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Abstract: The reproducing kernel Hilbert space (RKHS) methodology has shown to be a suitable
tool for the resolution of a wide range of problems in statistical signal processing both in the real
and complex domains. It relies on the idea of transforming the original functional data into an
infinite series representation by projection onto an specific RKHS, which usually simplifies the
statistical treatment without any loss of efficiency. Moreover, the advantages of quaternion algebra
over real-valued three and four-dimensional vector algebra in the modelling of multidimensional
data have been proven useful in much relatively recent research. This paper accordingly proposes a
generic RKHS framework for the statistical analysis of augmented quaternion random vectors, which
provide a complete description of their second order characteristics. It will allow us to exploit the full
advantages of the RKHS theory in widely linear processing applications, such as signal detection. In
particular, we address the detection of a quaternion signal disturbed by additive Gaussian noise and
the discrimination between two quaternion Gaussian signals in continuous time.

Keywords: quaternion random signal; reproducing kernel Hilbert space; widely linear processing;
detection problem

MSC: 6E22; 60H30

1. Introduction

The importance of Hilbert space theory in statistical signal processing applications lies
in the advantageous mathematical properties they gather, namely, the geometry of Hilbert
spaces and the structure of function spaces [1]. Some recent and interesting applications of
Hilbert space theory can be found in [2,3], to name a few. The characterization of random
processes by means of the reproducing kernel Hilbert space (RKHS) approach has shown to
be a suitable tool for the resolution of many statistical signal processing problems [4,5]. In
the late 1950s, Parzen [6,7] was the one who initially suggested using RKHS methodology
in statistical signal processing and time series analysis. More specifically, he provided a
functional analysis perspective of random processes defined by second-order statistics and
illustrated that the RKHS approach offers an elegant general framework for addressing
a wide range of problems that involve inner product computations, for instance, least-
squares estimation of random variables and signal detection problems. The underlying
idea consisted of transforming via projections, in an specific RKHS, the original functional
data into an infinite-dimensional series representation counterpart, which usually sim-
plified the statistical treatment, with no loss of efficiency at all. Afterwards, in the 70s,
Kailath showed the usefullness of RKHS formulation in the construction of likelihood ratios
and the testing for nonsingularity for several detection problems [8–10]. More recently, a
numerical evaluation of the inner product in an arbitrary RKHS in the real domain was
proposed and then applied in the approximate representation of second-order stochastic
processes by means of series expansions, as well as in the signal detection problem [11].
Although, the underlying RKHS theory in the complex domain has been developed by the
mathematicians [12,13], the machine learning and signal processing communities have
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primarily focused on the case of real kernels [14,15]. However, more recent developments
emphasized extending the use of kernel-based formulation towards more complex set-
tings: the kernel-based approach for treating complex-valued random signals has drawing
increasing interest in the area of statistical signal processing [16–18]. Likewise, matrix-
valued kernels commonly known as operator-valued kernels have been also considered
in recent studies, such as in [19–21], where Hilbert spaces of vector-valued functions with
operator-valued reproducing kernels for multi-task learning are constructed.

Furthermore, recent higher dimensional kernel algorithms have considered mapping
the input samples to quaternion functions because the quaternion domain facilitates the
modelling of three- and four-dimensional signals. Comparing the quaternion model to
the conventional kernel paradigm, which maps the input sample to a real function, the
quaternion model’s capacity to manipulate multi-dimensional data has shown beneficial
when dealing with quadrivariate signals. This suggests that increasing the dimensionality
of the feature space enhances the efficiency of general kernel algorithms [22] and also
enables the learning of various nonlinear features contained in the data. In fact, quater-
nion random signals appear in a variety of fields such as vector-sensor signals, image
processing, aerospace, just to name a few, in order to model physical effects where several
random components are involved [23–26] among others. The great interest in quaternion
signal processing is due to the advantages of quaternion algebra over real-valued four-
dimensional vector algebra in the modelling of such data [27–29]. However, the suitable
statistical processing for quaternion random signals includes all the necessary second order
statistical information accounting for a possible improperness (noncircular) of quaternion
processes. The augmented covariance matrix contains too complementary covariance
matrices in order to exploit complete second order information. This approach is known
as quaternion widely linear (WL) processing. The effectiveness of the WL processing
method for estimation problems involving complex-valued and quaternion-valued data
has been formally demonstrated [30,31]. Althought the existence of RKHSs, positive defi-
nite kernels and an extension of the Mercer’s theorem in the quaternion domain are issues
addressed in the existing research [22,32,33], the extension to the widely linear processing
and the availability of an explicit expression of its inner product are, to our knowledge, still
not addressed.

