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Abstract: This article is mainly concerned with the fixed-time and predefined-time synchronization
problem for a type of complex-valued BAM neural networks with stochastic perturbations and
impulse effect. First, some previous fixed-time stability results on nonlinear impulsive systems in
which stabilizing and destabilizing impulses were separately analyzed are extended to a general case
in which the stabilizing and destabilizing impulses can be handled simultaneously. Additionally,
using the same logic, a new predefined-time stability lemma for stochastic nonlinear systems with
a general impulsive effect is obtained by using the inequality technique. Then, based on these
novel results, two novel controllers are implemented to derive some simple fixed/predefined-time
synchronization criteria for the considered complex-valued impulsive BAM neural networks with
stochastic perturbations using the non-separation method. Finally, two numerical examples are given
to demonstrate the feasibility of the obtained results.

Keywords: stochastic perturbation; impulse effect; complex-valued BAM neural network; fixed-time
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1. Introduction

The BAM neural network was initially introduced in 1987 [1], and consists of two layers
of neurons, each of which is linked to all the neurons in the other layer, while the neurons
in the same layer do not have any connection to each other. Due to the powerful associative
memory and information association ability of BAM neural network, it has been widely
studied by scholars in recent years [2–4], who have applied them to many key areas, such
as pattern recognition, secure communication, and automatic control engineering [5–8],
etc. For example, Ref. [3] investigated decentralized event-triggered stability analysis of
neutral-type BAM neural networks with Markovian jump parameters and mixed time
varying delays. Ref. [5] investigated the fixed-time (FXT) synchronization of complex-
valued memristive BAM neural networks with leakage delays and its application to image
encryption and decryption problem. Ref. [6] concerned the asymptotic anti-synchronization
issue of memristive BAM neural networks, and then applied their results to a network
security communication study. In Ref. [7], the authors investigated the finite-time (FNT)
projection synchronization problem of memristive BAM neural networks together with
application to image encryption.

The recent decades witnessed the wide investigation of various types of synchroniza-
tion issue of neural networks with or without stochastic fluctuations including asymptotic
synchronization, exponential synchronization, general decay synchronization, FNT syn-
chronization, FXT synchronization, and predefined-time (PDT) synchronization. Among
them, FNT synchronization has attracted a great concern because it can achieve the syn-
chronization aim in a FNT and has good robustness and anti-interference properties [9–11].
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However, the settling time (ST, which can be seen as the minimum upper bound of system
state to reach zero) of FNT synchronization is extensively relevant to the initial values of
system, and thus it is unable to exert its superiority when the initial values of a system
are unknown or can not be obtained, which undoubtedly limits the specific application
of the FNT control techniques. In order to cope with this difficult issue, Polyakov [12]
introduced FXT stability concept, in which its ST does not depend on the initial values of
the system but only relevant on the system parameters and the controller gains. On this
basis, a great number of scholars have studied FXT synchronization of various types of
nonlinear systems [13–17].

It is worth noting that, however, the FXT synchronization also has some limitations,
such as its ST still being dependent on the system parameters, and it can therefore not
be specified in advance. However, in some special engineering applications, such as DC
Microgrid [18], secure communication [19], etc., it is required that the system states achieve
the synchronization aim within a pre-defined time. Thus, another type of synchronization,
PDT synchronization, has been introduced and well studied in the past few years [17]. The
one advantage of PDT synchronization is that its ST can be an arbitrary number and can be
scheduled in advance.

In addition, with the continuous development of neural network theory, it has been
found that real-valued neural networks have some limitations when solving many practical
application problems, for example XOR [20], reaction-convection-diffusion systems [21,22],
etc. Thus, as a extension of real-valued neural network, the complex-valued neural network
has been adopted and investigated in depth since they have a more complex structure
and richer properties, which can solve the above problems more easily and effectively.
Currently, two methods have been introduced and used to analyze the dynamical behaviors
of complex-valued neural network: one is the separation method, in which the real part and
imaginary part of network are divided into two real-valued systems and then the dynamics
of the these systems are studied separately [23–25]. The separation method is feasible, but
there are some disadvantages, such as, after separation, the dimensionality of the system
becomes two-fold and there is a need to design controllers for the real and imaginary
parts of the system separately, which greatly increases the computational effort and control
cost. The other is the non-separated approach, i.e., discussing the dynamical behavior
of the original complex-valued neural network directly on the complex domain [17,26].
Compared to the separation method, the non-separation method is much simpler, less
computationally intensive, and easier to implement. Based on this, this paper uses a non-
separated approach to discuss the synchronization of the considered complex-valued BAM
neural network.

In addition, it is worth noting that in neural network systems, synaptic transmission
can be seen as a noisy process of random fluctuation from the release of neurotransmitters
and other probabilistic causes [27]. That is, there might exist stochastic disturbances in
neural network systems. Currently, there are many excellent studies on the synchronization
of neural networks with stochastic perturbations [28–36]. Such as, in Refs. [35,36], the
FXT/PDT synchronization for a class of fuzzy neural networks with stochastic perturba-
tions and the PDT synchronization of time-delayed BAM neural networks with stochastic
fluctuations are discussed, respectively. However, in some actual situations, such as in the
opening and closing of the operation buttons, the change of frequency or sudden noise
may cause an unexpected change in the system state, i.e., the impulse effect [33,37–39].
Therefore, investigating the synchronization of impulsive neural networks with stochastic
fluctuations is of great theoretical significance. So far, however, there are few results on
the FXT/PDT synchronization of complex-valued neural networks with both of these
two effects. Especially, there are very seldom works on the PDT synchronization of these
kinds of networks due to the lack of available PDT stability results for impulsive systems,
not to mention the PDT stability of nonlinear systems with both impulsive effects and
stochastic perturbations.
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Inspired by the above analysis, in this paper, we focused on the FXT/PDT synchro-
nization issue of a class of complex-valued BAM neural networks with both impulsive
effects and stochastic perturbations. The main contributions of our paper are mainly re-
flected in the following four aspects. (1) Some new unified FXT/PDT stability results for
nonlinear impulsive systems with stabilizing and destabilizing impulses are introduced via
employing the inequality technique. (2) Some simple FXT/PDT synchronization criteria for
complex-valued BAM neural networks with stochastic perturbations and general impulse
effects are derived via designing novel controllers. (3) The ST estimation obtained in the
current study is more accurate compared to some early published works [15,40,41]. (4) Un-
like the traditional separation method [5,25], this paper uses a non-separation method
to deal with the FXT/PDT synchronization of considered complex-valued BAM neural
networks, which is more simple analytically and can effectively reduce the computational
and control burden.

Notation 1. In this article, the set of natural numbers is denoted by N, the set of all real numbers
is denoted by R, R+ stands to the set of non-negative numbers, Rn is the set consisting of all
n−dimensional real vectors. C is the set of complex numbers. Cn denotes the n−dimensional
complex vector-valued space. For any λ ∈ C, λ is the conjugate of λ. Re(λ) and Im(λ) represent
separately the real and imaginary parts of λ. |λ| =

√
λλ. (Ω, F, P) denotes a complete filtered

probability space, in which the filtration F = {Ft; t ∈ R+} satisfies the usual condition that F0
contains all P-null sets in F . E(.) denotes the mathematical expectation corresponding to the
probability measure P. The sign function of λ is [λ] = sign(Re(λ)) + isign(Im(λ)). ‖ · ‖ denotes

the Euclidean norm, that is ψ = (ψ1, ψ2, . . . , ψn)T ∈ Rn, ‖ψ‖ =
√

∑n
i=1 |ψi|2.

