25]; by (5) and (6), the
following relation holds:

1− αk
αk

=
nγ2

k−1
γk

. (13)

From (5) and (7), we have
γ2

k −
γk
n
− βkγ2

k−1 = 0. (14)

Now, let us define r2
k = ‖A(vk − x∗)‖2

(AAT)+
. Then we have

Mathematics 2022, 10, 4379 6 of 20

r2
k+1 = ‖A(vk+1 − x∗)‖2

(AAT)+

= ‖A(βkvk + (1− βk)yk + γk〈Ai, b− Ayk〉ei − x∗)‖2
(AAT)+

= ‖A(βkvk + (1− βk)yk − x∗)‖2
(AAT)+ + γ2

k‖Ai〈Ai, b− Ayk〉‖2
(AAT)+

+ 2γk〈A(βkvk + (1− βk)yk − x∗), (AAT)+Ai〈Ai, b− Ayk〉〉
= ‖A(βkvk + (1− βk)yk − x∗)‖2

(AAT)+ + γ2
k‖Ai〈Ai, b− Ayk〉‖2

(AAT)+

+ 2γk〈A(βk(
1
αk

yk −
1− αk

αk
xk) + (1− βk)yk − x∗), (AAT)+Ai〈Ai, b− Ayk〉〉

= ‖A(βkvk + (1− βk)yk − x∗)‖2
(AAT)+ + γ2

k‖Ai〈Ai, b− Ayk〉‖2
(AAT)+

+ 2γk〈A(yk − x∗) +
1− αk

αk
βk A(yk − xk), (AAT)+Ai〈Ai, b− Ayk〉〉. (15)

Now, we divide (15) into three parts and simplify them separately. From the convexity of
‖.‖2

(AAT)+
and in Lemma 3, we know βk ∈ [0, 1]. So the first part of (15) is as follows:

‖A(βkvk + (1− βk)yk − x∗)‖2
(AAT)+

= ‖A(βk(vk − x∗) + (1− βk)(yk − x∗))‖2
(AAT)+

≤ βk‖A(vk − x∗)‖2
(AAT)+ + (1− βk)‖A(yk − x∗)‖2

(AAT)+

= βk‖A(vk − x∗)‖2
(AAT)+ +

γkλ

n
‖A(yk − x∗)‖2

(AAT)+

≤ βk‖A(vk − x∗)‖2
(AAT)+ +

γk
n
‖A(yk − x∗)‖2, (16)

where the last inequality makes use of λ ≤ λ1 = 1
‖(AAT)+‖ . Using Lemmas 1 and 2, the

second part of (15) is as follows:

γ2
k Ei(k)|I(k−1)

(
‖Ai〈Ai, b− Ayk〉‖2

(AAT)+

)
≤

γ2
k

n
‖AT A(yk − x∗)‖2

= γ2
k‖A(yk − x∗)‖2 − γ2

k Ei(k)|I(k−1)(‖A(xk+1 − x∗)‖2). (17)

We use the identity of (8) in the last part of our proof. We take expectations in the last part
of (15) and can obtain

2γkEi(k)|I(k−1)(〈A(yk − x∗) +
1− αk

αk
βk A(yk − xk), (AAT)+Ai〈Ai, b− Ayk〉〉)

= 2γk〈A(yk − x∗) +
1− αk

αk
βk A(yk − xk), (AAT)+Ei(k)|I(k−1)Ai〈Ai, b− Ayk〉〉

=
2γk
n
〈A(yk − x∗) +

1− αk
αk

βk A(yk − xk), (AAT)+
n

∑
i=1

Ai〈Ai, b− Ayk〉〉

=
2γk
n
〈A(yk − x∗) +

1− αk
αk

βk A(yk − xk), (AAT)+AAT(b− Ayk)〉

=
2γk
n
〈A(yk − x∗) +

1− αk
αk

βk A(yk − xk), (b− Ayk)〉

=
2γk
n
〈A(yk − x∗), b− Ayk〉+

2γk
n

1− αk
αk

βk〈A(yk − xk), b− Ayk〉

= −2γk
n
‖A(yk − x∗)‖2 + βkγ2

k−1(‖A(xk − x∗)‖2 − ‖A(yk − x∗)‖2 − ‖A(yk − xk)‖2)

≤ −(2γk
n

+ βkγ2
k−1)‖A(yk − x∗)‖2 + βkγ2

k−1‖A(xk − x∗)‖2, (18)

Mathematics 2022, 10, 4379 7 of 20

where the fifth and sixth equalities make use of the (13), and (10), respectively. Substituting
all three parts of (16)–(18) into(15), we have

Ei(k)|I(k−1)(r
2
k+1)

≤ βk‖A(vk − x∗)‖2
(AAT)+ +

γk
n
‖A(yk − x∗)‖2

+ γ2
k‖A(yk − x∗)‖2 − γ2

k Ei(k)|I(k−1)(‖A(xk+1 − x∗)‖2)

− (
2γk
n

+ βkγ2
k−1)‖A(yk − x∗)‖2 + βkγ2

k−1‖A(xk − x∗)‖2

= βk‖A(vk − x∗)‖2
(AAT)+ + (γ2

k −
γk
n
− βkγ2

k−1)‖A(yk − x∗)‖2

− γ2
k Ei(k)|I(k−1)(‖A(xk+1 − x∗)‖2) + βkγ2

k−1‖A(xk − x∗)‖2

= βk‖A(vk − x∗)‖2
(AAT)+ − γ2

k Ei(k)|I(k−1)(‖A(xk+1 − x∗)‖2) + βkγ2
k−1‖A(xk − x∗)‖2, (19)

where the last equality is the consequence of (14). Let us define two sequences {Ak},{Bk}
as follows:

B2
k+1 =

B2
k

βk
, A2

k+1 = γ2
k B2

k+1, (20)

we know the βk ∈ (0, 1], and Bk ≥ 0, B0 6= 0. We have Bk+1 ≥ Bk. Because of the γ−1 = 0,
we have A0 = 0. Moreover, γk ∈ [γk−1, 1√

λ
] in Lemma 3, so that we can obtain that the

{Ak} is also an increasing sequence. Now, multiplying both sides of (19) by B2
k+1 and using

the (20), we have

B2
k+1Ei(k)|I(k−1)‖A(vk+1 − x∗)‖2

(AAT)+ + A2
k+1Ei(k)|I(k−1)‖A(xk+1 − x∗)‖2

≤ B2
k‖A(vk − x∗)‖2

(AAT)+ + A2
k‖A(xk − x∗)‖2, (21)

and then

EI(k)(B2
k+1‖A(vk+1 − x∗)‖2

(AAT)+ + A2
k+1‖A(xk+1 − x∗)‖2)

= EI(k−1)(B2
k+1Ei(k)|I(k−1)‖A(vk+1 − x∗)‖2

(AAT)+ + A2
k+1Ei(k)|I(k−1)‖A(xk+1 − x∗)‖2)

≤ EI(k−1)(B2
k‖A(vk − x∗)‖2

(AAT)+ + A2
k‖A(xk − x∗)‖2)

≤ EI(0)(B2
1‖A(v1 − x∗)‖2

(AAT)+ + A2
1‖A(x1 − x∗)‖2)

≤ B2
0‖A(v0 − x∗)‖2

(AAT)+ + A2
0‖A(x1 − x∗)‖2)

= B2
0‖A(v0 − x∗)‖2

(AAT)+

= B2
0‖A(x0 − x∗)‖2

(AAT)+ . (22)

So, by the (22), we can obtain

E‖A(vk+1 − x∗)‖2
(AAT)+ ≤

B2
0

B2
k+1
‖A(x0 − x∗)‖2

(AAT)+ ,

E‖A(xk+1 − x∗)‖2 ≤
B2

0
A2

k+1
‖A(x0 − x∗)‖2

(AAT)+ , (23)

we now need to analyze the growth of two sequences {Ak} and {Bk}. Following the proof
in [22,26] for the Nesterov accelerated scheme and the accelerated sampling Kaczmarz
Motzkin algorithm [25], we have

B2
k = βkB2

k+1 = (1− λγk
n

)B2
k+1 = (1− λAk+1

nBk+1
)B2

k+1.

Mathematics 2022, 10, 4379 8 of 20

It implies that

B2
k = (1− λAk+1

nBk+1
)B2

k+1

= B2
k+1 −

λ

n
Ak+1Bk+1,

then

λ

n
Ak+1Bk+1 = B2

k+1 − B2
k = (Bk+1 − Bk)(Bk+1 + Bk) ≤ 2Bk+1(Bk+1 − Bk).

Moreover, because the {Bk} and the {Ak} are increasing sequences, we can simplify them
and obtain

Bk+1 ≥ Bk +
λ

2n
Ak+1 ≥ Bk +

λ

2n
Ak. (24)

Similarly, we have

A2
k+1

B2
k+1
− Ak+1

nBk+1
= γ2

k −
γk
n

= βkγ2
k−1

=
A2

k
B2

k+1
,

where the second equality uses (14) and the third equality uses (20). Using the above
relationship, we have

1
n

Ak+1Bk+1 = A2
k+1 − A2

k

= (Ak+1 + Ak)(Ak+1 − Ak)

≤ 2Ak+1(Ak+1 − Ak).

Therefore,

Ak+1 ≥ Ak +
Bk
2n

. (25)

By combining the two expressions of (25) and (24), we have[
Ak+1
Bk+1

]
≥
[

1 1
2n

λ
2n 1

]k+1[
A0
B0

]
.

The Jordan decomposition of the matrix in the above expression is[
1 1

2n
λ
2n 1

]
=

[
1 1√
λ −

√
λ

]−1[
σ1 0
0 σ2

][
1 1√
λ −

√
λ

]
.

Here, σ1 = 1 +
√

λ
2n and σ2 = 1−

√
λ

2n . Because of A0 = 0, we have

[
Ak+1
Bk+1

]
≥
[

1 1
2n

λ
2n 1

]k+1[
A0
B0

]
≥
[

1 1√
λ −

√
λ

]−1[
σ1 0
0 σ2

]k+1[1 1√
λ −

√
λ

][
0
B0

]

=
1
2

[
(

σk+1
1 −σk+1

2√
λ

)B0

(σk+1
1 + σk+1

2)B0

]
.

Mathematics 2022, 10, 4379 9 of 20

The above relationship gives us the growth bound for the sequences{Ak} and {Bk}. Substi-
tuting these above bounds in (23), we have

E‖A(vk+1 − x∗)‖2
(AAT)+ ≤

B2
0

B2
k+1
‖A(x0 − x∗)‖2

(AAT)+ ≤
4‖A(x0 − x∗)‖2

(AAT)+

(σk+1
1 + σk+1

2)2
,

E‖A(xk+1 − x∗)‖2 ≤
B2

0
A2

k+1
‖A(x0 − x∗)‖2

(AAT)+ ≤
4λ‖A(x0 − x∗)‖2

(σk+1
1 − σk+1

2)2
,

and we have completed the proof.

