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Abstract: Shewhart charts are the most commonly utilised control charts for process monitoring in
industries with the assumption that the underlying distribution of the quality characteristic is normal.
However, this assumption may not always hold true in practice. In this paper, the weighted-variance
mean charts are developed and their population standard deviation is estimated using the three
subgroup scale estimators, namely the standard deviation, median absolute deviation and standard
deviation of trimmed mean for monitoring Weibull distributed data with different coefficients of
skewness. This study aims to compare the out-of-control average run length of these charts with the
pre-determined fixed value of the in-control ARL in terms of different scale estimators, coefficients
of skewness and sample sizes via extensive simulation studies. The results indicate that as the
coefficients of skewness increase, the charts tend to detect the out-of-control signal more rapidly
under identical magnitude of shift. Meanwhile, as the size of the shift increases under the same
coefficient of skewness, the proposed charts are able to locate the shifts quicker and the similar
scenarios arise as a sample size raised from 5 to 10. A real data set from survival analysis domain
which, possessing Weibull distribution, was to demonstrate the usefulness and applicability of the
proposed chart in practice.

Keywords: weighted-variance; asymmetric control limits; mean chart; Weibull distribution; scale
estimator; average run length

MSC: 62P30; 62F35; 82-10

1. Introduction

In many industrial processes, it is of utmost importance to ensure that the quality
levels of products or services are properly maintained. Control charts appear to be the most
effective tool for process monitoring to detect unexpected behaviour such as increases in the
process dispersion and/or changes in location parameter with respect to a target value that
allow for prompt inquiry and remedial action. Shewhart control charts are among the most
common and extensively used by practitioners. One of the fundamental assumptions of
Shewhart charts is that the underlying distribution of the quality characteristics is normal.
This assumption, however, may not hold true in practice [1–6]. Several strategies to create
control charts for skewed data have been offered including the increase in sample size,
transforming the original data to an approximately normal distribution and nonparametric
approach. However, these strategies may have several drawbacks such as the cost of
gathering a large sample size, difficulty of finding an appropriate transformation function,
and being less efficient as compared to the parametric approaches.
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Recently, there has been a great deal of work on the control charts with asymmetric
control limits which are constructed for the skewed population. The first approach is
to derive the exact distributions of sample statistics to construct location and dispersion
control charts, some of which include [2,6–9]. The advantage of these charts is that it
provides a close form of control limits and seems to work adequately when the empirical
distribution of the sample statistic is close to the exact distribution. When exact distribution
of sample statistic used to monitor the process is not available, the second approach is based
on bootstrap methods to obtain the control limits of control charts [10–13]. As pointed
by [10], the bootstrap methods seem to produce estimates that are closer on average to the
true values than the standard Shewhart method, in which, the latter benefit is not translated
into their performance in terms of in-control average run length. Similar observation
can be found in [11–13]. The third approach employs the approximation procedures to
obtain heuristic control charts. The main feature of these charts is that the control limits
are adjusted according to the coefficient of skewness of a population distribution so that
the probability of type I risk remains as close as the desired level. For instance, ref. [14]
proposed the weighted-variance (WV) mean and range control charts. Their method
produces asymmetric control limits which cater for different skewness of the underlying
distribution. The simulation result indicates that the WV mean chart provides a closer
coverage probability to the target value than the Cowden and Shewhart charts under the
assumption that the data follow a Weibull distribution. The authors of [15] offered the WV
mean and range control charts, in which the population standard deviation was estimated
using the mean of sample standard deviations or sample ranges to obtain the control limits.
Simulation results also revealed that the WV and Shewhart mean control charts gained
a comparable probability of type I risk for a symmetrical distribution, and better still,
the WV chart outperformed the Shewhart chart and geometric midrange chart of Ferrell
when the underlying populations are skewed. Meanwhile, research in [1] constituted the
scaled weighted-variance (SWV) mean chart which was an extension of the WV control
chart of [14]. Simulations have shown that SWV control chart gives a closer probability
of type I risk than the Shewhart and WV charts. However, the estimated probability of
type I risk is still approximately one to two times larger than the target value for the large
skewness (> 3) and small sample size (≤ 5) under a Weibull distribution. Furthermore,
the out-of-control average run length (ARL1) of the SWV chart is always less than the
Shewhart and WV charts in the case of a negative shift. In addition, ref. [16] considered a
skewness correction (SC) method for correcting the Shewhart mean chart’ control limits
according to the coefficients of skewness of the distribution. All indications are that the SC
chart yields a closer probability of type I risk value to the target value in comparison to
the WV and Shewhart charts under different underlying distributions. Nevertheless, the
WV chart is not only easier to be computed in contrast to the SC chart in practice but also
that the probability of type I risk of SC chart is larger than the target value for sample size
which is smaller than five and the skewness which is larger than one.

Besides considering the asymmetric control limits of the location and dispersion
control charts under skewed distributions, robust estimators which are less sensitive
to distributional distortions can be substituted into the non-robust estimators in these
charts, and control limits are formulated based on some specific skewed distributions.
Various works on control charts that are based on robust estimators to strengthen their
robustness are developed. Examples of robust estimators used in control charts include
trimmed mean (TM) and TM of the ranges [17], interquartile range (IQR) [18], median
absolute deviation (MAD) [19–21], median absolute deviation from the median [22], M-
estimator [23,24], square A estimator [25] and screening method [26]. Recent research to
compare the performances of various control charts using different robust location and/or
scale estimators under non-skewed/skewed distribution can be found in [27–31].

To the best of our knowledge, there have been few studies on robust heuristic control
charts. Ref. [32], for instance, developed the robust WV and SC range charts by substituting
the range with an IQR to investigate the influence of the robust estimator on control
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chart performance in a skewed population with a moderate sample size. Comparative
studies show that the non-robust charts perform poorly for the contaminated skewed data.
However, the robust SC chart yields the largest ARL in contrasting to the robust Shewhart
and WV charts for all skewed distributions under contamination. To this end, ref. [27]
proposed the robust versions of modified Shewhart charts which are the modified MV
and SC methods based on the TM and IQR estimators to construct the control limits of
robust control charts for monitoring the skewed and contaminated process. Although the
performance of proposed methods differs with various coefficients of skewness and sample
sizes, they are quite favourable substitution in process monitoring when the mean of a
skewed population is contaminated. Such research is still in its infancy and may have a
contribution to make unravelling to the understanding of these concerns.

