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Abstract: The unsaturated flow problem is of important applied background and its mixed finite
element (MFE) method can be used to simultaneously calculate both water content and flux in soil,
which is the most ideal calculation method. Nonetheless, it includes many unknowns. Thereby, herein
we will employ the proper orthogonal decomposition (POD) to lower the dimension of unknown
solution coefficient vectors in the MFE method for the unsaturated flow problem. Thus, we first
examine the MFE method for the unsaturated flow problem and the existence and convergence of the
classical MFE solutions. We then take advantage of the initial L MFE solution coefficient vectors to
generate a set of POD basis vectors and utilize the most POD basis vectors to create the preserving
precision MFE reduced-dimension (PPMFERD) format. Under the circumstances, the PPMFERD
format has the same basis functions as the classical MFE format so that it can maintain the same
accuracy as the classical MFE format, but it only includes a few unknowns, so it greatly lightens the
calculating load, retards the accumulation of computing errors, saves CPU runtime, and improves
the accuracy of the real-time calculation in the computational process. Next, we employ the analysis
of matrices to demonstrate the existence and convergence of the PPMFERD solutions such that the
theoretical analysis becomes very simple and elegant. Finally, we take advantage of some numerical
simulations to check on the correctness of the PPMFERD method. It shows that the PPMFERD
method is effective and feasible for simulating both water content and flux in unsaturated flow soil.

Keywords: unsaturated flow problem; mixed finite element method; proper orthogonal decomposition;
preserving precision mixed finite element reduced-dimension method; existence and convergence

MSC: 65M15; 65N12; 65N35

1. Introduction

Previous research (see, e.g., [1–3]) illustrates that the governing equation of unsatu-
rated flow problem is highly nonlinear due to the high nonlinearity of the physical behavior
of unsaturated porous media. The soil water characteristic curve (SWCC) is the major
reason for the nonlinear relationship of hydraulic conductivity in unsaturated soils. There
are mainly two types of sigmoidal functions : unimodal and bimodal SWCCs. For conve-
nience and without loss of generality, we herein consider the unsaturated soil water flow
problem with the sigmoidal unimodal SWCC. Therefore, based on the horizontal resolution
(1–5 latitude and longitude) of the atmospheric general circulation model, if the horizontal
flow of soil water can be ignored, it is considered the one-dimension (1D) unsaturated soil
flow problem, in which the water content has different spatial and temporal distributions.
Assume that the axis of z is vertically downward, the origin of coordinates is taken as the
ground, and Q(z, t) is the soil moisture content at the point z away from the ground at
time t. Moreover, suppose that the soil moisture content on the ground has a rate of infil-
tration or evaporation that varies over time, where infiltration is positive and evaporation
is negative, but the water content distribution at the bottom varies over time. According
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to Darcy’s Law and continuity principle as well as previous experience, the unsaturated
soil water flow problem with the sigmoidal unimodal SWCC can be summarized as the
following high nonlinear partial differential equation (PDE) (see [4–8]).

Problem 1. For any te > 0, find Q such that

∂tQ− ∂z(D(Q)∂zQ) + ∂zK̃(Q) = Sr, 0 < z < Z, t ∈ (0, te), (1)

Q(z, 0) = Q0(z), 0 6 z 6 Z, (2)

Q(Z, t) = β(t), t ∈ (0, te), (3)

K̃(Q)− D(Q)∂zQ = q(t) z = 0, t ∈ (0, te). (4)

The above te is the final time, Q represents the moisture content, ∂τ = ∂/∂τ (τ = z, t), −Sr
is the root-water uptake rate, Z is the max soil depth, and K̃(Q) is the soil hydraulic conductivity,
D(Q) is the soil water diffusivity, and q(t), β(t), and Q0(z) are, respectively, known water fluxes
at the upper boundary, the water content of the lower boundary, and the water content of the
initial moment.

As just mentioned in the abstract, the unsaturated flow problem has an important ap-
plied background. The prediction for the unsaturated soil water flow has great significance
in atmospheric science, soil science, agricultural engineering, environmental engineering,
and groundwater dynamics. As an important climatic factor, the seasonal variation of soil
moisture has a great influence on the weather and climate in middle and high latitudes.
The study of land surface parameterization, which mainly simulates soil water content, has
become a hot topic in atmospheric science (see [4,5]). Surface and subsurface hydrological
processes, such as atmospheric precipitation, evaporation and transpiration of plants, sur-
face water leakage and updraft of deep water, root absorption, and subsurface flow, also
come down to unsaturated soil water flows (see [6–8]).

The groundwater flow in homogeneous soil can also come down to the unsaturated
soil water flow, which is a water flow when the pores in the soil are not completely filled
with water. It is an important form of fluid movement in porous media. Because the above
mathematical model of unsaturated soil water flow is the strong nonlinearity PDE, it is
difficult to find an analytical solution except for some very special cases. Hence, the most
effective method is to find its numerical solutions. The finite difference (FD) method is
very sensitive to boundary conditions and soil parameters when simulating infiltration
or evaporation. The standard finite element (FE) method can be used to better deal with
this kind of boundary problem, but it can only be used to find the numerical solutions of
soil moisture content (see [9]). The mixed FE (MFE) method in [10] can be simultaneously
used to calculate both water content and flux in the soil so that it can overcome the defect
of FD and FE methods. However, the MFE method also includes many unknowns so
that computing errors quickly accumulate during the process of calculation to find MFE
solutions, resulting in the MFE solutions having very large deviations.