2. System Description and Preliminary Knowledge

Consider the following complex-valued BAM neural network with stochastic
perturbations

dxi(t) = [−aixi(t) +
m

∑
j=1

cij h̄j
(
yj(t)

)
+ Ii(t)]dt + $i(t, xi(t))dω(t), t 6= tτ ,

dyj(t) = [−bjyj(t) +
n

∑
i=1

dji ḡi(xi(t)) + Jj(t)]dt + $̃j
(
t, yj(t)

)
dω(t), t 6= tτ ,

∆xi(t+τ ) = xi(t+τ )− xi(t−τ ) = (ξi − 1)xi(tτ), t = tτ ,
∆yj(t+τ ) = yj(t+τ )− yj(t−τ ) = (ξ̃ j − 1)yj(tτ), t = tτ ,

(1)

where τ ∈ N, i ∈ Ĩ , {1, · · · , n}, j ∈ J̃ , {1, · · · , m}, positive integers n and m denote
the number of neurons from the neural domains Xu and Yu, respectively. xi(t) ∈ C and
yj(t) ∈ C stand for the state variables of the ith neuron of neural domain Xu and the jth
neuron of neural domain Yu, respectively. ai ∈ C and bj ∈ C represent the self-inhibition
rate of the ith neuron in the neural domain Xu and the jth neuron in the neural domain Yu,
respectively. cij ∈ C and dji ∈ C are the synaptic connection weights. h̄j(.) ∈ C and ḡi(.) ∈
C denote the activation functions. Ii(t) ∈ C and Jj(t) ∈ C stand for the external inputs.
$i(t) : C× Rn → C and $̃j(t) : C× Rn → C denote the noise intensity function. ω(t) ∈ C
denotes a Brown motion given on the probability space (Ω, F, P). ξi and ξ̃ j are positive
constants. For all τ ∈ N, xi(t+τ ) = limt→tτ+0 xi(t), xi(t−τ ) = limt→tτ−0 xi(t) = xi(tτ),
yj(t+τ ) = limt→tτ+0 yj(t), yj(t−τ ) = limt→tτ−0 yj(t) = yj(tτ) denote the impulse jumps at
the impulse moments tτ . The impulse sequence {tτ}τ∈N satisfies t1 < t2 < . . . < tτ < . . .
and limτ→+∞ tτ = +∞. The initial conditions of system (1) are xi(0) = x0

i ∈ C and
yj(0) = y0

j ∈ C.
The response system of the above drive system is described as follows:
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

dx̃i(t) = [−ai x̃i(t) +
m

∑
j=1

cij h̄j
(
ỹj(t)

)
+ Ii(t) + ui(t)]dt + $i(t, x̃i(t))dω(t), t 6= tτ ,

dỹj(t) = [−bjỹj(t) +
n

∑
i=1

dji ḡi(x̃i(t)) + Jj(t) + vj(t)]dt + $̃j
(
t, ỹj(t)

)
dω(t), t 6= tτ ,

∆x̃i(tτ) = x̃i(t+τ )− x̃i(t−τ ) = (ξi − 1)x̃i(tτ), t = tτ ,
∆ỹj(tτ) = ỹj(t+τ )− ỹj(t−τ ) = (ξ̃ j − 1)ỹj(tτ), t = tτ ,

(2)

where x̃i(t) ∈ C and ỹi(t) ∈ C denote the state variables of the response system. ui(t)
and vj(t) are the controllers that will be designed in the next section. The initial values of
system (2) are x̃i(0) = x̃0

i ∈ C and ỹi(0) = ỹ0
i ∈ C.

Let si(t) = x̃i(t)− xi(t) and rj(t) = ỹj(t)− yj(t), then the error systems of (1) and (2)
can be described as

dsi(t) = [−aisi(t) +
m

∑
j=1

cijhj(rj(t)) + ui(t)]dt + σi(t, si(t))dω(t), t 6= tτ ,

drj(t) = [−bjrj(t) +
n

∑
i=1

djigi(si(t)) + vj(t)]dt + σ̃j(t, rj(t))dω(t), t 6= tτ ,

∆si(tτ) = si(t+τ )− si(t−τ ) = (ξi − 1)si(tτ), t = tτ ,
∆rj(tτ) = rj(t+τ )− rj(t−τ ) = (ξ̃ j − 1)rj(tτ), t = tτ ,

(3)

where σi(t, si(t)) = $i(t, x̃i(t))− $i(t, xi(t)), σ̃j(t, rj(t)) = $̃j(t, ỹj(t))− $̃j(t, yj(t)), hj(rj(t)) =
h̄j(ỹj(t))− h̄j(yj(t)) and gi(si(t)) = ḡi(x̃i(t))− ḡi(xi(t)).

The following are our assumptions about complex-valued activation functions and
stochastic noise intensity functions.

Assumption 1. The complex-valued activation functions h̄j(t) and ḡi(t) satisfy the Lipschitz
condition, that is for ∀z1, z2 ∈ C (z1 6= z2), there are scalers Lg

i > 0 and Lh
j > 0 such that

|ḡi(z1)− ḡi(z2)| ≤ Lg
i |z1 − z2|, |h̄j(z1)− h̄j(z2)| ≤ Lh

j |z1 − z2|.

where i ∈ Ĩ and j ∈ J̃.

Assumption 2. For any complex-valued constant z, there exist positive constants ηi and η̃j > 0
such that σi(t) and σ̃j(t) satisfy

1
2

σi(t, z)σi(t, z) ≤ ηi|z|2,
1
2

σ̃j(t, z)σ̃j(t, z(t)) ≤ η̃j|z|2.

Definition 1 ([42]). If there exists a positive integer τ0 and a constant ντ > 0, such that

t2 − t1

ντ
− τ0 ≤ Ξκ(t1, t2) ≤

t2 − t1

ντ
+ τ0,

where Ξκ(t1, t2) is the number of impulses of impulse sequence κ = {tτ} ∈ N in time interval
(t1, t2), then the impulse sequence κ = {tτ}τ∈N is said to have an average impulse interval ντ .

Consider the following complex-valued stochastic nonlinear system{
dψ(t) = f (t, ψ(t))dt + σ(t, ψ(t))dω(t), ψ(0) = ψ0, t 6= tτ ,
∆x|t=tτ = Jk(tτ , ψ(tτ)), tτ ∈ N,

(4)

where ψ(t) = (ψ1(t), ψ2(t), . . . , ψn(t))T ∈ Cn is the state vector of the system. f (·) : R× Cn →
Cn and σ(·) : C× Rn → Cn are the continuous function given in advance and satisfy f (0) = 0,
σ(0) = 0. ω(t) ∈ C denotes the Brown motion. Jk : R+ × Cn → Cn is a continuous function. For
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all τ ∈ N, ∆ψ(tτ) = ψ(t+τ )− ψ(t−τ ) denotes the impulse jump at the impulse moment tτ , and
ψ(t+τ ) = limt→tτ+0 ψ(t), ψ(t−τ ) = limt→tτ−0 ψ(t) = ψ(tτ). The impulsive sequence {tτ}τ∈N
satisfies 0 ≤ t0 < t1 < . . . < tτ < . . . and limτ→+∞ tτ = +∞.