Moreover, when dealing with quality characteristic in survival analysis and reliability
analysis, one of the issues is that the normal distribution may not be appropriate to describe
their variations in which case it may possess Weibull distribution in most of the situations.
Therefore, control charts having Weibull distributed properties has much potential in
application with statistical process monitoring. Among the charts encompassing these
areas, at present, include Shewhart-type z and S2 charts for monitoring scale and shape
parameters of a Weibull distributed process by transforming a Weibull distribution to a
normal distribution [33], maximum exponential weighted moving average (MaxEWMA)
chart to inspect a Weibull process with individual measurements [34], Shewhart control
charts to monitor the Weibull mean through reparameterization of its probability density
function expressed in term of process mean [6], moving average-EWMA chart for the
number of defective counts which follows Weibull distribution [35] and also the Shewhart
control charts to monitor over the Weibull mean by means of Gamma distribution via
transformation [36].

Another concern that needs to be addressed is that the scaling factors of some existing
robust scale estimators to estimate population standard deviation are computed based on
the assumption of normality. As a result, it tends to be inappropriate to apply into the
existing scaling factors in construction of the control limits for location or dispersion charts
when the underlying population distribution is skewed. Investigation on this area has not
yet been much explored that it may deserve more attention.

The contributions of this study are four folds. Firstly, we present the scaling factors
of subgroup standard deviation, subgroup MAD and subgroup standard deviation of the
trimmed mean (TS) as scale estimators for the population standard deviation under the
Weibull distribution with different coefficients of skewness as well as various sample sizes.
These scaling factors are useful inputs to formulate location charts where the population
standard deviation is estimated by means of these scale estimators. Secondly, the modified
WV mean chart is constructed by incorporating different scale estimators to establish the
asymmetric control limits for Weibull data with different coefficients of skewness. The
factors and multipliers of the asymmetric control limits are then determined for the pre-
fixed probability of type I risk for various coefficients of skewness and sample sizes. Thirdly,
we investigate the effects of scale estimator, coefficient of skewness and sample size on
the in-control and out-of-control ARL performances for these charts. Lastly, we apply the
proposed control charts to the data set concerning the failure times of accelerated life test
experiment excerpted from [37].

The remainder of this paper is organised as follows: A general formulation of control
chart and Shewhart mean charts with symmetric control limits are introduced in Section 2.
Section 3 illustrates the scaling factors of different scale estimators and the development of
the modified WV mean control charts. Section 4 presents the simulation studies to assess
the in-control and out-of-control ARLs performance for different charts in terms of the
scale estimators adopted, coefficients of skewness and sample sizes. The application of real
data set to demonstrate the usefulness of the proposed charts will be presented in Section 5.
Finally, Section 6 will conclude this paper.
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2. Symmetric Control Limits of Mean Control Charts

Suppose X1, X2, . . . , Xn be a random sample of size n from a symmetrical distribution
with mean µ and standard deviation σ. The control limits and centre line of the Lc-sigma
mean control chart can be determined using

LCL = µ− Lc
σ√
n

; CL = µ; UCL = µ + Lc
σ√
n

(1)

where LCL and UCL are, respectively, the lower and upper control limits, CL is the
centre line and Lc is the “distance” of the control limits from the centre line, expressed in
standard deviation units. A common choice for Lc is 3 as the usual 3-sigma symmetric
control limits implying that the probability of type I risk, α = 0.0027 when the data are
normally distributed.

2.1. Shewhart Mean Control Charts

In practice, the process mean µ and standard deviation σ are unknown. Therefore,
these two parameters can be estimated based on the samples. Let Xij be the j-th observation
in the i-th subgroup having a normal distribution with unknown µ and unknown σ where
i = 1, 2, . . . , m, j = 1, 2, . . . , n. Let X1, X2, . . . , Xm be the means of m subgroups with
each subgroup containing n observations. The control limits and CL of the Shewhart mean
(X) control chart are as follows:

LCL =
=
X− Lc

σ̂√
n

; CL =
=
X; UCL =

=
X + Lc

σ̂√
n

, (2)

where
=
X = 1

m ∑m
i=1 Xi is an estimator of µ and σ̂ is the estimator of σ which can be com-

puted from one of the following two scale estimators: (i) σ̂1 = R
d2

= 1
d2m ∑m

i=1 Ri and

(ii) σ̂2 = S
c∗4

= 1
c∗4 m ∑m

i=1 Si, with Ri and Si are, respectively, the i-th subgroup range (R) and
standard deviation (S) of n observations, and d2 and c∗4 are the scaling factors depending on
n. For the data distributed according to a normal distribution, d2 and c∗4 values for different
n can be found in [38].

3. Scale Estimators and Modified Weighted-Variance Mean Control Charts

The modified WV mean charts are formulated to obtain the asymmetric control lim-
its for different coefficients of skewness of a Weibull distribution. Since the population
standard deviation is unknown, we estimate the population standard deviation by relat-
ing it with each of the scale estimators through a linear function incorporating with a
scaling factor.

Assume that a random variable X has a Weibull distribution with probability density
function given by

f (x) =
β

λ

( x
λ

)β−1
e−(x/λ)β

, x ≥ 0 (3)

where λ is the scale parameter and β is the shape parameter. The first three central
moments are (i) mean: µ = λΓ

(
1 + 1

β

)
, (ii) variance: σ2 = λ2Γ

(
1 + 2

β

)
− µ2, and (iii) skew-

ness: κ =
[
λ3Γ

(
1 + 3

β

)
− 3µσ2 − µ3

]
/σ3. Table 1 shows the different coefficients of skew-

ness for a Weibull distribution with their corresponding β when λ = 1. Note that β = 3.60
corresponds to the symmetrical distribution with zero skewness.