Thereby, herein we mainly employ the proper orthogonal decomposition (POD) to
lower the dimension of unknown solution coefficient vectors in the MFE method for the
unsaturated flow problem. A lot of numerical simulating tests (see [11–29]) have proved
that the POD method can greatly lessen the unknowns of numerical models. It has also
been widely and successfully applied to various areas such as signal procedure and image
recognition [30], hydrodynamics and atmospheric sciences [31], and statistics [32].

However, to our knowledge, at the moment, there is no report that the dimensionality
of unknown solution coefficient vectors in the MFE method for the unsaturated soil water
flow equation is reduced by using the POD technique. Therefore, herein we employ the
POD method only to lower the unknown solution coefficient vectors in the MFE method
but keep the basis functions unchanged so as to create a preserving precision MFE reduced-
dimension (PPMFERD) format. In this case, the obtained PPMFERD format has the same
basis functions as the classical MFE format so that it can keep the same accuracy as the
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classical MFE format, but it only has a few unknowns. Thus, the PPMFERD format can
greatly lighten the calculating load, retard the accumulation of computing errors, save CPU
runtime, and improve the accuracy of the real-time calculation in the computational process.

Although the reduced-dimensional methods of the unknown FE solution coefficient
vectors for the hyperbolic, parabolic, Sobolev, viscoelastic wave, and unsteady Stokes equa-
tions, together with fractional diffusion equation have been posed in [24–28], respectively,
the MFE method including both water content and flux for the unsaturated flow problem
herein is more complicated than the FE methods for the above six types of equations,
thereby creating the PPMFERD method and the discussing the existence and convergence
to the PPMFERD solutions have more difficulties and require more skills [24–28]. However,
the PPMFERD method including both water content and flux in soil for the unsaturated
flow problem has a wide range of uses. Therefore, herein it is of great significance to study
the reduced dimensions of unknown solution coefficient vectors in the MFE method for the
unsaturated flow problem by means of the POD method. Hence, the study herein is very
valuable.

For this purpose, we first examine the MFE method for the unsaturated flow problem
and the existence and convergence of the classical MFE solutions in Section 2. We then
take advantage of the initial L MFE solution coefficient vectors to generate a set of POD
basis vectors and utilize the few most POD basis vectors to establish the PPMFERD model
and employ the analysis of matrices to demonstrate the existence and convergence of the
PPMFERD solutions in Section 3. Next, we utilize some numerical simulations to check
on the effectiveness of the PPMFERD method in Section 4. Afterward, in Section 5, we
provide some discussions. Finally, we will summarize the main conclusions of this article
in Section 6.

2. The Classical MFE Method for the Unsaturated Flow Problem
2.1. The Functional Form of MFE Format for the Unsaturated Flow Problem

There holds the following relationships between the above soil hydraulic conductivity
K̃ and soil water diffusivity D with the moisture content Q in Problem 1.

K̃(Q) = K̃s(Q/Qs)
2b+3, D(Q) = −bK̃sψsQ−1

s (Q/Qs)
b+2. (5)

where Qr 6 Q(z, t) 6 Qs, Qs (0 < Qs < 1) and Qr represent the saturated water content
and residual water content in the soil, respectively, and the saturated water conductivity
K̃s, soil parameters b, and saturated soil water potential ψs are known constants. Obviously,
K̃(Q), ∂K̃(Q)/∂Q, D(Q), and ∂D(Q)/∂Q are bounded, namely there exist two constants
c1 and c2 such that

c1 6 K̃(Q), ∂K̃(Q)/∂Q, D(Q), ∂D(Q)/∂Q 6 c2. (6)

In order to establish the classical MFE method, we need to introduce the following
moisture flux function

p(z, t) = K̃(Q)− D(Q)∂zQ, (7)

which plays an important role in the study of land surface processes. With this splitting, the
water content in the soil and the water flux through the soil can be calculated simultaneously.
In order to homogenize the boundary conditions, we need further to introduce the following
intermediate variables

Q̄(z, t) = Q(z, t)− β(t), p̄(z, t) = p(z, t)− q(t). (8)

Since β(t) varies very little with respect to t, we may assume that
dβ

dt
= 0. Thus, by

using (7) and (8), Problem 1 can be rewritten as follows.
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Problem 2. For any te > 0, find (Q̄, p̄) such that

∂tQ̄ + ∂z p̄ = Sr, z ∈ (0, Z), t ∈ (0, te),

D(Q)∂zQ̄ + p̄ = K̃(Q)− q(t), z ∈ (0, Z), t ∈ (0, te),

p̄(0, t) = 0, Q̄(Z, t) = 0, t ∈ (0, te),

Q̄(z, 0) = Q0(z)− β(0), 0 6 z 6 Z.

