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Abstract: (1) Background: This paper is devoted to the study of a class of semilinear initial boundary
value problems of parabolic type. (2) Methods: We make use of fractional powers of analytic semi-
groups and the interpolation theory of compact linear operators due to Lions—Peetre. (3) Results:
We give a functional analytic proof of the C2 compactness of a bounded regular solution orbit for
semilinear parabolic problems with Dirichlet, Neumann and Robin boundary conditions. (4) Conclu-
sions: As an application, we study the dynamics of a population inhabiting a strongly heterogeneous
environment that is modeled by a class of diffusive logistic equations with Dirichlet and Neumann
boundary conditions.
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1. Introduction and Main Theorem

Let () be a bounded domain of Euclidean space R”, with C** boundary I' = 9(); its
closure Q = QUT is an n-dimensional, compact C* manifold with boundary. We let

2 noo.
ou +Zb](x)§—u +c(x)u
=1 X

be a second-order, strictly elliptic differential operator with real coefficients on Q= QUT
such that:

(1) % € C*(Q) and a/*(x) = a¥(x) forall x € Qand all 1 < j, k < 1, and there exists a
constant ay > 0 such that

i W¥(x) &&= col¢* forall (x,¢) € T*(Q)) = QA xR,

k=1

where T* (Q) is the cotangent bundle of 0.
(2) b eC®(Q)foralll <j<n.
(3) ceC®(Q)andc(x) <0in Q.

For simplicity, we suppose that:

The function ¢(x) does not vanish identically in Q).
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First, we study the following linear elliptic boundary value problem: Given functions
f(x) and ¢(x’) defined in Q) and on T, respectively, find a function u(x) in Q) such that

Au=f in Q),
N , ¢))
Bu ::u(x)g—i-b(x Ju=¢ onT.

Here:

(1) a(x’) and b(x’) are real-valued, C* functions on I
(2) 9/0v is the conormal derivative associated with the differential operator A:

0 U 0
- = 2‘ *(x"V 1 —
av — A (WG

k=1 ]

n = (nq,ny,...,n,) being the unit outward normal to the boundary I' (see Figure 1).

n
=00

Figure 1. The unit outward normal n and the conormal v to I'.

We associate with the linear problem (1) an unbounded linear operator 2, from the
Banach space L”(Q) into itself as follows (see [1], Theorem 1.2):

(@) The domain D(2,) of definition of 2, is the set
D(A,) = {u € W?P(Q) : Bu = a(x’)g—z +b(x")u =0 on F}. )
(b) 2Apu = Auforevery u € D(Ap).
Then we have the following proposition (see [1], Lemma 8.1):

Proposition1. Let1 < p < oco. Suppose that the following conditions (H.1) and (H.2) are satisfied:

(H1)a(x') > 0and b(x') > 0onT.
(H2)a(x')+b(x") >0o0nT.

Then we have the global a priori estimate
lullwerqy < CllAull o)y forallu € D(Ap). 3)

Moreover, we have the following generation theorem for analytic semigroups in the
framework of L? Sobolev spaces (see [1], Theorem 1.2):

Theorem 1 (the generation theorem for analytic semigroups). Let 1 < p < oo. If the
conditions (H.1) and (H.2) are satisfied, then we have the following two assertions (i) and (ii):

(i)  Forevery 0 < & < 11/2, there exists a constant r(e) > 0 such that the resolvent set of A,
contains the set ,
X(e) = {/\ =12% v >r(e), 10| < - 8},
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and that the resolvent (A, — AI) ™! satisfies the estimate
-1 Cp (¢)
|- a0~ < T foralth € Z(e), @)

where cy(e) > 0 is a constant depending on e.
(ii)  The operator A, generates a semigroup U(z) = e on the space LP(Q) which is analytic
in the sector
Ae={z=t+is:z#0,|argz| < m/2 —¢}

forany 0 < e < 7w/2 (see Figure 2).

\/ 2(5) €
¢ \w = r(e)?
0

g N

ej
e f

Figure 2. The set X(¢) and the sector A.

1.1. Statement of Main Theorem

Now let g(t) be a real-valued, locally Lipschitz continuous function on R. In this section
we consider the following semilinear initial boundary value problem of parabolic type:

%—”t‘ — Au = g(u) in Q x (0,00),
Bu=a(x')% +b(x)u=0 onT x (0,), ()
u(x,0) = ug in Q.

A function u(x, t) is called a regular solution of the semilinear problem (5) if it belongs to the
space C2HA1+A/2(Q) x [0,00)) for 0 < B < 1:

C2+/S,1+/3/2 (ﬁ « {0, oo))

:=the space of continuously differentiable functions
u(x,t) € C(Q x [0,00)) twice with respect to x and once
with respect to ¢ such that dxu(x,t) are (1 + p)/2-Holder
continuous with respect to ¢, that d;u(x, t) is B-Holder
continuous with respect to x and /2-Holder continuous
with respect to t and further that d2u(x, t) are B-Holder
continuous with respect to x and /2-Holder continuous

with respect to t.

By using the operator 2l;, defined by Formula (2), we can rewrite the semilinear initial
boundary value problem (5) in the following abstract semilinear Cauchy problem:
W = Ayu+g(u) in (0,00), ©)
u(0) = uy.

In this paper, in the light of the interpolation theory of compact linear operators due
to Lions—Peetre [2] we give a functional analytic proof of the following C? compactness of a
bounded regular solution orbit of the semilinear Cauchy problem (6) (cf. [3], Satz):
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Theorem 2. Suppose that the following conditions (H.1) and (H.3) are satisfied:

(H1)a(x') > 0and b(x') > 0onT.
(H.3) Either a(x") > 0 on T (reqular Robin and Neumann cases) or a(x') = 0and b(x') > 0on T
(Dirichlet case).

Letn < p < ooand
1 =n
5+ 2w <a<l (7)
Ifug € C***(Q)) such that Bu = OonTand if 0 < B < 2a — 1 — %, then the Holder norm
llu(t) || o () Of @ bounded regular solution u(-,t) of the semilinear Cauchy problem (6) is uni-

formly bounded for all t > 0. In particular, the orbit of a bounded regular solution u(-,t) is
relatively compact in the space C>(Q)).

1.2. Outline of the Paper

The rest of this paper is organized as follows.

Section 2 is devoted to the Hille-Yosida theory of analytic semigroups which forms
a functional analytic background for the proof of Theorem 2. We consider fractional
powers (—le)a of the infinitesimal generator 2l for 0 < a <1 (see Formulas (9) and (10)),
and summarize some basic facts about the fractional powers (—2,)“ and the analytic
semigroup U(t) = /7. In particular, we study the imbedding characteristics of the spaces
D ( (—le)a) , which make these spaces so useful in the study of the solution u(t) of the

semilinear Cauchy problem (6) (Lemmas 1-3).

In Section 3, we formulate the interpolation theory of compact linear operators of Lions—
Peetre [2] (Theorem 3) in order to give a functional analytic proof of Theorem 2 (Theorem 4
and Corollary 1). This section is the heart of the subject.

In Section 4, we give the proof of Theorem 2. In view of the Ascoli-Arzela theorem, we
have only to show that, for some 0 < B < 1 the Holder norm |[ju(t)|| c2+6(qy) of abounded
regular solution orbit u(-, t) of the semilinear Cauchy problem (6) is uniformly bounded for
all t > 0. The proof is given by a series of claims (Claims 2-5). We make use of the classical
elliptic Schauder theory for t > 1 and the classical linear parabolic theory for 0 <t < 1.

In Section 5, we study of the existence of positive solutions of semilinear Dirichlet and
Neumann problems for diffusive logistic equations, which models population dynamics
in environments with spatial heterogeneity (Theorems 5 and 6 for the Dirichlet case and
Theorems 8 and 9 for the Neumann case). Moreover, as an application of Theorem 2 (see [4],
Section 6), we discuss the stability properties for positive steady states (Theorem 7 for the
Dirichlet case and Theorem 10 for the Neumann case). A biological interpretation of main
theorems is that an initial population will grow exponentially until limited by a lack of
available resources if the diffusion rate is below some critical value; this idea is generally
credited to the English economist Thomas Robert Malthus (1766-1834). On the other hand,
if the diffusion rate is above this critical value, then the model obeys the logistic equation
introduced by the Belgian mathematical biologist Pierre Francois Verhulst (1804-1849).
We remark that this critical value tends to be smaller in situations where favorable and
unfavorable habits are closely intermingled, and larger when the favorable region consists
of a relatively small number of relatively large isolated components (see Formula (69)).

In Appendix A we study linear initial boundary value problems of parabolic type in
the framework of Holder spaces, following Ladyzhenskaya et al. [5] and Friedman [6]. This
makes the paper fairly self-contained.

2. Fractional Powers for Analytic Semigroups

By virtue of Theorem 1, we may suppose that the operator 2, defined by Formula (2),
satisfies the following two conditions:

(R.1) The resolvent set of 2, contains the region X shown in Figure 3.
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(R.2) There exists a constant M > 0 such that the resolvent (AI — le)_l satisfies the
estimate (see estimate (4))

H (AL - m,,)*H < forall A € X. ®)

1+ |A|

Figure 3. The region X in condition (R.1).