Remark 2. From the relationship between yk, xk, and vk, yk = αkvk + (1− αk)xk, we know that

E‖A(yk+1 − x∗)‖2
(AAT)+

= E‖A(αk+1(vk+1 − x∗) + (1− αk+1)(xk+1 − x∗))‖2
(AAT)+

≤ αk+1E‖A(vk+1 − x∗)‖2
(AAT)+ + (1− αk+1)E‖A(xk+1 − x∗)‖2

(AAT)+ ,

and

‖A(xk+1 − x∗)‖2
(AAT)+ ≤ ‖A(xk+1 − x∗)‖2‖(AAT)+‖2

=
‖A(xk+1 − x∗)‖2

σ4
min(A)

,

where the σ4
min(A) is the nonzero minimum singular value of A. By the above inequality and

Theorem 1, we have

E‖A(yk+1 − x∗)‖2
(AAT)+ ≤ αk+1E‖A(vk+1 − x∗)‖2

(AAT)+ +
(1− αk+1)

σ4
min(A)

E‖A(xk+1 − x∗)‖2

≤ (
4αk+1

(σk+1
1 + σk+1

2)2
+

4(1− αk+1)λ

σ4
min(AA)(σk+1

1 − σk+1
2)2

)‖A(x0 − x∗)‖2.

3. Randomized Coordinate Descent with Momentum Method

The iterative formula of the gradient descent (GD) method is as follows,

xk+1 = xk − λk∇ f (xk),

where λk is a positive step-size parameter. Polyak [23] proposed the gradient descent
method with momentum (GDm) by introducing a momentum term δ(xk − xk−1), which
was also known as the heavy ball method

xk+1 = xk − λk∇ f (xk) + δ(xk − xk−1),

where δ is a momentum parameter. Letting g(xk) be an unbiased estimator of the true
gradient∇ f (xk), we have the stochastic gradient descent with momentum (mSGD) method.

xk+1 = xk − λkg(xk) + δ(xk − xk−1).

The randomized coordinate descent with momentum (RCDm) method is proposed in [27].
We will give a new convergence boundary.

The RCDm method takes the explicit iterative form

xk+1 = xk +
〈Ai, b− Axk〉
‖Ai‖2 ei + δ(xk − xk−1). (26)

Mathematics 2022, 10, 4379 10 of 20

The framework of the RCDm method is given as follows (Algorithm 2).

Algorithm 2 Randomized coordinate descent with momentum method (RCDm)

Input: A ∈ Rm×n, b ∈ Rm, K ∈ R, x(0) ∈ Rn, δ.
1: Initialize k = 0.
2: while k < K do
3: Choose i = i(k) from {1, 2, ..., n} with equal probability
4: xk+1 = xk +

〈Ai ,b−Axk〉
‖Ai‖2 ei + δ(xk − xk−1)

5: k = k + 1
6: end while

Output: xK

Remark 3. In order to avoid the calculation of the product of matrix and vector (Axk in step 5), we
adopt the following method

αk =
〈Ai, rk〉
‖Ai‖2 ,

rk+1 = (1 + δ)rk − αk Ai − δrk−1,

and r0 = b− Ax0, r−1 = r0.

Lemma 5 ([27]). Fix F1 = F0 ≥ 0 and let {Fk}k≥0 be a sequence of nonnegative real numbers
satisfying the relation

Fk+1 ≤ a1Fk + a2Fk−1, ∀k ≥ 1,

where a2 ≥ 0, a1 + a2 < 1, and at least one of the coefficients a1, a2 is positive. Then the sequence

satisfies the relation Fk+1≤ qk(1 + ξ)F0 for all k ≥ 1, where q =
a1+
√

a2
1+4a2

2 and ξ = q− a1 ≥ 0.
Moreover,

q ≥ a1 + a2,

with equality if and only if a2 = 0 (in that case, q = a1 and ξ = 0).

Theorem 2. Assume δ ≥ 0, and that the expressions a1 = 1− σ2
min(A)

n + 3δ− 3 δσ2
min(A)

n + 2δ2

and a2 = 2δ2 + δ− δσ2
min(A)

n satisfy a1 + a2 < 1, where σ2
min(A) is nonzero minimum singular

value of A. Let {xk}∞
k=0 be the iteration sequence generated by the RCDm method starting from

initial guess x0 = 0. Then, it holds that

E(‖A(xk+1 − x∗)‖2) ≤ qk(1 + ξ)‖A(x0 − x∗)‖2, (27)

where q =
a1+
√

a2
1+4a2

2 , ξ = q− a1 ≥ 0, x∗ is the least-squares solution. Moreover, a1, a2, q obeys
a1 + a2 ≤ q < 1.

Proof. From the algorithm of RCDm, we have

Ei(k))|I(k−1)‖A(xk+1 − x∗)‖2

= Ei(k)|I(k−1)‖A(xk + 〈Ai, b− Axk〉ei + δ(xk − xk−1)− x∗)‖2

= Ei(k)|I(k−1)‖A(xk − x∗) + Ai〈Ai, b− Axk〉‖2 + δ2‖A(xk − xk−1)‖2

+ 2δEi(k)|I(k−1)〈A(xk − xk−1), A(xk − x∗) + Ai〈Ai, b− Axk〉〉. (28)

Mathematics 2022, 10, 4379 11 of 20

We consider the three terms in (28) in turn. For the first term, we have

Ei(k)|I(k−1)‖A(xk − x∗) + Ai〈Ai, b− Axk〉‖2

= ‖A(xk − x∗)‖2 + Ei(k)|I(k−1)‖Ai〈Ai, b− Axk〉‖2

+ 2Ei(k)|I(k−1)〈A(xk − x∗), Ai〈Ai, b− Axk〉〉

= ‖A(xk − x∗)‖2 +
1
n

n

∑
i=1
‖Ai〈Ai, b− Axk〉‖2

+
2
n

n

∑
i=1
〈A(xk − x∗), Ai〈Ai, b− Axk〉〉

= ‖A(xk − x∗)‖2 − 1
n
‖AT A(xk − x∗)‖2

≤ ‖A(xk − x∗)‖2 −
σ2

min(A)

n
‖A(xk − x∗)‖2

= (1−
σ2

min(A)

n
)‖A(xk − x∗)‖2, (29)

where the last inequality is the consequence of singular value inequality (‖Ax‖2 ≥
σ2

min(A)‖x‖2), and n = ‖A‖2
F ≥ σ2

min(A). From the second term, we have

δ2‖A(xk − xk−1)‖2

= δ2‖A(xk − x∗)− A(xk−1 − x∗)‖2

≤ 2δ2(‖A(xk − x∗)‖2 + ‖A(xk−1 − x∗)‖2). (30)

