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Abstract: Specializing Directed Acyclic Graph Federated Learning (SDAGFL) is a new federated
learning framework with the advantages of decentralization, personalization, resisting a single point
of failure, and poisoning attack. Instead of training a single global model, the clients in SDAGFL
update their models asynchronously from the devices with similar data distribution through Directed
Acyclic Graph Distributed Ledger Technology (DAG-DLT), which is designed for IoT scenarios.
Because of many the features inherited from DAG-DLT, SDAGFL is suitable for IoT scenarios in
many aspects. However, the training process of SDAGFL is quite energy consuming, in which each
client needs to compute the confidence and rating of the nodes selected by multiple random walks
by traveling the ledger with 15–25 depth to obtain the “reference model” to judge whether or not to
broadcast the newly trained model. As we know, the energy consumption is an important issue for IoT
scenarios, as most devices are battery-powered with strict energy restrictions. To optimize SDAGFL
for IoT, an energy-efficient SDAGFL based on an event-triggered communication mechanism, i.e.,
ESDAGFL, is proposed in this paper. In ESDAGFL, the new model is broadcasted only in the event
that the new model is significantly different from the previous one, instead of traveling the ledger to
search for the “reference model”. We evaluate the ESDAGFL on the FMNIST-clustered and Poets
dataset. The simulation is performed on a platform with IntelrCoreTM i7-10700 CPU (CA,USA). The
simulation results demonstrate that ESDAGFL can reach a balance between training accuracy and
specialization as good as SDAGFL. What is more, ESDAGFL can reduce the energy consumption by
42.5% and 51.7% for the FMNIST-clustered and Poets datasets, respectively.

Keywords: energy efficient; federated learning; event-triggered communication; DAG-DLT

MSC: 68T99

1. Introduction

With the Internet of Things (IoT) development, data have become more diversified and
distributed, stimulating the demand for privacy and security [1,2]. As a result, traditional
centralized cloud-based machine learning is being challenged. A few machine learning
techniques have been proposed to meet these challenges. A technique called Federated
Learning (FL) [3] provides a promising solution that allows the clients to work together to
build a global machine learning model without sharing the local data on their own devices.
A typical federated learning framework consists of a server and some local clients. The
clients in FL can access the same global model and train it using local data. Then, they
update the trained local model to the server. Once the locally trained models are received,
the server will aggregate them as a new global model and feed it back to the clients for
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the next local update. FL will repeat this process several rounds until the global model
converges or the number of repetitions meets the predetermined target.

This way, the client can protect data privacy as FL implements model training without
collecting user data. Nevertheless, there are still some challenges in Federated Learning,
as follows:

• Device Heterogeneity: In FL, the server must wait for all the selected clients to com-
plete the local training before aggregating the local models. However, the computing
power and network bandwidth vary from client to client [4,5]. The clients with a higher
computing power and network bandwidth can complete the local training faster than
the others. Thus, the server will wait a long time until the slowest client completes the
local training before starting the next round. This leads to the performance bottleneck
of FL [6];

• Data Heterogeneity: A significant difference between FL and other machine learning
is that model’s training in FL is completed on the clients with the data of Non-IID.
The Non-IID data distribution will cause a significant decrease in the global model’s
accuracy. The existing reach shows that the accuracy can be reduced by 55% of the
neural network trained with the highly skewed Non-IID dataset [7];

• Single Point of Failure: In the traditional FL, there is a single central server to aggre-
gate the local model and publish the new global model. Therefore, the hacker can
attack the central server to cause a single point of failure, leading to a performance
decrease or even a failure of FL training;

• Poisoning Attack: The clients in FL are not all honest, and some clients may use
the poisoned local data to train the model and then send the poisoned model to the
server. However, the server cannot detect the poisoned model and will aggregate it
into the global model. The poisoning attack will cause a decrease in the global model’s
accuracy [8].

Researchers have conducted much research to solve the above problems and proposed
various solutions. For example, blockchain technology has been introduced into FL [9–11]
to address the problem of a single point of failure and poisoning attack. Some distributed
federated learning frameworks [12–14] have been proposed to adapt to the devices’ het-
erogeneity. The problem of data heterogeneity has been widely studied, and different
algorithms of framework have been proposed [15,16]. However, the existing studies focus
on solving one or more problems, but not all of them. The framework proposed by Beilharz
et al., called Specializing Directed Acyclic Graph Federated Learning (SDAGFL), realizes
adaptive data and device heterogeneity, and is robust for poisoning in a fully decentralized
federated learning environment.