Thus, we can define the fractional powers (—2(,) ™" and (—2(,)* for 0 < & < 1 as
follows:

(*le)_au = 7sin7:<7'c /Ooos_"‘ (A — sI)_lu ds 9)

_ smnom/ s”"(sl—mp)iluds forallu € LP(Q)),
0

and
(—2,)" = the inverse of (—2,) %

Remark that the operator (—2(,)" is a closed linear operator with domain
D((=21p)") > D(=2p) = D(Ap),
and further that

(—2Ap) u = sm;cn /OOQ s* (A, — s - Apuds (10)

= ST [T (s - 2,) (<) ds forallu € D).

In this section, we study the imbedding characteristics of the spaces D ((—%)“),

which will make these spaces so useful in the study of semilinear parabolic differential
equations. For detailed studies of this subject, the reader might be referred to Henry [7],
Pazy [8], Lunardi [9] and Amann [10].

We let
X :=the space D((—le)“) endowed with the graph norm || - | (11)
of the fractional power (—2,)" for0 < a < 1,
and
Xy = LP(Q),
Xy :=D(=2Ap) = D(Ap).
Here » 1/2
ull, = (|u||%p(0) + H (—20,) u ‘LP(Q)> forallu € D((—Q{p)"‘). (12)
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Then we have the following three assertions (1), (2) and (3) (see Henry [7], Theorem 1.4.8; [1],
Proposition 3.16):

(1) The space &, is a Banach space.
(2) By the a priori estimate (3), it follows that the graph norm ||u||, is equivalent to the
norm H(—le)"‘uHU,(Q):

il = || (—21p) "

‘LP(Q) forallu € D((—le)‘X). (13)

3) If0<a < p<1,thenwehave Xﬁ C &, with continuous injection.

Moreover, we recall the following fundamental inequlaities for analytic semigroups
([7], Theorems 1.3.4 and 1.4.3; [1], Remark 3.1):

Hetmp < Cre forallt > 0. (14)
| (2 e < % e forallt >0, (15)
H (etﬁl,, - I) (—le)_l H < Cpt forallt>0. (16)

It is easy to verify that every solution u(t) of the abstract semilinear Cauchy problem (6)
is given by the following integral formula

.t
u(t) = e uy +/ =% f(s)ds forallt >0, (17)
0

with
f(t) :=g(u(t)) fort>0.

If the orbit of a regular solution u(t) of the semilinear problem (5) is bounded, then we
can find constants K > 0 and L > 0 such that

1fO)llLp) <K forallt >0, (18)
1£(s) = F(B)llpr (o) < Lllu(s) = u)|[pp(qy) foralls, £ >0. (19)

Indeed, it suffices to note that the function

R3s— £(s) = g(u(s))

is bounded and Lipschitz continuous if the uniform norm ||u(-,s)|| - () is bounded for all
s> 0.

First, we prove the X,-boundedness of the solution u(t) of the abstract semilinear
Cauchy problem (6) (cf. [1], Theorem 3.18):

Lemma 1. Let ug € D(2,) and 0 < a < 1. If the conditions (R.1) and (R.2) are satisfied, then
we have, forall t > 0,
u(t) € X = D((=24)"), (20)
()]l < Cila), (21)

with a constant C1(a) > 0. For example, we may take

r'(l1—a)

Cl(‘x) = Cl””OHzx_'—C(“)K s«
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Proof. Since the fractional power (—2l,,)" is a closed operator and since
uo € D(2,) < D((-24)"),

it follows from the integral Formula (17) that

(~2,)u(6) = (=20 + (-2, ([ e )5

= (-2, ¢+ [ (<20,)" el f(s)

:e@vp&wfuw+4%—mﬂ“dﬁﬂ%f@)m for all t > 0.
Hence, by using inequalities (15) and (18) we obtain that

lu(®)ll, = (—%)“u(t)\}m(m
= |[e"r (—21,) “ug +/ ) elt= £(s) ds

semwpaﬁ%ﬁmm+AHPmMAqu@)mmm
= S N (SR +/ tH<—%>“6“”Q‘”f<5>HmmdS

< cre €@ [ G IO

LP(Q)

st e—0(t—s)
e
<Cre WMM+QMKA(T?VS
I'(l—a)

< Ci ol + Cla) K~ 5=
:=Cy(a) forallt>0.
The proof of Lemma 1 is complete. [

Secondly, we prove the boundedness of the difference

u(t+h) —u(t)
h

Lr(Q)

of the solution u(t) of the abstract semilinear Cauchy problem (6):

Lemma 2. Let ug € D(—,) = D(2A,). If the conditions (R.1) and (R.2) are satisfied, then there

exists a constant C > 0 such that
fu(t+h) —u®)|[pq) < Ch forallt > 0andh > 0.

Proof. The proof of Lemma 2 is divided into three steps.
Step 1: By using the integral Formula (17), we have, for 0 <t < tand h > 0,

u(t+h) —u(t)
= (1 — et )y I,
( 0 —l—/ f(s)ds
(et — ) sy dst [0 (554 ) = fs) s

(22)

(23)
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However, we obtain from inequalities (14)-(16) that

where

(g(tJrh)Q(p _ etmn) 1 H 120

_ H (e = 1) (=21) - e (=2 o) H

<G hHem”((—Q{P”O» HLn(Q)

< CohCre || ((—Ap)uo) || = C1 Cohe™* |Jugll;

< (C1Colluolly)h
=Cgh forallt>0,

C3 = Cl C2||u0||1,

and further from inequalities (18) and (19) that

<[ e el

h
/T+ e(t+h—s)2l,, f(S) ds
T

LP(Q)

Hetmp

)

<K/ $) ds - Cie” ot

gKC%/ % ds - e~
T—h

<KC? e ot . %ew (1 — e*hﬂ‘)

1

< KCem(t-T)0 5 o= KC2e~ =T

<KC:h for0<T<t,

< [ (~2pet==% - (& — 1) (<2) 7 15 ooy

/OT (e(t+h—s)2l,, _ e(t—s)ﬂp)f(s) ds

LP(Q)

<KGCyh /OTH (—a1,)elt=9)% Hds

< KGChC(1) /T % e9(t=5) g
Jo t—

67& T
<KGhC(1) {— / ¢% ds = KCy h
- 0

C(1) e
b t—1

c) 1

SKCthti for0 <t <t

< [l
T

t
<CGL / e~ =9 |lu(s + 1) — u(s)llpp(yds for0 <t <t
T

[ e (s ) £

LP(Q)

|l f(s+h) _f(S)HLP(Q)dS

LP(Q)

(24)

(25)

(26)

(27)
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By combining inequalities (24) through (27), we have proved that

Ju(t+h) —u(t)|r o (28)
G, C(1)K 1
< 2 = 7
_<c3+c11<+ ; tT)h

t
+C1L/ e lu(s + h) — u(s) || p(yds for0 <t <t
T

t A
< Cy <1 + tlr>h +CiL / e =9 lu(s + 1) — u(s)||ppyds for0 <t <t
- T

>,

Cyi= max{C1 Calluoll, + CI K, CZC(UK}
Step 2: If we let
§(8) = et + 1) — u() |y fort =0,
then we obtain from inequality (28) that
e p(t) = |lu(t+h) — u(t)ll e
< C4(1 + t_lT)thClL(/:gb(s)ds)e_Jt for0<t<t,
so that
e [|u(t + 1) —u(t)|[r) = ¢(t) (29)
< C4h<1 + t_1T>e“+clL /:cp(s)ds for0 <t <t
Now we need the following form of Gronwall’s inequality ([11], Lemma 29.2):

Claim 1 (Gronwall). Let g(t), v(t) be continuous functions in C[0, T|, and let h(t) be a non-
negative, integrable function in (0, T). Suppose that the following inequality holds true:

t) < g(t +/ s)ds forall0 <t <T.

Then we have the inequality
+/ efh VB4t forall0 <t <T.

Step 3: We consider the following two cases (i) and (ii).
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o The case (i): 0 < f < 1/(C1L). If we put T = 0 in Formula (23), we obtain from
inequalities (24), (25) and (27) that

[t + 1) = u() ]| o)

< e | s

LP(Q)

[ et s+ - )i

"

LP(Q)
< (Gt GRY GuL [ e (s + 1) = u(s) s
= Csh+CiL /0 e s 4 1) — u(s)ll ) s,
so that
p(t) = X ult+h) — u(t) ||
< Cshe® 4 CL /th)(s) ds forall0 <t <1/(CiL).

Here
Cs :=C3+ C2K = C; Ca|ugl|; + CZK.