From the third term, we have

2δEi(k)|I(k−1)〈A(xk − xk−1), A(xk − x∗) + Ai〈Ai, b− Axk〉〉
= 2δ〈A(xk − xk−1), A(xk − x∗)〉+ 2δEi(k)|I(k−1)〈A(xk − xk−1), Ai〈Ai, b− Axk〉〉

= δ(‖A(xk − xk−1)‖2 + ‖A(xk − x∗)‖2 − ‖A(xk−1 − x∗)‖2)

+
2δ

n
〈A(xk − xk−1),

n

∑
i=1

Ai〈Ai, b− Axk〉〉

= δ(‖A(xk − xk−1)‖2 + ‖A(xk − x∗)‖2 − ‖A(xk−1 − x∗)‖2)

+
2δ

n
〈A(xk − xk−1), AAT(b− Axk)〉

= δ(‖A(xk − xk−1)‖2 + ‖A(xk − x∗)‖2 − ‖A(xk−1 − x∗)‖2)

− 2δ

n
〈AT A(xk − xk−1), AT A(xk − x∗)〉

= δ(‖A(xk − xk−1)‖2 + ‖A(xk − x∗)‖2 − ‖A(xk−1 − x∗)‖2)

− δ

n
(‖AT A(xk − xk−1)‖2 + ‖AT A(xk − x∗)‖2 − ‖AT A(xk−1 − x∗)‖2)

≤ δ(‖A(xk − xk−1)‖2 + ‖A(xk − x∗)‖2 − ‖A(xk−1 − x∗)‖2)

−
δσ2

min(A)

n
(‖A(xk − xk−1)‖2 + ‖A(xk − x∗)‖2 − ‖A(xk−1 − x∗)‖2)

= (δ−
δσ2

min(A)

n
)(‖A(xk − xk−1)‖2 + ‖A(xk − x∗)‖2 − ‖A(xk−1 − x∗)‖2)

≤ (δ−
δσ2

min(A)

n
)(3‖A(xk − x∗)‖2 + ‖A(xk−1 − x∗)‖2). (31)

where the second equality uses (10), the first inequality uses a singular value inequality

Mathematics 2022, 10, 4379 12 of 20

and (10), and the last inequality is a consequence of δ‖A(xk− xk−1)‖2 ≤ 2δ‖A(xk− x∗)‖2 +
2δ‖A(xk−1 − x∗)‖2. Using the (29)–(31), we obtain

Ei(k)|I(k−1)‖A(xk+1 − x∗)‖2

≤ (1−
σ2

min(A)

n
)‖A(xk − x∗)‖2 + 2δ2(‖A(xk − x∗)‖2 + ‖A(xk−1 − x∗)‖2)

+ (δ−
δσ2

min(A)

n
)(3‖A(xk − x∗)‖2 + ‖A(xk−1 − x∗)‖2). (32)

Moreover, then

E‖A(xk+1 − x∗)‖2

≤ (1−
σ2

min(A)

n
+ 3δ− 3

δσ2
min(A)

n
+ 2δ2)E‖A(xk − x∗)‖2

+ (2δ2 + δ−
δσ2

min(A)

n
)E‖A(xk−1 − x∗)‖2. (33)

By Lemma 5, let Fk = E‖A(xk − x∗)‖2, we have the following relation

Fk+1 ≤ a1Fk + a2Fk−1,

and we have
E‖A(xk − x∗)‖2 ≤ qk−1(1 + ξ)‖x0 − x∗‖2, (34)

where a1 = 1− σ2
min(A)

n + 3δ− 3 δσ2
min(A)

n + 2δ2, a2 = 2δ2 + δ− δσ2
min(A)

n , ξ = q− a1 ≥ 0, and
we have completed the proof.

Remark 4. a1 = 1− σ2
min(A)

n + 3δ− 3 δσ2
min(A)

n + 2δ2, a2 = 2δ2 + δ− δσ2
min(A)

n . When δ = 0, we

can obtain a1 = 1− σ2
min(A)

n , a2 = 0 satisfy a1 + a2 < 1. When δ takes a small value, we can
obtain that this relation a1 + a2 is satisfied. In addition, the RCDm method degenerates to the RCD
method when δ = 0. The RCDm method converges faster than the RCD method if we choose a
proper δ. Numerical experiments will show the effectiveness of the RCDm method.

When δ ≥ 0, we can conclude that a2 ≥ 0. For the above theorem, we have to satisfy

a1 + a2 < 1, so a1 + a2 = 4δ2 + 4(1− σ2
min(A)

n)δ + 1− σ2
min(A)

n . We set ω =
σ2

min(A)
n . It can

be concluded that δ ∈ [0, ω−1+
√

(1−ω)2+ω
2]. When δ ∈ [0, ω−1+

√
(1−ω)2+ω
2], the RCDm

method converges. However, in the later experiments, the choice of δ will exceed this range
because it took a lot of scaling to reach this range.