(9)

Let Ω = (0, Z), L2(Ω) represent the square Lebesgue integrable space on Ω with inner
product (·, ·), and H1(Ω) represent the familiar Sobolev space. If we set that H1

E(Ω) =
{v ∈ H1(Ω) : v(Z) = 0}, H1

F(Ω) = {v ∈ H1(Ω) : v(0) = 0}, Q̄t = ∂Q̄/∂t, Q̄z = ∂Q̄/∂z,
and vz = ∂v/∂z, then the mixed variational form for Problem 2 can be built as follows.

Problem 3. For any te > 0, find (Q̄, p̄): [0, te]→ H1
E(Ω)× L2(Ω) such that

(Q̄t, v)− ( p̄, vz) = (Sr, v), ∀v ∈ H1
E(Ω),

(D(Q)Q̄z, w) + ( p̄, w) = (K̃(Q)− q(t), w), ∀w ∈ L2(Ω),

Q̄(z, 0) = Q0(z)− β(0), z ∈ Ω.

(10)

The following conclusion of the existence and uniqueness as well as stability of the
mixed generalized solutions for Problem 3 has been proved in [10].

Theorem 1. If β(t) and q(t) ∈ C0[0, te], and Sr and Q0(z) ∈ L2(G), then Problem 3 exists
a unique set of solutions (Q̄, p̄) ∈ H1

E(Ω)× L2(Ω), and there exist two constants M0 and M̃
such that

sup
06t6T

‖Q̄‖0,∞ 6 M0,
∣∣Q̄z
∣∣ 6 M̃. (11)

In order to establish the MFE format, we need to employ the FD method to discretize
the time for Problem 3 and use the FE method to discretize the spatial variable for Problem 3.
Thereupon, we assume that N is the positive integer,4t = te/N represents the time-step
increment, and =h is the regular subdivision on Ω̄ = [0, Z], namely

=h = {Ki : Ki = [xi, xi+1], 0 6 i 6 l − 1} (12)

satisfies that there exists the positive constant c̄ such that h := max
06i6l−1

|xi+1 − xi| 6 c̄. If we

assume that P1(Ki) is the space formed by linear polynomials defined on Ki, we can define
the following MFE subspaces

Vh = {vh ∈ H1
E(Ω) ∩ C0(Ω̄) : vh|Ki

∈ P1(Ki), ∀Ki ∈ =h}, (13)

Wh = {wh ∈ L2(Ω) : wh|Ki
∈ P1(Ki), ∀Ki ∈ =h}. (14)

If we assume that (Q̄n
h , p̄n

h) ∈ Vh×Wh are the MFE approximations for (Q̄(z, t), p̄(z, t))
at t = tn, then the MFE solutions for Problem 3 are stated as follows.

Problem 4. Find (Q̄n+1
h , p̄n+1

h ) ∈ Vh ×Wh (0 6 n 6 N − 1) such that

(Q̄n+1
h , vh)− ∆t( p̄n+1

h , vhz) = ∆t(Sr, vh) + (Q̄n
h , vh), ∀vh ∈ Vh;

(D(Qn
h)Q̄

n+1
hz , wh) + ( p̄n+1

h , wh)

= (K(Qn
h)− q(tn), wh), ∀wh ∈Wh, 0 6 n 6 N − 1

Q̄0
h = PhQ0(z)− β(0), z ∈ Ω,

(15)
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The following conclusion of the existence and error estimates for the MFE solutions to
Problem 4 has been proved in [10].

Theorem 2. Under the conditions of Theorem 1, when ∆t is sufficiently small, Problem 4 has a
unique set of solutions (Q̄n

h , p̄n
h) ∈ Vh ×Wh (1 6 n 6 N) satisfying the following error estimates

‖Q̄(tn)− Q̄n
h‖0 + ‖ p̄(tn)− p̄n

h‖0 6 c(∆t + h2), n = 1, 2, . . . , N. (16)

The above (Q̄(tn), p̄(tn)) are the state of (Q̄, p̄) to Problem 2 at t = tn and c used in context
is the constant independent of ∆t and h.

2.2. The Matrix Representation of MFE Format for the Unsaturated Flow Problem

Without loss of generality, we might as well take Sr = 0. Let hi = (xi+1 − xi) be the
length of Ki. Then, the basis functions of linear interpolation on each element Ki in both Vh
and Wh formed by the piecewise linear functions can be denoted by

Ni = (zi+1 − z)/hi, Mi+1 = (z− zi)/hi. (17)

On each element Ki, let

Q̄n
h |Ki = NiQ̄n

i + Mi+1Q̄n
i+1, p̄n

h |Ki = Ni p̄n
i + Mi+1 p̄n

i+1, (18)

and

D(Qn
h)|Ki = D(Qn

i ) ≡ Dn
i , K(Qn

h)|Ki = K(Qn
i ) ≡ Kn

i , Qn
i = Q̄n

i + β(tn). (19)

Then, on each element Ki, the stiffness matrix and unknown vector, as well as the right
end term for Problem 4, can be expressed as follows:

hi
3

hi
6

∆t
2

∆t
2

hi
6

hi
3

−∆t
2
−∆t

2

−
Dn

i
2

Dn
i

2
hi
3

hi
6

−
Dn

i
2

Dn
i

2
hi
6

hi
3


,


Q̄n+1

i

Q̄n+1
i+1

p̄n+1
i

p̄n+1
i+1

,



hiQ̄n
i

3
+

hiQ̄n
i+1

6
hiQ̄n

i
6

+
hiQ̄n

i+1
3

hiKn
i

2
− hiq(tn)