Hence, by applying Gronwall’s inequality with

o(t) = ¢(t),
g(t) :=Cshe™,
h(t) = C] L,
we have, for some constant C’ > 0,
M fult+h) —u(®)|l Loy (30)

=¢(t) < 3 C5((:5 T h(l - e(clL*‘s)t)e‘St forall0 <t <1/(CL).
-G

Therefore, we have, by inequality (30),
Ju(t+h) —u(t)|| oy < C'h forall0 <t <1/(CiL). (31)

Here the positive constant C’ is given by the formula

JE%(iL if 6 > CG4L,
CI = 2C5 1f5 - ClL/
% e(1=0/(CiL)  if 5 < CqL.

e The case (ii): t > 1/(C1L). If we let

T'_t_i
T C,L
and so
1
=T = ——,
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then we have, by inequality (29),

t
t) < Cuh(1+ G L) +C4 L d
¢(t) < Cyh(1+CiL)e” +C t_1/(c1L)¢(S) s

t
= Ch(1+CL)e + G L /O x(s)¢(s)ds fort>1/(CiL),

where
X(t—1/(c,1),4 (f) = the characteristic function of the ineterval [t —1/(C1L), t].
Hence, by applying Gronwall’s inequality (Claim 1) with
v(t) == ¢(t),

g(t) := C4h(1 4 Cy L)e*,
h(t) == C1 LX[—1/(cyp)0 (1),

we have the inequality
Ot lu(t+h) — u(t)||piy = @(t) < C"het forallt >1/(CiL),

and hence
Ju(t+h) —u(t)|| oy < C"h forallt >1/(CiL). (32)

Here the positive constant C” is given by the formula
C":=Cy(1+C1L)(1+e).
Therefore, by combining inequalities (31) and (32) we obtain that
[u(t+h) —u()|p) < Ch forallt >0,

with
C :=max{C,C"}.

Now the proof of Lemma 2 is complete. [

Finally, we prove the X,-boundedness of the derivative

= gu(t)) + 2Apu(t)

of the solution u(t) of the abstract semilinear Cauchy problem (6):

Lemma 3. Let ug € D(—2,) = D () and 0 < a < 1. If the conditions (R.1) and (R.2) are
satisfied, then we have, forall t > 1,

d u

S e =D((-%)"), (33)
d

5] <cow, 3

with a constant Ce(a) > 0. For example, we may take

F(l_j)} for0 <y <1.

Co(y) 1= max{ C(1) Callwol, KC(x), LEC() T

Proof. The proof of Lemma 3 is divided into two steps.
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Step 1: First, we have, by integral Formula (17),
h
u(t+h) —u(t) = (e(t”’)mp — etmp)uo —I—/O =)y £(5) ds
t
*Aewﬂwv@+m—f@ws
= (% — ™ Yo+ Jy () + (),
where
h
Ry s= [T I% f(s)ds
t
(k) i= [[ e (s ) - f(5)las.
However, by inequalities (16) and (15) it follows that we have, for 0 < v < 1,
y Ineq
(e(t+h)21,, _ etﬂp)uOH
v
_ Hetm,, (ehm,, _ 1) (—21,) " (_le)uo)H7
v A bt -1
< || (=27 e ] [ (e = 1) (=2) 7| - (=24p) w0l

efcst
< C(7) NZE - Cohlluol

< (C(7y) Callugl|y)h forallt > 1.

Moreover, we have, by inequalities (15) and (18),

Ll = | [ et peyas|

< [ -= fMS”ﬂ 1F

1
< -
—C(W)K/o Frh—sy
< (KC(y))h forallt>1,

and, by inequalities (19) and (22),
t
IRl = | [ (276 g5y

S/w.&lvwﬂﬂﬂwv@+m—f@mmmws

LP(Q)

<1 [ (-2t s )~ u(s) s
e—0(t—s)
SC(’Y)L(Ch)/O =)

< (LCC('y) r(gl_j))h forall t > 1.

Summing up, we have the inequality

u(t+h) —u(t)

p < Cg¢(y) forallt >Tandh > 0. (35)

Y
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Step 2: By inequality (35), it follows that the set

i (55

is bounded for 1 > 0, for each t > 1. On the other hand, the negative fractional power

Lr(Q)

(—21,) Y L(Q) — L (Q)

is compact if y > a. The proof of this fact (Corollary 1) will be given in the next section, due
to its length.
Hence, we can find a sequence {h,}, h, | 0 as n — oo, such that the sequqnce

(_le)lx (u(t +h23 — M(t)> _ (_mp)f(fy—a) <(_mp)7 (u(t +h23 — u(t)))

is a Cauchy sequence in LP (Q)), for each t > 1. Namely, there exists a function v(t) € LF(Q),
for each t > 1, such that

(—21,)" <u(t—|—hg)—u(t)> — o(t) inLP(Q)asn — oo, foreacht >1.  (36)

By passing to the limit in inequality (35) with 7 := a, we obtain that

u(t+hy) —u(t)

. _9«
el = Jim | (-25) (=) | @)
< C¢(a) foreacht >1,
where
r(1—a)
Ce(a) = max3 C(a) Calup||;, KC(a), LC C(a) i (-
Moreover, we have the assertions
w € D(-2,)  D((~2,)") = X, foreacht>1, (38)
n
w — ?)itl in LP(Q)) asn — oo, for each t > 1. (39)
n

Therefore, since the operator
(—2Ap)": LP(Q) — LP(Q)
is closed, it follows from assertions (36) and (38,39) and inequality (37) that

%’: eD((-2,)") = &,

(-2)* (5 ) = o)

and further that
= [[o()||p() < Co(a) foreacht > 1.

o

ot

Now the proof of Lemma 3 is complete. [
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3. Compactness Theorem for Spaces of Class Ky (Ao, A1)

In this section, we formulate the interpolation theory of compact linear operators of
Lions—Peetre [2] (Theorem 3) in order to give a functional analytic proof of Theorem 2
(Theorem 4 and Corollary 1). This section is the heart of the subject.

Let Ap, A1 be Banach spaces that are contained in a separable topological vector space
A. We suppose that the injections

A0—>A,
A14>.A

are both continuous. The norm of A; (i = 0, 1) will be denoted by || - || 4,
We consider the normed linear space Ag N A7 C A with the norm

lall agna, = max{llalla,, llalla, }, a€ Agn Ay,
and the normed linear space
A+ A1 ={a=ap+a1:a0€ Ay, m e A1} C A
with the norm
lallag+a, = inf{llaglla, + la1lla, : @ = ao + a1, ap € Ag, a1 € Ar}.
Then the spaces Ag N A and Ap + A; are both Banach spaces, and we have the inclusions
AgNAL C Ay Al CAy+A CA,

with continuous injections.
A separable locally convex, topological vector space A is called an intermediate space
between Ay and A; if we have the inclusions

AgNAL CACAy+ A CA,

Let {Ao, A1, A} be a triplet as above, and 0 < 6 < 1. We say that a Banach space
A C Ap+ Ajisof class ICg (A, A7) if it satisfies the following condition: For every t > 0,
there exist elements ay € Ag and a1 € Aq such that

a=ag+a €A, (40)
and that we have the inequalities
C
lao]Lay < 35 llal, @)
larlla, < CHllall4, (42)

with a constant C > 0 (see [2], Définition (1.2)).
Now we are in a position to state the main result due to Lions—Petre [2], Théoreme (2.2):

Theorem 3 (Lions—Peetre). Let { Ao, A1, A} be a triplet as above. Let 7t be a linear operator from
A into a Banach space B. We suppose that

m: Ag — B
is compact (or completely continuous) and further that

7TIA1—)B
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is continuous. o
If an intermediate Banach space A is of class KCg for 0 < 6 < 1, then the operator

n:A— B
is compact.
The purpose of this section is to prove the following theorem:
Theorem 4. Suppose that conditions (R.1) and (R.2) are satisfied. Then the injection
v D((=24)") — LP(Q)
is compact for every 0 < o < 1.

Proof. Our proof is based on Theorem 3 due to Lions—Peetre [2]. The proof is divided into
three steps.

Step 1: First, we show that the domain D ( (—le)“) of the fractional power is of class

Ki—«(D(=2,), L (Q))),
if we take

Ag:=D(—2p) = D(2Ap),

Ar = LP(Q),
A:=D((-)"),
0:=1—ua.

By inequality (8) with A := s, it follows that

|(s1-2,) 7] < forall s > 0. (43)

“1+s
Then, by using the integral representation Formula (9) we find that every function
wi= (=2,) "f e D((~2,)") with f € LP(Q),

can be expressed in the form

w=(-2) " f = 0 /Ow s (sI—2,) L fds (44)
sinta [t 1 sin7tae [ _ 1
=— /0 sTH(sI—2Ap)  fds+ p- /Hs “(sI—2Ap) “fds

:=ug+u; foreveryt > 0.
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However, we have, by resolvent estimate (43),

1

/0 sTH(sI—2Ap) “fds

sin 7T
7T

o [[ugl; = (45)

D(-21p)
sin 7T
T

[ ) 1 -2y)

Lr(Q)

/Ot1 s_‘"(—s(sl — le)_l + I)fds

sin 7t
T

LP(Q)

sinta [ 7 g -1 e

= (/0 s~ (s —21y) Hds+/0 s7ds | | fllLr )
sin 7T M/tl s« d +/tl —a g ” H

T o 1+s ° 0 ° s |Ilf Lr(Q)

sin 7ta et L
& <M/0 s ds—l—/o s ds |||l

trxfl

IN

IN

IA

_ SlD7T06<M+1)
7T

— Il

sin 7T 1 1

po (M‘*‘l)m tlj”””w

Q

and

sin 7T
* ||u1||Lv(Q) I

7T
sin 7ta o -1
- (/ ! s1-2) HdS)HfHLp(Q)

sinmte [ (® _, M
< ([ e B ) [l

sin 7Ta ® a1 __sinma %
([ ) Il = T M ey

[ty s (46)

1

LP(Q)

sinrtae . %
M _
T o

~ [[14]] s
where (see assertions (12) and (13))

~
~ ”thx‘

14
”fHLP(Q) = H(—le) u Q)

By virtue of inequalities (45) and (46), we obtain from Formula (44) that
u=uy+uy, Uyc€ D(—le), Uy € LP(Q), (47)

and further that

iy = 78

=Ct*||u

(—2Ap)"u Jul,,, (48)

C
lollp(—a,) = llnolln < =

(49)

lar

lutllr o) < Ct“H(_Q‘P)a”

’LP(Q)

with the constant

C:.=

sina7 {M+1 M}
max ,— 0.
1—a «
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We remark that inequalities (48) and (49) correspond to inequalities (41) and (42), respec-
tively, and further that Formula (47) corresponds to Formula (40).