4. Numerical Experiments

In this section, we compare the influence of different δ on the RCDm algorithm and
the effectiveness of the RCD, RCDm, and NARCD methods for solving the large linear
system Ax = b. All experiments were performed in MATLAB [28] (version R2018a), on
a personal laptop with a 1.60 GHz central processing unit (Intel(R) Core(TM) i5-10210U
CPU), 8.00 GB memory, and a Windows operating system (64 bits, Windows 10).

In all implementations, the starting point was chosen to be x0 = zeros(n, 1), the right
vector b + ε = Ax∗ + ε where ε ∈ N(AT) and x∗ = ones(n, 1). The relative residual error
(RRE) at the kth iteration is defined as follows:

RRE =
‖b− Axk‖2

‖b‖2 .

The iterations are terminated once the relative solution error satisfies RRE < 10−8 or
the number of iteration steps exceeds 5,000,000. If the number of iteration steps exceeds

Mathematics 2022, 10, 4379 13 of 20

5,000,000, it is denoted as “-”. IT and CPU denote the number of iteration steps and the
CPU times (in seconds) respectively. In addition, the CPU and IT mean the arithmetical
averages of the elapsed running times and the required iteration steps with respect to 50
trials of repeated runs of the corresponding method. The speed-up of the RCD method
against the RCDm method is defined as follows:

speed− up1 =
CPUo f RCD

CPUo f RCDm

and the speed-up of the RCD method against the NARCD method is defined as follows:

speed− up2 =
CPUo f RCD

CPUo f NARCD
.

4.1. Experiments for Different δ on the RCDm

The matrix A is randomly generated by using the MATLAB function unifrnd (0,1,m,n).
We observe that RCDm, with appropriately chosen momentum parameters 0 < δ ≤ 0.4,
always converges faster than their no-momentum variants. In this subsection, we let
δ = 0, 0.1, 0.2, 0.3, 0.4 to compare their performances. Numerical results are reported in
Tables 1–3 and Figure 1. We can conclude some observations as follows. when
δ = 0.1, 0.2, 0.3, 0.4, the acceleration effect is good.

Table 1. For different δ, IT, and CPU of RCDm for matrices A ∈ Rm×n with m = 8000 and different n.

δ
IT CPU

m × 3000 m × 2000 m × 1000 m × 800 m × 3000 m × 2000 m × 1000 m × 800

0 416,319 209,592 59,636 43,107 21.2625 9.9795 2.3001 1.9263
0.1 338,108 155,672 52,806 38,483 18.2890 7.8586 2.0735 1.5128
0.2 352,018 146,365 46,744 37,429 19.4076 7.3941 1.7775 1.4354
0.3 326,510 135,157 47,963 32,412 17.4489 6.8153 2.2577 1.2290
0.4 279,492 123,871 41,812 31,270 15.2037 6.2775 2.0089 1.2017

Table 2. For different δ, IT, and CPU of RCDm for matrices A ∈ Rm×n with m = 800 and different n.

δ
IT CPU

800 × 300 800 × 200 800 × 100 800 × 50 800 × 300 800 × 200 800 × 100 800 × 50

0 43,760 18,200 5615 2449 0.2736 0.1239 0.0442 0.0149
0.1 39,442 16,200 5696 2188 0.2413 0.0929 0.0323 0.0131
0.2 30,900 15,724 5286 2427 0.2091 0.0861 0.0303 0.0150
0.3 28,501 14,047 4645 1858 0.2408 0.0791 0.0264 0.0118
0.4 25,918 12,211 4185 1735 0.1487 0.1374 0.0244 0.0114

Table 3. For different δ, IT, and CPU of RCDm for matrices A ∈ Rm×n with m = 300 and different n.

δ
IT CPU

300 × 200 300 × 150 300 × 100 300 × 50 300 × 200 300 × 150 300 × 100 300 × 50

0 90,517 32,685 13,310 3858 0.4722 0.1976 0.0641 0.0169
0.1 67,610 30,382 13,022 3121 0.4669 0.1719 0.0566 0.0137
0.2 77,748 31,879 11,382 2654 0.4529 0.1657 0.0492 0.0126
0.3 78,023 25,130 9888 2490 0.4528 0.1540 0.0489 0.0147
0.4 66,663 18,566 7965 2344 0.4037 0.1046 0.0411 0.0115

Mathematics 2022, 10, 4379 14 of 20

0 0.5 1 1.5 2 2.5 3 3.5

Iterations 10
4

10
-8

10
-6

10
-4

10
-2

10
0

R
R

E

m=300,n=150

=0

=0.1

=0.2

=0.3

=0.4

(a)

0 2000 4000 6000 8000 10000 12000 14000

Iterations

10
-8

10
-6

10
-4

10
-2

10
0

R
R

E

m=300,n=100

=0

=0.1

=0.2

=0.3

=0.4

(b)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Iterations 10
4

10
-8

10
-6

10
-4

10
-2

10
0

R
R

E

m=800,n=300

=0

=0.1

=0.2

=0.3

=0.4

(c)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Iterations 10
4

10
-8

10
-6

10
-4

10
-2

10
0

R
R

E

m=800,n=200

=0

=0.1

=0.2

=0.3

=0.4

(d)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Iterations 10
5

10
-8

10
-6

10
-4

10
-2

10
0

R
R

E

m=8000,n=3000

=0

=0.1

=0.2

=0.3

=0.4

(e)

0 0.5 1 1.5 2 2.5

Iterations 10
5

10
-8

10
-6

10
-4

10
-2

10
0

R
R

E

m=8000,n=2000

=0

=0.1

=0.2

=0.3

=0.4

(f)

Figure 1. (a,b): m = 300 rows and n = 150, 100 columns for different δ. (c,d): m = 800 rows and
n = 300, 200 columns for different δ. (e,f): m = 8000 rows and n = 3000, 2000 columns for different δ.