2
hiKn

i
2
− hiq(tn)

2


. (20)

In order to synthesize the total equation, the FE stiffness matrix and unknown vector
are appropriately transformed into the following

2hi 3∆t hi 3∆t

hi −3∆t 2hi −3∆t

−3Dn
i 2hi 3Dn

i hi

−3Dn
i hi 3Dn

i 2hi

,


Q̄n+1

i

p̄n+1
i

Q̄n+1
i+1

p̄n+1
i+1

,


2hiQ̄n

i + hiQ̄n
i+1

hiQ̄n
i + 2hiQ̄n

i+1

3hiKn
i − 3hiq(tn)

3hiKn
i − 3hiq(tn)

.

By using the whole synthesis technology of the FE method, the system of Equation (15),
i.e., Problem 4, can be expressed as the following matrix form.
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Problem 5. Find X̃n ∈ R2l+2 and (Q̄n+1
h , p̄n+1

h ) ∈ Vh ×Wh (0 6 n 6 N − 1) such that

ÃX̃n+1 = G̃(X̃n), n = 0, 1, 2, . . . , N − 1,

(Q̄n
h , p̄n

h) = ζX̃n =
l+1

∑
i=0

(Q̄n
i , p̄n

i )ζi, n = 1, 2, . . . , N,

ζ = (ζ0, ζ1, ζ2, . . . , ζl+1), ζi =


z− zi−1

zi − zi−1
, z ∈ [zi−1, zi],

z− zi
zi+1 − zi

, z ∈ [zi, zi+1],

0, z 6∈ [zi−1, zi+1].

(21)

Thereinto

Ã =



D0 D̄0 O . . . O O O
C0 D1 D̄1 . . . O O O
O C1 D2 . . . O O O
...

...
...

...
...

...
O O O . . . Dl−1 D̄l−1 O
O O O . . . Cl−1 Dl D̄l
O O O . . . O Cl Dl+1


,

D̄i =

(
hi 3∆t

2hi −3∆t

)
, Ci =

(
−3Dn

i−1 2hi
−3Dn

i−1 hi

)
, i = 0, 1, . . . , l,

O =

(
0 0
0 0

)
, D0 =

(
2h0 3∆t
h0 −3∆t

)
, Dl+1 =

(
1 + 3Dn

l hl
3Dn

l 2hl

)
,

Di =

(
2hi + 3Dn

i−1 3∆t + hi−1
hi + 3Dn

i−1 −3∆t + 2hi−1

)
, i = 1, 2, . . . , l;

X̃n+1 =
(

Xn+1
0 , Xn+1

1 , Xn+1
2 , . . . , Xn+1

l−1 , Xn+1
l , Xn+1

l+1 ,
)T

,

Xn+1
i =

(
Q̄n+1

i
p̄n+1

i

)
, i = 0, 1, 2, . . . , l + 1;

G̃(X̃n) =
(
Gn

0 , Gn
1 , Gn

2 , . . . , Gn
l−1, Gn

l , Gn
l+1
)T ,

Gn
0 =

(
2h0Q̄n

0 + h0Q̄n
1

h0Q̄n
0 + 2h0Q̄n

1

)
, Gn

l+1 =

(
3hlKn

l−1 − 3hlq(tn)

3hlKn
l−1 − 3hlq(tn)

)
,

Gn
i =

(
2hiQ̄n

i + hiQ̄n
i + 3hi−1Kn

i−1 − 3hi−1q(tn)

hiQ̄n
i + 2hiQ̄n

i + 3hi−1Kn
i−1 − 3hi−1q(tn)

)
, i = 1, 2, . . . , l.

After obtaining Q̄n
i and p̄n

i from (21), the MFE solutions to Problem 1 can be found
as follows:

Qn
h =

l+1

∑
i=0

Q̄n
i ζi + β(tn), pn

h =
l+1

∑
i=0

p̄n
i ζi + q(tn), n = 1, 2, . . . , N. (22)

Thus, as long as the spatial step hi, time step ∆t, initial boundary value, and values of
parameters Ks, b, and ψs are given, by solving the system of Equations (21) and (22), we
can obtain the MFE solutions to Problem 1, namely the MFE solutions of water content
and flux.
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Remark 1. If the original problem, i.e., Problem 1, is the first boundary value condition, namely
if the water content Q(0, t) on the left boundary is also given, it is only necessary to change
the homogeneous boundary conditions a little bit, namely to get rid of q in Gi (i > 1) and add
appropriately large numbers to the elements in the first row and column (upper left corner) in the
coefficient matrix in (21) such that G0 on the right side can satisfy the left boundary value condition
and the first row and column form a block diagonal matrix with the rest of the elements.

