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Abstract: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new virus which infects
the respiratory system and causes the coronavirus disease 2019 (COVID-19). The coinfection between
malaria and COVID-19 has been registered in many countries. This has risen an urgent need to
understand the dynamics of coinfection. In this paper, we construct a reaction—diffusion in-host
malaria/COVID-19 model. The model includes seven-dimensional partial differential equations
that explore the interactions between seven compartments, healthy red blood cells (RBCs), infected
RBCs, free merozoites, healthy epithelial cells (ECs), infected ECs, free SARS-CoV-2 particles, and
antibodies. The biological validation of the model is confirmed by establishing the nonnegativity
and boundedness of the model’s solutions. All equilibrium points with the corresponding existence
conditions are calculated. The global stability of all equilibria is proved by picking up appropriate
Lyapunov functionals. Numerical simulations are used to enhance and visualize the theoretical
results. We found that the equilibrium points show the different cases when malaria and SARS-CoV-2
infections occur as mono-infection or coinfection. The shared antibody immune response decreases
the concentrations of SARS-CoV-2 and malaria merozoites. This can have an important role in
reducing the severity of SARS-CoV-2 if the immune response works effectively.

Keywords: SARS-CoV-2; COVID-19; malaria; immune response; diffusion; global stability
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1. Introduction

The coronavirus disease 2019 (COVID-19) is a viral disease that appeared in China at
the end of 2019 and spread to most countries of the world. The severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) is the cause of COVID-19. Malaria-endemic regions
face a great challenge due to the possibility of coinfection between malaria and other viral
diseases. Indeed, malaria/COVID-19 coinfection has been founded in several countries [1].
This has increased the necessity to understand the dynamics of the coinfection and its effect
on the patient.

SARS-CoV-2 is an RNA virus and belongs to the family Coronaviridae [2]. It uses the
angiotensin-converting enzyme 2 (ACE2) receptor to step into the ECs [3]. Such receptor
is expressed in kidney, heart, gastrointestinal tract, blood vessels, and other organs [4].
The human-to-human transmission of SARS-CoV-2 occurs via respiratory droplets con-
taining viruses [5]. Eleven vaccines for COVID-19 were approved by the World Health
Organization (WHO) for emergency use. These include Novavax/Nuvaxovid, Bharat
Biotech/Covaxin, CanSino/Convidecia, Pfizer/BioNTech/Comirnaty, Moderna/Spikevax,
Serum Institute of India COVOVAX (Novavax formulation), Janssen (Johnson & John-
son)/Jcovden, Oxford / AstraZeneca/Vaxzevria, Serum Institute of India Covishield (Ox-
ford/AstraZeneca formulation), Sinopharm (Beijing)/Covilo, and Sinovac/CoronaVac [6].
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There are a number of other effective vaccines that are not yet approved by the WHO. On 22
October 2020, the U.S. Food and Drug Administration (FDA) approved the antiviral drug
Veklury (remdesivir) for the treatment of COVID-19 cases who need hospitalization [7]. It is
utilized for adults and pediatric patients 12 years of age and older (with weight > 40 kg) [7].

On the other hand, malaria is a parasitic disease attributable to Plasmodium para-
sites [5,8]. There are five types of Plasmodium parasites: P. malariae, P. knowlesi, P. vivax, P.
falciparum, and P. ovale . However, P. falciparum is the deadliest malaria parasite. Infected
Anopheles mosquitoes transmit the malaria parasite to humans [8]. There are two stages
for malaria infection in the body: the liver stage and the blood stage [8]. The blood stage
is responsible for most of the clinical symptoms. At the blood stage, the parasites, in the
form of a merozoite attack, infect the red blood cells (RBCs) [8]. After rupturing a cell,
8-32 daughter merozoites are produced [8]. Preventive chemotherapies are utilized to treat
malaria infection and their consequences [9]. In this paper, we focus on the blood stage of
malaria infection.

Malaria and COVID-19 have common symptoms including fever, headache, fatigue,
myalgia and difficulty in breathing [10-12]. This can cause difficulty in the clinical diagno-
sis of malaria and SARS-CoV-2 coinfection [4,5]. Wrong or late diagnosis of coinfection can
have a bad effect on the health of the patient [13]. The incubation periods for Plasmodium
falciparum malaria and SARS-CoV-2 are 7-14 days and 2-17 days, respectively, and this
enhances the possibility of coinfection [5,13]. In fact, malaria/COVID-19 coinfection has
been found in several countries [13-15]. Some studies indicated that the coinfection could
increase the severity of SARS-CoV-2 infection [1,13]. Wilairatana et al. [1] presented a
review article and identified studies of malaria/COVID-19 coinfection and compared them
from several aspects including: the possible correlations between COVID-19 and malaria,
the prevalence of malaria infection among COVID-19 patients, the risk of oxidative stress
in the malaria/COVID-19 coinfection, the role of sex in the malaria/COVID-19 coinfection,
the effect of malaria coinfection on the clearance of SARS-CoV-2 in COVID-19 patients, the
clinical severity of COVID-19, treatment of COVID-19, mean duration of the hospitalized
and the underlying comorbidities. Hussein et al. [16] reported that coinfection with
malaria and COVID-19 is associated with increased all-cause in-hospital mortality com-
pared to a single-infection with SARS-CoV2. Nevertheless, several studies mentioned that
the neutralizing antibodies against Plasmodium falciparum can also be effective against
SARS-CoV-2 particles. This can minimize the severity of SARS-CoV-2 infection in coinfected
patients [4,17-19]. Thus, understanding the dynamics of coinfection is very crucial in order
to find better ways to deal with and treat this group of patients.

Mathematical modeling is considered as one of the most substantial tools that is used
to support medical studies during epidemics. Malaria models at the blood stage have been
explored in many works (see for example [20-26]). In addition, many COVID-19 models
have been formulated and studied. These models can be classified into epidemiological
models and in-host models. Epidemiological models study the transmission of COVID-19
between individuals (see for example [27-32]). On the other hand, in-host models study
the interactions between SARS-CoV-2 and cells inside the body (see for example [33-38]).
In fact, in-host models have received less attention than between-host models. In a recent
work [39], the malaria/SARS-CoV-2 coinfection model has been developed and investigated.
All the above-mentioned models assume that parasites, viruses, and cells are distributed
homogeneously in the body. However, this assumption is not realistic in biological systems
as the diffusion of particles causes spatial variations within the body. Considering spatial
diffusion converts the ODE model into a PDE model, which allows the compartments to
vary in space and time. This will give a more accurate description of the model’s dynamics.
Therefore, some malaria models (see for example [8,40]) and SARS-CoV-2 models (see for
example [39,41]) are formulated using partial differential equations (PDEs) to take into
account the diffusion of some components in the model. Actually, the coinfection of COVID-
19 with malaria is an active area of research. Current studies are trying to deeply understand
the dynamics of this coinfection. This will help to effectively treat coinfected patients and
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save their lives. Mathematical modeling can support these studies and reduce the number
of experiments needed to test hypotheses. We noted that a diffusive malaria/COVID-19
coinfection model has not yet been considered. In this paper, we formulate a reaction—
diffusion malaria/COVID-19 model. This model considers the interactions between healthy
RBCs, infected RBCs, free merozoites, healthy ECs, infected ECs, free SARS-CoV-2 particles,
and antibodies. For this model, we (i) validate the boundedness and nonnegativity of
solutions, (ii) calculate all model’s equilibria and extract the conditions of their existence, (iii)
show the global stability of equilibria, and (iv) enhance the analytical results by executing
some numerical simulations.

The paper is written as follows: Section 2 gives a description for the proposed model.
Section 3 shows the properties of the model’s solutions. Furthermore, it calculates all
models’ equilibria. Section 4 introduces the Lyapunov method to establish the global
stability of all model’s equilibria. Section 5 is devoted for numerical simulations. Finally,
the results are discussed and some future research points are suggested in Section 6.