Definition 2 ([43]). Let C1,2(R+ × Cn; R+) be the set of all non-negative functions V(t, ψ, ψ̄) on
R+ × Cn its partial derivative for t is continuous and second-order partial derivatives for ψ and ψ̄
exist, then for each V ∈ C1,2(R+ × Cn; R+), its operator £V(t, ψ, ψ̄) is defined as

£V(t, ψ, ψ̄) =
∂V(t, ψ, ψ̄)

∂t
+

∂V(t, ψ, ψ̄)

∂ψ
f (t) +

∂V(t, ψ, ψ̄)

∂ψ̄
f̄ (t) +

1
2

σT(t)
∂2V(t, ψ, ψ̄)

∂ψ2 σ(t)

+ σT(t)
∂2V(t, ψ, ψ̄)

∂ψ∂ψ̄
σ̄(t) +

1
2

σ̄T(t)
∂2V(t, ψ, ψ̄)

∂ψ̄2 σ̄(t).

Definition 3 ([44]). The zero solution of system (4) is called to be FXT stable in probability, if
solution ψ(t, ψ0) which corresponds to initial condition ψ0 ∈ Cn satisfies

(1) For any initial condition ψ0( 6= 0) ∈ Cn, there exists a ST function
T(ψ0, κ) = inf{t|ψ(t, ψ0) = 0} such that Pro{T(ψ0, κ) < ∞} = 1.

(2) Stability in probability: for every pair of ε ∈ (0, 1) and υ > 0, there exists a δ = δ(ε, υ) > 0
such that Pro{|ψ(t, ψ0)| ≤ υ for all t ≥ 0} ≥ 1− ε, whenever |ψ0| < δ.

(3) The mathematical expectation of T(ψ0, κ) is bounded by a constant Tε > 0 such that

E(T(ψ0, κ)) ≤ Tε, ∀ψ0 ∈ Cn.

Definition 4 ([35]). For any initial value ψ0 ∈ Cn, the given positive constants Tc, if the zero
solution of system (4) is FXT stable in probability, and satisfies T(ψ0, κ) ≤ Tc for any Tc > 0, the
zero solution of (4) is called to be PDT stable in probability.

Lemma 1 ([26]). For any z0 ∈ C, one has

z0 + z0 = 2Re(z0) ≤ 2|z0|, [z0]z0 + [z0]z0 ≥ 2|z0|.

Lemma 2 ([45]). Assume α1, α2, . . . , αe ≥ 0, 0 < δ ≤ 1, ζ > 1, then

e

∑
ι=1

αδ
ι ≥ (

e

∑
ι=1

αι)
δ,

e

∑
ι=1

α
ζ
ι ≥ n1−ζ(

e

∑
ι=1

αι)
ζ .

Lemma 3 ([40,41]). Suppose there exists a function V(t, ψ(t)) satisfying V(t, 0) = 0, such that
the following two statements hold
(i) α1‖ψ(t)‖2 ≤ V(t, ψ(t)) ≤ α2‖ψ(t)‖2, for any t ∈ R+,
(ii) {

£V(t, ψ(t)) ≤ KV(t, ψ(t))− µVδ(t, ψ(t))− λVγ(t, ψ(t)), t 6= tτ ,
V
(
t+τ , ψ

(
t+τ
))
≤ ξV(tτ , ψ(tτ)), t = tτ ,

(5)

where K < min{µ, λ,− ln ξ
ντ
}, α1, α2, µ, ξ and λ are positive scalers, 0 < δ < 1 and γ > 1 are

constants, then the origin for system (4) is FXT stable in probability, and the ST T1 is estimated by

T1 =
1

η(1− γ)
ln
(

1− η

λv

)
+

1
η(1− δ)

ln
(

µ

µ− ηπ2

)
,

where η = K + ln ξ
ντ

, v = ξ−τ0(1−γ)sign(1−ξ), π = ξ−τ0(1−δ)sign(1−ξ).

Proof. By combining the similar analysis employed in Theorem 3.1 in Ref. [30] and
Theorems 1 and 2 in Ref. [41], we can prove Lemma 3 by constructing an impulsive
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comparison system and using some inequality techniques. The detailed proof of Lemma 3
is omitted here to save space.

Remark 1. In fact, in a recent study [41], the authors investigated the FXT stable issue of deter-
ministic nonlinear system with impulsive effects by using the well-known comparison principle
of impulsive differential inequality and some analysis methods. However, due to the limitation of
the applied analysis method in Ref. [41], it discusses the impulses separately as stabilizing and
destabilizing impulsives, which was done in Theorems 1 and 2 in Ref. [41]. In Lemma 3, however,
we have combined the results of these two Theorems by introducing a novel term sign(1− ξ), which
reduces the mathematical expression of ST. In addition, Lemma 3 consider the stochastic perturba-
tions besides impulsive effects. From this aspect, the FXT stable result concluded by Lemma 3 is
more general and has a better applicability.

Lemma 4. If there exists Lyapunov function V(t, ψ(t)) such that:
(i) α1‖ψ(t)‖2 ≤ V(t, ψ(t)) ≤ α2‖ψ(t)‖2, for any t ∈ R+, z ∈ Rn.
(ii)  £(V)(t, ψ(t)) ≤ T0

Tc

(
KV(t, ψ(t))− µVδ(t, ψ(t))− λVγ(t, ψ(t))

)
, t 6= tτ ,

V
(
t+τ , ψ

(
t+τ
))
≤ ξV(tτ , ψ(tτ)), t = tτ ,

(6)

where T0 = 1
λ(γ−1)v + π2

µ(1−δ)
, Tc is an arbitrary number given in advance. α1 > 0, α2 > 0,

K < min{µ, λ,− Tc
T0

(
ln ξ
ντ

)
}, positive constants µ, ξ, λ, δ and γ are given in Lemma 3, then the

zero solution of the system (4) is PDT stable in probability.

Proof. It follows from Lemma 3 that the zero solution of the system (4) under conditions (i)
and (ii) are FXT stable in probability and its ST satisfies

T2 =
1

η(1− γ)
ln

(
1− η

T0
Tc

λv

)
+

1
η(1− δ)

ln

( T0
Tc

µ

T0
Tc

µ− ηπ2

)
,

where η = T0
Tc

K + ln ξ
ντ

. According to the inequality 1− 1
x < ln x < x− 1(x > 0), we have

T2 ≤
1

η(1− γ)

(
− η

T0
Tc

λv

)
+

1
η(1− δ)

(
1−

T0
Tc

µ− ηπ2

T0
Tc

µ

)

≤
Tc
T0

λ(γ− 1)v
+

π2 Tc
T0

µ(1− δ)

=
Tc

T0

(
1

λ(γ− 1)v
+

π2

µ(1− δ)

)
= Tc.

The proof is achieved.