SDAGFL introduced the Tangle [17] into the FL. The Tangle is a typical DAG Dis-
tributed Ledger Technology (DLT) designed by the IOTA foundation for the devices of the
Internet of Things (IoT) to participate in a low-energy network. The Tangle uses a DAG
data structure to store the transactions, allowing multiple transactions to be added to the
ledger simultaneously, and it can achieve consensus similar to the Nakamoto DLT [18],
which is also called blockchain, in a distributed system. Furthermore, the Tangle has a
higher Transaction Per Second (TPS) than the blockchain because the transactions in the
Tangle can be confirmed within minutes. In summary, the Tangle has the advantages of
high TPS, low energy usage, and decentralization. Therefore, the Tangle is considered to be
suitable for the scenario that includes many distributed devices.

SDAGFL inherits the features of the Tangle. In the SDAGFL, the participating clients
use the DAG-DLT for the communication of models and an accuracy-biased random walk
to obtain the models from other devices with similar data distribution to update their local
model. It does not only overcome the challenges of device heterogeneity, failure of a single
point, and poisoning attack, but also creates a balance between reaching a consensus on a
generalized model and personalizing the model to the clients, which is different from the
traditional FL framework, where all the participating clients train and reach a consensus
for a global model together.
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With the above advantages of the SDAGFL, it is suitable for the FL in an IoT scenario.
However, some devices in the IoT are usually powered by a battery with strict energy
restrictions [19]. It is necessary to reduce the energy consumption of federated learning.
The benefit of reducing energy consumption is two-fold. On the one hand, it can reduce
the number of charging times and prolong the device’s service life. On the other hand,
it is friendly to the environment. In addition, SDAGFL has some unnecessary energy
consumption according to our study. Therefore, reducing the energy consumption while
maintaining training performance is a problem that needs to be solved to promote the
application of SDAGFL in IoT.

To reduce the energy consumption of the SDAGFL, we first analyze the energy con-
sumption in SDAGFL, and we propose an event-triggered communication-based SDAGFL
called event-triggered SDAGFL (ESDAGFL) to reduce the energy consumption of SDAGFL.
The main contributions of this article are summarized as follows:

1. We analyze and give the energy consumption formula of SDAGFL. Then, we give the
optimization objective of energy efficient SDAGFL;

2. Based on the energy consumption optimization objective, we propose an energy-
efficient SDAGFL(ESDAGFL) scheme to reduce the energy consumption of SDAGFL.
We evaluate the performance of ESDAGFL on two datasets, and the evaluation
results show that ESDAGFL can efficiently reduce energy consumption compared
to SDAGFL.

The rest of the paper is organized as follows. In Section 2, we review and compare the
art of the federated learning framework based on DAG-DLT and show the advantages of
SDAGFL over other frameworks. In Section 3, we formulate the energy consumption and
give the optimization objective of energy efficient SDAGFL. We propose an energy efficient
optimization scheme of SDAGFL in Section 4. Numerical simulation results are presented
in Section 5. Finally, we summarize the work and give possible future researches.

2. Related Work

In this section, we will introduce and compare four federated learning frameworks
based on the Tangle. Then, we analyze the advantages of SDAGFL compared to other
works. Finally, we introduce the SDAGFL in detail.

Recently, the Tangle, which features high TPS, low energy usage, and decentralization,
has received extensive attention from researchers. There are four Tangle-based federated
learning frameworks that have been proposed as far as we know. Cao et al. [20] deployed a
federated learning framework with Tangle called DAG-FL. DAG-FL includes three layers:
the federated learning layer, the DAG layer, and the application layer, and it implements
federated learning with asynchronous training and anomaly detection features. Shuo Yuan
et al. [21] proposed ChainsFL, a two-layer hierarchical federated learning framework com-
bining the Tangle and blockchain. The ChainsFL consists of a sub-ledger, the Raft [22]-based
Hyperledger Fabric [23], deployed on edge nodes, and a Tangle-based master ledger. The
ChainsFL has overcome the disadvantages of massive resource consumption and limited
throughput in traditional blockchain-based FL. In addition, Schmid Robert et al. discussed
the basic applicability of the combination of federated learning and the Tangle in Ref. [24].
They assumed a long-standing open network for continuous learning and development.
In this framework, the tip selection algorithm based on Monte Carlo Markov Chain in the
Tangle is used to implement model selection. The averaged model is used to update the
model. The evaluation of this framework shows high training accuracy and model-agnostic
resistance against random poisoning and label-flipping attacks. Beilharz et al. [25] further
optimized the framework in Ref. [24]. They proposed an implicit model specialization
framework for federated learning called Specializing DAG Federated Learning (SDAGFL).
In SDAGFL, the implicit clustering of clients with a similar local dataset is achieved through
the accuracy-biased random walk on DAG-DLT and the Fedavg algorithm. We compare
these four frameworks in Table 1 from four different aspects.
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Table 1. Comparison of four Federated Learning Frameworks based on Tangle DAG-DLT.