In this way, we have proved that D ( (—le)“) is of class K1_, (D (—21p), LF(Q))).
Step 2: Secondly, by applying the Rellich-Kondrachov theorem (see [12], Theorem 6.3,
Parts I and 1I, [13], Theorem 7.26) we find that the injection

L: D(—le) — LP(O))
is compact. Indeed, we have, by a priori estimate (3),

D(—2,) = D(%,) — WP (Q) << LP(Q).
continuously compactly

Step 3: Finally, by applying Theorem 3 with

Ao = D(-2p) = D(Ap),
Ay =B:=LF(Q),

A= D( )"‘)

Ti=1,

0:=1—u,

we obtain that the injection
v D((=24)") — L)

is compact for every 0 < a < 1.
The proof of Theorem 4 is complete. []

The situation of Theorem 4 can be visualized as follows:

LPQ) —1 LP(Q)

| I
(©)

D((-2)") —— LI(Q)

I I

D(—2,) — LP(Q)

Corollary 1. If the conditions (R.1) and (R.2) ave satisfied, then the negative fractional power
(=2p) ™" LP(Q) — L/(Q)
is compact for every 0 < a < 1.

Indeed, it suffices to note that

(@) p((-2)") Coglga—éﬂym(n).

4. Proof of Theorem 2

In this section, we give the proof of Theorem 2. By virtue of the Ascoli-Arzela theorem
(see [13], Lemma 6.36), we have only to show that, for some 0 < § < 1 the Holder norm
[[u(£) || c2+p (@) of a bounded regular solution orbit u(:, ) of the semilinear Cauchy problem
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(6) is uniformly bounded for all t > 0. The proof is given by a series of claims (Claims 2-5).
We make use of the classical elliptic Schauder theory ([13], Chapter 6, Theorem 6.6) for
t > 1 and the classical linear parabolic theory [5,6] for 0 <t < 1.

Suppose that conditions (H.1) and (H.3) are satisfied. Let n < p < oo, and choose a
constant « satisfying the condition (7)

1o hcn
2 2p '

Then, by using Sobolev’s imbedding theorem we have the following assertion (Henry [7],
Theorem 1.6.1; [1], Theorem 9.1):

Xy = D((—le)a> c CHP(Q) for0<p<2a—1-— b
By inequalities (20), (21) and (33), (34), we have the following claim:

Claim 2. If u(t) is a solution of the abstract semilinear Cauchy problem (6) for t > 0, then it
follows that

u(-,t) € CHP(Q) forall t >0,
ou

g(',t) e CP(Q) forallt > 1.

Moreover, their norms in the Holder space C'*F(Q)) are uniformly bounded. Namely, we have,
for constants Cy(B) > 0and C(B) > 0,

[u(t)lcr+p@my < C1(B)  forallt >0, (50)
‘ u t < Cy(B) forallt>1. (51)
ot ClB(Q)

For each t > 1, we consider the following linear elliptic problem (see the semilinear
parabolic problem (5)):

{Au(t) =g(u(t) - % inQ, (52)

Bu(t) =0 onT,

The proof of Theorem 2 is divided into three steps.
Step 1: First, we have the following claim:

Claim 3. Let u(t) be a solution of the abstract semilinear Cauchy problem (6) for t > 0. If 0 <
B<2a—1-— %, then we can find a constant Lg > 0 such that

|g(u(x,t)) —g(u(x',1))| < Lglu(x,t) —u(x',t)| forallx, x' € Q. (53)
Proof. Indeed, we have, by inequality (50),
lu®llesa < Iu®llcrs < C1(B) forall t > 0. 54)

Since the function g(#) is locally Lipschitz continuous on R, we can find a constant Lg > 0
such that

g(u(x,t) — g(u(x',1))]
< Lglu(x,t) —u(x',t)| forallx,x’ € Q.

This proves the desired inequalty (53) for all ¢ > 0.
The proof of Claim 3 is complete. [
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Moreover, we have the following claim:

Claim 4. The function
Q> x— g(u(x,t))

is B-Holder continuous on Q) for all t > 0. More precisely, we have, for a constant C3(B) > 0,
g (u(t) o) < Cs(B) forall t > 0. (55)

Proof. First, it follows from inequalities (53) and (54) that we have, for all t > 0,

8(u(x 1)) —g(u(x', )| _ | [u(xt) —u(¥,b)|
==
|x — x/|P lx —x'|P
< Lgllullcs )
< LgCy(B) forally,x" € Qwithx # x'.

This proves the desired inequality (55).
The proof of Claim 4 is complete. O

Claim 5. Let u(t) be a solution of the abstract semilinear Cauchy problem (6) for t > 0. If 0 <
f<2x—1-— %, then it follows that

u(-,t) € C2HP(Q) forall t > 1. (56)

Moreover, the Holder norm ||u(t)||,., g is uniformly bounded for all t > 1. Namely, we have, for a
constant C4(B) > 0,
[u(t) | covp @y < Ca(p) forallt > 1. (57)

Proof. By applying the elliptic Schauder theory ([13], Chapter 6, Theorem 6.6) to the linear
elliptic problem (52), we obtain that assertion (56) holds true. Moreover, it follows from
inequalities (54), (55) and (51) that

[4®llc2ssa) = C(””‘(f)”c(m + Hg(u(f)) - aa—lz

) (58)
ch(QY)

ou
< C(”“(t)ncﬁ(o) +llg () lles @) + ‘ _ )
C1+B(Q)
where the constant C > 0 is independent of ¢.

ot
< C(Ci(B) +C3(B) + C2(B)) forallt >1,
Therefore, the desired inequality (57) follows from inequality (58) with
Ca(B) := C(C1(B) + C2(B) + C3(B))-

The proof of Claim 5 is complete. [

Step 2: On the other hand, we consider the original linear parabolic problem (see the
semilinear parabolic problem (5)):

%—”t‘ —Au(t) = g(u(t)) inQx(0,1],
Bu(t) =0 onT x (0,1], (59)
u(0) = ug in Q.
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By applying Theorems Al (inequality (A3)) and A2 (inequality (A4)) to the linear parabolic
problem (59), we obtain that the Holder norm ||u(t) ||C2+ﬁ(ﬁ) is uniformly bounded for all
0<t<1,sinceug € C2+5(ﬁ) forp<2a—1-— % < a.

Step 3: Summing up, we have proved that the Holder norm ||u(t) | -2+ () 1 uniformly

bounded for all t > 0.
The proof of Theorem 2 is now complete.

5. Applications to Diffusive Logistic Equations in Population Dynamics

In this section, as an application of Theorem 2, we study the dynamics of a population
inhabiting a strongly heterogeneous environment that is modeled by a class of diffusive
logistic equations with Dirichlet and Neumann boundary conditions of the form

%—zf(x,t) =dAw(x,t) + (m(x) —h(x)w(x,t))w(x, ) inQ x (0,00),
Bw(x/,t) = a(x') %2 + b(x')w =0 onT x (0,00), (60)
w(x,0) = ug(x) in Q.

Here:

1) A= az/ax§ + a2/ax§ +...+ 82/8x% is the Laplacian.

(2) disapositive parameter.

(3) m(x) is a real-valued function on Q.

(4)  h(x) is a non-negative function on Q.

(5) Eithera(x’) =1and b(x’) =0 on T (Neumann cases) or a(x’) =0and b(x’) =1onT
(Dirichlet case).

(6) nis the unit outward normal to the boundary I' = 9} (see Figure 1).

The purpose of this section is to discuss the changes that occur in the structure
of positive solutions of the steady state as the parameter A = 1/d varies near the first
eigenvalue Aq(m) under the condition that:

(M1) The function m(x) belongs to the space L*(Q)) and the set {x € O : m(x) > 0} has
positive measure.

This section is an expanded and revised version of the previous work Taira [14-16].

We begin with our motivation and some of the modeling process leading to the
semilinear parabolic initial boundary value problem (60). The basic interpretation of
the various terms in the semilinear parabolic problem (60) may be stated as follows (see
Tables 1 and 2):

(i) The solution w(x, t; up) represents the population density of a species inhabiting a
region ().

(i) The members of the population are supposed to move about () via the type of random
walks occurring in Brownian motion that is modeled by the diffusive term dA; hence d
represents the rate of diffusive dispersal. For large values of d the population spreads
more rapidly than for small values of d.

(iii) The local rate of change in the population density is described by the density-
dependent term m(x) — h(x)u.

(iv) The term m(x) describes the rate at which the population would grow or decline at
the location x in the absence of crowding or limitations on the availability of resources.
The sign of m(x) will be positive on favorable habitats for population growth and
negative on unfavorable ones. Specifically m(x) may be considered as a food source
or any resource which will be good in some areas and bad in others.