The challenge we face with quaternion random signals and the RKHS framework
is to extend these ideas to the more general setting of WL processing by considering
the augmented quaternion statistics in order to maximise the use of available statistical
information and to exploit all the advantages of RKHS theory for second-order quaternion
random signals. In this paper we present a general framework to obtain a novel RKHS
for quaternion-valued signals with complete representation capabilities, since it allows us
to represent any quaternion function. To every correlation function corresponds a RKHS
for which this function is its reproducing kernel. So as a result, the closed linear span of a
random signal and the RKHS specified by its correlation function are very closely related
(there is, in fact, an isometric isomorphism). The essential underlying idea is that a natural
connection between stochastic and deterministic functional analysis is provided by the
RKHS framework. Thus, the RKHS can be seen as the natural Hilbert space associated with
a random signal and its inner product can be used to express the solutions to a number of
statistical signal processing problems. Our research focuses on how the WL approach can be
used to construct an RKHS for augmented quaternion-valued random signals. The explicit
description of a quaternion RKHS can allow us to propose general solutions to quaternion-
valued signal processing problems in continuous-time following a WL processing, for
instance, detection problems. These solutions generalise those previously introduced in
the literature in particular cases, for example, under the assumption of circular (rotation-
invariantly distributed) quaternion signals or for mean-square continuous quaternion
signals [34,35]. In fact, we use this quaternion RKHS approach to deal with several problems
of detection, as it is the detection of a deterministic signal disturbed by additive Gaussian



Mathematics 2022, 10, 4432 3 of 15

noise and the discrimination between two quaternion Gaussian signals with unequal
covariances in the continuous-time case.

In summary, the major contributions of this paper are three-fold:

1. From the augmented covariance matrix of a quaternion-valued signal, we construct
the corresponding RKHS instead of designing quaternion-valued kernels that verify
the necessary conditions for the associated quaternion reproducing kernel Hilbert
space (QRKHS) to exist, as in [36].

2. First, we develop the properties of the RKHS associated with the correlation matrix of
an augmented complex vector process and, second, we obtain an explicit expression
of the widely QRKHS inner product that can effectively transform the functional
quaternion data into a series representation simplifying their statistical treatment.

3. We show the potential applications of the widely QRKHS for quaternion-valued
processes in signal processing problems such as signal detection.

The rest of the paper is organized as follows. Section 2 briefly outlines the basic
characteristics of quaternion-valued random signals and, for the sake of completeness,
introduces the key results from RKHS theory in the case of vector-valued functions, as
this is the main mathematical tool employed in this paper. Section 3 presents a detailed
description of the proposed RKHS for quaternion-valued random signals. In Section 4
the QRKHS approach is used to obtain solutions for several Gaussian signal detection
problems and a numerical example is shown to illustrate the solution proposed for the
detection of a quaternion deterministic signal disturbed by additive quaternion Gaussian
noise. Finally, concluding remarks, limitations, and perspectives are given in Section 5.

2. Preliminaries and Motivations

Here, we summarize the notations employed throughout the paper and we review
some quaternions and RKHS theory facts necessary for the development of the manuscript
and in order to make the paper self-contained.

We denote matrices with boldfaced uppercase letters, column vectors with boldfaced
lowercase letters, and scalar quantities with lightfaced lowercase letters. Quaternion (or
complex) conjugate, transpose, and Hermitian (i.e., transpose and quaternion conjugate)
are represented by superscripts (·)∗, (·)T and (·)H, respectively. Throughout this paper, all
the random variables considered are assumed with zero-mean.