Framework Decentralized Robust for Poisoning
Attack

Asynchronous
Training Individualized Model

ChainsFL [21] X X 5 5

DAG-FL [20] X X X 5

Learning-Tangle [24] X X X 5

SDAGFL [25] X X X X

Table 1 shows that SDAGFL is better than the three other works, and it sufficiently uses
the DAG data structure’s feature, and an accuracy-biased random walk for model update
realized implicit clustering of the client. SDAGFL can adapt device and data heterogeneity,
resist poisoning attacks, and support creating personal models. Thus, we think it is worthy
of further study. However, from the prototype implementation of SDAGFL, we notice that
the training process of SDAGFL is quite energy consuming because the client needs to
compute the confidence and rating of the nodes selected by multiple random walks by
traveling the ledger with 15–25 depth to obtain the “reference model” to judge whether
or not to broadcast the newly trained model. In this paper, we will analyze the energy
consumption of SDAGFL.

In particular, if not specified, the DAG-DLT in this work refers to the Tangle, and
SDAGFL refers to the framework proposed in Ref. [25].

3. Optimization Objective of Energy Efficient SDAGFL

In this section, we will analysis the energy consumption of SDAGFL and give the energy
optimization objective. The main notations used in this section is summarized in Table 2.

Table 2. Notations adopted for the energy consumption analysis.

Notations Meaning

d The depth of the Tangle ledger
c The average number of the site node’s children
fi The CPU-cycle frequency of the clienti
Ci The CPU chipset’s effective capacitance coefficient of the clienti
f w
i Number of CPU cycles required while the clienti tests the model’s accuracy
f a
i Number of CPU cycles required while the clienti averages the model

f t
i Number of CPU cycles required while the clienti trains one sample of dataset

f c
i Number of CPU cycles required while the clienti compares the model

f r
i Number of CPU cycles required while the clienti performs the random walk

Etip
i

Energy consumption when the clienti obtains two tip nodes
Eagg

i Energy consumption when the clienti averages the model
Etrain

i Energy consumption when the clienti trains the model
Ere f erence

i
Energy consumption when the clienti obtains and compares with the reference model

ω Model parameter
l(xj, yj, ω) The loss function on data point (xj, yj)

f (ω) The global objective optimization in each clustered community
Fn(ω) The objective optimization in client n

N The number of clients in each community
b Size of the local batch
B Number of the local batch
τ Number of training epoch

3.1. Principle and the Workflow of SDAGFL

Before analysis of the energy consumption of SDAGFL, we first introduce the ba-
sic principle of SDAGFL. The basic principle of SDAGFL is shown in Figure 1. All the
clients share a public DAG ledger in SDAGFL. The nodes in SDAGFL are divided into
four categories, each containing a complete model parameter.
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Figure 1. Basic principle of SDAGFL.

1. Task Node: The task node is a genesis node. It contains the basic training task and
initial model parameter;

2. Site Node: The site node is the basic node type. It contains the model published by
the clients;

3. Tip Node: The tip node is a special site node, which is not approved by other node;
4. New Node: The new node contains the model that will be published.

During the process of the SDAGFL, the clients will repeat the following five steps to
update the model parameter:

1. Each client performs two accuracy-biased random walks in Algorithm 1 based on the
local dataset until reaching the tip node. We show the random walk route using the
yellow dashed line in Figure 1;

2. The client then averages the models in two tips obtained from Step 1;
3. Next, the client trains the average above model using its local dataset, and then obtains

a new model;
4. In this step, the client will perform several accuracy-biased random walks to obtain

the “reference model”(the site node approved by the blue line in Figure 1);
5. Finally, the client will compare the new model with the “reference model” to determine

whether or not to publish the new model. If the test loss using the local data of new
model is lower than the “reference model”, the client will publish the new model to
the public DAG ledger.