2. Reaction-Diffusion Malaria/COVID-19 Model with Immune Response

In this section, we give a detailed description of the proposed model. We construct the
malaria/COVID-19 coinfection model as a system of seven PDEs:

% = DyAU(x,t) + 01 — BulU(x, t)M(x,t) — diU(x, 1),

al(ai' D DiAIG )+ Bull(x, HM(x, ) — dal (x,8),

% = DpMAM(x, t) +ndal(x, 1) — g M(x, £) Z(x, t) — dsM(x, 1),

% = DyAY(x,t) + 02 — BoY(x, )V (x, ) — dgY (x, 1), )
aNéf' 9 DNAN(x,t) + BoY(x,£)V(x,t) —dsN(x, t),

avé’f’ 28 DyAV (x,t) +eN(x,t) — g2V (x,t)Z(x,t) — deV (x, 1),

% = DzAZ(x,t) + p1M(x, 1) Z(x,t) + paV (x, 1) Z(x,t) — d7 Z(x, 1),

for t > 0and x € I, where U(x,t), I(x,t), M(x,t), Y(x,t), N(x,t), V(x,t), and Z(x,t)
stand for the concentrations of healthy RBCs, infected RBCs, free merozoites, healthy ECs,
infected ECs, free SARS-CoV-2 particles, and antibodies. Healthy RBCs are generated at
a constant rate oy, get infected by merozoites at rate ,,UM, and die at rate diU. Infected
RBCs die at rate dyI and burst to generate 7 merozoites per infected cell. Free merozoites
die at rate d3M and are cleared by antibodies at rate g MZ. Healthy ECs are recruited
from its source at rate 0y, get infected by SARS-CoV-2 at rate 8,YV and die at rate d;Y.
Infected ECs die at rate ds N and release SARS-CoV-2 at rate eN. SARS-CoV-2 particles are
eliminated by antibodies at rate 4,V Z and die at rate d¢ V. Antibodies die at a natural death
rate dyZ and are stimulated to target malaria merozoites and SARS-CoV-2 at rates py MZ
and p,VZ, respectively. The spatial domain I' is continuous, bounded and its boundary oI
is smooth. A = % is the Laplacian operator. We assume that each component C(x, t) of
the model diffused in the domain with a diffusion coefficient D.. The initial conditions
(ICs) of model (1) are defined as the following:

U(x,0) =m(x), I(x,0)=7(x), M(x,0)=173x), Y(x0) =), o ©
N(x,0) =1s(x), V(x,0) =7(x), Z(x,0)=97(x), 7ix),i=12,...,7, xeT.
The boundary conditions are given by the following Neumann boundary conditions (NBCs):

ou 0 oM 9Y oON oV 9Z
%—%—ﬁ—%—ﬁ—%—%—o, t>0, xecodl, (3)
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where 55 is the outward normal derivative on dI'. This type of boundary condition

U
simulates a natural barrier that prevents cells and viruses from crossing the boundary.

3. Properties of Solutions

In this section, we verify the basic properties of model (1) including the existence,
nonnegativity, and boundedness of the solutions. Furthermore, we evaluate all possible
equilibrium points with their conditions of existence.

Let H = Cy(T, R7) be the set of all bounded and continuous functions from T to
R7, and H; = C,(I,R%.) C H. The positive cone H induces a partial order on H. Let

¢l = sup |¢(x)|, where | - | is the Euclidean norm on R’. This reveals that (H, || - ||5) is

xel
a Banach lattice [42,43].

Theorem 1. Assume that Dy = Dy, Dy = Dy, and Dy; = Dy = Dy. Then, model (1) has
a unique, nonnegative and bounded solution defined on T x [0, +o00) for any initial conditions

satisfying (2).

PI'OOf. For any Y= (r)/l/ Y2, Y3, Y4, Y5, Y6r 77)T € H+/ we define A= (Alr AZ/ A3/ A4/ A5/ A6/
A7)T:H, — Hby

Ar(7)(x) = 01 = Buy1(x)73(x) — di71(x),
Az (7)(x :5m71( )73(x) — day2(x),
Az(7)(x) = nday2(x) — q173(x)y7(x) — d3y3(x),

As(y)(x Zﬁv’m( )76(x) — dss(x),
Ag(7)(x) = ( ) — 3276 (x)77(x) — dsv6(x),
Az (y Y3(x)77(x) + pave(x)y7(x) — d7y7(x).

X

(1) (%)
(1) (%)
(1) (%)
Ag(7)(x) = 2 = Bora(x) 16 (x) — dara(x),
(1) (%)
(1) (%)
(1) (%)

X

We note that A is locally Lipschitz on H. We rewrite system (1)—(3) as the abstract
differential equation

dt
QO:'Y EH+/

where Q = (U,I, M, Y, N, V,Z)T and DQ = (DyAU, D;AL, DyyAM, DyAY, DyAN, Dy AV,
4D7AZ)T. It is possible to show that

{dQ DO+ A(Q), t >0,

N
hli%h 7 dist(y +hA(y),Hy) =0, v € Hy.

According to [42—44], systems (1)—(3) have a unique nonnegative mild solution on
[0, Tx), which is the maximal existence time interval. Next, we show that the solutions of
model (1) are bounded. We define

O1(x,t) = U(x, t) + I(x,t).

Since Dy; = Dy, we obtain that

001 (x, f)

EY — DuA@l(X, t) =0 —dq U(X, f) — dzl(x, t)

<01 = G[U(x,t) + I(x,t)]
=01 — 0101 (x, 1),



Mathematics 2022, 10, 4390 5 of 31

where {1 = min{dy,dy}. Thus, ©;(x, t) satisfies the following system:

8@1 (x, f)
ot

:0,

— DyAO;(x,t) <o — (101(x, t),

Ei
O1(x,0) = 11(x) +72(x) > 0.

Let ©1(t) be a solution to the following ODE

d®Tlt(t) =01 —061(1),

01(0) = max @ (x,0).
xel

Thus, (:)1(15) < max{?,ma_x 04 (x,O)}. Comparison principle [45] provides that
1 xel

O (x,t) < ©4(t). Therefore, we have

O1(x, 1) < max{gl,max O1(x, 0)} =K.
01" xer

Accordingly, U(x,t) and I(x,t) are bounded. Let
Ox(x,t) =Y (x,t) + N(x,1).
As Dy = Dy, we obtain

8@2(x, i‘)

o — DyA®y(x,t) =05 — dyY(x,t) —dsN(x, 1)

<oy — 0o[Y(x,t) + N(x,1)]
=0y — (01 (x, 1),

where {, = min{dy, ds}. Comparison principle [45] implies that

O (x,t) < max{‘TZ,ma_x Oy (x, 0)} = Kp.
§2 xel’

This proves the boundedness of Y(x, t) and N(x,t). Finally, we define a function

O3(x,t) = M(x,t) + MV(x,t‘) + ﬂZ(x,t).
pP192 P1

Since Dy = Dy = Dy, I(x,t) < k1, and N(x,t) < xp, we have

9035, 8) _ 1y A@s(x, ) —pdal(x,8) + “TP2N(x, 1) — dsM(x, 1) — T2y gy - T8 70
ot P192 p142 p1

<dory + jjj;’;m e [M<x, b+ ]le—’;ivu,w + %zw, t)}

e
=ndyKky + MKz — (303(x, 1),
p192

where {3 = min{ds, dg, d7}. Based on the comparison principle [45], we obtain

Os(x, 1) < max{ 1211 eqlszZ,max @3(36,0)}.

03 P19203 " xeT
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Thus, M(x,t), V(x,t), and Z(x,t) are bounded. Consequently, all solutions are

bounded on [0, Ty). Based on the standard theory for semi-linear parabolic systems [46],
the solutions are bounded on T’ x [0, 4-00). [

Proposition 1. There exist positive parameters Rom, Rim, Rp Roo, and Ry such that model (1)
admits seven equilibria as:

(1)
(2)
3)
4)
(5)
(6)

(7)

The uninfected equilibrium Eq always exists;

The SARS-CoV-2-free equilibrium without immune response Eq exists if Ry, > 1;

The SARS-CoV-2-free equilibrium Ej exists if Ry, > 1;

The malaria-free equilibrium without immune response Ez exists if R, > 1;

The malaria-free equilibrium Ey4 exists if Rq, > 1;

The malaria/COVID-19 coinfection immune-free equilibrium Es exists if Ry, > 1 and
Roo > 1;

. . . L L 1Bmo1p192
The malaria/COVID-19 coinfection equilibrium Eg exists if R, > 1+ ,
. 4 I ¢ IRy ‘11d6(€71d5 + ﬁmd7))
q1de eBuq102p2 eBmorpa Bm(p2ds + Body
Rom+— > 1+ ,and Rop + ———— > 1+ .
0 gads godzds(pads + Body) Oy didsd Bopidi

Proof. Each equilibrium of system (1) satisfies the following algebraic system:

@

@)

®)

0=0y — BnUM —diU,

0=pBuUM—d;,I,

0 =ndyl —g1MZ —ds M,

0=0y— BoYV —dyY, 4)
0= B,YV —dsN,

0=eN—qVZ—-dsV,

0=pIMZ+pVZ —dyZ.