Table 1. Parameters and the corresponding levels of skewness of a Weibull distribution.

β 43.55 7.53 3.60 2.15 1.57 1.20 1.00 0.86 0.77

κ −1.00 −0.50 0.00 0.50 1.00 1.50 2.00 2.50 3.00
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3.1. Scaling Factors of Scale Estimators

The scaling factor, c that relates the population standard deviation, σ with scale
estimator, ξ is obtained such that ξ = cσ. There are three different scale estimators
considered which are as below:

1. Mean of subgroup standard deviations

S =
1
m ∑m

i=1 Si (4)

where Si is the i-th subgroup standard deviation of n observations. Then, the scaling factor,
c4 can be obtained such a way that c4 = E

(
S
)
/σ, where c4 depends on n and the coefficient

of skewness of the population distribution.

2. Mean of subgroup MADs

MAD =
1
m ∑m

i=1 MADi (5)

where MADi is the i-th subgroup MAD of n observations,

MADi = 1.4826×median
{∣∣Xij −

∼
Xi

∣∣∣∣}, i = 1, 2, . . . , m,j = 1, 2, . . . , n (6)

and
∼
Xi is the i-th subgroup median. Then, the scaling factor, c5 = E

(
MAD

)
/σ can be

obtained in which c5 is depending on n and the coefficient of skewness of the population
distribution. For the data following a normal distribution, the scaling factors are adopted
from [19].

3. Trimmed mean of subgroup standard deviations of trimmed mean

TS =
1

m− 2bmbc∑m−bmbc
i=bmbc+1 TS(i) (7)

where TS(i) is the i-th ordered subgroup standard deviation of trimmed mean defined

by TSi =

√
1

n−2bnac−1 ∑
n−bnac
j=bnac+1

(
Xi(j) − TMi

)2
, TMi is the i-th subgroup TM given by

TMi =
1

n−2bnac ∑
n−bnac
j=bnac+1 Xi(j) with Xi(j) is the j-th ordered value from i-th subgroup, a

denotes the proportion to trim from each end of the observations in each subgroup, b
denotes the proportion to trim from each end for m subgroups and blc is the greatest
integer in l. The scaling factor, c6 = E

(
TS
)
/σ can be obtained in which c6 is depending on

n and the coefficient of skewness of the population distribution. Throughout this study, the
TM was computed based on a = b = 0.1 due to its commonness. Extensions to other cases
are available via the similar method. Ref. [17] pointed out that the proportion to trim from
each end of observations, a, has a far influence on the scaling factor than the proportion to
trim from each end for m subgroups, b.

The estimated average scaling factors of these scale estimators were established via
simulation using m = 30 subgroups and 10, 000 replications. Table 2 reports the estimated
scaling factors, c4, c5 and c6 of the scale estimators for n ranging from 2 to 20 and different
coefficients of skewness of a Weibull distribution.
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Table 2. Estimated scaling factors of three scale estimators with different n and κ of a Weibull distribution.

κ
n

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

c4

−1.00 0.7720 0.8581 0.8951 0.9175 0.9306 0.9396 0.9466 0.9528 0.9576 0.9601 0.9645 0.9665 0.9685 0.9708 0.9722 0.9743 0.9757 0.9763 0.9779
−0.50 0.7901 0.8804 0.9149 0.9347 0.9468 0.9561 0.9617 0.9666 0.9698 0.9728 0.9749 0.9769 0.9796 0.9807 0.9819 0.9829 0.9836 0.9842 0.9854
0.00 0.8028 0.8931 0.9265 0.9445 0.9556 0.9638 0.9683 0.9729 0.9761 0.9785 0.9803 0.9820 0.9834 0.9845 0.9856 0.9867 0.9873 0.9877 0.9887
0.50 0.7959 0.8860 0.9189 0.9391 0.9508 0.9589 0.9636 0.9691 0.9720 0.9751 0.9773 0.9787 0.9807 0.9818 0.9833 0.9839 0.9842 0.9860 0.9866
1.00 0.7744 0.8656 0.9022 0.9235 0.9360 0.9443 0.9520 0.9581 0.9623 0.9651 0.9684 0.9702 0.9725 0.9751 0.9761 0.9768 0.9785 0.9802 0.9809
1.50 0.7421 0.8313 0.8705 0.8960 0.9095 0.9220 0.9306 0.9378 0.9438 0.9486 0.9515 0.9554 0.9576 0.9622 0.9636 0.9659 0.9666 0.9695 0.9705
2.00 0.7066 0.7956 0.8404 0.8656 0.8848 0.8974 0.9084 0.9162 0.9239 0.9299 0.9351 0.9397 0.9432 0.9463 0.9511 0.9516 0.9537 0.9565 0.9572
2.50 0.6703 0.7598 0.8035 0.8341 0.8542 0.8701 0.8810 0.8923 0.9007 0.9067 0.9144 0.9191 0.9249 0.9281 0.9311 0.9359 0.9377 0.9391 0.9429
3.00 0.6431 0.7245 0.7730 0.8042 0.8264 0.8428 0.8579 0.8704 0.8778 0.8857 0.8931 0.8988 0.9061 0.9103 0.9148 0.9181 0.9221 0.9240 0.9282