Remark 2. In some circumstance where the initial conditions of the system are not accessible, the
PDT synchronization has better application prospects than FXT synchronization due to its ST
being independent of the initial values and system parameters. Presently, some novel results have
been introduced on PDT synchronization of nonlinear systems without the impulsive effect [19,46].
However, research results on PDT synchronization of nonlinear systems with impulses are still
very few due to the inconvenience caused by impulsive gains, in particularly, there are almost no
studies on PDT synchronization of nonlinear systems with both impulses and stochastic perturba-
tions. Here, we derived the PDT stability criteria for these kinds of systems by applying the novel
inequality technique.
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3. Main Results
3.1. Fixed Time Synchronization

In this subsection, the FXT stable given in Lemma 4 will be applied to discuss FXT
synchronization of complex-valued impulsive BAM neural networks with stochastic per-
turbations. To make the systems (1) and (2) achieve FXT synchronization, we only need to
prove that the error system (3) is stable in FXT. To do this, the following control protocol
is developed {

ui(t) = −χi[si(t)]|si(t)|θ − ζi[si(t)]|si(t)|ϑ,
vj(t) = −ρj[rj(t)]|rj(t)|θ − γj[rj(t)]|rj(t)|ϑ,

(7)

where i ∈ Ĩ, j ∈ J̃, χi, ζi, ρj, γj are positive real numbers, 0 < θ < 1 and ϑ > 1. Before
giving the main theorem, for convenience, we also denote

pi = ηi − Re(ai) +
1
2

m

∑
j=1
|cij|Lh

j +
1
2

m

∑
j=1
|dji|L

g
i ,

qj = η̃j − Re(bj) +
1
2

n

∑
i=1
|dji|L

g
i +

1
2

n

∑
i=1
|cij|Lh

j ,

α = 2
θ+1

2 min{min
i∈ Ĩ
{χi}, min

j∈ J̃
{ρj}}, β = 2 min

{
n

1−ϑ
2 min

i∈ Ĩ
{ζi}, m

1−ϑ
2 min

j∈ J̃
{γj}

}
,

ξ = max{max
i∈ Ĩ
{ξ2

i }, max
j∈ J̃
{ξ̃ j

2}}, k = max
i∈ Ĩ,j∈ J̃

{2pi, 2qj}.

Theorem 1. Based on Assumptions 1 and 2, if the inequality k < min
{

α, β,− ln ξ
ντ

}
is satisfied,

then the systems (1) and (2) with control scheme (7) are FXT synchronized in probability, and the
ST is estimated by

T3 =
2

η(1− ϑ)
ln
(

1− η

βv̆

)
+

2
η(1− θ)

ln
(

α

α− ηπ̆2

)
,

where η = k + ln ξ
ντ

, v̆ = ξ−τ0(1− ϑ+1
2 )sign(1−ξ) and π̌ = ξ−τ0(1− θ+1

2 )sign(1−ξ).

Proof. Constructing the Lyapunov function as

V(t) = V1(t) + V2(t),

where

V1(t) =
1
2

n

∑
i=1

si(t)si(t), V2(t) =
1
2

m

∑
j=1

rj(t)rj(t). (8)

Calculating the £V1(t) along the trajectory of the system (3), yields

£V1(t) =
1
2

n

∑
i=1

si(t){−aisi(t) +
m

∑
j=1

cijhj
(
rj(t)

)
− χi[si(t)]|si(t)|θ − ζi[si(t)]|si(t)|ϑ}

+
1
2

n

∑
i=1

si(t){−aisi(t) +
m

∑
j=1

cijhj
(
rj(t)

)
− χi[si(t)]|si(t)|θ − ζi[si(t)]|si(t)|ϑ}

+
1
2

n

∑
i=1

σi(t, si(t))σi(t, si(t))
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=
n

∑
i=1

(−Re(ai))si(t)si(t) +
1
2

n

∑
i=1

m

∑
j=1

(
si(t)cijhj

(
rj(t)

)
+ si(t)cijhj(rj(t))

)
− 1

2

n

∑
i=1

χi

(
si(t)[si(t)] + si(t)[si(t)]

)
|si(t)|θ

− 1
2

n

∑
i=1

ζi

(
si(t)[si(t)] + si(t)[si(t)]

)
|si(t)|ϑ +

1
2

n

∑
i=1

σi(t, si(t))σi(t, si(t)).

From Lemma 1 and Assumption 1, we can get

1
2

n

∑
i=1

m

∑
j=1

(
si(t)cijhj(rj(t)) + si(t)cijhj(rj(t))

)
≤

n

∑
i=1

m

∑
j=1
|si(t)cijhj(rj(t))|

≤
n

∑
i=1

m

∑
j=1

(|cij|Lh
j |rj(t)||si(t)|)

≤ 1
2

n

∑
i=1

m

∑
j=1
|cij|Lh

j (|rj(t)|2 + |si(t)|2).

(9)

In view of Assumption 2, we have

1
2

n

∑
i=1

σi(t, si(t))σi(t, si(t)) ≤
n

∑
i=1

ηi|si(t)|2. (10)

According to Lemma 2, one has

− 1
2

n

∑
i=1

χi

(
si(t)[si(t)] + si(t)[si(t)]

)
|si(t)|θ ≤ −

n

∑
i=1

χi|si(t)|θ+1, (11)

− 1
2

n

∑
i=1

ζi

(
si(t)[si(t)] + si(t)[si(t)]

)
|si(t)|ϑ ≤ −

n

∑
i=1

ζi|si(t)|ϑ+1. (12)

By combining above inequalities, we obtain

£V1(t) ≤
n

∑
i=1

(−Re(ai))|si(t)|2 +
1
2

n

∑
i=1

m

∑
j=1
|cij|Lh

j

(
|rj(t)|2 + |si(t)|2

)
−

n

∑
i=1

χi|si(t)|θ+1 −
n

∑
i=1

ζi|si(t)|ϑ+1 +
n

∑
i=1

ηi|si(t)|2

=
n

∑
i=1

(
−Re(ai) +

1
2

m

∑
j=1
|cij|Lh

j + ηi

)
|si(t)|2

+
1
2

n

∑
i=1

m

∑
j=1
|cij|Lh

j |rj(t)|2 −
n

∑
i=1

χi|si(t)|θ+1 −
n

∑
i=1

ζi|si(t)|θ+1.

(13)

Similarly, for V2(t) it is not difficult to get

£V2(t) ≤
m

∑
j=1

(
−Re(bj) +

1
2

n

∑
i=1
|dji|L

g
i + η̃j

)
|rj(t)|2

+
1
2

m

∑
j=1

n

∑
i=1
|dji|L

g
i |si(t)|2 −

m

∑
j=1

ρj|rj(t)|θ+1 −
m

∑
j=1

γj|rj(t)|ϑ+1.