With the increase of the DAG ledger, the site node trained by the clients with indepen-
dent identical distributed data will be clustered in the same group. As we can see, the site
nodes in Figure 1 are clustered into two groups (red dashed box).
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Algorithm 1: Random Walk of SDAGFL.

1 children← GetChildren(Site Node n);
2 n = len(children);
3 initial accuracy[n];
4 for child[i] in children do
5 accuracy[i] = EvaluateOnLocalData(child[i]);
6 end
7 for accuracy[i] in accuracy do
8 normalized[i] = accuracy[i]−max(accuracy)

max(accuracy)−min(accuracy) ;

9 weight[i] = enormalized × α ;
10 end

// WeightChoice is a weight-based child node selection function
11 nextnode = WeightChoice(weight) ;
12 RandomWalk(nextnode);

3.2. Energy Consumption Optimization Objective Analysis

In this section, we will give the optimization objective of energy efficient SDAGFL
through analysis of the energy consumption and training target.

According to Section 3.1, the training process in SDAGFL can be divided into four parts:
client obtains two tip nodes, Model Aggregation, Model Training, and client obtains and
compares with the reference model. According to the analysis in the literature [19,26,27],
we can analyze the energy consumption as follows.

Client obtains two tip nodes: The energy consumption of this process is decided by
the depth of the ledger and the number of children nodes of the site node. We assumption
that the each client i performs the two independently random walks on the ledger with
the d depth and c average number of children. The energy consumption of the process in
which the client i obtains two tip nodes is shown as follows.

Etip
i = Ci × 2× dc f w

i × f 2
i (1)

Client aggregates the model in tip node: In this process, the number of CPU cycles
for the client i to aggregate the model is f a

i . Thus, the energy consumption in model
aggregation is

Eaggregation
i = Ci × f a

i × f 2
i (2)

Client trains the model: The energy cost of model training depends on the size of the
dataset. The number of CPU cycles for training one sample of the dataset is defined as f t

i ,
and the training batch size and number of batch is defined as b and B. The training epoch
is defined as τ. The energy consumption can be expressed as

Etraining
i = Ci × bBτ f t

i × f 2
i (3)

Client obtains and compares with the reference model: In the prototype implemen-
tation of SDAGFL (https://github.com/osmhpi/federated-learning-dag, accessed on 6
September 2022), the client needs to compute the confidence and rating of each site node
to obtain the reference model. The confidence is the number of the site node selected
during the multiple random walks. The rating is the number of nodes that are directly and
indirectly approved by every site node. Thus, the energy cost of this process contains two
aspects: confidence computing and rating computing. Thus, the energy consumption of
the client obtaining the “reference model” can be expressed as follows.

Ere f erence
i = Ci × r× d× c× ( f w

i + f c
i + f r

i )× f 2
i (4)

where r is the number of random walk, which is 5 in SDAGFL.

https://github.com/osmhpi/federated-learning-dag
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Through the above analysis, we can get the energy consumption by the client i for one
time model update as follows:

Etotal
i = Etip

i + Eaggregation
i + Etraining

i + Ere f erence
i

= Ci × {2dc f w
i + f a

i + bBτ f t
i + rdc( f w

i + f c
i + f r

i )} × f 2
i

= Ci × {(2 + r)dc f w
i + f a

i + bBτ f t
i + rdc{ f c

i + f r
i )} × f 2

i

(5)

According to Equation (5), energy can be divided into four parts: energy consumption
of (2 + r) times random walk, energy consumption of model aggregation, energy con-
sumption of model training, and energy consumption of computing reference and rating.
Although reducing the walk depth d to a fixed depth of 15 to 25 transactions from the
tip nodes is beneficial to reduce the energy consumption, this process must be repeatedly
executed multiple times, resulting in massive energy consumption. The energy consump-
tion of model aggregation is decided by the model’s size, which is a fixed parameter in a
specific federated learning task. In addition, the energy consumption of model training is
connected to the training batch. To be fair and simplify the problem, we let each device
execute the same batch. So, model aggregation and training energy consumption can be
regarded as fixed energy. Therefore, the energy consumption should be optimized, which
can be expressed in Equation (6) as follows:

E = Ci × {(2 + r)dc f w
i + rdc{ f c

i + f r
i )} × f 2

i (6)

In addition, like general federated aggregation algorithms such as FedAvg, we use the
same suggested supervised objective function. The clients with the same data distribution
will be clustered in multiple implicit communities. For every cluster, we assume that the
number of clients in each community is N, that the nth client has k data points |k| = mn, and
that the size of the whole dataset is m. Therefore, the optimization objective of federated
training is defined as:

min
ω∈Rd

f (ω) (7)

where

f (ω) =
N

∑
n=0

mn

m
× Fn(ω) (8)

and

Fn(ω) =
1

mn

mn

∑
j

lj(xj, yj, ω) (9)

Thus, the energy consumption optimization objective of SDAGFL is formulated as follows:

Minimize[E, f (ω)], where ω ∈ Rd (10)

In other words, the optimization objective can be expressed as minimizing the energy
consumption of the client while minimizing the federated learning training loss function.

4. Energy Efficient Optimization Scheme of SDAGFL

Event-triggered communication mechanism is proposed for the network control sys-
tems to reduce the frequency of communication [28,29]. In an event-triggered mechanism-
based system, the device will perform the predetermined operation only when it detects an
event that meets the trigger conditions.

The event-triggered communication mechanism has recently been introduced into the
field of parallel machine learning. In a event-triggered based machine learning scenario,
the client computes the model’s gradient and broadcasts the gradients that meet the trigger
threshold to the neighbors [30–34].

Inspired by above researches, we utilize an event-triggered communication based on
the parameter change to solve the optimized objective in Equation (10). The workflow of



Mathematics 2022, 10, 4388 8 of 17

ESDAGFL is shown in Figure 2. Compared to the baseline, the event-triggered commu-
nication mechanism only needs to judge the change of the model’s norm, and does not
need to find a reference model. Therefore, ESDAGFL can reduce the energy consumption
of the client and the simulation results in Section 5 also demonstrate the advantages of the
proposed scheme.

Figure 2. Workflow of the Energy Efficient SDAGFL Scheme.

The clients participating in the federated learning have the following features:

• Data are private to the clients: In ESDAGFL, the dataset is stored in the spatially
distributed clients, and it is private to all clients. There is no data exchange among
the clients;

• Data are Non-IID for all clients: Data is non-independent and identically distributed
(Non-IID) among all clients participating in the ESDAGFL;

• Data are IID for clients in the same cluster: The site node published by the clients
with a similar data distribution feature could be clustered into a “implicit community”.
So, we can regard that the data distribution among the clients clustered in the same
community is an independently identical distribution;

• Honest and Malicious client’s behavior: The honest clients always comply with the
rules of the SDAGFL and use their complete local datasets to participate in the training.
Once the trained model meets the broadcast condition, the client will broadcast it in
time. On the contrary, the malicious clients do not comply with any rules;

• Synchronicity: Although the ledger is not synchronized in the vast majority of the
reality cases, we think that the performance of the ESDAGFL would not be affected
whether the ledger is synchronous or not. The reason is that whether the client
publishes the new model or not only depends on the average model and the new
trained model. Thus, we define that the ledger on each client is synchronized in
real-time to analyze the performance of ESDAGFL for convenience.

In our ESDAGFL framework, each client participates in the following federated learn-
ing executed steps, as shown in Algorithm 2.

Firstly, each clients performs two random walks and obtains the aggregated model
ωavg = Avg(ωtip1, ωtip2) with two tip nodes. (Lines 1 and 2 in Algorithm 2).

Then, the client n uses a Stochastic Gradient Descent (SGD) to compute the local
gradient and perform τ local model parameter updates using the local dataset to train the
new model ωnew. This process can be expressed as Equation (11). (Lines 3–9 in Algorithm 2).

ωnew = ωavg − η
τ

∑
B

∑∇l(wavg) (11)
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Next, the client computes the model parameter change rate between the trained new
model and the input averaged model by Equation (12). (Lines 10 and 11 in Algorithm 2).