By solving (4), we obtain the following equilibria:

The uninfected equilibrium Ey = (U, 0,0, Yp,0,0,0), where

02

=250 Y=
dy

& > 0.

Thus, the equilibrium Eg always exists.
The malaria single-infection without immunity equilibrium is given by E; = (Uy, I1,
Mi,Y1,0,0,0), where

ds dids dq )
U =—, L= Rom—1), Mi=—(Rom—1), Y71 =-,
1 77,3171 1 77,3de ( Om ) 1 le ( Om ) 1 d4
where Rg, = ;75 ";Ul. We note that U; and Y; are positive, while I; and M; are
143

positive for R, > 1. Thus, E; exists when Ry, > 1. Here, Ry, is a threshold
parameter, which specifies the establishment of malaria infection.

The malaria single-infection with immunity equilibrium E; = (Uy, I, M, Y2,0,0, Z5).
The components are given by

o1p1 Bmo1dy d7 ) ds
=M = S PT M=, Y, =2, Zy= 2 (Ryy - 1),
2T pidy 4 Budy” P da(prdy + Budy) S 27 d, T (R =1)
1%
where R1,, = 1Bn1p1 . We see that Uy, I, M, and Y, are always positive,

d3(p1ds + Bmdz)
while Z, > 0 when Rq,, > 1. Therefore, E; exists if R1,, > 1. R, is a threshold
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4)

©)

(6)

@)

parameter which sets the initiation of antibody immune response against malaria
merozoites.

The SARS-CoV-2 single-infection without immunity equilibrium is defined as E3 =
(U3,0,0,Y3, N3, V3,0). The components are given by

01 dsdg dyds dy
Us; = —, =——, N3=—7""(Ropp—1), Vz=—"(Rpw—1),
3 & 3 By 3 By ( 0v ) 3 ﬁv< 0v )
where Ry, = ¢po0 . Notably, U3 and Y3 are always positive, while N3 and V3 are

dydsd
positive when 742;] 6> 1. Here, Ry, is a threshold parameter which determines the
establishment of SARS-CoV-2 infection.

The SARS-CoV-2 single-infection with immunity is given by E; = (Uy, 0,0, Y4, Ny, Vy,
Z4), where

4! P2 Booady dz de
W=, Yy=—""= _ Ny=—-"27L __ Vy=-2L, Zi==2(Rip—1),
YT A YT pads+ Pods YU d(pdi+Body) T Tt (R1o=1)
eBy0
where R, = Poo2pa . We see that Uy, Y4, Ny and V, are always positive,

dsde(p2ds + Body)
while Z, > 0if Ry, > 1. Hence, E4 exists if Rq, > 1. The threshold parameter R,

marks the establishment of antibody immunity against SARS-CoV-2 infection.
The malaria/SARS-CoV-2 coinfection without immunity equilibrium is given by
E5 = (U5, 15, M5, Y5, N5, V5, 0), where

ds dids dq
Us = ——, = Rom—1), Ms=—(Ron—1),
5 Uﬁm 5 U,Bmdz( Om ) 5 ,Bm( Om )
dsdy dude dy
Ys = ——, Ns5= Rop—1), Vs=—(Rp,—1).
5 eﬁy 5 eﬁv( O0v ) 5 ,Bv( (4 )

The components Us and Y5 are always positive. I5 and Ms are positive when R, > 1,
while N5 and V5 are positive when Ry, > 1. Consequently, E5 exists when R, > 1
and Rg, > 1.

The malaria/SARS-CoV-2 coinfection with immunity equilibrium is given by E¢ =
(Ll6, 161 M(,, Y6, N6, V6, Z6), where

U — o1P1 Cp= o OPmldr—paVe) o d7—paVe
p1d1 + Bm(d7 — p2Ve) d2[p1d1 + Bm(d7 — p2Ve)] p1
Y, = q2d3ds(prdy + Bmd7) (Rim — 1) + Bmp2q2d3ds Ve + dsqide[prdy + Bm(d7 — p2Ve)]
eq1Bolp1d1 + Bm(d7 — p2Ve)] ’

_ qod3(prdy 4 Bumdy) (Rum — 1) + Bup2q243Ve + qrde[p1dy + B (d7 — p2Ve)]
B eqi[p1di + B (d7 — p2Ve)]
d3(prd1 + Bmdy) (Rim — 1) + Bup2ds Ve

q1[p1d1 + Bm(d7 — p2Ve)] '

Ne

Ve,

Zs =

By substituting Yp in the fourth equation of model (1), we obtain

eBoq102[p1di + Bm(dy — p2Ve)| — dads[p1d1 + Bm(d7 — p2Ve)]191d6 — q2d3] — 1Bmo1p192dads
— BodsVs[p1d1 + B (d7 — p2Ve)](q1de — 2d3) — 11BmBor1p142d5Ve = 0.

Thus, V fulfills the following equation
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BmBop2ds(q1ds — qads) V> + (ﬁmﬂlpzd4d5d6 + Bop1d192d3ds + BmBoqadzdsdy — efmPoqioap2

— BmP292d3dads — Bop1q1didsde — BmPogidsdedy — Uﬁm,@vtﬁqudS) Ve + eBop191d102

+ eBumPoq102d7 + p1d192d3dsds + Binqadzdsdsdy; — p1di1q1dsdsde — Buqidsdsded; — 17Bmo1 p192dads = 0.

Let us define a function G(V) as follows:
G(V)=aV24+bV +c,
where

a =BuPopads(q1ds — q2d3),
b =Bmq1p2dsdsde + Bop1d192d3ds + BmPoqadadsdy — eBmPoq102p2 — Pmp2g2dsdsds
— Bop191d1d5de — PmPoq1dsdeds — 11BmPo01 19245,
¢ =efop1g1d102 + eBmPoq102d7 + prd1qadsdads + Pmgrdsdsdsdy — prdigidadsds
— Bmq1dadsded7 — 11Bm01 p1g2d4ds.
By computing the value of G(V') at V = 0, we obtain
G(0) =eBoq102(p1d1 + Bumdy) + q2dsdads(p1d1 + Bumdy) — q1dadsds(p1dr + Bmdz) — 11Bmo1p1g2dads

eBu102 + q2dzdads NBmo1p192 }
=q1dydsd, di + Bmd { —-1-
T1dadsds (prdy + Pud7) q1d4dsde q1ds(p1d1 + Bmdz)

W,B;ng'lplq2 :|
=q1dsdsde(prer + Pud7) | Rp =1 — ——————=——1,
q1a40as 6(171 1 ﬁm 7) |: 4 qldé(pldl + ,Bmd7)

where R, = ePof1o2 + q2d3d4d5. We note that G(0) > 0 if
q1dadsde

7713111‘71]91‘72 (5)

Ry,>1+ .
P q1de(p1d1 + Bmdy)

In addition, we find that

d -1
G <l> =— [Uﬁm01plqzd5(Pzd4 + Body) + p1g1didsde (pads + Body) — prd1g2dzds(pads + Body) — efoprg1dioap2

P2 P2
_ p1919243d5(pady + Bodz) 71ds eBoq102p2
=- Rom +— —1—
p2 243 Godzds(pads + Body)
Thus, G<d7> < 0if
P2 d d
7146 7146
Romw + —— >1+ —FR1p. 6
O gads qads " ©)

d
This implies that there exists a root 0 < V* < Pl such that G(V*) = 0. Let V; = V*
2

d
and observe that for 0 < Vg < 27 and Rim > 1 (R1m > 1 is naturally satisfied at Eg
2

because E, coexists with Eg when R1,, > 1, but it will not be stable as can be concluded
from Theorem 4), we have Uy > 0, Is > 0, Mg > 0, Yg > 0, Ng > 0 and Zg > 0. Similarly, to
find the third existence condition of E4, we form a function of Z and extract the conditions
at which there is a positive root. This will give

eBmoap2 14 B (p2ds + Body)

Row + 222
0 pydydsde Bopidi

@)
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It follows that E¢ exists if conditions (5), (6), and (7) are met. O

4. Global Stability of Equilibria

This section confirms the global stability of all equilibrium points by building appro-
priate Lyapunov functionals. Define a Lyapunov functional

= /I_Z,'(x,t) dx

and let K: be the largest invariant subset of K; = {(U I,M,Y,N,V,Z) dﬂi = O},
i=0,1,...,6.