(14)

Therefore, finally we have
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£V(t) =£V1(t) + £V2(t)

≤
n

∑
i=1

(
ηi − Re(ai) +

1
2

m

∑
j=1
|cij|Lh

j +
1
2

m

∑
j=1
|dji|L

g
i

)
|si(t)|2

+
m

∑
j=1

(
η̃j − Re(bj) +

1
2

n

∑
i=1
|dji|L

g
i +

1
2

n

∑
i=1
|cij|Lh

j

)
|rj(t)|2

−
n

∑
i=1

χi|si(t)|θ+1 −
m

∑
j=1

ρj|rj(t)|θ+1 −
n

∑
i=1

ζi|si(t)|ϑ+1 −
m

∑
j=1

γj|rj(t)|ϑ+1

≤
n

∑
i=1

pi|si(t)|2 +
m

∑
j=1

qj|rj(t)|2

−min
i∈ Ĩ
{χi}

(
n

∑
i=1
|si(t)|θ+1

)
−min

j∈ J̃
{ρj}

(
m

∑
j=1
|rj(t)|θ+1

)

−min
i∈ Ĩ
{ζi}

(
n

∑
i=1
|si(t)|ϑ+1

)
−min

j∈ J̃
{γj}

(
m

∑
j=1
|rj(t)|ϑ+1

)

≤max
i∈ Ĩ
{2pi}

1
2

n

∑
i=1
|si(t)|2 + max

j∈ J̃
{2qj}

1
2

m

∑
j=1
|rj(t)|2

−min
i∈ Ĩ
{χi}

(
n

∑
i=1
|si(t)|2

) θ+1
2

− min
1≤j≤m

{ρj}
(

m

∑
j=1
|rj(t)|2

) θ+1
2

−min
i∈ Ĩ
{ζi}n

1−ϑ
2

(
n

∑
i=1
|si(t)|2

) ϑ+1
2

− min
1≤j≤m

{γj}m
1−ϑ

2

(
m

∑
j=1
|rj(t)|2

) ϑ+1
2

≤k(V1(t) + V2(t))− α
(
(V1(t))

θ+1
2 + (V2(t))

θ+1
2

)
− 2

ϑ−1
2 β
(
(V1(t))

ϑ+1
2 + (V2(t))

ϑ+1
2

)
≤kV(t)− α(V1(t) + V2(t))

θ+1
2 − β(V1(t) + V2(t))

ϑ+1
2

=kV(t)− αV(t)
θ+1

2 − βV(t)
ϑ+1

2 .

(15)

When t = tτ ,

V
(
t+τ
)
=V1

(
t+τ
)
+ V2

(
t+τ
)

=
1
2

n

∑
i=1

si
(
t+τ
)
si
(
t+τ
)
+

1
2

m

∑
j=1

rj
(
t+τ
)
rj
(
t+τ
)

≤1
2

max
i∈ Ĩ
{ξ2

i }
n

∑
i=1

si(tτ)si(tτ) +
1
2

max
1≤j≤m

{ξ̃ j
2}

m

∑
j=1

rj(tτ)rj(tτ)

≤max{max
i∈ Ĩ
{ξ2

i }, max
1≤j≤m

{ξ̃ j
2}}
(

1
2

n

∑
i=1

si(t)si(t) +
1
2

m

∑
j=1

rj(t)rj(t)

)
=ξV(tτ).

(16)

Thus, in view of Equations (15) and (16), we obtain from Lemma 3 that the error
system (3) can achieve FXT stable in probability with ST T3, so that systems (1) and (2)
achieve FXT synchronization in probability, and its ST obtained as

T3 =
2

η(1− ϑ)
ln(1− η

βv̆
) +

2
η(1− θ)

ln(
α

α− ηπ̆2 ).

The proof is finished.
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In Theorem 1 we consider the FXT synchronization of complex-valued BAM neural net-
works with both impulsive and stochastic effects. Since there is no stochastic perturbations
in original drive-response systems, they become

dxi(t) = [−aixi(t) +
m

∑
j=1

cijhj
(
yj(t)

)
+ Ii(t)]dt, t 6= tτ ,

dyj(t) = [−bjyj(t) +
n

∑
i=1

djigi(xi(t)) + Jj(t)]dt, t 6= tτ ,

∆xi(t+τ ) = xi(t+τ )− xi(t−τ ) = (ξi − 1)xi(tτ), t = tτ ,
∆yj(t+τ ) = yj(t+τ )− yj(t−τ ) = (ξ̃ j − 1)yj(tτ), t = tτ ,

(17)



dx̃i(t) = [−ai x̃i(t) +
m

∑
j=1

cijhj
(
ỹj(t)

)
+ Ii(t) + ui(t)]dt, t 6= tτ

dỹj(t) = [−bjỹj(t) +
n

∑
i=1

djigi(x̃i(t)) + Jj(t) + vj(t)]dt, t 6= tτ

∆x̃i(t+τ ) = x̃i(t+τ )− x̃i(t−τ ) = (ξi − 1)x̃i(tτ), t = tτ ,
∆ỹj(t+τ ) = ỹj(t+τ )− ỹj(t−τ ) = (ξ̃ j − 1)ỹj(tτ), t = tτ .

(18)

At this time, by denoting

p̃i = −Re(ai) +
1
2

m

∑
j=1
|cij|Lh

j +
1
2

m

∑
j=1
|dji|L

g
i , i ∈ Ĩ,

q̃j = −Re(bj) +
1
2

n

∑
i=1
|dji|L

g
i +

1
2

n

∑
i=1
|cij|Lh

j , j ∈ J̃,

then we have a following result from the Theorem 1.

Corollary 1. Suppose that Assumption 1 and the inequality k̃ $ max
i∈ Ĩ,j∈ J̃

{2p̃i, 2q̃j} < {α, β,− ln ξ
ντ
}

is satisfied, then, under the controller (7), the system (17) and (18) will achieve FXT stabilization
with a ST

T4 =
2

η̃(1− ϑ)
ln(1− η̃

βv̆
) +

2
η̃(1− θ)

ln(
α

α− η̃π̆2 ),

where η̃ = k̃ + ln ξ
ντ

, v̆ and π̌ are defined above.
Further, if there is no impulsive effect in systems (1) and (2), then they will degenerate to the

following form
dxi(t) = [−aixi(t) +

m

∑
j=1

cijhj
(
yj(t)

)
+ Ii(t)]dt + $i(t, xi(t))dω(t), t 6= tτ ,

dyj(t) = [−bjyj(t) +
n

∑
i=1

djigi(xi(t)) + Jj(t)]dt + $̃j
(
t, yj(t)

)
dω(t), t 6= tτ ,

(19)


dx̃i(t) = [−ai x̃i(t) +

m

∑
j=1

cijhj
(
ỹj(t)

)
+ Ii(t) + ui(t)]dt + σi(t, x̃i(t))dω(t), t 6= tτ ,

dỹj(t) = [−bjỹj(t) +
n

∑
i=1

djigi(x̃i(t)) + Jj(t) + vj(t)]dt + σ̃j
(
t, ỹj(t)

)
dω(t), t 6= tτ .

(20)

In this case, for FXT synchronization of (19) and (20), we have a following result from the
Theorem 1 and Lemma 2 of Ref. [9].
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Corollary 2. Under the Assumptions 1 and 2, if the parameter k in Theorem 1 is satisfied
k < min{α, β}, then the systems (19) and (20) will FXT synchronized in probability with ST
E[T(s0, r0)] < T5, where E[T(s0, r0)] < T5 given as

T5 ,



T1
5 =

2
kε(1− ν)

ln
(

1− k
α

(
α

β

)ε)
, k < 0,

T2
5 =

2π

(ν− θ)α

(
α

β

)ε

csc(επ), k = 0,

T3
5 =

2πcsc(επ)

β(ν− θ)

(
β

α− k

)1−ε

I
(

β

ς
, ε, 1− ε

)
+

πcsc(επ)

α(ν− θ)

(
α

β− k

)ε

I
(

α

ς
, 1− ε, ε

)
, 0 < k < min{β, α},

where ε = (1−θ)
(ν−θ)

, ς = β + α− k. Particularly, if ν + θ = 2, ST is estimated more precisely as
E[T(s0, r0)] < T6, where

T6 ,



T1
6 =

1
ν− 1

2√
Λ

(
π

2
+ arctan

(
k√
Λ

))
, −2

√
αβ < k < 2

√
αβ

T2
6 =

2
k(ν− 1)

, k = −2
√

αβ,

T3
6 =

1
(ν− 1)

√
−Λ

ln
k +
√
−Λ

k−
√
−Λ

, k < −2
√

αβ,

where Λ = 4αβ− k2.