3. The PPMFERD Method for the Unsaturated Flow Problem
3.1. Structure of POD Basis Vectors

In order to establish the PPMFERD format, we first solve the system of Equation (21)
at the initial L steps to get the MFE solution coefficient vectors X̃1, X̃2, . . . , X̃L and combine
the snapshot matrix Λ =(X̃1, X̃2, . . . , X̃L). We then calculate the the positive eigenvalues
χ1 > χ2 > . . . > χr > 0 (r := rank(Λ)) of ΛTΛ and the corresponding orthogonalized
eigenvectors Υ̃ = (η1, η2, . . . , ηr) ∈ R2(l+2)×r. We finally obtain a set of POD basis vectors
Υ = (ξ1, ξ2, . . . , ξd) (d 6 r) with ξ i = Ληi/

√
χi (1 6 i 6 d) from the foremost d vectors in

Υ̃. If we assume that ‖Λ‖2.2 = supv∈R2(l+2) ‖Λv‖/‖v‖ and ‖v‖ is the Euclidean norm to
the vector v, then there holds the following equality (see [11]):

‖Λ− ΥΥTΛ‖2,2 =
√

χd+1. (23)

If we assume that en (1 6 n 6 L) are the Lth-dimension orthonormal vectors with
only nth component 1, from (23) we deduce the following estimates:

‖X̃n − ΥΥTX̃n‖ = ‖(Λ− ΥΥTΛ)en‖
6 ‖Λ− ΥΥTΛ‖2,2‖en‖ 6 √χd+1, n = 1, 2, . . . , L. (24)

3.2. The Creation of PPMFERD Format for the Unsaturated Flow Problem

If we assume that βn
d = (βn

1 , βn
2 , . . . , βn

d)
T, βn

i = (βn
iQ, βn

ip)
T; X̃n

d = (Xn
d1, Xn

d2, . . . , Xn
dM)T

= Υβn
d = ΥΥTX̃n, Xn

di = (Q̄di, p̄di)
T ; and (Q̄n

d , p̄n
d) = ζ · X̃n

d , we may obtain the initial L
PPMFERD solutions (Q̄n

d , p̄n
d) = ζ · X̃n (1 6 n 6 L) from (24). Replacing the vectors X̃n in

Problem 5 with X̃n
d = Υβn

d (L + 1 6 n 6 N), we can create the PPMFERD format as follows.

Problem 6. Seek βn
d ∈ R2d and (Q̄n

d , p̄n
d) ∈ Vh ×Wh (n = 1, 2, . . . , N) that satisfy

βn
d = ΥTX̃n, 1 6 n 6 L;

βn+1
d = ΥT Ã−1G̃(Υβn

d), L 6 n 6 N − 1,

(Q̄n
d , p̄n

d) = ζ · (Υβn
d) =

l+1

∑
i=0

(Q̄di, p̄di)ζi, 1 6 n 6 N,

ζ = (ζ0, ζ1, ζ2, . . . , ζl+1), ζi =



z− zi−1

zi − zi−1
, z ∈ [zi−1, zi],

z− zi
zi+1 − zi

, z ∈ [zi, zi+1],

0, z 6∈ [zi−1, zi+1],

Qn
d = Q̄n

d + β(tn), pn
d = p̄n

d + q(tn), 1 6 n 6 N.

(25)

The above X̃n (1 6 n 6 L) are the initial L solution vectors for Problem 5 and G̃n are the
same as those for Problem 5.

Remark 2. Owing to the invertibility for the matrix Ã, namely the unique solvability for Problem 4,
Problem 6 has a unique set of PPMFERD solutions {(Q̄n

d , p̄n
d)}

N
n=1 ⊂ Vh ×Wh. It is worth noting

that Problem 6 at every time node only contains 2d unknowns (d � l + 2), whereas Problem 4
has 2(l + 2) unknowns at the same time node, but both have the same FE basis functions {ζi}l+1

i=0
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and the same accuracy. Hence, Problem 6 visibly advantages over Problem 5, i.e., Problem 4, which
means that Problem 6 could not only immensely lessen the unknowns, but could also vastly lessen
the CPU runtime, retard the accumulation of computing errors, and improve the accuracy of the
real-time calculation of numerical solutions.

3.3. The Error Analysis of PPMFERD Solutions

The unsaturated soil property is one of the key factors affecting the accuracy of the
numerical methods. Therefore, for ease of application, in land surface and atmospheric
circulation models, Dickinson et al. classified the properties of global unsaturated soils into
some typical categories (see [4]), as shown in Table 1.

Table 1. Twelve soil parameters in unsaturated water flow soil.

Soil Types Qs −ψs/(mm) Ks/(mms−1) b Qr /Qs

1 0.33 30 0.2000 3.5 0.088
2 0.36 30 0.0800 4.0 0.119
3 0.39 30 0.0032 4.5 0.151
4 0.42 200 0.0130 5.0 0.266
5 0.45 200 8.9×10−3 5.5 0.300
6 0.48 200 6.3×10−3 6.0 0.332
7 0.51 200 4.5×10−3 6.8 0.378
8 0.54 200 3.2×10−3 7.6 0.419
9 0.57 200 2.2×10−3 8.4 0.455

10 0.60 200 1.6×10−3 9.2 0.487
11 0.63 200 1.1×10−3 10.0 0.516
12 0.66 200 0.8×10−3 10.8 0.542

From Table 1 and the definitions D and Ã and by the estimate of banded matrices, we
can deduce that D 6 Q−1

s in (5) and the norm of the matrix Ã−1 satisfies that

‖Ã−1‖2,2 6 Qs(∆t + h)−1. (26)