c5

−1.00 0.8077 0.6251 0.6826 0.7567 0.7739 0.8070 0.8138 0.8303 0.8347 0.8468 0.8473 0.8559 0.8569 0.8632 0.8646 0.8684 0.8690 0.8731 0.8729
−0.50 0.8311 0.6598 0.7227 0.8065 0.8250 0.8631 0.8716 0.8930 0.8966 0.9102 0.9119 0.9220 0.9244 0.9303 0.9317 0.9367 0.9382 0.9416 0.9420
0.00 0.8436 0.6781 0.7452 0.8350 0.8582 0.8990 0.9066 0.9294 0.9356 0.9498 0.9535 0.9632 0.9646 0.9732 0.9753 0.9809 0.9814 0.9855 0.9868
0.50 0.8201 0.6431 0.7212 0.8086 0.8352 0.8756 0.8886 0.9095 0.9189 0.9313 0.9357 0.9467 0.9504 0.9579 0.9597 0.9659 0.9678 0.9704 0.9731
1.00 0.7924 0.6022 0.6786 0.7534 0.7798 0.8157 0.8288 0.8492 0.8571 0.8694 0.8750 0.8823 0.8867 0.8932 0.8965 0.9006 0.9037 0.9074 0.9087
1.50 0.7543 0.5366 0.6100 0.6654 0.6920 0.7160 0.7293 0.7449 0.7533 0.7624 0.7663 0.7734 0.7779 0.7818 0.7855 0.7892 0.7913 0.7943 0.7961
2.00 0.7172 0.4792 0.5461 0.5822 0.6061 0.6234 0.6361 0.6453 0.6524 0.6576 0.6635 0.6668 0.6705 0.6726 0.6751 0.6782 0.6804 0.6815 0.6830
2.50 0.6751 0.4214 0.4816 0.5022 0.5230 0.5317 0.5427 0.5472 0.5542 0.5551 0.5601 0.5605 0.5652 0.5662 0.5684 0.5683 0.5701 0.5714 0.5723
3.00 0.6384 0.3732 0.4317 0.4385 0.4572 0.4591 0.4685 0.4690 0.4749 0.4752 0.4782 0.4770 0.4808 0.4802 0.4818 0.4822 0.4840 0.4841 0.4850

c6

−1.00 0.6923 0.8127 0.8599 0.8853 0.9037 0.9174 0.9266 0.9344 0.6552 0.6739 0.6908 0.7057 0.7186 0.7296 0.7402 0.7498 0.7582 0.7659 0.6445
−0.50 0.7278 0.8492 0.8954 0.9206 0.9344 0.9453 0.9523 0.9585 0.6897 0.7087 0.7251 0.7398 0.7517 0.7632 0.7730 0.7822 0.7903 0.7976 0.6783
0.00 0.7473 0.8686 0.9133 0.9365 0.9499 0.9582 0.9653 0.9690 0.7108 0.7302 0.7461 0.7590 0.7721 0.7831 0.7929 0.8019 0.8094 0.8163 0.7000
0.50 0.7330 0.8569 0.9024 0.9259 0.9399 0.9501 0.9566 0.9608 0.7067 0.7256 0.7414 0.7556 0.7676 0.7791 0.7886 0.7976 0.8056 0.8124 0.6973
1.00 0.7000 0.8231 0.8717 0.8974 0.9153 0.9285 0.9357 0.9435 0.6812 0.7006 0.7176 0.7314 0.7441 0.7560 0.7661 0.7752 0.7834 0.7914 0.6738
1.50 0.6466 0.7705 0.8244 0.8544 0.8770 0.8917 0.9049 0.9132 0.6381 0.6580 0.6738 0.6891 0.7018 0.7150 0.7260 0.7346 0.7440 0.7517 0.6307
2.00 0.5965 0.7193 0.7762 0.8136 0.8358 0.8551 0.8695 0.8821 0.5919 0.6125 0.6304 0.6459 0.6595 0.6724 0.6834 0.6933 0.7015 0.7114 0.5865
2.50 0.5476 0.6644 0.7282 0.7648 0.7941 0.8140 0.8327 0.8454 0.5445 0.5643 0.5811 0.5974 0.6126 0.6246 0.6371 0.6479 0.6583 0.6662 0.5386
3.00 0.5027 0.6204 0.6828 0.7263 0.7545 0.7777 0.7959 0.8137 0.5012 0.5224 0.5397 0.5564 0.5706 0.5847 0.5952 0.6071 0.6177 0.6265 0.4975
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3.2. Modified Weighted-Variance (WV) Mean Control Charts

WV mean (X) and range (R) control charts for skewed population distribution was
proposed by [14]. Instead of formulating the WV X charts with range as the scale estimator,
we proposed using the modified WV X (denoted as WV X hereafter) charts with their
population standard deviation estimated on the basis of different scale estimators expressed
as follows:

1. WV mean charts

The control limits and CL of the WV X chart are

LCL =
=
X− LX_k_Lσ̂X_k

√
2
(
1− P̂X

)
; CL =

=
X; UCL =

=
X + LX_k_U σ̂X_k

√
2P̂X (8)

where P̂X is estimated using sample means and mean of subgroup means, which is defined

as P̂X = 1
m ∑m

i=1 δ

(
=
X− Xi

)
, with δ(x) = 1 for x ≥ 0 or δ(x) = 0 for x < 0, σ̂X_k =

σ̂k√
n and

σ̂k is the estimated population standard deviation computed using k scale estimator where
k = standard deviation (S), MAD (M) and TM (T), as given in Section 3.1. The values of
LX_k_L and LX_k_U are, respectively, the lower (L) and upper (U) constants of a WV X chart
which are depending on n and coefficients of skewness of the population distribution.

For a fixed value of the probability of type I risk, α = 0.0027, the constants LX_k_L and
LX_k_U of the WV X charts can be specified using

LX_k_L =

−
(

LCLX −
=
X
)

σ̂X_k

√
2
(
1− P̂X

) , and LX_k_U =

(
UCLX −

=
X
)

σ̂X_k

√
2P̂X

(9)

where LCLX and UCLX are, respectively, the average simulated values of the pre-calculated
lower and upper control limits with each simulated control limits are obtained using

percentile method such that P
(
LCLX ≤ X ≤ UCLX

)
≈ 0.0027,

=
X is an average value of

the subgroup means based on m = 30 subgroups of size n, σ̂X is the estimated standard

deviation of X, and P̂X = 1
m ∑m

i=1 δ

(
=
X− Xi

)
, with δ(x) = 1 for x ≥ 0 or δ(x) = 0 for x < 0.