4.2. Experiments for NARCD, RCDm, RCD, NASGD

Matrix A is randomly generated by using the MATLAB function unifrnd (0,1,m,n). For
the RCDm method, let us take the momentum parameter δ = 0.3. For the NARCD method,
let us take the Nesterov accelerated parameter λ = 0.05. For the Nesterov accelerated
stochastic gradient descent method (NASGD), it is the step size α = 0.01. We observe
the performances of RCD, RCDm, and NARCD methods with matrices A of different
sizes. From Figure 2 and Tables 4–7, we found that both the NARCD and the RCDm
with appropriate momentum parameters can accelerate the RCD; the NARCD and the
RCDm always converge faster than the RCD. Moreover, we found that the NARCD has
a better acceleration effect than the RCDm. From Table 7, for matrix A∈ R8000×3000, the
NARCD method demonstrates the best numerical results than the other matrices in terms
of the value of the speed-up, where the speed-up is 3.0206. From Figure 3, we found that
the acceleration of NARCD method and RCDm method experience gentle changes as the
matrix becomes larger, so we can see that these two methods still have good speed-ups
when the matrix is very large. From Figure 4, we found that the NARCD converges faster
than the NASGD.

Mathematics 2022, 10, 4379 15 of 20

Table 4. IT and CPU of RCD, RCDm, NARCD for matrices A ∈ Rm×n with m = 4000 and different n.

IT CPU

4000 × 800 4000 × 1000 4000 × 800 4000 × 1000

RCD 57,723 81,926 1.3939 1.9264
RCDm 44,962 66,425 1.1068 1.5824
NARCD 20,075 24,184 0.8657 0.9711

Table 5. IT and CPU of RCD, RCDm, NARCD for matrices A ∈ Rm×n with m = 8000 and different n.

IT CPU

8000 × 2000 8000 × 3000 8000 × 2000 8000 × 3000

RCD 194,046 414,465 9.4357 24.2728
RCDm 144,592 312,665 8.0861 19.1512
NARCD 45,700 71,216 4.5801 8.0357

Table 6. IT and CPU of RCD, RCDm, NARCD for matrices A ∈ Rm×n with m = 12,000 and different n.

IT CPU

12,000 ×2000 12,000 ×4000 12,000 ×2000 12,000 ×4000

RCD 146,007 465,484 10.8746 31.4180
RCDm 110,339 340,633 8.5894 23.4675
NARCD 43,110 89,046 5.7312 11.0535

Table 7. The speed-up of the RCD method against the NARCD and RCDm.

4000 × 1000 8000 × 3000 12,000 ×4000

speed− up1 1.2173 1.2674 1.3387
speed− up2 1.9837 3.0206 2.8423

4.3. Experiment with Different Correlations of Matrix A

Matrix A is randomly generated by using the MATLAB function unifrnd (c,1,m,n),
c ∈ [0, 1). We let c = 0, 0.2, 0.4, 0.6. For the RCDm method, let us take the momentum
parameter δ = 0.3. For the NARCD method, let us take the Nesterov accelerated parameter
λ = 0.05. As the value of c increases, the correlation of matrix A becomes stronger. From
Tables 8–12, we know that as c increases, the condition number for the matrix increases. The
larger the condition number, the more ill-conditioned the matrix. The more ill-conditioned
the matrix, the more time it takes to solve. From Tables 10 and 12, we know that the
acceleration effect of RCDm does not change much with the increase of the c value, but the
acceleration effect of NARCD is becoming better.

Mathematics 2022, 10, 4379 16 of 20

0 1 2 3 4 5 6

Iterations 10
4

10
-8

10
-6

10
-4

10
-2

10
0

R
R

E

m=4000,n=800

RCD

RCDm

NARCD

(a)

0 1 2 3 4 5 6 7 8 9

Iterations 10
4

10
-8

10
-6

10
-4

10
-2

10
0

R
R

E

m=4000,n=1000

RCD

RCDm

NARCD

(b)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Iterations 10
5

10
-8

10
-6

10
-4

10
-2

10
0

R
R

E

m=8000,n=2000

RCD

RCDm

NARCD

(c)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Iterations 10
5

10
-8

10
-6

10
-4

10
-2

10
0

R
R

E

m=8000,n=3000

RCD

RCDm

NARCD

(d)

0 5 10 15

Iterations 10
4

10
-8

10
-6

10
-4

10
-2

10
0

R
R

E

m=12000,n=2000

RCD

RCDm

NARCD

(e)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Iterations 10
5

10
-8

10
-6

10
-4

10
-2

10
0

R
R

E

m=12000,n=4000

RCD

RCDm

NARCD

(f)

Figure 2. (a,b): m = 4000 rows and n = 800, 1000 columns for RCD, RCDm, and NARCD.
(c,d): m = 8000 rows and n = 2000, 3000 columns for RCD, RCDm, and NARCD. (e,f): m = 12,000
rows and n = 2000, 4000 columns for RCD, RCDm, and NARCD.

0 5 10 15 20 25 30

k

1

1.5

2

2.5

3

3.5

s
p

e
e

d
-u

p

NARCD

RCDm

Figure 3. The speed-up of the RCD method against the NARCD and RCDm for matrices A ∈ Rm×n

with m = 300× k and n = 100× k.

Mathematics 2022, 10, 4379 17 of 20

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

CPU

10
-8

10
-6

10
-4

10
-2

10
0

R
R

E

m=800,n=300

NASGD

NARCD

Figure 4. m = 800 and n = 300 for NARCD and NASGD.

Table 8. The condition number of different matrices.

0 0.2 0.4 0.9

cond(A800×300) 75.6431 113.8689 172.7404 1425.0834
cond(A1000×800) 452.9536 673.9111 1104.0601 8969.5561

Table 9. IT and CPU of RCD, RCDm, NARCD for matrices A ∈ Rm×n m = 800, n = 300.