When 1 6 n 6 L, noting that ‖ζ‖ 6 1 and ‖Υ‖2,2 6 1, by (24) and Theorem 2 we get

‖Q̄n
h − Q̄n

d‖0 + ‖ p̄n
h − p̄n

d‖0 6 ‖(Q̄n
h , p̄n

h)− (Q̄n
d , p̄n

d)‖0

= ‖ζ(X̃n − ΥΥTX̃n)‖0 6 ‖ζ‖0‖X̃n − ΥΥTX̃n‖2,2

6
√

χd+1. (27)

When L + 1 6 n 6 N, the second equation in the system of Equation (25) can be
rewritten as follows

X̃n+1
d = Ã−1G̃(X̃n

d ), L 6 n 6 N − 1. (28)

By the first equation in the system of Equation (5), we get

X̃n+1
h = Ã−1G̃(X̃n

h ), L 6 n 6 N − 1. (29)

By the construction of G̃(·) we get

‖G̃(X̃n
h )− G̃(X̃n

d )‖ 6 Q−1
s (∆t + h)‖X̃n

h − X̃n
d ‖, L 6 n 6 N − 1. (30)

Thereupon, subtracting (28) from (29) and using (26) and (30), by (24) we obtain

‖X̃n+1 − X̃n+1
d ‖ 6 ‖Ã−1‖2,2‖G̃(X̃n

h )− G̃(X̃n
d )‖

6 ‖X̃n
h − X̃n

d ‖ 6 . . . 6 ‖X̃L
h − X̃L

d ‖
6
√

χd+1, L 6 n 6 N − 1. (31)
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Thus, we get

‖Q̄n
h − Q̄n

d‖0 + ‖ p̄n
h − p̄n

d‖0 6 ‖(Q̄n
h , p̄n

h)− (Q̄n
d , p̄n

d)‖0

= ‖ζ(X̃n − X̃n
d )‖0 6 ‖X̃n

h − X̃n
d ‖

6
√

χd+1, L + 1 6 n 6 N. (32)

Combining (27) and (32) with Theorem 2, we obtain the following conclusion.

Theorem 3. Under the conditions of Theorems 1 and 2, the solutions (Q̄n
d , p̄n

d) (1 6 n 6 N)
satisfy the following error estimates

‖Q̄(tn)− Q̄n
d‖0 + ‖ p̄(tn)− p̄n

d‖0 6 c(∆t + h2 +
√

χd+1), n = 1, 2, . . . , N. (33)

Thereinto, (Q̄(tn), p̄(tn)) is the state of (Q̄, p̄) in Problem 2 at t = tn.

Remark 3. Compared with Theorem 2, the errors of Theorem 3 increase one term,
√

χd+1, which
is brought by the reduced dimension for Problem 4 and may serve as the suggestion to elect
the number d of POD basis vectors. Nonetheless, if only the selecting number d of POD basis
vectors satisfies

√
χd+1 6 ∆t2 + hl+1, it would not make any difference to the total errors. Many

numerical simulations (see, e.g., [11–28]) have shown that the eigenvalues √χj could rapidly
decrease into zero. Generally, while d = 5 or 6, the factor

√
χd+1 is already very tiny and meets

√
χd+1 6 min{∆t, h2}. What is more, if the PPMFERD solution (Q̄n0+1

d , p̄n0+1
d ) from Problem 6

at tn0+1 cannot reach the desired accuracy, but vn
d at tn 6 tn0 still meets the required accuracy,

then we may extract a set of new vectors Λ = (X̃n0+1−L
d , X̃n0+2−L

d , . . . , X̃n0−1
d , X̃n0

d ) to generate a
set of new POD basis vectors and create the new PPMFERD format so as to be able to calculate
the PPMFERD solutions meeting the required accuracy. This is incomparable to the classical MFE
format, namely Problem 4.

4. Some Numerical Simulations for the Unsaturated Flow Problem

Taking the eighth soil parameter in Table 1 as an example and comparing the numer-
ical simulating results of the MFE format with the PPMFERD format, we see that water
infiltration and evaporation occur successively in the unsaturated soils problem exhibit the
advantage of the PPMFERD format.

The eighth soil parameters imply that Qs = 0.54, ψs = −200 mm , Ks = 3.2 ×
10−3mm/s, b = 7.6, and Qr/Qs = 0.419. If taking Z = 200 cm and the spatial step
hi = 1/100 cm, we cut Ω̄ = [0, 200] into 20,000 equal small intervals. Moreover, we take
te = 840 h and the time step ∆t = 1/10,000 h. Further, the constant infiltration flux q = 0.1
is assumed to be maintained at the soil surface (z = 0) for a period of time, the boundary
values β(t) = 0.54 × 0.419 and Q0(z) = 0.54 × 0.419, and the initial and boundary
conditions of soil water infiltration and evaporation are as follows:

Q(z, 0) = 0.54× 0.419 , z ∈ [0, 200] ,

q(t) =

{
0.1 cm/h, if 0 < t < 420,

−0.1 cm/h, if 420 6 t 6 840,

Q(200, t) = 0.54× 0.419 .