The averages of LX_k_L and LX_k_U based on 10, 000 replications are reported in Table 3.

Table 3. Constants of the WV mean charts with different n and κ of a Weibull distribution.

κ

n = 5 n = 10

X/S X/MAD X/TS X/S X/MAD X/TS

LX_S_L LX_S_U LX_M_L LX_M_U LX_T_L LX_T_U LX_S_L LX_S_U LX_M_L LX_M_U LX_T_L LX_T_U

−1.00 3.52 2.54 3.52 2.53 3.52 2.54 3.35 2.65 3.35 2.65 3.36 2.66
−0.50 3.21 2.72 3.21 2.72 3.22 2.73 3.16 2.80 3.16 2.80 3.16 2.81
0.00 2.94 2.95 2.94 2.96 2.94 2.96 2.97 2.97 2.97 2.97 2.97 2.97
0.50 2.67 3.22 2.63 3.18 2.67 3.23 2.78 3.17 2.76 3.15 2.78 3.17
1.00 2.43 3.45 2.40 3.41 2.44 3.46 2.62 3.33 2.60 3.30 2.62 3.33
1.50 2.20 3.73 2.16 3.68 2.20 3.73 2.43 3.52 2.41 3.50 2.44 3.53
2.00 2.00 3.97 1.97 3.89 2.02 4.00 2.28 3.70 2.27 3.68 2.29 3.71
2.50 1.84 4.24 1.80 4.16 1.85 4.27 2.14 3.89 2.13 3.88 2.15 3.92
3.00 1.71 4.49 1.67 4.39 1.73 4.55 2.03 4.08 2.00 4.03 2.04 4.10

The asymmetric control limits for WV X control charts with different scale estimators
are given as follows:



Mathematics 2022, 10, 4380 8 of 15

2. Modified WV mean charts

a. WV X chart with mean of subgroup standard deviations (denoted as X/S):

LCL =
=
X−AS_L S

√
2
(
1− P̂X

)
; CL =

=
X; UCL =

=
X + AS_U S

√
2P̂X (10)

where AS_L =
LX_S_L
c4
√

n and AS_U =
LX_S_U
c4
√

n are, respectively, the multipliers of the
lower and upper control limits.

b. WV X chart with mean of subgroup MADs (denoted as X/MAD):

LCL =
=
X−AM_LMAD

√
2
(
1− P̂X

)
; CL =

=
X; UCL =

=
X + AM_UMAD

√
2P̂X (11)

where AM_L =
LX_M_L
c5
√

n and AM_U =
LX_M_U

c5
√

n are, respectively, the multipliers of
the lower and upper control limits.

c. WV X chart with trimmed mean of subgroup standard deviations of trimmed
mean (denoted as X/TS):

LCL =
=
X−AT_LTS

√
2
(
1− P̂X

)
; CL =

=
X; UCL =

=
X + AT_UTS

√
2P̂X (12)

where AT_L =
LX_T_L
c6
√

n and AT_U =
LX_T_U
c6
√

n are, respectively, the multipliers of

the lower and upper control limits. Meanwhile, the multipliers of all WV X
charts are tabulated Table 4.

Table 4. Multipliers for the WV mean charts with different n and κ of a Weibull distribution.

κ

n = 5 n = 10

X/S X/MAD X/TS X/S X/MAD X/TS

AS_L AS_U AM_L AM_U AT_L AT_U AS_L AS_U AM_L AM_U AT_L AT_U

−1.00 1.72 1.24 2.08 1.50 1.78 1.28 1.11 0.88 1.27 1.01 1.62 1.28
−0.50 1.54 1.30 1.78 1.51 1.56 1.33 1.03 0.91 1.11 0.99 1.45 1.29
0.00 1.39 1.40 1.57 1.58 1.40 1.41 0.96 0.96 1.00 1.00 1.32 1.32
0.50 1.27 1.53 1.46 1.76 1.29 1.56 0.90 1.03 0.95 1.09 1.24 1.42
1.00 1.18 1.67 1.42 2.02 1.21 1.72 0.86 1.09 0.96 1.22 1.21 1.55
1.50 1.10 1.86 1.45 2.47 1.15 1.95 0.82 1.18 1.01 1.47 1.21 1.75
2.00 1.03 2.05 1.51 2.99 1.11 2.20 0.78 1.27 1.10 1.78 1.22 1.98
2.50 0.98 2.27 1.60 3.70 1.08 2.50 0.75 1.37 1.22 2.21 1.25 2.27
3.00 0.95 2.50 1.70 4.47 1.07 2.80 0.73 1.47 1.33 2.68 1.28 2.59

4. Sensitivity Analysis

To assess the performance of the WV X charts with different scale estimators, the
sensitivity analysis was carried out in two scenarios: in-control and out-of-control ARL. In
Scenario I, the in-control ARL (ARL0) performance of the modified WV X charts using the
constant 3 (denoted as 3-sigma), and LX_k_L and LX_k_U (denoted as Lh-sigma, h = 1, 2)
in Section 3.2 were computed and compared across their scale estimators, coefficients of
skewness and sample sizes. While in Scenario II, the ARL1 performance of these charts was
evaluated using Lh-sigma control limits when the mean, standard deviation and skewness
are shifted simultaneously.

4.1. Comparison of In-Control ARL in Scenario I

ARL is the average number of points that must be plotted before a point indicates
an out-of-control condition. When the process is in-control, the higher ARL0 is desirable,
indicating that the control chart provides less frequent false alarm. For the data under a
normal distribution, the Shewhart mean charts with 3-sigma limits gives the ARL0 = 370
when α = 0.0027.

To investigate the changes in ARL0 of the WV X charts with 3-sigma and Lh-sigma
control limits for the fixed value of α = 0.0027, we had performed extensive simulation stud-
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ies developed using R programming language. To be explicit, the sequence of simulation
steps is elaborated below:

1. First, a dataset consisting of m = 30 samples of size n = 5 is generated from
the Weibull distribution with shape parameter β = 43.55 which corresponds to
mean = 0.99, standard deviation = 0.03 and skewness, κ = −1.0.