Theorem 2. The uninfected equilibrium Ey is globally asymptotically stable (GAS) when Roy, <1
and Ry, < 1.

Proof. Define

Yo

u u ! e‘“pzy(y—l—l Y)+ NP2 Ny dP2y oy Ty

Ao(x,t) =Up( — —1—In— | +I1+-M~+
o(x.1) °<u0 Uo) n ypigads npidads | npig2 npr

Then, we have
% :<1 — %) (DuAu+0'1 - ﬁmUM — dlu) + DAL + ,BmuM - dj)_l

1 eqip2 ( Yo)( )
+ = DmAM +1dyI — MZ—dM)—I—i 1-— DyAY + 0y — B,YV —dsY
17( M ndal — g1 3 1P10ads % Y 2— Bo 4

eq1p2 q1p2
DyAN + YV—dN>+ (D AV +eN—aVZ—d v)
np1da ds( NAN A+ Bo > e\ 12 ¥

qul (DZAZ +IMZ + pVZ — d72>
1

=(1- 22 (o —ayu) + 1-20) (o —dyy U - 2 \Mm
< a )\ ) T ypigads y ) (2 Pntlo ==,
+ (6‘7”’2&’ ‘m’zdﬁ)v _miz, ( )DuAU+ DAL+ ;DMAM

npigads © npiga np1

eqip2 Yo) eqipa q1p2 71
—=(1- DyAY + DnyAN + ——=DyAV + —DysAZ.
Uplqzds( Yy ) ¥ npigads npiga " -

By calculating the time derivative of Ag(t), we have

2
dﬂ:-th/ri(u_u()) dx_eq1p2d4/(Y—Y0) dx +‘i](R0m—l /de

dt u ?]pqud5 Y
+M(R0U71)/de 1d7/de+Du/(17@)Audx+D,/AIdx
1p192 T u T
+1DM/Ade+MDY/ (1—L>AYd P2 DN/ANdx
1 r 11p19245 T Y np1924ds r
4+ P2 g /AV dx+q—1Dz/Az dx. (8)
npig2 " Jr npr e

Depending on the Divergence theorem and NBCs, we have

o:/v-*d:/d’v d:/A dx,
ar)(vx rlv()()xr)(x

1 1 [Ax  |lvxl?
o:/ ZVy-id :/d ~Vy) d :/{7,7 dx, forx € {U,I,M,Y,N,V,Z}.
- x-vde= | IV(X x) dx oy % x, forye{ }
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This implies that
/A)( dx =0,
r
Ax vall?
OX gy = / WX 4y, for xe{U1,MY,N,V,Z}. 9
J St ax= [ or xef{ } )

By applying (9) to (8), we obtain

dAo (U — U0)2 €q1p2d4 (Y — Yo) d3
7:—51/ dx — / dr+ 2 (Roy —1 /de
dt U u 1p19245 Y 7 (Row —1)
. 2 2
+ qlpzdé (ROU _ l) / V dx 1d7 / Z dx DUUO/ || u” _ eq1p2 / HVYH
P92 r ’7P1Q2d5

dA dA
We note that ——2 < 0 when Ry, < 1and Ry, < 1. In addition, 220 _ 0 when

dt dt
U=Uy,Y=Yy,and M =V = Z = 0. The solutions tend to Ké which contains elements

d av
with M = V = 0 and then ,;TI:}/I = 0and i 0. The third and sixth equations of system (1)

imply that [ = N = 0. Then, Ky = {Eo} and thus LaSalle’s invariance principle (LIP) [47]
assures the global asymptotic stability of Ey when Rp,, < 1land Rp, <1. O

Theorem 3. Assume that Ro,, > 1. Then, the malaria single-infection without immunity equilib-
rium Eq1 is GAS if Roy < 1and Riyy < 1.

Proof. Define
~ u u I 1 M M
AMx,t)=U | — —1—In— | +1 (—1—1 )+M <—1—ln>
1(%t) 1<U1 Ul) "\L I 7\ My M,
_onp2_ Y1<Y11ny>+ GNP Ny DP2y oy g
np192ds \ V1 Y 1p1q2ds 1p192 np1

Then, we obtain

aa% —(1 - L&) (DuALH—Ul - 5mUM—d1u> + <1 - II> (DIAI—i—ﬁmUM dzl)

+ ; (1 - Ml) (DMAM +1dol — guMZ — d3M) 4 P2 (1 - ?) (DYAY oy — BoYV — d4Y>

M 11p19245
eq1p2 q1pP2
P2 (D AN + ByYV — d N> <D AV +eN — q,VZ — dV)
777?1612115( N Bo 5 T 92 6
;7”7; (DZAZ + IMZ + pyVZ — d72> (10)
1

The equilibrium conditions at E; are

o1 = BulUi My +dq Uy,
BnUi My = do 1y,

11
dy Iy = ?le an

0y = d4Y1.
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By utilizing (11) to collect terms of Equation (10), we obtain

CINE

u u unm
= <1 - 1> <d1u1 - dlu) + 3Bty My — Pl My 1 1

u ~ Pulhi My U, IM;

eq1p2 (1_§) <d4yl_d4y) _ Bl M 1M1 N (eqlpzﬁv - q1p2d6>v

1p1q24s LM \np1g2ds 1p192
+(‘71 - q1d7)z+<1—ul>DUAu+(1—11>D1A1+1(1—Ml>DMAM
U] 1np1 u I U] M
P2 (1 - Yl) DyAY + P2 puaN + 1P2 poay 4+ T poaz.
1p19245 Y 1p19245 np1g2 np

By computing %, we obtain

L2 (v v2
ﬁ:_dl/ U —W)" 4 eqpads / (Y —n) dx+ﬁmulMl/<3_ul_1Ml_ umw)dx
JT

dt u 1p1924s Y u LM UpIM;
+ ‘11P2d6 / V dx + q1(p1d1 + Bmdy) (le _ 1) / Z dx + Du/ (1 _ ul)Au dx
’7171112 1np1Bm u

11 Ml qlpz Y
+D/<1—>AIdx+D /(1—)Ade Dy / 1— 1) Ay dx
I I M M ﬂpqud5 Y

NP2 p / AN dx + P2 -Dy /Ade+ N p, /Ade
11p19245 npiq

:—dl/ u*ul dxfe’“pz‘”/(yfyl) dx+ﬁmu1M1/<3ulIMl UIlM)dx
r

ﬂp1q2d5 Y u IlM U11M1
2
n %Pzde /Vd . q1(p1d1 +.Bmd7 (Rum —1 /de Dyl / ||VU||
nmz 1P1Bm
||V1||2 1 ||VMH2 eq1p2 [vY]?
— DI / ~ DuMy / - DyY dx.
111 12 UquZdS Y11 T YZ X

dA dA
Thus, we see that d—tl <0if Ryp < 1and Ry, < 1. In addition, d—tl = 0 when

U=U,I =L, M=M;,Y =Y,and V = Z = 0. The solutions tend to K;, which

av
has V = 0 and then e 0. From the sixth equation of (1), we obtain N = 0. Hence,

K/1 = {E;}. Accordingly, LIP proves the global asymptotic stability of Ej if Ro, > 1,
Roy <1 and le <1 0O
Theorem 4. Suppose that R1,, > 1. Then, the malaria single-infection with immunity equilibrium

, 1Bmo1p192
Eris GAS when R, <1+ .
2 P = q1de(p1d1 + Bmdy)

Proof. Consider

- u u I I 1 M M eq1p2 Y %
Ao, t) =Up [ — —1—1In— +1< 1—ln>—|—M (—1—ln>+ Y( 1—ln>
2(%.t) 2<U2 Uz) \ 1 I 1 2\ M, M, np1924s Y, Y,
‘NP2 N 1Pz V—l—qu2<Z—1—an)
1p19245 1p192 1 T\ 722 Zp