2.1. Quaternion Random Signals

Let {i, j, k} be the imaginary units satisfying:

i2 = j2 = k2 = ijk = −1

ij = k = −ji

jk = i = −kj

ki = j = −ik

A quaternion q ∈ H is defined as

q = a + ib + jc + kd

where a, b, c, d are four real numbers. Quaternions form a noncommutative normed division
algebra H, i.e., for p, q ∈ H, pq 6= qp in general. The conjugate of a quaternion q is
defined as q∗ = a− ib− jc− kd and the norm of a quaternion is ‖q‖ =

√
qq∗ =

√
q∗q =√

a2 + b2 + c2 + d2. The involution of a quaternion q over a pure unit quaternion η (that is,
η2 = −1) is

qη = ηqη−1 = ηqη∗ = −ηqη

There are three types of Hilbert spaces in H depending on how the vectors are mul-
tiplied by the scalars because of the non-commutativity in the quaternion domain: left,
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right, and two-sided [37]. This fact may entail some drawbacks, for example, the set of
linear operators acting on a one-sided Hilbert space does not have a linear structure. How-
ever, by fixing an arbitrary Hilbert basis, it is possible to introduce a notion of two-sided
multiplication. The definition of a right quaternionic Hilbert space is given as follows [38].

Definition 1. A right quaternionic Hilbert space is a complete and separable vector space under
right multiplication by quaternions, Hq, with an inner product 〈·, ·〉Hq : Hq ×Hq → H satisfying
the following properties, for f, g, h ∈ Hq and v ∈ H
1. 〈f, g〉∗Hq

= 〈g, f〉Hq

2. 〈f, g + h〉Hq = 〈f, g〉Hq + 〈f, h〉Hq

3. 〈f, gv〉Hq = 〈f, g〉Hq v
4. 〈fv, g〉Hq = v∗〈f, g〉Hq

5. ‖f‖2
Hq

= 〈f, f〉Hq > 0 unless f = 0.

Many of the well-known characteristics of complex Hilbert spaces are also present in
quaternionic Hilbert spaces, such as the fact that every separable quaternionic Hilbert space
has a basis. Once a Hilbert basis is fixed, any right quaternionic Hilbert space becomes a
left quaternionic space and vice versa [38].

Definition 2. A continuous-time quaternion random signal is a stochastic process q(t) ∈ H of
the form

q(t) = a(t) + ib(t) + jc(t) + kd(t), t ∈ T (1)

with T a real set and a(t), b(t), c(t), d(t) real stochastic processes.

Likewise, we can use the following modified Cayley-Dickson representation [29]

q(t) = α(t) + kβ(t) (2)

where α(t) = a(t) + ib(t) ∈ C and β(t) = d(t) + ic(t) ∈ C are complex signals in the plane
spanned by {1, i}.

We will denote the correlation function of q(t) as Rq(t, s) = E[q(t)q∗(s)]. Moreover,
H(q) denotes the closed span of all quaternion-linear combinations of finitely many random
variables q(t) and their limits in quadratic mean (q.m.).

Analogously to the complex case, a complete description of the second-order proper-
ties of a quaternion random signal q(t) is attained by considering the augmented quaternion
random vector as [27]

q(t) = [q(t), qi(t), qj(t), qk(t)]T (3)

This type of quaternion processing that takes into account the quaternion signal and
its involutions over the three pure unit quaternions {i, j, k} is known as full-widely linear
(FWL) processing. The relationship between the augmented quaternion vector (3) and the
real random signals in (1) is given by

q(t) = 2T[a(t), b(t), c(t), d(t)]T

where

T =
1
2


1 i j k
1 i −j −k
1 −i j −k
1 −i −j k


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is a unitary quaternion operator, i.e., THT = I4. Thus, the augmented correlation matrix
Rq(t, s) = E[q(t)qH(s)] is of the form

Rq(t, s) =


Rq(t, s) Rqqi(t, s) Rqqj(t, s) Rqqk(t, s)

Ri
qqi(t, s) Ri

q(t, s) Ri
qqk(t, s) Ri

qqj(t, s)