(v) The term —h(x)u describes the effects of crowding on the growth rate of the popu-
lation at the location x; these effects are supposed to be independent of those deter-
mining the growth rate. The size of the coefficient of intraspecific competition /(x)
describes the strength of the effects of crowding within the population.
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(vi) In terms of biology, the homogeneous Dirichlet condition represents that () is sur-
rounded by a completely hostile exterior such that any member of the population
which reaches the boundary dies immediately; in other words, the exterior of the
domain is deadly to the population (a(x’) = 0and b(x’) =1 onT).

(vii) If the boundary acts as a barrier, so that individuals reaching the boundary simply
return to the interior, a Neumann boundary condition results (a(x’) = 1and b(x') =0
onl).

(viii) If the exterior is hostile but not completely deadly, a mixed or Robin boundary
condition results (a(x") = 1 and b(x’) > 0 onT), and the analysis is similar.

(ix) A biological interpretation of our main results (Theorems 6 and 9) is that when the
environment has an impassable boundary and is on the average unfavorable, then
high diffusion rates have the same effect as they always have when the boundary
is deadly; but if the boundary is impassable and the environment is on the average
neutral or favorable, then the population can persist, no matter what its rate of
diffusion.

Table 1. A biological meaning of each term in the semilinear initial boundary value problem (60).

Term Biological Interpretation
Q Terrain
w(x, ) Population density of a species inhabiting the terrain
A A member of the population moves about the terrain via the type of random walks
occurring in Brownian motion
d Rate of diffusive dispersal
m(x) Intrinsic growth rate
h(x) Coefficient of intraspecific competition

Table 2. A biological meaning of boundary conditions in the semilinear initial boundary value
problem (60).

Boundary Condition Biological Interpretation
Dirichlet case Completely hostile (deadly) exterior
Neumann case Barrier
Robin or mixed-type case Hostile but not completely deadly exterior

In order to study the semilinear parabolic initial boundary value problem (60), we
may view it as generating a dynamical system. The semilinear parabolic problem (60) admits
a unique classical solution for sufficiently small times. However, comparison theorems
based on the maximum principle guarantee the existence of global solutions in time, since
the nonlinearity we are dealing with is sublinear. Our approach is to observe that whether
our model (60) predicts persistence or extinction for the population is determined by the
nature of the steady states. Our models are shown to possess a unique positive steady state,
that is, a unique positive solution of the semilinear elliptic boundary value problem

(61)

u(x') = onT.

d Au(x) + (m(x) — h(x)u(x))u(x) =0 inQ,
0
A solution u € C?(Q)) of the semilinear elliptic problem (61) is said to be non-trivial if it
does not identically equal zero on Q. A non-trivial solution u is called a positive solution if it
is strictly positive everywhere in ().

The object of the analysis is to determine how the spatial arrangement of favorable
and unfavorable habitats affects the population being modeled. In fact, we show that
the semilinear parabolic problem (60) admits a unique positive steady state which is a
global attractor for non-negative solutions provided d is sufficiently small (see part (ii) of
Theorem 7), so that the population persists, and further we show that the zero solution is a
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global attractor for non-negative solutions if 4 is sufficiently large (see part (i) of Theorem 7),
so that the population tends to extinction.

5.1. Dirichlet Eigenvalue Problems with Indefinite Weights

It is known that many of the qualitative aspects of the analysis depend crucially on
the size of the first positive eigenvalue A4 (m) for the linearized Dirichlet eigenvalue problem
with an indefinite weight function m(x) and a positive parameter A = 1/4:

{—A ¢(x) =Am(x)Pp(x) inQ, (62)

p(x') =0 onT.

The next theorem asserts the existence of the first positive eigenvalue A;(m) of the
Dirichlet problem (62), implying persistence for the population (see Manes-Micheletti [17],
de Figueiredo [18]):

Theorem 5 (the Dirichlet case). If the intrinsic growth rate m(x) satisfies condition (M1), then
the first eigenvalue A1 (m) of the Dirichlet problem (62) is positive and simple, and its corresponding
eigenfunction ¢1(x) may be chosen to be strictly positive everywhere in Q). Moreover, no other
eigenvalues have positive eigenfunctions:

—Ap1(x) = A (m) m(x)p1(x) inQ,
¢1(x) > 0 inQ, 63)
$1(x') =0 onT.

Some important remarks are in order:

Remark 1.

1° By the Rayleigh principle (see Manes—Micheletti [17], de Figueiredo [18]), we know that the
first eigenvalue A1 (m) is given by the variational formula

Ja IVe(x)[Pdx
Jam(x)p(x)?dx

Ar(m) = inf{ ¢ € Wy2(Q), /Q m(x)¢p(x)? dx > o}. (64)

Here Wol'z(Q) = H{(Q) is the closure of smooth functions with compact support in () in the
Sobolev space W12(Q)) = H(Q).
2° By Formula (64), we find that the first eigenvalue A1 (m) is strictly decreasing with respect
to the weight m(x) in the following sense (see [19] (Proposition 8.3)): If m1(x) < my(x)
almost everywhere in Q), then the corresponding first eigenvalues A1(my) and A (my) satisfy
the relation
Ar(m) = Aq(mp).

If the inequality is strict on a set of positive measure, it follows that A1 (my) > Aq(my).

A biological interpretation of Theorem 5 (the Dirichlet case) may be stated as follows:

(i) If there is a favorable region, then the models we consider predict persistence for
a population since the existence of the first positive eigenvalue is equivalent to the
existence of a positive density function describing the distribution of the population
of Q).

(i) The size of the first eigenvalue Aq(m) is of crucial importance; increasing Aq(m)
imposes a more stringent condition on the diffusion rate d if the population is to
persist, since 0 < d < 1/A1(m) (see Theorem 6).

(iii) It is worthwhile to point out here that the first eigenvalue A1 (m) will tend to be
smaller in situations where favorable and unfavorable habitats are closely intermin-
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gled (producing cancellation effects), and larger when the favorable region consists of
a relatively small number of relatively large isolated components.

5.2. Diffusive Logistic Dirichlet Problems

In this subsection, by using Theorem 2 we study the following semilinear parabolic
initial boundary value problem with homogeneous Dirichlet condition:

%i;’(x,t) =dAw(x,t) + (m(x) —h(x)w(x,t))w(x,t) inQ x (0,00),
w(x',t) =0 onT x (0,00), (65)
w(x,0) = vo(x) in Q.

To do so, we consider the logistic Dirichlet problem (61) with d :=1/A:

{Au(x) = A(m(x) — h(x)u(x))u(x) inQ, )

u(x'y=0 onT.

We suppose that the coefficient of intraspecific competition /(x) is a non-negative function
in the space C!(Q), and let

QO (h) = {x € Q: h(x) > 0},

and

Oo(h) = Q\ QF ().

In this paper, we study the case where /(x) > 0 on the boundary dQ). More precisely,
our structural condition on the coefficient of intraspecific competition 11(x) is stated as follows
(see Figure 4):

(Z1) The open set )y (h) consists of a finite number of connected components with bound-

ary of class C!, say Q’é(h), 1 <k < N, which are bounded away from the boundary
0Q).

Qf(h).

C=

O (h) =
K

1

This structural condition is inspired by Ouyang [20], Theorem 2.

00

Figure 4. The structural condition (Z1) on the coefficient of intraspecific competition h(x).

We consider the Dirichlet eigenvalue problem with indefinite weight function m(x) in
each connected component Qf (1)

—AY(x) = pm(x) p(x) in Qf(h),
{¢<x’) =0 on 200 (1), (67)
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where 00 (1) denotes the boundary of Qf (I).
In this paper, we suppose that

(Z2) Eachset {x € Qf(h) : m(x) > 0} has positive measure for 1 < k < N,
and let

11 (Q’é(h)) = the first eigenvalue of the Dirichlet eigenvalue problem (67).
By applying Theorem 1 with

Q:=0fHh) for1<k<N,
(M1) := (22),

we obtain that the first eigenvalue A4 (Q’é (h)) is positive and algebraically simple:

y&ﬂﬂm)>0fm1gkgw. (68)

Moreover, by the Rayleigh principle ([18], Proposition 1.10; [21], Proposition 3.4) we know
that the first eigenvalue 9 (Q’é (h)) is given by the variational formula

2 (0’5<h>)
ka |le )[*dx ‘ 1 (k 2, .
ka )2 dx ’ ll] € O( O( ))’ /Qg(h) m(x)llj<x) x> .

By virtue of assertion (68), we can associate with the open set Qo (%) a positive number
11(Qo(h)) as follows:

i (Qo(h)) = min{p (51, i (M), ., 2 (A (W) }. (69)

Remark 2. It should be noticed (see Chavel [22] (p. 18, Corollary 1); Lépez-Gémez [19] (Section 8.1))
that the value u1(Qo(h)) tends to be smaller in situations where favorable and unfavorable habits
are closely intermingled, and larger when the favorable region consists of a relatively small number
of relatively large isolated components.