Then, we obtain
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u

S (-3)( )+ o (1) ( )
1—-—= Dy AM +ndyl —gtMZ —dsM | + ———=—(1— DyAY 4+ 09 — B, YV —dsY
77( M M ndal — g1 3 P00 % Y 2 — Bo 4

W(pmmﬁvwm) apz. (D AV +eN —goVZ — daV)
11p19245 npr1qz

+ AL <1 ZZ) <DZAZ + IMZ + ppVZ — d7z)
np1 Z

ag‘f (1 - ”2> (DuAu+01 — BnlIM — dm) + (1 - 112) (DIAI+ BulM — dzl)

The equilibrium conditions at E; are computed as

o1 = Bula My +dq1 Uy,
Bnla My = dy 1,

_d3 n

Ui Ui
0y = dsY>,

Nz, = 197 )
Ul 1p1

After using the equilibrium conditions to collect terms of Equation (12), we obtain

oA u e Y. U
T: —(1 — UZ> (dﬂlz — dﬂl) + ﬁ (1 — Y2> (d4Y2 — d4Y) + 3BmUs My — BUa Mo Uz

ULM IM; (eqlpzﬁv qip2ds  qip2 > ( Uz)
— B lbM U, M. T P27 Yy 4 (1- 22\ DpyAu
PulleMagy gy ~ P2 Mot T pigads 2 i 2 u)-

+ (1 - I) DJAT + — (1 - M) DyAM + —1P2 (1 - Yz) DyAY + —1P2_p AN
I 1 M 11p1924s Y 11p1924s

4 NP2 poay 4 D (1 — Zz) DyAZ.
1192 np1 Z

By using the values of Y, and Z,, we have

eq1p2Bo v q1p2de np2 ., _eBoqioopr  qipads  qip2(1Bmo1p1 — p1dids — Bumdsdy)
> — — ) = — —
1p1924ds gz Mp np1g2dads  11p192 np1q1(p1d1 + Bmdz)
_q1p2ds [6,3017102 tqdsdads | BmOip1g2 }
1p192 q1d4dsde q1de(p1d1 + Pmdy)
_q1P2de [R 1 1BmT1p192 }
P12 q1de(p1d1 + Bmdy)

Accordingly, —= 42, T

2
db, :—d1/ (-t 4 eqpads / (Y-Y) dx+ﬁmU2M2/<3—u2 _ M sz) dx
dt r u np1924ds Y

q1p246 < N1Bmo1P192 ) / / HVUHZ
+ —— o V dx — Dyu dx
npig2 \ 7 q1de(p1d1 + Bmdy) 2

2 2 2
*Dﬂz/ ||V£|| 1D M, /||VMH _eqmpr /||VY|| dx
r I 17]01!12015

2 is given by

vZ2
a2

dx.
77P122F 2z

(12)
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LAY . 1Bmo1p192 L. AN
We observe that —= < 0if R, <1+ . In addition, —= = 0 when
dt — P = qld6(Pld1 + ‘Bmd7) dt

U=Uy, =15, M= M, Y =Y, and V = 0. We can prove that the elements of K,2 satisfy
N = 0and Z = Z,. Consequently, K, = {E;}. Therefore, the global asymptotic stability of

. 1Bmo1p192
E, is followed by LIP when Ry, > 1land R, <1+ .
2 y b P q1de(p1dr + Bmdy)

Theorem 5. Assume that Ro, > 1. Then, the SARS-CoV-2 single-infection without immunity
equilibrium E3 is GAS when Roy, < 1and Ry, < 1.

Proof. Define

~ u u 1 _eqipa (Y Y)
As(x,t) =Us[ — —1—In— ) +1+-M+ Yi(— —1—In—
(1) =Us ( Us Us) U] np1g2ds "\ Y3 Y3

eqp2 N N) q1p2 <V ) 71
L LV VY (A R P Blo —1-m2)+ 1z
n1p192d5 3 < N3 N3 P19z V3 V3 np1

Then, we obtain

aaA;’ <1 - Llll?’) <DUALI+ 1 — BuwlUM — dlu) + DAL + BUM — dyl

1 22, (-2) |

+ = DyAM +nd>rI — MZ—dM>—|- 1-— DyAY + o YV —dY
17( M ndaI — g4 3 1P100ds v Y 2 — Bo 4
22, 3) i) 3222 |
— (1-= DnAN + B,YV —dsN ) + —=(1— Dy AV +eN — g, VZ —dgV
11p1qzd5< N N Bo 5 T v v 92 6
77‘7;1 (DZAZ+ PIMZ + paVZ — d7Z> (13)

By using the equilibrium conditions at E3

o1 = d1Us,
= BuY3V3 +d4Y3,
eqleﬁv Yavs = P2
3=
17p19245 1p192
eqi1p2 N3 = q1pz 6V
np192 np192

4

the partial derivative in (13) is transformed to

i ( U3> ( ) e ( Y3> ( ) e
— =(1- diUz —dUu 1—-= dyYs —dsY ) +3 Y5V
ot u e 11P19295 Y 4T nr192 dS‘BU 373

eqip2 Y3 eq1p2 NV3 eqip2 YN3V ( d3)
_ YaVa— — U — — |M
Up1q2d5’Bv 3By np1q ‘Bv N3V Up1q2d5’Bv Y NV3 Pmlls
+<‘7”’2—‘71d7>z+<1—u)DUAU+D1A1+1D AM + —S11P2 <1 Y3>DyAY
PP u U np1924s Y
_emp2_ (1 N3>D AN + 11P2. (1 V3)D AV + L p,az.
1p1924s N 192 |4 p1
Accordingly, —= 425 3 is given by

dt
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% :—d1/ (U*U3)2 dx — eq1p2d4 / (Y*Yg)z dx & eqip2 ﬁz; /< _E_ NV3 B YN3V) dox

dt u 1p14245 Y 1p14245 Y NV Y3NV3
2
ROm /Md L Dt Pods) o /de DyUs /||vu||
1p1Bo
__emp2 /II VY|P empr o / IYNI? 4. @P2 HVVII2 dx
IPaads npigads N2 T ’

dA
This implies that d—: <0if Rogy < 1and Ry, < 1. In addition, one can show that
dAs

W:Owhenll:U3,I:0,M:O,Y:Y3,N:N3,V:Vg,,andZ:O. Thus,

K/3 = {E3}. As aresult, LIP insures the global asymptotic stability of E3 when Rg, > 1,
Rom <land Ry, < 1. O
Theorem 6. Assume that Ry, > 1. Then, the SARS-CoV-2 single-infection with immunity

equilibrium Ey is GAS if Roy + — N6 <1+ 7146 LT
9243 q2d3

Proof. Consider

Ay(x, 1) :u4(u11nu)+1+1M+e’h”2 Y4<Y11ny>+ “41P2 N4(N11nN)

Uy Uy 1 1np1924s Yy Yy np1q2ds Ny Ny
q1p2 14 V) 71 ( Z Z )
+ V(—l—l — |+ —=—Z4l = —1—In—
np192 "\ Vi np1 "\ Z Zy

Then, we have

aa% —<1 — li?) (DuAU—l— o1 — BnUM — dlll) + DAL + B UM — dy1

+ 1 (DMAM + ﬂdz[ — qlMZ — d3M> + M (1 Y4) (DyAY +o0y — ‘BUYV d4Y)

U] 1p1924s Y
e (15 )i (- 9)( )

— 11— == DnNAN + B,YV —dsN | + 1-— DyAV 4+eN — g, VZ —dgV
P < N N o 5 T, v v 2 6

I (1 - Z‘*) (DZAZ + pIMZ + pVZ — d7Z>. (14)
np1 z

The equilibrium conditions at E4 can be written as

o1 = dqUy,
09 = BpYaVy +dsYy,
E%Pzﬁv ViV, — eq1P2 o
4 — 4/
np19245 192 (15)
qp2 N, q1p2de Vet P2y.7.
P19z p1492 pP1
‘71P2V Z 171017 7.
pP1 P1

By utilizing Equation (15) to collect terms of Equation (14), we obtain
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9Dy di(U—Uy)? _eqipady (Y*Y4) eq1p2 B,Y. ( Y, NV, YN4V)
v

of U pidads Y npigads Y NV YNV
ds ¢ ( U> 1 eqip2 ( Y4>
_ B Nz M+ (1- 22 \DyAU + DjAI + =Dy AM + 1- 22 )DyAY
+ (Bl n 1) o )Pu I v T v )Pr
cq1p2 (1 N4>D AN + 11P2 (1—V4>DVAV+‘“<1—Z4>DZAZ.
1p1924s N 7p192 14 np1 Z