∆ =
||∆ω||2
||ωavg||2

(12)

where,
||∆ω|| = ||ωnew −ωavg|| (13)

Finally, the client broadcasts the trained new model ωnew if the model parameter
change rate is equal to or greater than the trigger threshold. (Lines 12–14 in Algorithm 2)

∆ ≥ triggerthreshold (14)

Algorithm 2: Energy efficient SDAGFL scheme.
Input: learning rate η , local batch is B, τ is the number of local epochs
Output: New Model:ωnew

1 (ω1,ω2)←Random Walk of SDAGFL of client;
2 ωavg = (ω1 + ω2)/2;
3 ωi,j ← ωavg;
4 for local epoch i = 0, 1, 2, ..., τ do
5 for batch j = 0, 1, 2, ..., B do
6 ωi,j+1 = ωi,j − η∇l(ωi,j);
7 end
8 end
9 ωnew ← ωτ,B;

10 ∆ω = ωnew −ωavg;

11 Compute ∆ = ||∆ω||2
||ωavg ||2

;

12 if ∆ ≥ thresholdtirgger then
13 return ωnew ;
14 end

5. Experiment and Results

In this section, we evaluate ESDAGFL in the framework (https://github.com/osmhpi/
federated-learning-dag, accessed on 6 September 2022) proposed by Beilharz et al. [25]
with PyTorch. The parameters of the evaluation platform used in the experiment are shown
in Table 3.

Table 3. Parameters of the experiment platform.

Item Parameter

OS Ubuntu 22.04
CPU IntelrCoreTM i7-10700 @2.9 GHz × 16
RAM 32 GB

5.1. Experiment Setting

This section introduces the experimental setting of ESDAGFL. The datasets and models
used in the experiment are described in Section 5.1.1, and the fixed training hyperparame-
ters setting is shown in Section 5.1.2.

5.1.1. Datasets and Models

We evaluated ESDAGFL on two training tasks. We evaluated a handwriting recog-
nition task on the FMNIST-clustered dataset and a next character prediction task on the
Poets dataset. The training and test datasets have a ratio of 9:1 for each client.

https://github.com/osmhpi/federated-learning-dag
https://github.com/osmhpi/federated-learning-dag
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• Handwriting Recognition Task:

– Dataset: The FMNIST-clustered dataset is a synthetically clustered version of
Federated extended MNIST (FMNIST) built by LEAF [35]. In this dataset, the
28 × 28 pixel handwriting dataset is divided into 3 disjoint classes: [0,1,2,3],
[4,5,6], [7,8,9], and the number of clients is the same in every class;

– Model: For the handwriting recognition task, a Convolutional Neural Net (CNN)
is used. It contains two convolution layers and two fully connected layers. The
kernel size of the convolution layer is 5 with the RELU activation function. Each
convolution layer is followed by a max pooling layer with pool size and stride
length of 2. The two fully connected layers contain 2048 and 10 neurons, respec-
tively.

• Next Character Prediction Task:

– Dataset: The Poets dataset is used to evaluate the performance of ESDAGFL for
the next character prediction task. The Poets dataset consists of an English dataset
from William Shakespeare’s works and a German dataset from Goethe’s plays.
The English and German datasets have an equal number of samples and are put
into different clusters.

– Model: For the next character prediction task, the model first maps each character
to an embedding of dimension 8, calculated from the 80 character sequence. Then
the model passes each character through a Long Short-Term Memory (LSTM)
consisting of 2 layers with 256 units each. Finally, there is a dense layer for
prediction.

5.1.2. Training Hyperparameters Setting

The training hyperparameters setting is shown in Table 4.

Table 4. Training Hyperparameters Setting of the Experiment.

Parameters FMNIST-Clustered Poets

Local epochs 1 1
Local batches 10 200

Batch size 10 10
Learning rate 0.05 0.8

Clients per round 10 10

5.2. Experimental Results

Different from the traditional FL, ESDAGFL is a fully asynchronous federated learning
framework without any central server. It realizes the training target through each client
run of the training process continuously and independently as long as its resources permit.
Therefore, the concept of the rounds is introduced to enable a better demonstration of the
experimental results.

In the experiment, the thresholdtrigger is set to 0.008 for the FMNIST-clustered dataset
and 0.12 for the Poets datasets. The evaluation of the training accuracy and loss was done
every five rounds using the test dataset with 5% of all clients randomly selected. We regard
the work in Ref. [25] as the baseline, and we evaluated our ESDAGFL on three metrics:
training accuracy and loss, implicit specialization, and training time cost.