Now we can state our main result that is a generalization of Cantrell-Cosner [23]
(Theorems 2.1 and 2.3), Hess—Kato [24] (Theorem 2) and Hess [25] (Theorem 27.1) to the
case where the coefficient of intraspecific competition h(x) may vanish in Q) (see Figure 4 as
above):

Theorem 6 (the logistic Dirichlet case). Let m(x) € C%(Q) for 0 < 6 < 1. Suppose that
condition (M1) and the structural conditions (Z1) and (Z2) are satisfied. Then the logistic Dirichlet
problem (66) has a unique positive solution u(A) € C2*+%(Q) for every A € (A1(m), u1(Qo(h))).
Forany A > u1(Qo(h)), there exists no positive solution of the logistic Dirichlet problem (66).
Moreover, we have the assertions (see Figure 5 below)

lim u = +oo,
o || M2
Mlgn Hu( Nc2ro@) = 0.

A biological interpretation of Theorem 6 (the logistic Dirichlet case) may be stated as
follows (see Figure 5):
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(i) If the environment has a completely hostile boundary, then the models we consider
predict persistence for a population if its diffusion rate d is below the critical value
1/A1(m) depending on the intrinsic growth rate m(x) and if it is above the critical
value 1/u1(Qo(h)) depending on the coefficient i (x) describing the strength of the
crowding effects.

(ii) In a certain sense, the most favorable situations will occur if there is a relatively large
favorable region (with good resources and without crowding effects) located some
distance away from the boundary of ().

u()) |

o A=1/d
01 Ai(m) 11 (20(h)) /

Figure 5. A biological interpretation of Theorem 6 (the logistic Dirichlet case).

Some important remarks are in order:

Remark 3.

1°  Theorem 6 may be proved by using the super-sub-solution method just as in the proof of
Fraile et al. [26] (Theorems 3.5 and 4.6), with a weaker assertion

lim u(A =y = +oo.
Mﬂl(ﬂo(h))n ( )HC(Q)

2°  Theorem 6 asserts that the assertions hold true if the dimension n is greater than 2 (n > 3).
It should be emphasized that an estimate of the growth rate of the total size [|u(A)|| 11 () =
Jo u(A) dx of the positive steady states u(A) as A 1 p1(Qo(h)) is of crucial importance from
the viewpoint of population dynamics.

3°  Lépez-Gomez—Sabina de Lis [27] analyze the pointwise growth to infinity of positive solutions
of the logistic Dirichlet problem in the case where m(x) = 1in Q) (see [27], Theorems 4.2 and
4.3). Furthermore, Garcia-Melidn et al. [28] study the pointwise behavior and the uniqueness
of positive solutions of nonlinear elliptic boundary value problems of general sublinear type,
and give the exact limiting profile of the positive solutions (see [28], Theorem 3.1, Corollary 3.3
and Theorem 6.4). Their numerical computations confirm and illuminate the above bifurcation
diagram (Figure 5).

Remark 4. Suppose that
h(x) >0 onQ, (70)

and that the intrinsic growth rate m(x) satisfies condition (M1). Then, by arguing as in the proof
of Cantrell-Cosner [23] (Theorem 4.1) we can give an estimate of the decay rate of the total size of
the positive steady states u(A):

1/3
/Qu()\) dx < (1 - Al(;”) aps Ua e (x)° dx) forall A > Ay (m).

min 5 h(x)
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Here |Q)] is the volume of Q) and
m™(x) = max{m(x), 0} forx € Q.
Therefore, we find that the quantity

(Jo m+(x)3dx)1/3
min, q h(x

|Q‘2/3

~—

is the carrying capacity of the population.

5.3. Stability for Positive Solutions of Diffusive Logistic Dirichlet Problems

Secondly, by using Theorem 2 we can study the asymptotic stability properties for
positive solutions of the logistic Dirichlet problem (66) (see [4] (Section 6)):

—Au(x) = A(m(x) —h(x)u(x))u(x) inQ,
u(x’) =0 onT.

In this case, the dynamics of a population inhabiting a strongly heterogeneous environment
is modeled by the semilinear parabolic initial boundary value problem Equation (65) with
homogeneous Dirichlet condition

W (x,t) =dAw(x,t) + (m(x) — h(x)w(x,t))w(x,t) inQ x (0,00),
(¥, ) =0 onT x (0,00),
(x,0) = uo(x) in Q.

S

w

In order to study the semilinear parabolic problem (65), we may view it as generating
a dynamical system. To do so, we consider the semilinear parabolic problem (65) with
d:=1/A

%—z;’(x,t) = %Aw(x, £+ (m(x) —h(x)w(x, t))w(x, ) inQ x (0,00),
w(x',t) =0 onT x (0,00), (71)
w(x,0) = ug(x) in Q.

It is known (see [5] (p. 320, Theorems 5.2 and 5.3) and [29] (Proposition 3.4, Lemma 4.2,

Theorem 4.5)) that the semilinear parabolic problem (71) admits a unique classical global

solution w(x, t; ug) for each initial value uy € C2+%(Q)) satisfying the compatibility conditions
up(x) >0 inQ, 72)
up(x’) =0 onT.

A positive solution wy(x) of the logistic Dirichlet problem (66) is said to be globally
asymptotically stable if we have the assertion

max|w(x, f;ug) —wo(x)| — 0 ast — oo
x€Q)

for each non-trivial initial value 1y € C2>%(Q) satisfying the compatibility conditions (72).

The next theorem, due to [16] (Theorem 1.3), describes the asymptotic stability proper-
ties for positive solutions of the logistic Dirichlet problem (66) (see Cantrell-Cosner [23]
(Theorems 2.1 and 4.9), Fraile et al. [26] (Theorem 3.7)):

Theorem 7 (the logistic Dirichlet case). Let m(x) € C°(Q) for 0 < 8 < 1. Suppose that
condition (M1) and the structural conditions (Z1) and (Z2) are satisfied. Then we have the following
three assertions (i)—(iii) (see Figure 6 below):
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(i) The zero solution of the logistic Dirichet problem (66) is globally asymptotically stable if A
is so small that
0 <A< A (m).

In this case, we can give an estimate of the decay rate of the total size of the population

/Q w(x, t;ug) dx (73)

< exp [— ()1\ - %)/\1(1) t} [JIR& (/Q uo(x)zalx)l/2 forall t > 0.

(i) A positive solution u(A) of the logistic Dirichlet problem (66) is globally asymptotically
stable for each A satisfying the condition

)\1(1’11) <AL ]/11(00(]’1))

(iii) If A is so large that
A > (Qo(h),

then we have the assertion

max |w(x,t;ug)| —> oo ast — oo (74)
xeQ)

for each non-trivial initial value ug € C>+%(Q)) satisfying the compatibility conditions (72).

u

/o

01 Ai(m) 111(0(R))

A=1/d

Figure 6. A biological interpretation of parts (i)—(iii) of Theorem 7 (the logistic Dirichlet case): Malthus
versus Verhulst.

A biological interpretation of Theorem 7 (the logistic Dirichlet case) may be stated as
follows (see Figure 6):

(i) A population will grow exponentially until limited by lack of available resources if the
diffusion rate d = 1/A is below the critical value 1/11(Qo(h)) (assertion (74) in part
(iif)); this idea is generally credited to the English economist Thomas Robert Malthus
(1776-1834).

(i) If the diffusion rate d = 1/ A is above the critical value 1/u1(Qq(h)), then the model
obeys the logistic equation introduced by the Belgian mathematical biologist Pierre
Francois Verhulst (1804-1849) around 1840 (the decay estimate (73) in part (i)).

5.4. Heuristic Approach to Diffusive Logistic Dirichlet Problems via the Semenov Approximation

This subsection is adapted from Taira [30]. For simplicity, we suppose that the coeffi-
cient of intraspecific competition /(x) satisfies the condition (70)

h(x) >0 onQ,
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and further that the intrinsic growth rate m(x) satisfies condition (M1). First, we rewrite the
logistic Dirichlet problem (66) in the form

—Au(x) = A(m(x) —h(x)u(x))u(x) inQ,
u(x) >0 inQ,
u(x'y=0 onT.
Namely, we consider the logistic Dirichlet problem (66) as the Dirichlet eigenvalue problem
with the weight m(x) — h(x) u.
However, Theorem 5 asserts that the first eigenvalue A1 (m) is the unique eigenvalue

of the Dirichlet eigenvalue problem (62) corresponding to a positive eigenfunction ¢ (x).
Now we suppose that the solution u is of the form

u=C(A)¢p1 forA > Ay(m),
where C(A) is a non-zero constant. Then we have the formulas

—Au=—C(A)Ap; = C(A) A (m)m(x)¢; inQ

and
A(m(x) —h(x)u)u = A(m(x) —h(x) u)C(A) ¢1 inQ
This implies that
Am(x) —Ah(x)u=A(m)m(x) inQ,
so that

_ ) = M) M(m)
u=u(A) = n(x) (1 3 in Q.
Therefore, we obtain that the bifurcation solution curve (A, u) of the logistic Dirichlet
problem (66) is “formally” given by Formula (75), called the Semenov approximation in
Chemistry ([31]),

u(A) = ’Z((;)) (1 - )‘1/(\’”)> for A > A1 (m). (75)

In view of Formula (75) and Figure 7 below, we find that the quantity

_ T
maXQ m N maxQ m

ming h N ming h
is the carrying capacity of the environment under condition (70).
u

maxg m
ming h

Figure 7. The formal positive solution curve (A, u(A)) for A > A1 (m) under condition (70) (the logistic
Dirichlet case).
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5.5. Diffusive Logistic Neumann Problems

In this subsection, by using Theorem 2 we study the following semilinear parabolic
initial boundary value problem with homogeneous Neumann condition of the form

aa—’f(x, £) =dAw(x,t) + (m(x) — h(x)w(x, ))w(x,t) inQ x (0,00),
W (x/,t) = onT x (0,00), (76)
w(x,0) = vp(x) inQ),

where n is the unit outward normal to Q).