A
By using Equation (9), —— is computed as

g :—dl/ (U—U4) dx — €q1p2d4 / (Y—Y4) dx & eqip2 ‘Bv /( Yy NV YN4V) dx

dt u 1p19295 Y np19295 Y NV V4NV,
2 2
] q2d3 q2d3 nquds
o eqipy /||VNH2 _ mp2 /HVVH _ lh D Z / HVZHZ
77P1672d5 7719142
Therefore, By < 0if Row + M <1+ q1d6 ——7R1p. Furthermore, & = 0 when

dt gods — gods dt
U=Uy, M=0,Y =Y, N= Ny, and V = V. One can show that K4 = {E4}. By LIP, the
equilibrium Ej4 is GAS if Ry, > 1 and Rg,, + q1d6 <1+ s —Rip. O

qods — 7243
Theorem 7. Assume that Ro,, > 1 and Ro, > 1. Then, the malaria/SARS-CoV-2 coinfection
eBmoap2 <14 B (p2ds + ,Bvd7)
p1didsds Bop1di

without immunity equilibrium Es is GAS if Rom +
Proof. Define

~ u u I M M eqi1p2 Y Y
As(x,t) =Us( — —1—In— —i—I(—l—l >—|— M(—l—ln)—i—Y(—l—l >
s(x.1) 5<U5 U5) "\ Is i "\ Ms Ms n1p192d5 > Y5

eq1p2 N N) q1p2 (V ) i
empz g (N N Ve[ L 1 L)+ Iy
np142ds 5(N5 Ns) " npiga O\ Vs Vs) i

Then, we obtain

aa% :(1 - LLIIS) (DUAU+(71 - ﬁmUMd1U> + (1 - 11> (DIAIJrﬁmUM d21>

; <1 _ M5> (DMAM +ydal — g MZ — d3M> P2 (1 Y5> <DYAY oy — BV — d4Y>

M 1p1924s Y
eqip2 (1 _ N5) (DNAN+ BoYV — d5N> + %PZ( VS) (DVAV+eN P VZ — d6V>
1 p1424ds N np192 14

77’7; <DZAZ +PIMZ+ paVZ — d72> (16)
1
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The equilibrium conditions at E5 can be written as

01 = diUs + BmUsMs,
BumlUsMs = d> 15,
dyls = @Ms,
Ui
= BoY5Vs + d4Ys,

eqlpzﬁv Ve — E01P2

Ys5V5 =
1np19245 1np192
eqip2 Ns — q1p2de Ve
np192 np192

By using the above conditions, the derivative in (16) becomes

s d(U—Us)*  eqpady (Y — Y5)? Us IMs UlsU
ot u npigads Y +BullsMs| 3= 77 M UsIMs

Y: NV: YNs5V d
(s N (s )

Y N5V YsNVs Ul np1 np1

Us I5 1 M5> eq1p2 < Y5)
1—— |DyAU+ (1— = |D;AI + 1—— |DyAM+ ———=-|1— —= |DyAY
( U) " ( I> 17( M )M mpgads Y )T

eq1p2 (1 _ N5> DyAN + 11P2 (1 - V5) DyAV + 1 D,AzZ. (17)
1P192d5 N npP192 14 np1

To evaluate the fifth term in (17), we calculate

g1 qip2 qd;  quon | equoapr  qidr qipads qudy
—M;5 + Vs — = + - - -
1 np npr ds ypidsde  nBm np1Po NP1
_qd |:770'1,Bm L Bmopy B (p2ds +,Bvd7):|

NBm | drds  prdidsds Bor1di
_qidy {Ro L Pmo2pr Bm(p2ds + ﬁvd7)}
 1Bm " prdidsds Bop1di

Accordmgly, d 2 is provided as

dds _ / (U — Us)? e CT1Pads / (Y — ¥5)? Us IMs LII5M> q

a kU npigads Jr Y dx+ﬁ’”u5M5/r(3_u_15M_u51M5

eq1P2 ﬁv /r< - E B % B YN5V) dx + ('R()m-l- e,Bmtfzpz 11— ﬁm(p2d4+ﬁvd7)) /rZ dx

17]01(] d Y N5V Y5NV5 p1d1d5d6 ,valdl
lvu|* u||2 [vI|* 1 [vM]|? eq1p2 VY|
DU/ _DyI dx — ~DyM dx — DY/ d
15 | " - mMMs | — . Y15 | Ty
2 2
_ P o ||VZ\£|| dx— P2y HVZH dr.
1p1924s r N npig2 r vV
Hence, we have % < 0if Roy + M <1+ Pr(pads + ﬁvd7). In addition,
; dt p1d1dsde Bop1di
% =0whenU =Us, I =I5, M= Ms,Y =Y5, N = N5,V = V5,and Z = 0. Thus,

K,5 = {Es} and, according to LIP, Es is GAS if Rg;, > 1, Roy > 1, and Roy, + P22 <

p1didsde —
B (pads + ﬁvd7)
O
Bop1d1

1+
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1Bmo1pP192 q1de q1de
Theorem 8. Suppose that R, > 1+ , Rom + > 14+ 2R, and
PP P q1ds(prdy + Budz) 0" gads gods "
Rom + M > 1+ Pu(pads + B vd7). Then, the malaria/SARS-CoV-2 coinfection with
p1d1dsde Bop1dr

immunity equilibrium Eg is GAS.

Proof. Consider

~ u u I M M
Ag(x,t) =Ug( = —1—In— )+ I(——1—In— Mg -2 —1—In—>
(%) 6<U6 nU6>+ 6<16 >+77 6<M6 nM6>

eqip2 Y Y > _eqip2 ( N N )
P2y 1 -In— )+ Ne(— —1—In—
1P1q245 ( Yo/~ np1gads "\ Ne Ne

S n ) n8)
+ Vol —1-In— )+ Lz (2 —1-mm2
npP192 <V6 Ve np1 \ Zs Zg

Then, we obtain

asf’ <1 - lfj) (DUAU—Hrl — BwlUM — dlu) + (1 - If) <D1A1+[3mUM - dzl)

S (-3)( ) (12 %)( )
+ 1—— DuyAM +ndyl —gMZ —dsM | + ——(1—- = DyAY 4+ 05 — B, YV —dsY
17( M M ndaI — g1 3 I % Y 2 — Bo 4
eqip2

) )+ oo (-9 ( )
+ —(1- = DyAN + B,YV —dsN | + 1-— Dy AV +eN — g, VZ —dgV
’77?1072015( N N P > np192 1% v 12 6

5 (%) )
+ 1-—— DyAZ + p1MZ + poVZ — d7 7

By using the equilibrium conditions at Eg,

o1 = d1Ug + UM,
BnUsMe = dr 16,

ds g1
dyle = — Mg + —MgZs,
Ul Ul

02 = BoYe Ve +dsYs,
eqmzﬁv YoV = eqp2
6 —
1p19245 1np192
eqipa Ng = thz 6V6 i q1p2 VeZe,
7p192 11p192 np1

N Mezs + B2y, 7o = DY 7
1 np1 p1

and the % is given by

dhe _ [ (U—Ue) | eqipydy / (Y = Y)? / _Us Mg UM
dt N dl/r u dx 77]711]2115 T Y dx+'8mu6M6 3 u IﬁM U6IM6 dx

2 2
eqip2 BoYe /( _%_ NVe YN6V> D Ua/ ||VU|| D116/ HV£|| d

17]7 qu5 NéV Y6NV6
D Mq / HVMHZ _eqp2 /|VY||2 _eqmp2 /||VN||2
WquzdS 77}71112115

2
e gy IV p,z, [ 20
p192 r V
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dA dA
Therefore, we have =26 < 0. Furthermore, we have 226 _ owhen U = Ug, I = I,

dt dt
M= MY =Y, N=Ng, V="Vg,and Z = Zs. Thus, K, = {E}. It follows from
LIP that Eg is GAS when R,y > 1 4 —1Pm71P182___ o il ¢idsp g
: fhd)é(r’ldl + Bmdz) 243 243
epmaap2 B (p2da + Body
Row + —————— >1+ . O
O pidrdsde Bop1d

5. Numerical Simulations

In this section, we execute some numerical simulations to visualize the analytical
results gained previously. The MATLAB PDE solver (pdepe) is used to solve the equations
(see the Supplementary File S1 pdex30.m). The spatial domain is selected as I = [0, 2] with
step size Ax = 0.02 and time step size At = 0.1. The initial conditions of model (1) are
taken as:

U(x,0) = 5(1 +0.2cos?(rx)), I(x,0) =0.0001(1+ 0.2cos?(rrx)), M(x,0) = 0.0002(1 4 0.2 cos?(7rx)),
Y (x,0) = 10(1 + 0.2 cos?(x)), N(x,0) = 0.02(1 +0.2cos?(mx)) V(x,0) = 0.01(1 + 0.2 cos*(7x)),
Z(x,0) = 0.1 x 101°(1 4+ 0.2 cos?(7x)), x € [0,2].