5.2.1. Training Accuracy and Loss Evaluation

Training accuracy and loss are two standard metrics used to evaluate the model perfor-
mance. The accuracy is the percentage of correct predictions, and the loss is the cross-entropy
loss.

Firstly, we evaluated the average accuracy and loss on the test dataset for the hand-
writing recognition task. The evaluation results are shown as Figures 3 and 4.
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Figure 3. The average training accuracy of ESDAGFL and SDAGFL evaluated on the FMNIST-
clustered dataset.

Figure 4. The average training loss of ESDAGFL and SDAGFL evaluated on the FMNIST-
clustered dataset.

The evaluation result shows that the ESDAGFL achieves similar accuracy and ap-
proximate loss as the baseline. The experimental results demonstrate the applicability of
ESDAGFL to the written recognition task.

Then, we evaluated the next character prediction task on the Poets dataset to further
illustrate the applicability of ESDAGFL for different models. Figures 5 and 6 show ES-
DAGFL’s average accuracy and loss in the Poets dataset. The experiment results show that
ESDAGFL equally applies to the Poets dataset.

Figure 5. The average training accuracy of ESDAGFL and SDAGFL evaluated on the Poets dataset.
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Figure 6. The average training loss of ESDAGFL and SDAGFL evaluated on the Poets dataset.

Convergence analysis of ESDAGFL: As the new models are only published if they
are changed when the honest clients’ training for the model is positive, the federated
training will converge to an expected direction. Figures 3 and 5 show the convergence rate
of ESDAGFL on the FMNIST-clustered and Poets datasets. Multiple experiment results
show that the training process converges to nearly the same result. It confirmed that
ESDAGFL could converge to a reasonable training accuracy.

5.2.2. Implicit Specialization Evaluation

In this part, we evaluated the implicit specialization of the ESDAGFL. There are three
metrics to evaluate the implicit specialization of the ESDAGFL. The first is the modularity
m ∈ [− 1

2 , 1], which is a metric of the community segmentation in the community discovery
algorithm. The more closely connected the nodes within a community and the more
sparsely the connections between the communities are, the greater the modularity is. The
second metric is the number of modules, which indicates the partitioning of all clients. The
number of modules should be an appropriate value. The final metric is approval pureness,
which measures the probability that a client approves the nodes published by other clients
in the same cluster.

Firstly, we evaluated the modularity and number of modules on the FMNIST-clustered
dataset. The FMNIST-clustered dataset was chosen because it has more classes and is easier
to visualize.

Figures 7 and 8 show the performance of ESDAGFL in the implicit specialization.
Figure 7 shows that we achieved similar modularity as the baseline on the FMNIST-
clustered dataset. As shown in Figure 8, with the increase of time, we achieve the same
number of modules as the baseline and almost all of the clients are clustered into the
community relative to their label.

To quantify the robustness of the DAG specialized in these experiments, we test the
approval pureness to quantify the “specialized” ESDAGFL on the FMNIST-clustered and
Poets datasets, and the result is shown in Table 5. The base pureness refers to the approval
pureness if the approvals were to be randomly spread over all clusters. Since there are three
clusters in the FMNIST-clustered dataset and two clusters of Goethe and Shakespeare in
Poets, their basic pureness is 0.33 and 0.5, respectively. ESDAGFL and the baseline achieves
100% pureness in the FMNIST-clustered data set, and all model approvals are from the
same cluster. Although the approval pureness of ESDAGFL on the Poets dataset is lower
than the FMNIST-clustered dataset, the pureness is still high. The approval pureness on
the Poets dataset show the balance between specialization and generalization.
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Figure 7. The modularity variation in ESDAGFL and SDAGFL evaluated on the FMNIST-clustered
dataset.

Figure 8. The modules variation in ESDAGFL and SDAGFL evaluated on the FMNIST-clustered dataset.

Table 5. Comparison of the approval pureness after 100 rounds of training between ESDAGFL and
baseline.

Dataset Base Pureness Pureness of
SDAGFL (Baseline)

Pureness of
ESDAGFL (Ours)

FMNIST-clustered 0.33 1 1
Poets 0.5 0.98 0.96

The above experiments show that ESDAGFL can achieve the same implicit special-
ization as the Baseline (SDAGFL) for the different datasets. However, in some metrics of
the implicit specialization, the performance is not as good as the baseline, which has a
negligible effect for the implicit specialization.