Remark 3. During the synchronization analysis of complex-valued NNs, there are some works that
divided the original complex-valued networks into real and imaginary networks and then investi-
gated their synchronization performance separately [19,21,24,47]. Undoubtedly, this will double the
dimension of the system and increase the control burden. In this article, we investigated the FXT
synchronization of the considered stochastic complex-valued stochastic NNs with general impulses
using the non-separation method. Compared to the separation method used in Refs. [19,21,24,47], it
makes the theocratical analysis much easier and helps to simplify the control process.

3.2. Predefined Time Synchronization

In this subsection, we will investigate the PDT synchronization of drive-response
networks (1) and (2) by designing a new controller given as follows{

ui(t) = − T0
Tc

(
χi[si(t)]|si(t)|θ + ζi[si(t)]|si(t)|ϑ

)
,

vj(t) = − T0
Tc

(
ρj[rj(t)]|rj(t)|θ + γj[rj(t)]|rj(t)|ϑ

)
,

(21)

where j ∈ J̃, i ∈ Ĩ, Tc is PDT given in advance, T0 = 2
β(ϑ−1)v0

+
2π2

0
α(1−θ)

,

v0 = ξ−0.5τ0(1−ϑ)sign(1−ξ), π0 = ξ−0.5τ0(1−θ)sign(1−ξ). χi, ζi, ρj, γj are positive scalars,
0 < θ < 1 and ϑ > 1.

Theorem 2. Under the Assumptions 1 and 2, if the inequality k < min
{

α, β,− Tc
T0

ln ξ
ντ

}
is satisfied,

then systems (1) and (2) are PDT synchronized in probability via controller (21).

Proof. Define the Lyapunov function as

V(t) = V1(t) + V2(t), (22)

where

V1(t) =
1
2

n

∑
i=1

si(t)si(t), V2(t) =
1
2

m

∑
j=1

rj(t)rj(t). (23)
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Calculating £V1(t) for V1(t) along the trajectory of the system (3), we get

£V1(t) =
1
2

n

∑
i=1

si(t)

{
−aisi(t) +

m

∑
j=1

cijhj(rj(t))−
T0

Tc
χi[si(t)]|si(t)|θ −

T0

Tc
ζi[si(t)]|si(t)|ϑ

}

+
1
2

n

∑
i=1

si(t)

{
−aisi(t) +

m

∑
j=1

cijhj(rj(t))−
T0

Tc
χi[si(t)]|si(t)|θ −

T0

Tc
ζi[si(t)]|si(t)|ϑ

}

+
1
2

n

∑
i=1

σi(t, si(t))σi(t, si(t))

=
n

∑
i=1

(−Re(ai))si(t)si(t) +
1
2

n

∑
i=1

m

∑
j=1

(
si(t)cijhj

(
rj(t)

)
+ si(t)cijhj

(
rj(t)

))
− 1

2
T0

Tc

n

∑
i=1

χi

(
si(t)[si(t)] + si(t)[si(t)]

)
|si(t)|θ

− 1
2

T0

Tc

n

∑
i=1

ζi

(
si(t)[si(t)] + si(t)[si(t)]

)
|si(t)|ϑ

+
1
2

n

∑
i=1

σi(t, si(t))σi(t, si(t)).

(24)

In view of Lemma 1 and Assumption 1, we obtain

1
2

n

∑
i=1

m

∑
j=1

(
si(t)cijhj(rj(t)) + si(t)cijhj(rj(t))

)
≤

n

∑
i=1

m

∑
j=1
|si(t)cijhj(rj(t))|

≤
n

∑
i=1

m

∑
j=1

(|cij|Lh
j |rj(t)||si(t)|)

≤ 1
2

n

∑
i=1

m

∑
j=1
|cij|Lh

j (|rj(t)|2 + |si(t)|2).

(25)

In addition by Assumption 2, we have

1
2

n

∑
i=1

σT
i (t, si(t))σi(t, si(t)) ≤

n

∑
i=1

ηi|si(t)|2. (26)

According to Lemma 2, one has

− 1
2

T0

Tc

n

∑
i=1

χi

(
si(t)[si(t)] + si(t)[si(t)]

)
|si(t)|θ ≤ −

T0

Tc

n

∑
i=1

χi|si(t)|θ+1, (27)

− 1
2

T0

Tc

n

∑
i=1

ζi

(
si(t)[si(t)] + si(t)[si(t)]

)
|si(t)|ϑ ≤ −

T0

Tc

n

∑
i=1

ζi|si(t)|ϑ+1. (28)

By introducing Equations (25)–(28) into (24), we get

£V1(t) ≤
n

∑
i=1

(−Re(ai))|si(t)|2 +
1
2

n

∑
i=1

m

∑
j=1
|cij|Lh

j

(
|rj(t)|2 + |si(t)|2

)
−

n

∑
i=1

T0
Tc

χi|si(t)|θ+1 −
n

∑
i=1

T0
Tc

ζi|si(t)|ϑ+1 +
n

∑
i=1

ηi|si(t)|2
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=
n

∑
i=1

−Re(ai) +
1
2

m

∑
j=1
|cij|Lh

j + ηi

|si(t)|2

+
1
2

n

∑
i=1

m

∑
j=1
|cij|Lh

j |rj(t)|2 −
n

∑
i=1

T0
Tc

χi|si(t)|θ+1 −
n

∑
i=1

T0
Tc

ζi|si(t)|θ+1.

(29)

Similarly, for V2(t), it is not difficult to get

£V2(t) ≤
m

∑
j=1

(
−Re(bj) +

1
2

n

∑
i=1
|dji|L

g
i + η̃j

)
|rj(t)|2

+
1
2

m

∑
j=1

n

∑
i=1
|dji|L

g
i |si(t)|2 −

m

∑
j=1

ρj
T0
Tc
|rj(t)|θ+1 −

m

∑
j=1

γj
T0
Tc
|rj(t)|ϑ+1.

(30)

Therefore, we have

£V(t) =£V1(t) + £V2(t)

≤
n

∑
i=1

ηi − Re(ai) +
1
2

m

∑
j=1
|cij|Lh

j +
1
2

m

∑
j=1
|dji|L

g
i

|si(t)|2

+
m

∑
j=1

(
η̃j − Re(bj) +

1
2

n

∑
i=1
|dji|L

g
i +

1
2

n

∑
i=1
|cij|Lh

j

)
|rj(t)|2

−
m

∑
j=1

ρj
T0
Tc
|rj(t)|θ+1 −

n

∑
i=1

χi
T0
Tc
|si(t)|θ+1 −

m

∑
j=1

γj
T0
Tc
|rj(t)|ϑ+1

−
n

∑
i=1

ζi
T0
Tc
|si(t)|ϑ+1

≤
n

∑
i=1

pi|si(t)|2 +
m

∑
j=1

qj|rj(t)|2

−min{T0
Tc

χi}
(

n

∑
i=1
|si(t)|θ+1

)
−min{T0

Tc
ζi}
(

n

∑
i=1
|si(t)|ϑ+1

)