The values are assumed based on previous studies [8,48]. The results are classified
into seven cases corresponding to the global stability of each equilibrium point. These
cases are obtained by varying five parameters S, Bv, p1, p2, and dy, while the rest of the
parameters take fixed values as shown in Table 1. We used the values of some parameters
which are given in the literature to perform our numerical simulations. We mention that
these values are taken from studies for SARS-CoV-2 single-infection and malaria single-
infection. To the best of our knowledge, till now, there has been no available data (e.g., the
concentrations of SARS-CoV-2 particles, merozoites, antibodies, etc.) from SARS-CoV-2
and malaria coinfection patients. Therefore, estimating the parameters of the coinfection
model is sill open for future work.

Table 1. Model parameters.

Parameter Definition Value Reference
01 Production rate of healthy RBCs 2.5 x 108 [21]

(3 Recruitment rate of healthy ECs 0.02241 [33]

B Incidence rate constant of RBCs Varied -

Bo Incidence rate constant of ECs Varied -

Ui Number of merozoites produced from an infected RBC 16 [20]

7 Removal rate constant of merozoites by antibodies 108 [21]

q2 Removal rate constant of SARS-CoV-2 particles by antibodies ~ 4.88 x 10-8 [49]

e Generation rate constant of SARS-CoV-2 by infected ECs 0.24 [33]

P1 Proliferation rate constant of antibodies by merozoites Varied -

P2 Proliferation rate constant of antibodies by SARS-CoV-2 Varied -

dq Death rate constant of healthy RBCs 0.025 [21]

dy Death rate constant of infected RBCs 0.5 [26]

d3 Death rate constant of merozoites 48 [21]

dy Death rate constant of healthy ECs 1073 [33]

ds Death rate constant of infected ECs 0.11 [33]

de Death rate constant of SARS-CoV-2 particles 5.36 [33]

dy Death rate constant of antibodies Varied -

Dy Diffusion coefficient of healthy RBCs 0.1 Assumed
Dy Diffusion coefficient of infected RBCs 0.1 Assumed
Dy Diffusion coefficient of merozoites 0.2 Assumed
Dy Diffusion coefficient of healthy ECs 0.01 Assumed
Dn Diffusion coefficient of infected ECs 0.01 Assumed
Dy Diffusion coefficient of SARS-CoV-2 particles 0.2 Assumed

Dy Diffusion coefficient of antibodies 0.2 Assumed
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Now, we have the following cases:

The varied parameters are (B, Bo, p1, P2, d7) = (2 X 10719,0.1,3 x 1078,0.96,0.2). This
yields Roy, = 0.6667 < 1 and Rg, = 09122 < 1. This implies that the equilibrium
Eo = (10 x 10%,0,0,22.41,0,0,0) is GAS (see Figure 1), which agrees with Theorem 2. This
simulates an individual who has recovered from both malaria and SARS-CoV-2 infections.
The selected parameters are (B, Bo, P1, P2, d7) = (2 107%,0.1,2 x 107%,0.96,0.2).
Then, we obtain Ry, = 6.6667 > 1, Ry, = 09122 < 1, and Rq,, = 0.7407 < 1.
Figure 2 shows that the numerical results agree with the analytical results of Theorem 4.
The equilibrium E; = (1.5 x 107,4.25 x 108,7.08 x 107,22.41,0,0,0) is GAS. This case
describes a patient who only has malaria with inactive antibody immune response.
The varied parameters are (B, Bo, P1, P2, d7) = (2 x 1072,0.1,3 x 10-8,0.96,0.2). This
, 1Bmo1p192
yields Ry, = 4.3478 > 1and R, = 44.6137 < 1+ T1de(prdy + Bdy) 191.0065.
From Figure 3, we see that the equilibrium E; = (6.522 x 10?,1.739 x 108,6.667 x 10°,
22.41,0,0,1.607 x 1010) is GAS, which illustrates Theorem 4. This case represents a
patient who has only malaria with an active antibody immune response.
By choosing (B, Bv, p1,12,d7) = (2 x 10719,0.9,3 x 1078,0.96,0.2), we obtain
Rop = 82099 > 1, Roy = 0.6667 < 1, and R, = 0.0436 < 1. Figure 4 illustrates the
global asymptotic stability of the equilibrium E5 = (10 x 10%,0,0,2.73,0.1789,0.008,0)
as given by Theorem 5. The patient in this situation suffers from SARS-CoV-2 single-
infection with inactive immunity.
By selecting (B, Bv, p1,p2,d7) = (2 x 10719,0.9,3 x 1078,3.9,0.01) we obtain
_ fide efoq102p2 _
Riv = 24821 > 1, Roym + s 0.6895 < 1+ tadnds (pads + Bods) 1.0568.
Accordingly, the equilibrium E4 = (10 x 10%,0,0,6.775,0.1421,0.0026, 1.628 x 10%) is
GAS (see Figure 5). This result comes in agreement with Theorem 6. The patient in
this situation has SARS-CoV-2 single-infection with active immunity. The activation
of the antibody immunity causes a reduction in the number of SARS-CoV-2 particles.
We take (B, Bo, P1, p2,d7) = (4 x 10719,0.9,3 x 10-8,0.96,0.8). This gives Ry, =
ePuaP2 _ | sz gy Pu(pads + Bodr) _
p1d1dsds Bop1d1
1.4272. Thus, the equilibrium Es = (7.5 x 10%,1.25 x 10°,2.08 x 107,2.73,0.1789,0.008, 0)
is GAS (see Figure 6), which agrees with Theorem 7. Here, the coinfection of malaria and
COVID-19 occurs but with inactive antibody immunity. The inactivation of immunity
enhances the replication of both SARS-CoV-2 particles and malaria merozoites, which
worsens the health state of the patient.
We select (B, Bo, P1,12,d7) = (4 x10719,3.9,3 x 1078,0.5,0.4). In this case, the
nBmoipd
q1ds(prdy + Bmd7) 00
efmanpr _
p1d1dsde

1.3333 > 1, Roy = 8.2099 > 1,and Ry, +

threshold parameters are given as R = 79.2777 > 1+

q1de eBoq102p2
Rom + —= =1.3562 > 1+ = 1.0003, and R, +
O gods3 q2dzds(pady + Body) o

13358 > 14 Pn(p2ds T Pod7)
ﬁv P1 dq

Es = (8.244 x 10%,8.78 x 107,1.33 x 107,3.36,0.17,0.0015,4.76 x 108) is GAS (see

Figure 7). Under these circumstances, the coinfection of malaria and COVID-19 occurs

with active antibody immunity. This action works on reducing the concentrations of

both malaria merozoites and SARS-CoV-2 particles.