Rj
qqj(t, s) Rj

qqk(t, s) Rj
q(t, s) Rj

qqi(t, s)

Rk
qqk(t, s) Rk

qqj(t, s) Rk
qqi(t, s) Rk

q (t, s)

 (4)

with Rqqi(t, s), Rqqj(t, s) and Rqqk(t, s) the three complementary correlation functions. Like-
wise, by using the modified Cayley-Dickson representation (2), the augmented quaternion
vector q(t) can be expressed as

q(t) =
√

2A[α(t), β(t), α∗(t), β∗(t)]T

with A given by

A =
1√
2


1 k 0 0
1 −k 0 0
0 0 1 −k
0 0 1 k

 (5)

A is a unitary (one-to-one) quaternion operator, i.e., AHA = AAH = I4, thus it
preserves inner product (an isometry) [39]. Then, the augmented correlation matrix
Rq(t, s) can be obtained from the correlation matrix of a(t) = [α(t), β(t), α∗(t), β∗(t)]T,
i.e., Rq(t, s) = 2ARa(t, s)AH, with Ra the correlation matrix corresponding to the aug-
mented complex random vector a(t).

2.2. Reproducing Kernel Hilbert Spaces

Let H be an auxiliary Hilbert space of m-variate complex-valued functions defined
on T, f(t) = [ f (1)(t), f (2)(t), . . . , f (m)(t)]T, with f (i) ∈ H, i = 1, 2, . . . , m, a complex Hilbert
space with a computationally convenient norm (usually a L2-space or a RKHS). Then, H is
a Hilbert space under the inner product

〈f, g〉H =
m

∑
i=1
〈 f (i), g(i)〉H

Definition 3. Let H be a linear space of functions on T. We say that H is a reproducing kernel
Hilbert space (RKHS) of functions f : T → H, when for any y ∈ H and s ∈ T the linear functional
which maps f ∈ H to 〈f(s), y〉H is continuous onH.

According to the Riesz representation theorem [40], we obtain that, for every s ∈ T
and y ∈ H, there is a linear operator Ks : H → H such that verifies the following
reproducing property

〈f(s), y〉H = 〈f, Ksy〉H (6)

Moreover, for every t, s ∈ T we also introduce the linear operator K(t, s) : H → H
defined as follows

K(t, s)f := (Ksf)(t)

for f ∈ H. Thus, the kernel K satisfies the following property, for every f, g ∈ H

〈K(t, s)g, f〉H = 〈Ksg, Ktf〉H

Alternatively, a RKHS can be also defined by means of its reproducing kernel. To this
end, let L(H) be the set of all the bounded linear operators from H to H.
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Definition 4. An L(H)-valued reproducing kernel is a function K : T × T → L(H) such that K
is self-adjoint and nonnegative-definite. For each L(H)-valued reproducing kernel K on T, there
exists a unique Hilbert spaceH, called RKHS of K, consisting of H-valued functions on T such that

1. K(·, s)f ∈ H for all s ∈ T and f ∈ H, and
2. 〈f(s), g〉H = 〈f, K(·, s)g〉H for all f ∈ H, s ∈ T, and g ∈ H

There exists a bijective correspondence between L(H)-valued reproducing kernels
and H-valued RKHS which is central to the theory of vector-valued RKHS. In fact, for
each H-valued RKHS, there exists a unique L(H)-valued reproducing kernel K on T that
satisfies the above conditions. For this reason, K is called the reproducing kernel ofH.