(34)

Thus, according to Theorems 2 and 3, the theoretical errors should reach O(10−4).
When Sr = 0, we enter the data into the system of Equation (21) of the MFE method

and calculate the first 20 sets of solution coefficient vectors X̃1, X̃2, . . . , X̃20 and combine
the snapshot matrix Λ =(X̃1, X̃2, . . . , X̃20). We then calculate the the positive eigenvalues
χ1 > χ2 > . . . > χr > 0 of the matrix ΛTΛ. By estimating we obtain that

√
χ7 6 3.6× 10−4,

so we need only to take the first six orthonormal eigenvectors Υ̃ = (η1, η2, . . . , η6) of ΛTΛ

to generate a set of POD basis vectors Υ = (ξ1, ξ2, . . . , ξ6) with ξ i = Ληi/
√

χi (1 6 i 6 6).
We input Υ = (ξ1, ξ2, . . . , ξ6) into Problem 6 to calculate the PPMFERD solutions of



Mathematics 2022, 10, 4391 10 of 17

infiltration of water content and flux in the soil at t = 30 h, 60 h, . . . , 420 h, and present
Figures 1a and 2a, where each of curves represents the PPMFERD solutions of infiltration
of water content and flux in the soil that are outputted once every 30 h. We also calculate
the PPMFERD solutions of infiltration and evaporation of water content and flux in the
soil at t = 60 h, 120 h, . . . , 420 h, 480 h, . . . , 840 h and present Figures 3a and 4a, where
each of curves represents the PPMFERD solutions of infiltration and evaporation of water
content and flux in the soil that are outputted once every 60 h, and the water content and
flux from 0 to 420 h are the infiltration case, but the water content and flux after 420 h are
the evaporation case.

(a)

(b)

Figure 1. (a) The curves are the PPMFERD solutions of infiltration water content at t = 60 h, 120 h,
. . . , 420 h, respectively. (b) The curves are the MFE solutions of infiltration water content at t = 60 h,
120 h, . . . , 420 h, respectively.



Mathematics 2022, 10, 4391 11 of 17

(a)

(b)

Figure 2. (a) The curves are the PPMFERD solution of infiltration water flux at t = 60 h, 120 h, . . . ,
420 h, respectively. (b) The curves are the MFE solution of infiltration water flux at t = 60 h, 120 h,
and . . . , 420 h, respectively.
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(a)

(b)

Figure 3. (a) These curves are the PPMFERD solutions of infiltration and evaporation water content
at t = 60 h, 120 h, . . . , 420 h, 480 h, . . . , 840 h, respectively. (b) These curves are the classical MFE
solutions of infiltration and evaporation water content at t = 60 h, 120 h, . . . , 420 h, 480 h, . . . ,
840 h, respectively.
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(a)

(b)

Figure 4. (a) These curves are the MFE solutions of infiltration and evaporation water flux at t = 60 h,
120 h, . . . , 420 h, 480 h, . . . , 840 h, respectively. (b) These curves are the MFE solutions of infiltration
and evaporation water flux at t = 60 h, 120 h, . . . , 420 h, 480 h, . . . , 840 h, respectively.

For comparison, we also calculate the classical MFE solutions of water content and flux
in the soil at t = 30 h, 60 h, . . . , 420 h and present Figures 1b and 2b, where each of curves
represents the MFE solutions of infiltration of water content and flux in the soil that are
outputted once every 30 h. We also calculate the classical MFE solutions of water content and
flux in the soil at t = 60 h, 120 h, . . . , 420 h, 480 h, . . . , and 840 h and present Figures 3b and 4b,
where each of curves represents the MFE solutions of infiltration and evaporation of water
content and flux in the soil that are outputted once every 60 h, and the water content and flux
from 0 to 420 h are also the infiltration case, but the water content and flux after 420 h are also
the evaporation case.

Comparing each pair of photographs in Figures 1–4 shows that the figures of PPM-
FERD solutions are highly similar to the figures of classical MFE solutions since both the
PPMFERD method and the classical MFE method have the same FE basis function so as
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to preserve the same accuracy. Both the numerical simulating errors also reach O(10−4),
which is according to the theoretical errors. However, the PPMFERD format has only
twelve unknowns at every time step, whereas the classical MFE format has forty thousand
unknowns at the same time step. Therefore, the CPU runtime for the classical MFE method
is far more than that for the PPMFERD method. For instance, calculating the PPMFERD
solutions at t = 420 h by the PPMFERD method needs only about 121 s on an Hp-i5-laptop
by means of MATLAB software, but calculating the classical MFE solutions at t = 420 h by
the classical MFE method needs about 8926 s on the same laptop by means of MATLAB
software. Moreover, finding the PPMFERD solutions at t = 840 h with the PPMFERD
format spends only about 240 s on the same Hp-i5-laptop by means of MATLAB software,
but seeking the classical MFE solutions at t = 840 h with the classical MFE format needs
about 17,860 s on the same laptop by means of MATLAB software. For more details, see
Table 2.