2. On the basis of the simulated samples, both µ and PX are estimated using
=
X and

P̂X as described in Sections 2.1 and 3.2, respectively, while σ is estimated using one
of the three scale estimators as indicated in Section 3.1. The process is repeated for
10,000 runs to acquire the average values for the estimated population mean, PX and
standard deviation.

3. It is then followed by the calculation of the 3-sigma and Lh-sigma control limits of
the WV X chart as specified in Section 3.2, and to determine the final control limits,
the steps 1 and 2 are repeated for 10,000 runs to obtain the average values of the
corresponding limits.

4. Upon completion of step 3, the series of subgroup samples of size n = 5 from the
identical distribution as in step 1 are generated and the respective subgroup means X
for each sample will be computed until the first subgroup mean X exceeds the control
limits which will be recorded as a run length.

5. To achieve a specific accuracy, step 4 is repeated for 10,000 times so that the average
run length ARL0 for in-control case can be determined by taking the average value of
these 10,000 replicates.

6. For other combination of cases, the similar procedure as demonstrated in steps 1 to 5
is employed under different types of scale estimators with various sample sizes n and
coefficients of skewness for Weibull distribution.

Table 5 reports the results of ARL0 of these charts for n = 5, 10 and −1 ≤ κ ≤ 3.
Results indicated that the ARL0 s for all the WV X charts with Lh-sigma control limits are
approximately 370 implying the appropriateness of the suggested constants and multipliers
(see Tables 3 and 4) for different coefficients of skewness. However, for the WV X charts
with 3-sigma control limits, the ARL0 s are highly affected by the coefficients of skewness.
This indicates that the inappropriate use of the constants will affect the performance of
the control charts. Table 6 highlights the average lengths of the Lh-sigma control limits for
the modified WV X charts. The average lengths of each WV X control charts are approxi-
mately equal regardless of the scale estimators and becoming larger as the coefficients of
skewness increase.

Table 5. ARL0 for the WV mean control charts with different n and κ of a Weibull distribution.

κ

n = 5 n = 10

X/S X/MAD X/TS X/S X/MAD X/TS

3-σ Lh-σ 3-σ Lh-σ 3-σ Lh-σ 3-σ Lh-σ 3-σ Lh-σ 3-σ Lh-σ

−1.00 220.34 363.31 230.58 361.24 229.13 371.97 272.54 365.64 273.65 362.68 273.12 372.66
−0.50 334.78 363.18 343.39 361.69 328.19 364.62 347.13 366.24 350.18 362.83 353.81 366.85
0.00 427.48 367.95 415.90 365.75 414.37 365.66 394.49 369.45 388.32 362.63 386.43 365.54
0.50 356.08 367.33 409.33 364.79 362.92 374.89 370.09 365.63 376.24 366.39 364.18 369.30
1.00 262.68 369.02 273.71 365.08 249.94 378.27 306.01 368.72 320.57 363.68 306.03 367.20
1.50 172.48 368.80 194.83 367.76 176.90 373.67 240.55 368.63 239.92 364.47 231.70 371.31
2.00 134.24 366.77 152.60 373.21 137.76 370.02 187.85 370.76 183.22 370.22 185.90 366.82
2.50 115.56 375.36 121.25 374.40 113.25 373.67 148.41 366.32 148.11 368.54 145.25 377.53
3.00 101.74 377.21 110.11 375.34 97.25 374.50 130.51 377.86 137.53 369.06 129.29 377.61

Note: 3-σ ≡ 3-sigma, and Lh-σ ≡ Lh-sigma.
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Table 6. Average length of the control limits for the WV control charts.

κ
n = 5 n = 10

X/S X/MAD X/TS X/S X/MAD X/TS

−1.00 0.0777 0.0778 0.0780 0.0545 0.0545 0.0548

−0.50 0.3918 0.3919 0.3924 0.2779 0.2782 0.2783

0.00 0.7323 0.7335 0.7328 0.5212 0.5219 0.5219

0.50 1.1429 1.1406 1.1436 0.8146 0.8142 0.8153

1.00 1.5427 1.5432 1.5482 1.0997 1.0994 1.1013

1.50 2.1036 2.1041 2.1042 1.4884 1.4849 1.4910

2.00 2.7152 2.7140 2.7186 1.9063 1.9018 1.9058

2.50 3.5084 3.5107 3.5184 2.4299 2.4327 2.4468

3.00 4.3856 4.3779 4.3871 3.0148 3.0109 3.0198

4.2. Comparison of Out-of-Control ARL in Scenario II

When abnormal fluctuations occur in the process, the smaller ARL1 is desirable indicat-
ing that the control chart will be able to detect the shift quicker. To explore the performance
and behaviour from the proposed scale estimators, this section will make comparison on
the WV X charts under different scale estimators as elaborated in Section 3.

For illustrative purposes, random subgroups of size n were generated from a Weibull
distribution with shape parameter δβ for δ, where δ represents the size of shift of the
shape parameter. For the case where the data follow a Weibull distribution with parameter
(δ = 1), the control limits for the WV X charts were constructed based on 30 subgroups,
and to obtain the final control limits, the procedure was then repeated for 10,000 runs to
gain the average values of the limits for the charts. This is followed by the computation of
X estimates from the newly generated subgroups from the Weibull distribution with shape
parameter δβ. The number of samples required to exceed the control limits is recorded
as out-of-control run length. More precisely, the ARL1 is determined from the average of
10,000 simulated runs.