Moreover, the RKHS H can be spanned by the set {Ksf|s ∈ T, f ∈ H}. For
f = ∑n

i=1 ciKti yi and g = ∑n
j=1 djKsj wj the inner product is of the form

〈f, g〉H =
n

∑
i,j=1

cid∗j 〈yi, K(ti, sj)wj〉H

According to the Mercer’s theorem for quaternionic kernels [33] and the Quaternion
Moore-Aronszajn theorem [32] the existence and uniqueness (up to an isomorphism)
of quaternion valued reproducing kernel Hilbert spaces is guaranteed for any positive
definite quaternion-valued kernel, i.e., there exists a unique quaternion Hilbert space of
functions for which the positive definite kernel is a reproducing kernel. Furthermore, a
Mercer’s type series expansion can be extended to represent continuous quaternion-valued
kernels. Therefore, we address the construction of a QRKHS associated with the augmented
correlation function Rq(t, s) which allows us to exploit all the advantages of RKHS theory
in the quaternion FWL processing and obtain unified solutions to the quaternion signal
detection problems. Based on the RKHS theory of complex random vectors, discussed in
the next section, and taking into account the representation of the augmented quaternion
vector in terms of the complex vector a(t), we derive an explicit expression for the inner
product corresponding to the QRKHS.

3. Quaternion RKHS Representation in WL Processing
3.1. RKHS Representation for Complex Random Vectors

Following the procedure developed in [6] for real stochastic processes, we apply the
concepts of RKHS theory described in the previous section in the context of random signal
processing by considering the correlation matrix of a complex vector stochastic process
as the kernel. To do so, let x(t) = [x(1)(t), x(2)(t), . . . , x(m)(t)]T, t ∈ T, be a m-variate
second-order complex-valued random signal defined on the probability space (Ω,A,P),
and with correlation matrix R(t, s), whose elements are R(l,p)(t, s) = E[x(l)(t)x(p)∗(s)],
t, s ∈ T; l, p = 1, 2, . . . , m.

Theorem 1. Let H be an auxiliary Hilbert space of m-variate complex-valued functions f defined on
T. Assume that R(t, s) belongs to the direct product Hilbert space H⊗H and define the correlation
operator R on H as

(Rf)(i)(t) = 〈R(i)(t, ·), f〉H =
m

∑
j=1
〈R(i,j)(t, ·), f (j)〉H , i = 1, 2, . . . , m

where R(i)(t, s) denotes the i-th row of R(t, s), i = 1, . . . , m. Then R is a linear, self-adjoint,
non-negative definite, and completely continuous operator of H into itself.
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Proof. Note that R is well defined and, for all f ∈ H, Rf ∈ H. Furthermore, R is self-adjoint
and non-negative definite since R(t, s) is a correlation matrix and R(t, s) = RH(s, t). Now,
from the fact that ‖R‖H⊗H = M < ∞ and the Cauchy-Schwarz inequality follows

〈Rf, g〉H =
m

∑
j=1
〈(Rf)(j), g(j)〉H ≤ M‖f‖H‖g‖H < ∞

for all f, g ∈ H. Thus, R is a bounded operator. Finally, a bounded linear operator between
normed spaces is always continuous [41] [Theorem 4.42].

From this theorem R is an L(H)-valued reproducing kernel and therefore, there exists
a unique RKHS generated by R(t, s),H(R). Moreover, R is a trace class operator, i.e.,

∞

∑
n=1
〈R(t, ·)fn, R(·, t)fn〉H(R) =

∞

∑
n=1
〈R(t, t)fn, fn〉H < ∞

by using the reproducing property (6) in H(R) and with {fn}n a basis for H. It follows
from the spectral theory of completely continuous operators that the set of eigenvalues of
R is an infinite sequence of positive real numbers converging to zero. In order to obtain a
concrete structure, let νn and ρn be the eigenvalues and orthonormal eigenfunctions of R in
H, then the kernel enjoys a representation as follows [40]

R(t, s) =
∞

∑
n=1

νnρn(t)ρ
H
n (s) (7)

which converges in H⊗H and ‖R‖2
H⊗H = ∑∞

n=1 ν2
n < ∞. When the convergence of the

series expansion in (7) is pointwise in t, s ∈ T, for instance if R(t, s) is continuous, then the
RKHS generated by R(t, s), denoted byH(R), can be spanned by the set {√νnρn(t)} and
the reproducing inner product can be obtained as follows