5.2.3. Energy Consumption Evaluation

The experiments in Sections 5.2.1 and 5.2.2 show that ESDAGFL realizes the balance
between the training performance and specialization on the FMNIST-clustered and Poets
dataset. In this part, we will evaluate ESDAGFL’s energy consumption using “pyJoules”
(https://github.com/powerapi-ng/pyJoules, accessed on 6 September 2022) [36,37].

The “pyJoules” is a software-defined power meter that can measure the power con-
sumption of the program running on a host machine. It uses the Intel “Running Average
Power Limit” (RAPL) technology to monitor the energy consumption of the Intel CPU
socket package, RAM, and Intel integrated GPU.

The devices that “pyJoules” can monitor match the RAPL domain, as shown in Figure 9.

https://github.com/powerapi-ng/pyJoules
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Figure 9. RAPL domain match part of our CPU socket. The energy consumption of the core measured
by pyJoules is the sum of the CPU core energy consumption, the energy consumption of the packages
is the wall CPU energy consumption, and the energy consumption of the uncore is the energy
consumption of the integrated GPU.

In our simulation experiments, we took the statistics of the core’s energy consumption
per round of training multiple times and removed the bad values to get the average results.

Figures 10 and 11 show the core’s energy consumption per round with 10 clients and
when the client performs the random walk from the depth of 15 to 25. The energy consump-
tion of ESDAGFL is lower than the baseline. The total CPU core’s energy consumption
of ESDAGFL is 61.29 KJ, and the baseline’s core’s energy consumption is 106.74 KJ. Our
ESDAGFL scheme can reduce the 42.5% energy consumption compared with the baseline
for the handwriting recognition task. As for the Poets dataset, the total CPU core’s energy
consumption of ESDAGFL is 2390.41 KJ, and the baseline’s core’s energy consumption is
4956.63 KJ. Our ESDAGFL scheme can reduce the 51.7% energy consumption for the next
character prediction task.

Figure 10. Energy consumption in every round evaluated on the FMNIST-clustered dataset.
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Figure 11. Energy consumption in every round evaluated on the Poets dataset.

We evaluate the energy consumption of ESDAGFL and baseline on the FMNIST-
clustered dataset with a different client for each round. The result is shown in Table 6.

Table 6. Energy consumption [KJ] with a different number of clients per round evaluated on the
FMNIST-clustered dataset.

Scheme 15 Clients per Round 20 Clients per Round 25 Clients per Round

SDAGFL (Baseline) 216.37 362.82 601.01

ESDAGFL (Ours) 108.35 166.21 220.42

Energy consumption
reduction 47.6% 54.1% 63.3%

5.2.4. Results Analysis

We evaluate the performance of our approach on the FMNIST-clustered and Poets
datasets. The experimental results show that our scheme can realize the same implicit spe-
cialization and generalization as the SDAGFL. Furthermore, compared with the SDAGFL,
our scheme can reduce the energy consumption by 42.5% and 51.7% for the handwriting
recognition task on the FEMNIST dataset and the character prediction task on the Poets
dataset, respectively, on the condition that 10 clients participate in each round. Besides, the
reduction of energy consumption increases with the number of clients.

6. Conclusions

Energy consumption is an important issue for federated learning in IoT scenarios, as
many devices are battery powered. To reduce the energy consumption of the SDAGFL and
make it a better federated learning scheme for IoT, the energy optimization objective of
SDAGFL is constructed based on the thorough analysis of energy consumption of SDAGFL.
To realize the optimization objective, we design an event-triggered communication-based
SDAGFL scheme, named ESDAGFL. In ESDAGFL, the client broadcasts the trained new
model only in the specific event in which the new model is significantly different form
the previous one. It is necessary to search for a “reference model” by traveling the whole
ledger to judge whether a new model is broadcasted or not in SDAGFL. Our simulations
are performed on a platform with IntelrCoreTM i7-10700 CPU. The simulation results show,
that compared with SDAGFL, our scheme can reduce the energy consumption by 42.5%
and 51.7% on the FMNIST-clustered dataset and the Poets dataset, respectively. Besides,
the energy reduction increases along with the increase of the number of clients per round.
Meanwhile, our scheme can reach an equal balance between the model’s performance and
specialization as SDAGFL. In the future, we plan to deploy the ESDAGFL in a practical
scenario and perform an overall test. In addition, we will not only consider the energy
consumption caused by computation, but also the communication.
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