Table 7 presents the ARL1 of WV X charts for the case where the size of shift, δ = 0.6,
with different values of β and n = 5, 10. From the result, when the process is in-control,
the data stemming from the Weibull distribution with the shape parameter β = 43.55
give the in-control statistics with the skewnessin (SKin) = −1.00, meanin (Meanin) = 0.99,
standard deviationin (SDin) = 0.03 and coefficient of variationin (CVin) = 0.03. Meanwhile,
when the process is out-of-control in which the data coming from the Weibull distribution
with shifted shape parameter 0.6β = 26.13, all the out-of-control statistics are shifted with
the small change in mean of about 0.01. In general, as β decreases, the in-control and
out-of-control statistics indicate that the skewness, mean and standard deviation increase
simultaneously. Furthermore, the CV value for in-control and out-of-control statistics also
tend to become larger as the β values become smaller (or for large skewness). Consider
n = 5, and the case β = 43.55, we observed that the ARL1 for WV X charts require around
16 to 17 samples to detect the shift and ARL1 values of WV X charts are not affected by
the scale estimators. As for the case β = 1.0, the data shape distribution skewed positively
with SKin = 2.0, Meanin = 1.00 and SDin = 1.00. Meanwhile, when the shape parameter is
shifted to 0.6β = 0.6, the skewness is increased to SKout = 3.22, and their mean is increased
to Meanin = 1.5. It is noted that the change in mean of 0.5 (or CV from CVin = 1.00 to
CVout = 1.76) will require eight samples for the shift to be detected.
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Table 7. ARL1 values of the WV mean chart for the case δ = 0.6.

n = 5

In-Control Statistics Out-of-Control Statistics ARL1

β SKin Meanin SDin CVin δβ SKout Meanout SDout CVout X/S X/MAD X/TS

43.55 −1.00 0.99 0.03 0.03 26.13 −0.84 0.98 0.05 0.05 16.18 16.42 16.99
7.53 −0.50 0.94 0.15 0.16 4.52 −0.17 0.91 0.23 0.25 17.67 17.79 17.98
3.60 0.00 0.90 0.28 0.31 2.16 0.49 0.89 0.43 0.49 17.67 17.70 17.73
2.15 0.50 0.89 0.43 0.49 1.29 1.24 0.93 0.72 0.78 14.78 14.85 14.39
1.57 1.00 0.90 0.58 0.65 0.94 1.90 1.03 1.09 1.06 11.50 11.65 11.88
1.20 1.50 0.94 0.79 0.94 0.72 2.64 1.23 1.75 1.42 9.29 9.38 9.18
1.00 2.00 1.00 1.00 1.00 0.60 3.22 1.50 2.65 1.76 7.92 7.92 8.00
0.86 2.50 1.08 1.26 1.17 0.52 3.77 1.89 4.05 2.14 7.27 7.27 7.32
0.77 3.00 1.17 1.53 1.31 0.46 4.18 2.34 5.86 2.51 6.93 6.94 6.87

n = 10

In-Control Statistics Out-of-Control Statistics ARL1

β SKin Meanin SDin CVin δβ SKout Meanout SDout CVout X/S X/MAD X/TS

43.55 −1.00 0.99 0.03 0.03 26.13 −0.84 0.98 0.05 0.05 12.90 13.16 13.60
7.53 −0.50 0.94 0.15 0.16 4.52 −0.17 0.91 0.23 0.25 16.22 16.08 16.43
3.60 0.00 0.90 0.28 0.31 2.16 0.49 0.89 0.43 0.49 17.61 17.73 17.82
2.15 0.50 0.89 0.43 0.49 1.29 1.24 0.93 0.72 0.78 14.14 13.99 14.33
1.57 1.00 0.90 0.58 0.65 0.94 1.90 1.03 1.09 1.06 10.04 10.00 10.19
1.20 1.50 0.94 0.79 0.94 0.72 2.64 1.23 1.75 1.42 7.08 6.94 6.96
1.00 2.00 1.00 1.00 1.00 0.60 3.22 1.50 2.65 1.76 5.75 5.56 5.60
0.86 2.50 1.08 1.26 1.17 0.52 3.77 1.89 4.05 2.14 4.94 4.91 4.92
0.77 3.00 1.17 1.53 1.31 0.46 4.18 2.34 5.86 2.51 4.51 4.53 4.61

For n = 10, we found that the ARL1 of the WV X charts regardless of the scale
estimators are consistently smaller than those based on n = 5 under the same coefficient of
skewness. Moreover, the ARL1 values become smaller when β decreases resulting in the
larger values of skewness and CV, that is, the charts are able to detect the shift more quickly.
The remaining shape parameters with the same size of shift δ = 0.6 are reported in Table 7.

Table 8 shows the ARL1 values of WV X charts for δ = 0.2, 0.4, 0.6, 0.8 when n = 5, 10
in which the left panel of the Table 8 reports the results for n = 5. For the WV X/S chart
with β = 43.55 (skewness = −1.00), it can be seen that the chart is able to detect the shift
sooner when size of shift δ changes from 0.8 to 0.2 (or equivalent to the larger change in
skewness and CV values). Similar patterns are observed across the δ values ranging from
0.8 to 0.2 for various β values. However, under the same δ when β values are varied from
small to large, that is, when all the Meanin, SDin and SKin are increased simultaneously,
we observed that the shift tends to be detected quicker by the chart. In the meantime, the
analogous patterns are noticed when adopting the WV X/MAD and WV X/TS charts.
As shown in the right panel of the Table 8, the ARL1 for the n = 10 are presented and
once again, all WV X charts appear to the shift faster. Furthermore, it was observed that
X/MAD chart is able to detect shift marginally quicker than other charts specifically for
the case when δ = 0.8 and SKin ≥ 1.
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Table 8. ARL1 values of the WV mean chart for different δ values.