〈f, g〉R =
∞

∑
n=1

1
νn
〈f, ρn〉H〈ρn, g〉H (8)

for f(t) = ∑∞
n=1〈f, ρn〉Hρn(t) and g(t) = ∑∞

n=1〈g, ρn〉Hρn(t).
Let H(x) be the Hilbert space spanned by the variables of the complex-valued random

vector x(t). Hence, if f ∈ H, the notation 〈x, f〉H is an element of H(x) such that E[〈x, f〉H] = 0
and E[〈x, f〉H〈x, g〉∗H] = 〈Rf, g〉H, with f, g ∈ H. Similarly, if f ∈ H(R), 〈x, f〉R denotes a
random variable in H(x) that can be expressed as follows

〈x, f〉R =
∞

∑
n=1

1
νn
〈x, ρn〉H〈ρn, f〉H

By denoting xn = 〈x, ρn〉H, it can proved that they are uncorrelated random variables
and verify E[xnx∗n] = νn. Thus, if the convergence of the series expansion in (7) is absolute
in t, s ∈ T the following series representation for x(t) can be deduced

x(t) =
∞

∑
n=1

xnρn(t), t ∈ T

which is the projection of x(t) onto the subspace of H(x) spanned by the random variables
{xn/

√
νn}.
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3.2. Quaternion RKHS Representation

Based on the results on RKHSs for complex vector processes described above we
derive a RKHS for augmented quaternion random processes (3). To do this, let us consider
the augmented complex random vector a(t) = [α(t), β(t), α∗(t), β∗(t)]T with correlation
matrix Ra(t, s), which is obtained from the Cayley-Dickson representation (2). Assume
that Ra(t, s) belongs to the direct product Hilbert space H⊗H and denote by νn and ρn(t)
the eigenvalues and orthonormal eigenfunctions of Ra in H, respectively. It can be easily
proved that ρn(t) are of the form

ρn(t) = [ρ
(1)
n (t), ρ

(2)
n (t), ρ

(1)∗
n (t), ρ

(2)∗
n (t)]T

and 〈ρn, ρm〉H = 2Re〈ρ(1)n , ρ
(1)
m 〉H + 2Re〈ρ(2)n , ρ

(2)
m 〉H = δnm. Then, Ra(t, s) can be rep-

resented by the series expansion of (7) and the RKHS associated can be spanned by
{√νnρn(t)} with the inner product given in (8). Since the augmented correlation ma-
trix (4) is related to Ra(t, s) by the equality Rq(t, s) = 2ARa(t, s)AH, the eigenvalues and
eigenfunctions of Rq are of the form

λn = 2νn, φn(t) = Aρn(t)

with A given in (5). Let Hq be some coefficient or auxiliary right quaternionic Hilbert space
with a computationally convenient norm (e.g., a L2 space) with 〈·, ·〉Hq its inner product.
Assume that the augmented correlation matrix Rq belongs to the direct product Hilbert
space Hq ⊗Hq. Let H∗ be the subspace of Hq which contains the augmented quaternion
functions, i.e., H∗ is the image of H under the unitary map with matrix A, Af ∈ H∗ ⊆ Hq,
with f ∈ H. It is isomorphic to H and widely linear with the product by scalar

f(t)q = [ f (t)q, f i(t)qi, f j(t)qj, f k(t)qk]T = [ f (t)q, ( f (t)q)i, ( f (t)q)j, ( f (t)q)k]T ∈ H∗

for f = [ f , f i, f j, f k]T ∈ H∗, q ∈ H. This isomorphism allows us to obtain the following
representation for the augmented correlation matrix from the series expansion (7) for
Ra(t, s)

Rq(t, s) =
∞

∑
n=1

λnφn(t)φ
H
n (s) (9)

which converges in H∗ ⊗ H∗. In particular, the eigenfunctions corresponding to the
augmented correlation matrix belong to this subspace, φn ∈ H∗, and are orthonormal,
〈φn, φm〉Hq = 〈Aρn, Aρm〉Hq = 〈ρn, ρm〉H = δnm.