= 1.2134. In line with Theorem 8, the equilibrium
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Figure 1. Simulation of system (1) for (B, Bv, p1, P2,d7) = (2 X 10719,0.1,3 x 1078,0.96,0.2). The un-
infected equilibrium Ey = (10 x 10%,0,0,22.41,0, 0,0) is GAS.
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Figure 2. Simulation of system (1) for (Bm, Bo, p1,p2,d7) = (2 x 107%,0.1,2 x 107%,0.96,0.2).
The equilibrium E; = (1.5 x 10?,4.25 x 10%,7.08 x 107,22.41,0,0,0) is GAS.
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Figure 3. Simulation of system (1) for (Bm, Bo, p1,p2,d7) = (2 x 107%,0.1,3 x 1078,0.96,0.2).
The equilibrium E; = (6.522 x 10%,1.739 x 10%,6.667 x 10°,22.41,0,0,1.607 x 10'0) is GAS.
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Figure 4. Simulation of system (1) for (Bwm, Bo, p1, P2,d7) = (2 % 10719,0.9,3 x 1078,0.96,0.2).
The equilibrium E3 = (10 x 10%,0,0,2.73, 0.1789,0.008,0) is GAS.
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Figure 5. Simulation of system (1) for (Bwm, Bo, p1, P2,d7) = (2 % 10719,0.9,3 x 1078,3.9,0.01).
The equilibrium E4 = (10 x 109,0, 0,6.775,0.1421,0.0026, 1.628 x 108) is GAS.
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Figure 6. Simulation of system (1) for (Bwm, Bo, p1, P2, d7) = (4 X 10719,0.9,3 x 1078,0.96,0.8).
The equilibrium Es = (7.5 x 10%,1.25 x 10%,2.08 x 107,2.73,0.1789,0.008, 0) is GAS.
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Figure 7. Simulation of system (1) for (Bm, Bo, p1, P2, d7) = (4 X 10710,3.9,3 x1078,0.5,0.4). The equi-
librium Eg = (8.244 x 10%,8.78 x 107,1.33 x 107,3.36,0.17,0.0015,4.76 x 108) is GAS.
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5.1. Sensitivity Analysis

Sensitivity analysis evaluates a relative change in a variable when a parameter changes.
We execute sensitivity analysis for R, and R, as they are the main determinants for the
stability of the uninfected equilibrium Ej. The normalized forward sensitivity index of a
differentiable function € with respect to a parameter p is defined as

0 _
I, =

QJ‘ U
<D
I

5.1.1. Sensitivity Analysis of Roy

The normalized forward sensitivity index of Ry, is given by

a7-\)/Om p

ap 720111 ’

I‘Z}Om —

We calculate the sensitivity indices of R, with respect to each parameter using the

values provided in Table 1. The results are listed in Table 2. We note that the sensitivity

indices of Ry, do not depend on any parameters. For instance, the sensitivity index of
Rom with respect to 77 is

Row _ ORom 11 _ Pmor  ndids
1 o Rom  dids 1m0y

Therefore, it is useful to justify the sign of the sensitivity indices of Rg,,. According to
Table 2, the number of merozoites produced per infected cell, #, the infection rate of RBCs,
Bm, and the recruitment rate of healthy RBCs, ¢y, are the parameters that increase malaria
infection in the body. Conversely, the death rate of uninfected RBCs, d;, and the death
rate of merozoites, ds, are the parameters that have a crucial role in eliminating malaria
infection from the body.

=1

Table 2. Sensitivity indices of Roy,.

Parameter Sensitivity Index
] 1
Bm 1
(%] 1
d -1
d3 -1

5.1.2. Sensitivity Analysis of R,

The normalized forward sensitivity index of R, is given by

aROU X p
ap ROU

RO‘U —
Iy =

As for Ry, we calculate the sensitivity index of each parameter in R, using the values
given in Table 1. The results are presented in Table 3. We see that, when one of the
parameters with a positive index (e, By, or 02) is increased while the other parameters
remain constant, this raises the value of R,. In other words, these parameters lead to the
growth of SARS-CoV-2. Conversely, the parameters with negative indices have a role in
eliminating SARS-CoV-2 infection from the body.
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Table 3. Sensitivity indices of Ry.

Parameter Sensitivity Index
e 1
B 1
(%) 1
dy -1
ds -1
dg -1

6. Results and Discussion

Malaria/COVID-19 coinfection represents a true concern especially in malaria-endemic
regions. Therefore, there is an urgent need to understand the dynamics of this coin-
fection within a human body. In this paper, we develop a reaction-diffusion in-host
malaria/COVID-19 coinfection model. This model considers the interactions between
healthy RBCs, infected RBCs, free merozoites, healthy ECs, infected ECs, free SARS-CoV-2
particles and antibodies. We show that the system admits seven equilibrium points and we
prove the following:

(1) The uninfected equilibrium Ej always exists. Moreover, Ey is GAS if Ry, < 1 and
Roy < 1. This situation represents an individual who recovered from both malaria
and SARS-CoV-2 infections.

(2) The malaria single-infection without immunity equilibrium E; exists if Ro,, > 1. In
addition, E; is GAS if Rgy < 1 and Ry, < 1. This simulates the situation of malaria
mono-infection patient with inactive immunity.

(3) The malaria single-infection with immunity equilibrium E; exists if R1,, > 1. More-

. . 1Bmo1p192 . . .
over, B, is GASif R, <1+ . At this point, the antibody immune
? s qde(p1d1 + Pmdz) P Y
response is activated to eradicate malaria merozoites.

(4) The SARS-CoV-2 single-infection without immunity equilibrium Ej exists if Rg, > 1.
In addition, E3 is GAS if Ry, < 1and R, < 1. This point simulates the situation of a
patient who is only infected by SARS-CoV-2 and the immune response is inactive.

(5) The SARS-CoV-2 single-infection with immunity equilibrium E4 exists if R, > 1.

. d6 eﬁvql (%) %] . .
It is GAS when Rg,, + Nie <1+ . The immune response is
O gody q2d3ds(p2ds + Bodz) P
activated in the SARS-CoV-2 mono-infection patient.

(6) The malaria/COVID-19 coinfection without immunity equilibrium Es exists if
efmo2p2 _ 4 n B (p2ds + Body)

o S prdidsde ~ Boprda
Here, the coinfection occurs with inactive immune response.

(7) The malaria/COVID-19 coinfection with immunity equilibrium Eg exists, and it is GAS
. 1Bmo1p192 q1de 9146 efmoap2
fR,>1+ ,Rom +— > 14+ —Rqp,and Ry, + ————
i qide(prdy + Bud7)’ " gods fds O prddsds

Bm(pads + Budy)

Bop1d:
coinfection with an active antibody immune response.

Rom > 1and Ry, > 1. It is GAS when Ry, +

>

1+ . This point represents the occurrence of malaria/COVID-19

The numerical results agree with the analytical results. Based on our results, we
assume that the malaria/COVID-19 coinfection can be protective as the shared antibody
immune response works on clearing SARS-CoV-2. This can decrease the severity of COVID-
19. This result comes in agreement with some studies that reported the positive impact
of the shared antibody immune response [4,17-19]. However, other studies suggested
that there is an increased risk of death in malaria patients with SARS-CoV-2 infection
[1,13]. Therefore, more studies are required to investigate the impact of coinfection between
malaria and COVID-19, to evaluate the effect of the immune system during the coinfection,
and to find the suitable ways for treating the coinfected patients. The main limitation of



Mathematics 2022, 10, 4390

29 of 31

References

this research work is that we did not estimate the values of the model’s parameters using
real data. The reasons are as follows: (1) The data on malaria/COVID-19 coinfection are
still very limited; (2) Comparing our results with a small number of real studies may not be
very precise; (3) Collecting real data from patient coinfected with malaria and SARS-CoV-2
is not an easy process; (4) Working on experiments to obtain data is beyond the scope of
this paper. Thus, the theoretical results obtained in this paper need to be tested against
empirical findings when real data become available.

6.1. Conclusions

Malaria/COVID-19 coinfection has been reported in many countries. In this paper,
we formulated a reaction-diffusion in-host model to study the coinfection between malaria
and COVID-19. We assumed that the shared antibody immune response decreases the
concentrations of SARS-CoV-2 and malaria merozoites. This can reduce the severity of
SARS-CoV-2 in coinfected patients. The principal limitation of this paper is that we did
not use real data to estimate the values of parameters or to compare the results due to
the scarcity of data. Therefore, our results need to be validated when real data become
available.

6.2. Future Works

The model developed in this work can be improved by (i) using real data to find a
good estimation of the parameters’ values, (ii) examining the influence of time delays that
may occur during infection or production of SARS-CoV-2 particles and malaria merozoites,
(iii) considering viral mutations [41,50,51], (iv) considering the effect of treatments on the
progression of both diseases, (v) incorporating the role of CTLs in killing infected RBCs or
ECs, and (vi) considering an age-structured model to account for the age structure in the
infected cells compartments, which can lead to important observations.
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