−min{T0
Tc

ρj}

 m

∑
j=1
|rj(t)|θ+1

−min{T0
Tc

γj}

 m

∑
j=1
|rj(t)|ϑ+1


≤max

i∈ Ĩ
{2pi}

1
2

n

∑
i=1
|si(t)|2 + max

j∈ J̃
{2qj}

1
2

m

∑
j=1
|rj(t)|2

−min{T0
Tc

χi}
(

n

∑
i=1
|si(t)|2

) θ+1
2

−min{T0
Tc

ζi}n
1−ϑ

2

(
n

∑
i=1
|si(t)|2

) ϑ+1
2

−min{T0
Tc

ρj}

 m

∑
j=1
|rj(t)|2

 θ+1
2

−min{T0
Tc

γj}m
1−ϑ

2

 m

∑
j=1
|rj(t)|2

 ϑ+1
2

≤k(V1(t) + V2(t))− α
T0
Tc

(
(V1(t))

θ+1
2 (V2(t))

θ+1
2

)
− 2

ϑ−1
2 β

T0
Tc

(
(V1(t))

ϑ+1
2 + (V2(t))

ϑ+1
2

)
≤kV(t)− α

T0
Tc

(V1(t) + V2(t))
θ+1

2 − β
T0
Tc

(V1(t) + V2(t))
ϑ+1

2

≤T0
Tc

(
kV(t)− αV(t)

θ+1
2 − βV(t)

ϑ+1
2

)
.
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When t = tτ

V
(
t+τ
)
=V1

(
t+τ
)
+ V2

(
t+τ
)

=
1
2

n

∑
i=1

si
(
t+τ
)
si
(
t+τ
)
+

1
2

m

∑
j=1

rj
(
t+τ
)
rj
(
t+τ
)

=
1
2

max
i∈ Ĩ
{ξ2

i }
n

∑
i=1

si(tτ)si(tτ) +
1
2

max
1≤j≤m

{ξ̃ j
2}

m

∑
j=1

rj(tτ)rj(tτ)

≤max{max
i∈ Ĩ
{ξ2

i }, max
1≤j≤m

{ξ̃ j
2}}
(

1
2

n

∑
i=1

Sisi +
1
2

m

∑
j=1

rjrj

)
=ξV(tτ).

Therefore, from Lemma 4, we conclude that the error system (3) will be PDT stable in
probability, so the systems (1) and (2) can be PDT synchronized in probability.

Similar to Corollaries 1 and 2, when there is no impulsive effects or stochastic perturba-
tions in systems (1) and (2), we have following results from Theorem 2 and
Lemma 3 of Ref. [9].

Corollary 3. Under the Assumption 1, if the inequality k̃ < {α, β,− Tc
T0

ln ξ
ντ
} is satisfied, then the

systems (17) and (18) can be PDT synchronized in probability via controller (21), where parameter
k̃ is given in Corollary 1.

Corollary 4. Suppose that Assumptions 1 and 2 hold true. If the parameter of Theorem 2 satisfied
the inequality k < min

{
α, β,− Tc

T0

ln ξ
ντ

}
, where T0 was chosen as T0 = T5 when θ + ϑ = 2 and

T0 = T6 when θ + ϑ 6= 2, then the system (19) and (20) can be PDT synchronized in probability
via controller (21).

Remark 4. Currently there are many works on the PDT synchronization of various types of chaotic
systems with or without stochastic perturbations such as [19,26,35]. However, due to the lack of
available PDT stability results for nonlinear impulsive systems, there are few works on the PDT
synchronization of chaotic nonlinear systems with impulsive effects, not to mention those with both
impulsive effects and stochastic perturbations. In this paper, for the first time, we have considered
the PDT synchronization of complex-valued stochastic BAM neural networks with a general type of
impulsive effects, where the impulsive gains can be stabilizing or destabilizing. Since, compared
to FXT synchronization, the ST of in PDT synchronization can be given in advance on the basis
of application requirement and it has nothing to do with the initial vales and intrinsic system
parameters, the PDT synchronization studied in Section 3.2 has a broader application background.

4. Numerical Examples and Simulations

Now we verify the FXT and PDT synchronization criteria obtained in the above section
by giving two relevant numerical examples.

Example 1. For n = m = 2, consider the following complex-valued impulse BAM neural network
with stochastic perturbations:

dxi(t) = [−aixi(t) +
2

∑
j=1

cij h̄j
(
yj(t)

)
]dt + $i(t, xi(t))dω(t), t 6= tτ ,

dyj(t) = [−bjyj(t) +
2

∑
i=1

dji ḡi(xi(t))]dt + $̃j
(
t, yj(t)

)
dω(t), t 6= tτ ,

∆xi(t+τ ) = (ξi − 1)xi(tτ), t = tτ ,
∆yj(t+τ ) = (ξ̃ j − 1)yj(tτ), t = tτ ,

(31)
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its related parameters are chosen as a1 = 0.3744 − 1.0464i, a2 = 0.3072 − 1.4592i,
b1 = 1.8 ∗ [0.45− 1.07i, 0; 0, 0.22− 1.43i], b2 = 0.3960 − 2.5740i, c11 = 0.624 + 1.812i,
c12 = −1.656 + 0.120i, c21 = −1.740 + 2.040i, c22 = 0.624 − 1.452i, d11 = 0.624 + 1.812i,
d12 = −1.656 + 0.120i, d21 = −1.740 + 2.040i, d22 = 0.624− 1.452i, h̄1(u) = h̄2(u) =
ḡ1(u) = ḡ2(u) = 1.2 tanh(Re(u)) + 1.2 tanh(Im(u))i, $1(t, ·) = 0.080 − 0.680i,
$2(t, ·) = 0.282 + 0.826i, $̃1 = 0.258 + 0.444i, $̃2 = −0.432− 1.016i.

By setting the impulsive moments as tτ = 2τ for τ ∈ N and impulsive gains
ξi = −0.42 and ξ̃ j = 0.45, then the MATLAB simulations of system (31) with initial
conditions x0

1 = −0.63 + 0.82i, x0
2 = 0.98− 0.71i, y0

1 = 0.46− 0.38i and y0
2 = −1.27 + 0.82i

are shown in Figure 1, which indicates that system (31) has a chaotic attractor.
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Figure 1. The chaotic attractor of the real and imaginary parts of system (31).

Now, we introduce the response system of system (31) as follows

dx̃i(t) = [−ai x̃i(t) +
2

∑
j=1

cij h̄j
(
ỹj(t)

)
+ ui(t)]dt + $i(t, x̃i(t))dω(t), t 6= tτ ,

dỹj(t) = [−bjỹj(t) +
2

∑
i=1

dji ḡi(x̃i(t)) + vj(t)]dt + $̃j
(
t, ỹj(t)

)
dω(t), t 6= tτ ,

∆x̃i(tτ) = (ξi − 1)x̃i(tτ), t = tτ ,
∆ỹj(tτ) = (ξ̃ j − 1)ỹj(tτ), t = tτ ,

(32)

where the corresponding parameter is the same as in system (31).
By simple computation we can obtain that Lg

i = Lh
j = 1, ηi = η̃j = 0.5, i, j = 1, 2. Thus,

the Assumptions 1 and 2 are satisfied. To simplify the demonstration, we first reselect the
impulsive moments as tτ = 0.12τ for τ ∈ N, and then choose the control parameters as
χ1 = χ2 = 8.6, ζ1 = ζ2 = 5.6, ρ1 = ρ2 = 7.8, γ1 = γ2 = 6.8, θ = 0.25, ϑ = 1.12, we
can calculate that α = 12.0292, β = 10.7438, ξ = 0.2025 and ς = k + ln ξ

ντ
= −3.4103 < 0.