IT CPU

0 0.2 0.4 0.9 0 0.2 0.4 0.9

RCD 34,953 68,289 150,982 - 0.1993 0.4009 0.9189 -
RCDm 30,908 54,842 120,490 4,374,385 0.1715 0.3642 0.6787 24.3558
NARCD 8921 14,960 25,714 469,083 0.0708 0.1148 0.2134 3.5497

Table 10. The speed-up of the RCD method against the NARCD and RCDm, A ∈ Rm×n m = 800,
n = 300.

0 0.2 0.4 0.9

speed− up1 1.1620 1.1007 1.3539 -
speed− up2 2.5291 3.4921 4.3059 -

Table 11. IT and CPU of RCD, RCDm, NARCD for matrices A ∈ Rm×n m = 1000, n = 800.

IT CPU

0 0.2 0.4 0.9 0 0.2 0.4 0.9

RCD 1,111,363 1,694,262 3,609,833 - 8.0508 11.9815 25.3595 -
RCDm 746,948 1,128,363 2,190,455 - 5.0748 7.7701 15.2623 -
NARCD 90,521 145,186 209,795 1,123,632 0.8005 1.0775 1.8670 10.4081

Table 12. The speed-up of the RCD method against the NARCD and RCDm, A ∈ Rm×n m = 1000,
n = 800.

0 0.2 0.4 0.9

speed− up1 1.5864 1.5420 1.6615 -
speed− up2 10.0572 11.1197 13.5830 -

Mathematics 2022, 10, 4379 18 of 20

4.4. The Two-Dimensional Tomography Test Problems

In this section, we use the previously and newly proposed methods to reconstruct 2D
seismic travel time tomography. The 2D seismic travel-time tomography reconstruction is
implemented in the function seismictomo (N, s, p) in the MATLAB package AIR TOOLS [29],
which generated a sparse matrix A, an exact solution x∗(which is shown in Figure 4a) and
the right vector b + ε = Ax∗ + ε where ε ∈ N(AT). We set N = 20, s = 30 and p = 100 in the
function seismictomo (N, s, p). We utilize the RCD, RCDm(δ=0.3) and NARCD(λ = 0.05)
methods to solve the linear least-squares problem (1). The experiment ran 90,000 iterations.
From Figure 5, we see that the results of the NARCD methods are better than those of the
RCD and RCDm methods under the same number of iteration steps.

(a) (b)

(c) (d)

Figure 5. Performance of RCD, RCDm, and NARCD methods for the seismictomo test problem.
(a) Exact seismic. (b) RCD. (c) RCDm. (d) NARCD.

5. Conclusions

To solve a large system of linear equations, two new acceleration methods for the
RCD method are proposed, called the NARCD method and the RCDm method. Their
convergences were proved, and the estimations of the convergence rates of the NARCD
method and the RCDm method are given, respectively. The two methods are shown
to be equally successful in numerical experiments. In uniformly distributed data, with
appropriately chosen momentum parameters, the RCDm is better than the RCD in IT and
CPU. The NARCD and the RCDm are faster than the RCD, and the NARCD has a better
acceleration effect than the RCDm. In the case of an overdetermined linear system, for the
NARCD method, the fatter the matrix, the better the acceleration. The acceleration effect
of NARCD becomes better when c in the MATLAB function unifrnd (c, 1, m,n) increases.
The block coordinate descent method is a very efficient method for solving large linear
equations; in future work, it would be interesting to apply the two accelerated formats to
the block coordinate descent method.

Author Contributions: Software, W.B.; Validation, F.Z.; Investigation, Q.W.; Writing—original draft,
Q.W.; Writing—review and editing, W.L. All authors have read and agreed to the published version
of the manuscript.

Mathematics 2022, 10, 4379 19 of 20

Funding: This research is supported by the National Key Research and Development program of
China (2019YFC1408400).

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Leventhal, D.; Lewis, A.S. Randomized methods for linear constraints: Convergence rates and conditioning. Math. Oper. Res.

2010, 35, 641–654. [CrossRef]
2. Ruhe, A. Numerical aspects of Gram-Schmidt orthogonalization of vectors. Linear Algebra Its Appl. 1983, 52, 591–601. [CrossRef]
3. Breheny, P.; Huang, J. Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature

selection. Ann. Appl. Stat. 2011, 5, 232. [CrossRef]
4. Chang, K.W.; Hsieh, C.J.; Lin, C.J. Coordinate descent method for large-scale l2-loss linear support vector machines. J. Mach.

Learn. Res. 2008, 9, 1369–1398.
5. Canutescu, A.A.; Dunbrack Jr, R.L. Cyclic coordinate descent: A robotics algorithm for protein loop closure. Protein Sci. 2003,

12, 963–972. [CrossRef] [PubMed]
6. Bouman, C.A.; Sauer, K. A unified approach to statistical tomography using coordinate descent optimization. IEEE Trans. Image

Process. 1996, 5, 480–492. [CrossRef] [PubMed]
7. Ye, J.C.; Webb, K.J.; Bouman, C.A.; Millane, R.P. Optical diffusion tomography by iterative-coordinate-descent optimization in a

Bayesian framework. JOSA A 1999, 16, 2400–2412. [CrossRef]
8. Bai, Z.Z.; Wu, W.T. On greedy randomized coordinate descent methods for solving large linear least-squares problems. Numer.

Linear Algebra Appl. 2019, 26, e2237. [CrossRef]
9. Zhang, J.; Guo, J. On relaxed greedy randomized coordinate descent methods for solving large linear least-squares problems.

Appl. Numer. Math. 2020, 157, 372–384. [CrossRef]
10. Lu, Z.; Xiao, L. On the complexity analysis of randomized block-coordinate descent methods. Math. Program. 2015, 152, 615–642.