In order to study the semilinear initial boundary value problem (76), we may view it
as generating a dynamical system. To do so, we consider the semilinear parabolic problem
(76) withd :=1/A:

, x
% X, t) =0 onT x (0,00), (77)
w(x,0) = up(x) in Q).

It is known (see [5] (p. 320, Theorems 5.2 and 5.3) and [29] (Proposition 3.4, Lemma 4.2,
Theorem 4.5)) that the semilinear parabolic problem (77) admits a unique classical global
solution w(x, t; vg) for each initial value vy € C>*9(Q) satisfying the compatibility conditions
vo(x) >0 in ),
fumze ! )

S2(x') =0 onT.

The analysis of the semilinear parabolic problem (76) with homogeneous Neumann
condition may be somewhat different since the operator —A with homogeneous Neumann
condition has zero as an eigenvalue. However, the same general approach to the semilinear
parabolic initial boundary value problem (65) with homogeneous Dirichlet condition can
still be used (see Hess [25]).

First, we consider the linearized Neumann eigenvalue problem with an indefinite weight
function m(x) and a real parameter v = 1/4:

{—mp(x)

9
()

We discuss the structure of positive solutions of the eigenvalue problem (79) under the
condition that:

(M2) The intrinsic growth rate m(x) belongs to the Holder space C?(Q)) for 0 < 6 < 1 and it
attains both positive and negative values in ().

vm(x)Pp(x) inQ,

79
0 onlT. @)

If condition (M2) is satisfied, then the Neumann eigenvalue problem (79) admits
a unique non-zero, eigenvalue v;(m) having a positive eigenfunction. More precisely,
we have the following theorem (see Brown-Lin [32] (Theorem 3.13) and Senn-Hess [33]
(Theorems 2 and 3)):

Theorem 8 (the Neumann case). If the intrinsic growth rate m(x) satisfies condition (M2),

then the Neumann eigenvalue problem (79) admits a unique non-zero, eigenvalue v, (m) having a

positive eigenfunction. More precisely, we have the following three assertions (i)—(iii):

(i) If [m(x)dx < 0, then the smallest, non-zero eigenvalue v, (m) of the Neumann problem
(79) is positive and simple, and its corresponding eigenfunction 1 (x) € C?>*(QQ) may
be chosen to be strictly positive everywhere in (). Moreover, no other positive eigenvalues

have positive eigenfunctions. The eigenvalue 0 is simple and has the positive eigenfunction
wl(x) =1inQ.
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(ii) If [oym(x)dx > 0, then the largest, non-zero eigenvalue vy (m) of the Neumann problem (79)
is negatwe and simple, and its corresponding eigenfunction 1 (x) € C?>T(Q)) may be chosen
to be strictly positive everywhere in Q). Moreover, no other negative eigenvalues have positive
eigenfunctions The eigenvalue 0 is simple and has the positive eigenfunction i (x) = 1 in Q.

(iii) If [ m(x)dx = 0, then the eigenvalue 0 of the Neumann problem (79) is the only eigenvalue
having the positive eigenfunction 1 (x) = 1 in Q.

Next we study the following steady state problem with a parameter d = 1/v:

—Av(x) =v(m(x) —h(x)v(x))v(x) inQ,
0V (,/ (80)
L) =0 onT.
This problem is the logistic Neumann problem.
Then we have the following generalization of Hess [25] (Example 28.6) to the case
where the coefficient of intraspecific competition /(x) may vanish in ) under the structural
conditions (Z1) and (Z2) (see Fraile et al. [26] (Theorem 3.7), Senn [34] (Theorem 3.2)):

Theorem 9 (the logistic Neumann case). Suppose that condition (M2) and the structural
conditions (Z1) and (Z2) are satisfied. Then we have the following two assertions (i) and (ii):
(i) If [om(x)dx <O, the logistic Neumann problem (80) has a unique positive solution v(A) €

C29(Q )for every A € (vi(m), u1(Qo(h))). For any A > u1(Qo(h)), there exists no
positive solution of the semilinear problem (79). Moreover, we have the assertions

lim v(A = 400,
sty 1M 2
Mliln(ﬂ [o(A )Hc2+9(6):0-

In a neighborhood of the point (0,0) the solution set of the logistic Neumann problem (80)
just consists of the two lines of trivial solutions (see Figure 8 below).

(i) [ m(x)dx > 0, the logistic Neumann problem (80) has a unique positive solution v(A) €
C2+9( )for every A € (0, u1(Qo(h))). Foreach A > p1(Qo(h)), there exists no positive
solution of the logistic Neumann problem (80). Moreover, we have the assertions

lim v(A = +o09,
s iy 1Pl

1}%””()\) —Cll2ro@m) =0,

where |
x)dx .
[ o
0 if [qm(x)dx =0.
Namely, if [ m(x)dx > 0, there occurs a secondary bifurcation from the line {0} x R

of trivial solntlons at the point (0,c) (see Figure 9 below). If [ m(x)dx = 0, there are
two curves bifurcating at the point (0,0); the line {0} x R of trivial solutzons and the curve
{(A, u(A)) : A > 0} (see Figure 10 below).

A biological interpretation of Theorem 9 (the logistic Neumann case) may be stated as
follows (see Figures 8-10):

(i) When the environment has an impassable boundary and is on the average unfavorable,
then high diffusion rates have the same effect as they always have when the boundary
is deadly (cf. Figure 5).

(ii) The behavior of solutions of the logistic Neumann problem (76) is similar to that of
the problem (65) with homogeneous Dirichlet condition if [, m(x)dx < 0. In fact,
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(iii)
(iv)

V)
(vi)

there is a positive eigenvalue with positive eigenfunction to act as a bifurcation point
for positive steady states.

If the boundary is impassable and the environment is on the average neutral or
favorable, then the population can persist, no matter what its rate of diffusion.

The behavior of solutions of the logistic Neumann problem (76) is similar to that of
the problem (65) with homogeneous Dirichlet condition if [, m(x)dx < 0. In fact,
there is a positive eigenvalue with a positive eigenfunction to act as a bifurcation
point for positive steady states (cf. Figure 6).

If [ m(x)dx > 0, there occurs a secondary bifurcation from the line {0} x R of trivial
solutions.

If [, m(x)dx = 0, there are two curves bifurcating at the point (0,0); the line {0} x R
of trivial solutions and the curve {(A,v(A)) : A > 0}.

/ﬂm(x)dw<0

'

1
1
1
1
1
1
1
1
1
1
1
1
Yo : ')
1
1
1
1

I b,

A=1/d
v1(m) #1(Qo(h)) /

Figure 8. A biological interpretation of part (i) of Theorem 9 in the case where fQ m(x)dx < O

Malthus versus Verhulst.

v

Vo

i

C.4

<
—_

p
N

vi(m) |° 11(Q0(h))

A=1/d

Figure 9. A biological interpretation of part (ii) of Theorem 9 in the case where fQ m(x)dx > 0:
Malthus versus Verhulst.
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(/Qm(x)dxzo

v

A=1/d

Figure 10. A biological interpretation of part (i) of Theorem 9 in the case where [ m(x)dx = 0:
Malthus versus Verhulst.

More precisely, if the weight function m(x) satisfies condition (M2), by using Cantrell-
Cosner [23] (Theorem 4.1) and also Brown-Lin [32] (Theorem 3.13) we can prove the
following stability theorem ([4], Theorem 1.5):

Theorem 10 (the logistic Neumann case). Suppose that condition (M2) and the structural
conditions (Z1) and (Z2) are satisfied. Then we have the following two assertions (i) and (ii):

(i) If [ m(x)dx <0, then we have the following three assertions (a)~(c) (see Figure 11 below):

(a)  The zero solution of the logistic Neumann problem (80) is globally asymptotically
stable if A is so small that 0 < A < v1(m). In this case, we can obtain an estimate of
the decay rate of the total size of the population

/Q w(x, t;vg) dx (81)

1/2

< exp {— (/1\ - 1/1(1711))1/1(1) t} |0)1/2 (/Q vg(x)? dx) forallt > 0.

(b) A positive solution v(A) of the logistic Neumann problem (80) is globally asymptoti-
cally stable for each v (m) < A < p1(Qo(h)).
(c) If Aisso large that A > 1 (Qq(h)), then we have the assertion

max |w(x,t;vg)] —> 00 ast — oo (82)
xeQ)

for each non-trivial initial value vy € C?T9(QY) satisfying the compatibility conditions (78).

(ii)  If [ m(x)dx > 0, then we have the following two assertions (d) and (e) (see Figures 12 and 13
below):

(d) A positive solution v(A) of the logistic Neumann problem (80) is globally asymptoti-
cally stable for each 0 < A < p1(Qq(h)).

(e) If Ais so large that A > p1(Qq(h)), then we have assertion (82) for each non-trivial
initial value vy € C>T9(Q) satisfying the compatibility conditions (78).

Finally, we consider the case where the coefficient of intraspecific competition #(x)

satisfies the condition (70) B
h(x) >0 onQ.