Table 2. The comparison of CPU runtime and errors for the MFE solutions and the PPMFERD solutions.

t n MFE Method PPMFERD Method

Rn
h CPU Runtime Rn

d CPU Runtime

210 h 21×105 2.312826× 10−4 4462s 2.131325× 10−4 62 s
420 h 42×105 4.326361× 10−4 8926s 3.232665× 10−4 121 s
630 h 63×105 7.236283× 10−4 13393s 4.302321× 10−4 182 s
840 h 84×105 9.652836× 10−4 17860s 5.442328× 10−4 240 s

In Table 2, the errors for the MFE solutions and the PPMFERD solutions are approximately
calculated by Rn

h = ‖Qn+1
h −Qn

h‖0 + ‖pn+1
h − pn

h‖0 and Rn
d = ‖Qn+1

d −Qn
d‖0 + ‖pn+1

d − pn
d‖0,

respectively, which are the accumulation of errors over the entire time domain.
The data in Table 2 have also shown that as the time nodes go forward, the CPU

runtime for the classical MFE method (having 40,000 unknowns at each time node) increases
rapidly, but the CPU runtime for the PPMFERD method (only having 12 unknowns at
the same time node) increases very slowly. When t = 840 h, the CPU runtime for the
classical MFE method is about 87 times that of the PPMFERD method, in other words,
the PPMFERD method can greatly save the CPU runtime. Owing to the accumulation of
computing errors, the errors of the classical MFE solutions gradually increase and exceed
the theoretical error O(10−4) when t = 840, but the errors of the PPMFERD solutions
increase slowly and always stay within the range of the theoretical error O(10−4). It is
further shown that the PPMFERD method is far better than the classical MFE method and
is very effective for solving the unsaturated flow problem.

5. Discussions

We have proved theoretically that the PPMFERD method has optimal order con-
vergence and have employed some numerical simulations to verify the correctness of
theoretical results. From the above numerical simulations, we have seen that when the
PPMFERD method is used to solve for the unsaturated flow problem, it can greatly lessen
the unknowns and improve the computational efficiency.

Although herein we have only studied the PPMFERD method for the 1D unsaturated
flow problem, the approach can be generalized to 2D and 3D unsaturated flow problems or
more complex real-world engineering problems.

In fact, the numerical computations in all scientific engineering, not limited to the
numerical methods for the unsteady PDEs, need to be changed into the large-scale iterative
algorithms, which can be reduced by means of the reduced-dimension method in Section 3.

For instance, linear or nonlinear programming problems with constraint conditions,
machine learning or deep learning, data assimilation, etc., eventually have to be trans-
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formed into large-scale linear or nonlinear algebra equations to be solved iteratively. They
all can be expressed in the following matrix equations

Wn+1 = B(Wn+1, Wn, Wn−1), n = 1, 2, . . . (35)

Thereinto, Wn are very high-dimension unknown vectors, which can reach millions
or even tens of millions of dimensions.

Thus, according to the reduced-dimension method in Section 3, we may first compute
L steps solutions {Wn}L

n=1 (empirical value L = 20) and combine them into the snapshot
matrix A = (W1, W2, . . . , W L), which are also formed with the observation values of
experiments. We then may employ the POD method in Section 3 to generate the POD basis
vectors Φ = (ϕ1,ϕ2, . . . ,ϕd), which are the eigenvectors ϕ1,ϕ2, . . . ,ϕd corresponding to
the main eigenvalues χ1 > χ2 > . . . > χd > 0 of AAT such that

√
χd+1 is not more than

the required accuracy.
Let Wn

d = Φβn and βn = (βn
1 , βn

2 , . . . , βn
d)

T be the d-dimensional unknown vectors.
Substituting Wn in the above large-scale linear or nonlinear algebra Equation (35) with
Wn

d = Φβn, we obtain the following reduced-dimension equations that only include few
d unknowns: 

βn
d = ΦTWn, n = 1, 2, . . . , L;

βn+1 = ΦT B(Φβn+1, Φβn, Φβn−1), n = L, L + 1, . . . ,
Wn

d = Φβn, n = 1, 2, . . . , L, L + 1, L + 2, . . . .
(36)

Thereinto, Wn (1 6 n 6 L) are known or the observation values from experiments.
If the reduced-dimension Equation (36) is linear, it can be directly solved iteratively; if

the reduced-dimension Equation (36) is nonlinear, it can be solved by the Newton method
or other methods of nonlinear algebra equations. Hence, the PPMFERD method has very
comprehensive applications.

The future work on the PPMFERD method is to lower the dimensionality of the
numerical computations in scientific engineering, including the MFE methods for the 2D
and 3D unsaturated flow problems.

6. Conclusions and Discussions

Herein, we have studied the reduced dimension of the unknown solution coefficient
vectors in the MFE method including both water content and flux in soil for the unsaturated
flow problem. We have not only created the PPMFERD method for the unsaturated flow
problem by means of the POD technique but also analyzed the existence and convergence
(errors) of the PPMFERD solutions by using the matrix analysis in detail, even reasonably
using some numerical simulations to check on the effectiveness of the PPMFERD method.
The dimensionality of the PPMFERD method is far less than that of the classical MFE
method, so that it can not only greatly retard the accumulation of computing errors and
lighten the calculating load, but can also immensely save CPU running time. What is
important, the reduced dimension for the unknown MFE solution coefficient vectors in the
MEF format including both water content and flux in soil for the unsaturated flow problem
is proposed for the first time, both theory and method are new and differ considerably
from all previous reduced-order methods.
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