[CrossRef]
11. Necoara, I.; Nesterov, Y.; Glineur, F. Random block coordinate descent methods for linearly constrained optimization over

networks. J. Optim. Theory Appl. 2017, 173, 227–254. [CrossRef]
12. Richtárik, P.; Takáč, M. Iteration complexity of randomized block-coordinate descent methods for minimizing a composite

function. Math. Program. 2014, 144, 1–38. [CrossRef]
13. Karczmarz, S. Angenaherte auflosung von systemen linearer glei-chungen. Bull. Int. Acad. Pol. Sic. Let. Cl. Sci. Math. Nat. 1937,

35, 355–357.
14. Strohmer, T.; Vershynin, R. A randomized Kaczmarz algorithm with exponential convergence. J. Fourier Anal. Appl. 2009,

15, 262–278. [CrossRef]
15. Bai, Z.Z.; Wu, W.T. On greedy randomized Kaczmarz method for solving large sparse linear systems. SIAM J. Sci. Comput. 2018,

40, A592–A606. [CrossRef]
16. Bai, Z.Z.; Wu, W.T. On relaxed greedy randomized Kaczmarz methods for solving large sparse linear systems. Appl. Math. Lett.

2018, 83, 21–26. [CrossRef]
17. Liu, Y.; Gu, C.Q. Variant of greedy randomized Kaczmarz for ridge regression. Appl. Numer. Math. 2019, 143, 223–246. [CrossRef]
18. Guan, Y.J.; Li, W.G.; Xing, L.L.; Qiao, T.T. A note on convergence rate of randomized Kaczmarz method. Calcolo 2020, 57, 1–11.

[CrossRef]
19. Du, K.; Gao, H. A new theoretical estimate for the convergence rate of the maximal weighted residual Kaczmarz algorithm.

Numer. Math. Theory Methods Appl 2019, 12, 627–639.
20. Yang, X. A geometric probability randomized Kaczmarz method for large scale linear systems. Appl. Numer. Math. 2021,

164, 139–160. [CrossRef]
21. Nesterov, Y. A method for unconstrained convex minimization problem with the rate of convergence O (1/kˆ 2). Dokl. Akad.

Nauk Sssr 1983, 269, 543–547.
22. Nesterov, Y. Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM J. Optim. 2012, 22, 341–362.

[CrossRef]
23. Polyak, B.T. Some methods of speeding up the convergence of iteration methods. Ussr Comput. Math. Math. Phys. 1964, 4, 1–17.

[CrossRef]
24. Sun, T.; Li, D.; Quan, Z.; Jiang, H.; Li, S.; Dou, Y. Heavy-ball algorithms always escape saddle points. arXiv 2019, arXiv:1907.09697.
25. Sarowar Morshed, M.; Saiful Islam, M. Accelerated Sampling Kaczmarz Motzkin Algorithm for The Linear Feasibility Problem. J.

Glob. Optim. 2019, 77, 361–382. [CrossRef]
26. Liu, J.; Wright, S. An accelerated randomized Kaczmarz algorithm. Math. Comput. 2016, 85, 153–178. [CrossRef]
27. Loizou, N.; Richtárik, P. Momentum and stochastic momentum for stochastic gradient, newton, proximal point and subspace

descent methods. Comput. Optim. Appl. 2020, 77, 653–710. [CrossRef]

http://doi.org/10.1287/moor.1100.0456
http://dx.doi.org/10.1016/0024-3795(83)80037-8
http://dx.doi.org/10.1214/10-AOAS388
http://dx.doi.org/10.1110/ps.0242703
http://www.ncbi.nlm.nih.gov/pubmed/12717019
http://dx.doi.org/10.1109/83.491321
http://www.ncbi.nlm.nih.gov/pubmed/18285133
http://dx.doi.org/10.1364/JOSAA.16.002400
http://dx.doi.org/10.1002/nla.2237
http://dx.doi.org/10.1016/j.apnum.2020.06.014
http://dx.doi.org/10.1007/s10107-014-0800-2
http://dx.doi.org/10.1007/s10957-016-1058-z
http://dx.doi.org/10.1007/s10107-012-0614-z
http://dx.doi.org/10.1007/s00041-008-9030-4
http://dx.doi.org/10.1137/17M1137747
http://dx.doi.org/10.1016/j.aml.2018.03.008
http://dx.doi.org/10.1016/j.apnum.2019.04.008
http://dx.doi.org/10.1007/s10092-020-00376-4
http://dx.doi.org/10.1016/j.apnum.2020.10.016
http://dx.doi.org/10.1137/100802001
http://dx.doi.org/10.1016/0041-5553(64)90137-5
http://dx.doi.org/10.1007/s10898-019-00850-6
http://dx.doi.org/10.1090/mcom/2971
http://dx.doi.org/10.1007/s10589-020-00220-z

Mathematics 2022, 10, 4379 20 of 20

28. Higham, D.J.; Higham, N.J. MATLAB Guide; SIAM: Philadelphia, PA, USA, 2016.
29. Hansen, P.C.; Jørgensen, J.S. AIR Tools II: Algebraic iterative reconstruction methods, improved implementation. Numer.

Algorithms 2018, 79, 107–137. [CrossRef]

http://dx.doi.org/10.1007/s11075-017-0430-x

	Introduction
	Nesterov's Accelerated Randomized Coordinate Descent
	Randomized Coordinate Descent with Momentum Method
	Numerical Experiments
	Experiments for Different on the RCDm
	Experiments for NARCD, RCDm, RCD, NASGD
	Experiment with Different Correlations of Matrix A
	The Two-Dimensional Tomography Test Problems

	Conclusions
	References