If the weight function m(x) satisfies condition (M2), then, by combining Theorem 2 and
Brown-Lin [32] (Theorem 3.13) we can characterize the carrying capacity of the environment
(see [23] (Theorem 4.1); [4] (Theorem 1.6)):
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Theorem 11 (the Neumann case). If conditions (M2) and (70) are satisfied, then we obtain that
the quantity
| maxgm _ maxgm’

- mingh  mingh
is the carrying capacity of the environment (see Figures 11-13).

Remark 5. Suppose that condition (70) is satisfied in the case [ m(x)dx < 0. Then, by using the
variational formula of Brown—Lin [32] (Theorem 3.13) we can prove the following decay estimate of
the total size of the positive steady states v(\) (see Figure 11):

vi(m mT(x)3 dx) /3
/Qv()\)dxﬁ (1—1(A)>|Q2/3 (Jo ™ (x)dx)

min, 7 (x)

forall A > vy(m).

This proves that the quantity
(Jom™t(x)® dx)l/3

xeQ h(x)

QP
min

is the carrying capacity of the population, just as in the Dirichlet case (see Remark 4).

é _ maxg m

ming h

Figure 11. A biological interpretation of part (i) of Theorem 10 in the case where [ m(x)dx < 0
under condition (70) (Verhulst).

v /g;m(x)d:c>0

ﬁ _ maxﬁm

ming h

c.4 v(A)

vi(m) |0 A

Figure 12. A biological interpretation of Theorem 10 in the case where f() m(x)dx > 0 under
condition (70) (Verhulst).
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v
/ m(z)dr =0
Q
t= ming h
v(A)
0 A

Figure 13. A biological interpretation of Theorem 10 in the case where [, m(x)dx = 0 under
condition (70) (Verhulst).
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Appendix A. Classical Results for Linear Initial Boundary Value Problems of
Parabolic Type

In this appendix we study linear initial boundary value problems of parabolic type in
the framework of Holder spaces. The material here is adapted from Ladyzhenskaya et al. [5]
and Friedman [6].

Let Q) be a bounded domain in R"” with boundary I' = 9Q) (see Figure Al) and let
Qr = Q x (0,T) be a cylinder in R"*! (see Figure A2). In this section we consider the
following two linear initial boundary value problems for the heat equation:

%—? —Au=f inQr,
u=¢ onT x (0,T) (the Diriclet condition), (A1)
ul,_g=1up onQ,

and
aa—”t‘ —Au=f in Qr,
g—z +bo(x")u=¢ onT x (0,T) (the oblique derivative condition), (A2)
Ul_g = tip on Q.

Here:

(1) Bisan outward pointing, nowhere tangent vector field of class C'*7 for 0 < ¢ < 1 on
the boundary I'.
(2) by € CH9(T)and byp(x') > 0onT.
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Figure A1. The vector field B is outward and nowhere tangent to the boundary I'.

Q Qr=0x(0,T)

Figure A2. The cylindrical domain Qr = Q X (0, T) and the lateral surface 't =T x (0, T).

Appendix A.1. Function Spaces for Equations of Parabolic Type

In this subsection we introduce function spaces associated with the linear initial
boundary value problems (A1) and (A2). -
We consider o-Holder continuous functions on Q) x [0, c0) where we use the metric

d((x,t), (x’,t')) _ (|x—x'|2+ |t_i’/‘)1/2

for the computation of the Holder constant (see [6] (Chapter 3, Section 2)).
(I) The space C7/2(Qr) for 0 < ¢ < 1: First, we let

C7/2(Qr) := the space of continuous functions u(x,t) € C(Qr)
that are o-Holder continuous with respect to x

and o /2-Holder continuous with respect to t.
We introduce the following two seminorms:

u(x, t) —u(x',b)]

(), = sup

(wneor,  1x=¥lT
(xlrt)eQT
(0/2) _ u(x, t) —u(x, )|
o (u) = sup /
O eear,  IE- 17
(xt")eQr
and the norm ) - 2)
o o o
ullg, = (ﬁ;ﬂ;%lu(x,f)l + (W) o, T (W)ig

We remark that:
M uec(o,T),c@) = )7, <.
@ uec2(j0,T],C(Q) = (u)3? < .

(I1) The space C1*7(1+9)/2(Q7) for 0 < ¢ < 1: Secondly, we let

C1+o(140)/2(Q1) := the space of continuously differentiable functions
u(x,t) € CH0(Qr) with respect to x such that
dxu(x,t) are o-Holder continuous with respect to x and
o /2-Holder continuous with respect to t and further that
u(x,t)is (1 + o) /2-Holder continuous with respect to t.
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We introduce the following three seminorms:

_ !/
° (axu>i‘% = sup [9x14(x, 1) E)/x:(x,t)|,
< wheor, | — ]
(x,/t)EQT
((e+1)/2) _ u(x, t) —u(x, )|
UG = e, M
(xt')eQr
dxu(x, t) — dyu(x, t')]
o 0.)\'7/? = sup 19x ,
X*/t0r (x£)€0, |t_t/|a/2
(x,t/)GQT
and the norm
Jullo, ) = max [u(x,t)] + max [deu(x,t)|
! (x,1)€Qr (xt)eQr
1)/2 /2
+ (@) + )T )P
We remark that:

(1) uec(j0,T],CH (@) = (@:u)\ < .
() ueC2([0,T],C (D) = (B.u)y”) < oo
(I1T) The space C2+71+9/2(Qr) for 0 < ¢ < 1: Thirdly, we let

C*ro1%7/2(Qr) := the space of continuously differentiable functions
u(x,t) € C*1(Qr) twice with respect to x and once
with respect to t such that ou(x, t) are (1 + o) /2-Holder
continuous with respect to t, that osu(x, t) is o-Holder
continuous with respect to x and ¢ /2-Holder continuous
with respect to t and further that 92u(x, t) are o-Holder
continuous with respect to x and ¢ /2-Holder continuous

with respect to ¢.

We introduce the following five seminorms:

o /
. <8tu>§{%T: sup [9ru(x, 1) a,tl;<x't)|,
ST (xpear, |x = ]
(«,5)eQr
2u(x,t) — o2u(x’,t
. <8§u>(0) = sup ‘xu(x ) /x:(x )|,
QT (x)eQr, |x — x|
(¥ ,H)eQr
2 oru(x,t) — opu(x, t'
° <at”>E,UQ/T) _ | t ( ) /;/2( )|,
(x)€Qr, |t —#]
(x,t’)GQT
1 2 oyu(x,t) — o u(x,t'
o @)D = g |91 ( )/ 1+X)Ez )
T whegr,  |t—t]0F0
(xt)eQr

(¢/2) Zu(x,t) — 2u(x, '
° <8§u> = su [9%u(x. £) /;/2( )’,
LT (wheqr, |t —#]
(x,t/)EQT
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and the norm

lullgr
= ma><7\u(x,t)|+ max_|dyu(x, )|+ max [dpu(x, t)|+ max 8§u(x,t)’
(xt)€QT (xt)€Qr (xt)€QT (xt)€Qr
)5+ () o+ G+ @+ ()
We remark that:

(M) uec()oT],CH(Q) = (Bu)\) < oo
@ ueCo2((0,T),CHQ)) = (%u >("/2) < oo,
(IV) The space C2*719/2(T7) for 0 < ¢ < 1: Finally, we let

C*toA+7/2(T7) := the space of functions ¢ defined on 't such
that there exist functions ¥ € C2+71+9/2(Qr)

which coincide with i on I'r.
We equip the Holder space C27"1+9/2(T1) with the norm

2+0) (2+0)
g2 = inf|¥) 57,
where the infimum is taken over all such ¥.

Appendix A.2. Unique Solvability Theorems for Linear Initial Boundary Value Problems of
Parabolic Type

In this subsection we formulate unique solvability theorems for problems (A1) and (A2)
in the framework of Holder spaces.
(I) The Dirichlet case: Let 0 < u < 1and T > 0. We suppose that

f e cr2(Qr),
g e CHA2,u/2+1 (TT)/
Up € C;H_z(ﬁ).

Then we have the following theorem ([5] (Chapter IV, Theorem 5.2)):
Theorem A1 (the Dirichlet case). Suppose that the following compatibility condition is satisfied:
o(x',0) = up(x") forallx' €T,
Aug(x') + f(x',0) = ?;f( ’,0) forallx' €T.

Then the linear initial boundary value problem (A1) has a unique solution
u(x, t) € CHP21/251(Q) x [0, T]).
Moreover, we have the a priori estimate
Il < e (A1) + 1ol + molly ™), (A3)

with a constant C; = C1(T) > 0.
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(II) The regular oblique derivative case: Let 0 < u < 1and T > 0. We suppose that

fecH2(Qr),
g < crtl(ut+1)/2 (ﬁ),
up € C”+2(ﬁ).

Then we have the following theorem ([5] (Chapter IV, Theorem 5.3)):

Theorem A2 (the regular oblique derivative case). Suppose that the following compatibility
condition is satisfied:

g;(x’) +bo(x")ug(x') = @(x',0) forall x" €T.

Then the linear initial boundary value problem (A2) has a unique solution
u(x, t) € CH21H/271(Q x [0, T]).
Moreover, we have the a priori estimate
+2 +1 +2
Il < (A1) + 1ol + ol ™), (A4)

with a constant C; = C(T) > 0.
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