This means that all the criteria of Theorem 1 hold true. Therefore, from Theorem 1, drive-
response impulsive neural networks (31) and (32) will achieve FXT time synchroniza-
tion with ST T3 = 1.5424. The time evolution of FXT synchronization errors between
systems (31) and (32) are given in Figure 2, where the initial values of system (32) are
arbitrarily taken in [−5, 5].
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Figure 2. Evaluation of the real and imaginary parts of FXT synchronization errors si and ri.

Next we consider the PDT synchronization of systems (31) and (32) under controller (21).
By choosing Tc = 1.32, the condition k < min{α, β,− Tc

T0

ln ξ
ντ
} in Theorem 2 is satisfied, where

T0 = 1.7730. Therefore, according to Theorem 2, the drive-response systems (31) and (32) are
PDT synchronized in a PDT Tc = 1.32 that is less than T0 = 1.7730 and T3 = 1.5424. The time
evolution of the PDT synchronization error between the systems (31) and (32) under the PDT
controller is shown in Figure 3.
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Figure 3. Evaluation of the real and imaginary parts of PDT synchronization errors si and ri.

Example 2. For n = m = 3, consider the following complex-valued impulse BAM neural network
with stochastic perturbations:

dxi(t) = [−aixi(t) +
3

∑
j=1

cij h̄j
(
yj(t)

)
]dt + $i(t, xi(t))dω(t), t 6= tτ ,

dyj(t) = [−bjyj(t) +
3

∑
i=1

dji ḡi(xi(t))]dt + $̃j
(
t, yj(t)

)
dω(t), t 6= tτ ,

∆xi(t+τ ) = (ξi − 1)xi(tτ), t = tτ ,
∆yj(t+τ ) = (ξ̃ j − 1)yj(tτ), t = tτ ,

(33)

where h̄1(u) = h̄2(u) = h̄3(u) = ḡ1(u) = ḡ2(u) = ḡ3(u) = 1.2 ∗ (cos(Re(u)) + isin(Im(u))),
$1 = $2 = $3 = 1.8 + 0.56i and ω(t) is a real-valued Brown motion. The other parame-
ters of (33) are chosen as c11 = 0.672 + 1.812i, c12 = −1.656 + 0.12i, c21 = −1.74 + 2.04i,
c23 = 0.624 − 1.452i, c32 = −1.74 + 2.04i, c33 = 0.624 − 1.452i, c13 = c22 = c31 = 0,
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d11 = 0.915 − 0.615i, d12 = −2.1 + 2.565i, d13 = 2.265 − 2.58i, d21 = −1.86 + 7.725i,
d22 = 0.435 − 2.685i, d23 = 1.725 − 2.04i, d31 = −1.8 + 2.256i, d32 = 2.46 + 4.725i,
d33 = 1.725 − 2.176i, a1 = 0.48 − 1.308i, a2 = 0.384 − 1.824i, a3 = 0.624 − 1.584i,
b1 = 0.54 − 1.284i, b2 = 0.264 − 1.716i, b3 = 0.504 − 1.356i. Figure 4 shows the MAT-
LAB simulations of system (33) with initial values x1(θ) = −0.4 + 0.8i, x2(θ) = 0.9− 0.7i,
x3(θ) = 0.29− 0.47i, y1(θ) = 0.6− 0.3i, y2(θ) = −1.2 + 0.8i, y3(θ) = −0.4 + 0.8i, and
ξi = 0.58, ξ̄ j = 0.9, i, j = 1, 2, 3 which indicates that system (33) has a chaotic attractors.

Figure 4. The chaotic attractor of the real and imaginary parts of system (33).

The corresponding slave system is described as

dx̃i(t) = [−ai x̃i(t) +
3

∑
j=1

cij h̄j
(
ỹj(t)

)
+ ui(t)]dt + $i(t, x̃i(t))dω(t), t 6= tτ ,

dỹj(t) = [−bjỹj(t) +
3

∑
i=1

dji ḡi(x̃i(t)) + vj(t)]dt + $̃j
(
t, ỹj(t)

)
dω(t), t 6= tτ ,

∆x̃i(tτ) = (ξi − 1)x̃i(tτ), t = tτ ,
∆ỹj(tτ) = (ξ̃ j − 1)ỹj(tτ), t = tτ ,

(34)

where ai, bi, cij, dji, h̄j, ḡi, $i, $̃j, i, j = 1, 2, 3 are defined in system (33). It is not difficult
to check that Assumptions 1 and 2 are satisfied with Lg

i = Lh
j = 1, ηi = η̃j = 2.2

for i, ` = 1, 2, 3. In addition, by simple computation, we get k1 = max{ki} = 9.6279,
k2 = max{κ`} = 9.7479, k = max{2k1, 2k2} = 19.4957. Choosing χ1 = χ2 =
χ3 = 4.2, ζ1 = ζ2 = ζ3 = 4.6, ρ1 = ρ2 = ρ3 = 4.5, γ1 = γ2 = γ3 = 3.7, θ = 0.7
and ϑ = 1.7, then the conditions in Theorem 1 are satisfied. Therefore, according to The-
orem 1, the master-slave systems (33) and (34) are FXT synchronized within T = 0.6743.
Figure 5 shows the time changes of the solutions of errors dynamics between (33) and (34)
under the controller (7), where the initial values of system (34) are randomly selected
in [−8, 8].
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Figure 5. Evaluation of the real and imaginary parts of FXT synchronization errors si and ri.

Next we consider the PDT synchronization of systems (33) and (34) under
controller (21). By choosing Tc = 0.521, the condition k < min{α, β,− Tp

T0

ln ξ
ντ
} in Theorem 2

is satisfied, where T0 = 1.773. Therefore, according to Theorem 2, the drive-response sys-
tems (31) and (32) are PDT synchronized in a PDT Tp = 0.521 that is less than T0 = 1.7730
and T3 = 0.6743. The time evolution of the PDT synchronization error between the
systems (33) and (34) under the PDT controller is shown in Figure 6.
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Figure 6. Evaluation of the real and imaginary parts of PDT synchronization errors si and ri.

5. Conclusions

In this article, we considered the FXT and PDT synchronization issue of a class of
complex-valued neural networks with stochastic perturbations and impulsive effects. First,
some FXT and PDT stability results are introduced for general complex-valued stochastic
nonlinear systems with impulsive effects. Then, based on these developed results, we have
derived some novel FXT and PDT synchronization criteria for the considered complex-
variable neural networks by designing novel controllers and employing some analysis
methods. The introduced controllers are simple and they do not include a linear feedback
term kiei(t), which is used by most of the recent published works on FXT and PDT syn-
chronization studies, Thereby, the control burden is relaxed to some extent. In addition, the
feasibility of the theocratical results are demonstrated by giving one numerical example and
its numerical simulations. It is worth to mention that the devolved theoretical results of the
paper will provide some insights to investigate the more complex types of neural networks
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with impulsive effects such as Clifford-valued neural networks and quaternion-valued
neural networks, etc.
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