β SKin

n = 5 n = 10

δ δ

0.8 0.6 0.4 0.2 0.8 0.6 0.4 0.2

X/S

43.55 −1.00 70.63 16.18 4.78 1.81 64.55 12.90 3.59 1.55
7.53 −0.50 71.15 17.67 5.37 2.04 70.68 16.22 4.94 2.07
3.60 0.00 71.65 17.67 5.20 1.81 73.48 17.61 5.18 1.67
2.15 0.50 66.99 14.78 3.98 1.55 65.46 14.14 3.52 1.31
1.57 1.00 58.73 11.50 3.23 1.45 57.75 10.04 2.57 1.20
1.20 1.50 49.88 9.29 2.81 1.39 46.60 7.08 2.09 1.15
1.00 2.00 44.26 7.92 2.57 1.35 38.60 5.75 1.86 1.12
0.86 2.50 40.89 7.27 2.42 1.34 33.44 4.94 1.73 1.11
0.77 3.00 37.51 6.93 2.37 1.32 30.40 4.51 1.65 1.10

X/MAD

43.55 −1.00 70.83 16.42 4.66 1.83 65.64 13.16 3.61 1.56
7.53 −0.50 70.60 17.79 5.32 2.10 71.59 16.08 4.95 2.07
3.60 0.00 72.91 17.70 5.18 1.80 71.88 17.73 5.20 1.67
2.15 0.50 66.03 14.85 4.04 1.55 66.55 13.99 3.48 1.32
1.57 1.00 57.88 11.65 3.24 1.45 55.55 10.00 2.52 1.20
1.20 1.50 50.07 9.38 2.78 1.37 44.03 6.94 2.05 1.14
1.00 2.00 43.66 7.92 2.57 1.35 36.73 5.56 1.82 1.12
0.86 2.50 40.48 7.27 2.46 1.34 31.65 4.91 1.72 1.11
0.77 3.00 37.60 6.94 2.40 1.32 28.85 4.53 1.67 1.10

X/TS

43.55 −1.00 72.69 16.99 4.69 1.83 67.78 13.60 3.65 1.56
7.53 −0.50 72.26 17.98 5.50 2.08 70.80 16.43 4.93 2.03
3.60 0.00 73.31 17.73 5.25 1.81 73.99 17.82 5.16 1.68
2.15 0.50 68.93 14.39 4.04 1.55 68.62 14.33 3.50 1.32
1.57 1.00 58.72 11.88 3.29 1.44 58.31 10.19 2.56 1.21
1.20 1.50 50.65 9.18 2.77 1.37 44.97 6.96 2.06 1.14
1.00 2.00 43.91 8.00 2.61 1.34 36.95 5.60 1.84 1.12
0.86 2.50 41.23 7.32 2.45 1.33 32.18 4.92 1.72 1.11
0.77 3.00 37.84 6.87 2.42 1.32 29.35 4.61 1.64 1.10

5. Empirical Example

This section employed the proposed control charts for the data excerpted from [37].
The data set containing the simulated failure times from an accelerated life test experiment
consists of 30 subgroups of size n = 5 each. The p-value of the goodness-of-fit test is
found to be 0.858 which indicates that the data can be modelled by the Weibull distri-
bution with λ = 98.61 and β = 0.9247. Using these estimate values, the corresponding
calculated skewness (see Section 3) is 2.25 implying that the distribution of the data is
positively skewed.

To set up the three MV mean control charts, we first compute the respective averages
of subgroup means and scale estimates together with P̂X. On the basis of Table 4, the
multipliers of these charts are adopted, respectively, when κ = 2.25. The lower and upper
control limits of WV X/S is [30.58, 318.99], WV X/MAD is [11.17, 377.62] and WV X/TS
is [29.32, 322.52]. As observed in Figure 1a–c, the plots of MV mean charts based on the
three scale estimators show that only WV X/MAD does not detect out-of-control signal.
As opposed to that, it is worth noting that both WV X/S and WV X/TS incorrectly signal
out-of-control in this specific application indicated by points 8, 18 and 26, respectively.
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Figure 1. (a) WV X/S; (b) WV X/MAD; (c) WV X/TS control charts for the failure times data.

6. Conclusions

To summarise, in this paper, the WV approach to construct the asymmetric control
limits of the control charts is offered for monitoring the data stemming from the skewed
distribution. The proposed WV approach intends to construct the mean chart with three dif-
ferent scale estimators encompassing the standard deviation, MAD and trimmed standard
deviation, for monitoring the data generated from a Weibull distribution with different coef-
ficients of skewness. Consequently, the WV mean charts’ constants based on the probability
of type I risk of 0.0027 are determined via extensive simulation studies.

In terms of the ARL0, the results suggested that ARL0 for WV mean charts regardless
of the scale estimators with Lh-sigma asymmetrical control limits attain the target value
with a fixed probability of type I risk for different coefficients of skewness. However,
ARL0 for 3-sigma control limits is highly affected by the skewness of the underlying
distribution. It can be seen that all three charts appear to perform poorly when n = 5
with the increase in the coefficients of the skewness and it turns out that WV X/MAD is
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relatively the best which can also be enhanced by increasing the sample size. As for the
ARL1 of the WV mean charts under different coefficients of skewness, all charts perform
equally well irrespective of the scale estimators used. When the coefficient of skewness
increases, these charts are able to detect shift faster. Furthermore, as the size of the shift (δ)
for the shape parameter decreases from 0.4 to 0.2, all charts manage to detect shift more
rapidly (ARL1 ≈ 1) for different coefficients of skewness of the data. Analogously, larger
sample size tends to improve the performance of these charts as well in detecting the shift.
Meanwhile, an empirical data set excerpted from [37] via failure times from an accelerated
life test experiment were carried out to assess the performance of the proposed charts. The
findings seem to suggest that the control chart based on WV X/MAD measure may gain
some potential benefit as compared to those based on WV X/S and WV X/TS.

Despite the encouraging results of this study, the WV mean chart may be extended
to employing more appealing robust location or scale estimator such as M-estimator and
M-Scale in determining their control limits when the underlying distribution is skewed.
Perhaps, future research could also examine the effect of the outliers on the performance of
ARL for these charts. Moreover, as the control limits of WV charts are derived specifically
under Weibull distributed data with different coefficients of skewness, the bootstrap control
chart might be another domain that worth exploring which encompasses more flexible
skewed distributions with a wider range of coefficient of skewness.
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