Thus, a RKHS generated by Rq(t, s), denoted by H(Rq), can be defined as the span
of the set of the eigenfunctions, i.e., it consists of all augmented quaternion functions
f ∈ H∗ ⊆ Hq for which

∞

∑
n=1

1
λn
|〈f, φn〉Hq |2 < ∞

Then, the reproducing kernel inner product of two augmented quaternion functions
inH(Rq) can be expressed as shown

〈f, g〉Rq =
∞

∑
n=1

1
λn
〈f, φn〉Hq〈φn, g〉Hq (10)

Theorem 2. The expression given by Equation (10) defines an inner product on H(Rq), is well-
defined and verifies the reproducing property (6).

Proof. First, we prove that (10) really defines an inner product onH(Rq). In fact, by using
the properties of 〈·, ·〉Hq as an inner product in Hq, it is easy to check that (10) satisfies for
f, g, h ∈ H(Rq) and v ∈ H the following properties
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(i) 〈f, g〉∗Rq
= ∑∞

n=1
1

λn
〈φn, g, 〉∗Hq

〈f, φn〉∗Hq
= 〈g, f〉Rq

(ii) 〈f, g + h〉Rq = ∑∞
n=1

1
λn
〈f, φn〉Hq(〈φn, g〉Hq + 〈φn, h〉Hq) = 〈f, g〉Rq + 〈f, h〉Rq

(iii) 〈f, gv〉Rq = ∑∞
n=1

1
λn
〈f, φn〉Hq〈φn, g〉Hq v = 〈f, g〉Rq v

(iv) 〈fv, g〉Rq = 〈g, fv〉∗Rq
= v∗〈f, g〉Rq

(v) ‖f‖2
Rq

= 〈f, f〉Rq = ∑∞
n=1

1
λn
|〈f, φn〉Hq |2 > 0 unless f = 0.

Now, note that Rq(·, s)f ∈ H(Rq), for all s ∈ T and f ∈ H∗, since

∞

∑
n=1

1
λn
|〈Rq(·, s)f, φn〉Hq |2 =

∞

∑
n=1

1
νn
|〈Ra(·, s)f, ρn〉H|

2 < ∞

where f = Af for f ∈ H and Rq(·, s)f = 2ARa(·, s)f ∈ H∗. Finally, Equation (10) satisfies
the reproducing property for f ∈ H(Rq) and g ∈ H∗ as demonstrated below

〈f, Rq(·, s)g〉Rq =
∞

∑
n=1

1
λn
〈f, φn〉Hq〈φn, Rq(·, s)g〉Hq

=
∞

∑
n=1

1
νn
〈f, ρn〉H〈ρn, Ra(·, s)g〉H

= 〈f, Ra(·, s)g〉Ra = 〈f(s), g〉H
= 〈f(s), g〉Hq

with f = Af and g = Ag, f, g ∈ H, and by using the fact that the inner product in H(Ra)
verifies the reproducing property.

In a similar way to the complex case, we define the random variables

qn = 〈q, φn〉Hq =
√

2〈a, ρn〉H (11)

with 〈a, ρn〉H = 2Re〈α, ρ
(1)
n 〉H + 2Re〈β, ρ

(2)
n 〉H real-valued uncorrelated random variables.

Thus, qn are real-valued uncorrelated random variables, E[qnqm] = λnδnm, and they allow
us to obtain the following series representation

q(t) =
∞

∑
n=1

qnφn(t), t ∈ T (12)

In the following examples, some interesting representations for quaternion random
processes are deduced as particular cases of those obtained in this section by developing
the RKHS theory in the field of WL processing.

3.2.1. Example 1: Karhunen-Loéve-Type Representation

Firstly, let q(t), t ∈ [0, I], be a continuous in quadratic mean quaternion random signal.
Consider H = L2[0, T], the space of square integrable functions and let H be the space
of vector functions f = [ f (1), f (2), f (3), f (4)]T such that ‖f‖H = ∑4

i=1 ‖ f (i)‖2
2 < ∞. Let νn

and ρn(t) be the eigenvalues and eigenfunctions of the integral operator Ra defined on H
as follows

(Raf)(t) =
∫ I

0
Ra(t, s)f(s)ds

then, a Karhunen-Loéve-type expansion (12) can be deduced for the augmented quaternion
vector q(t) with the random variables

qn =
∫ I

0
φH

n(t)q(t)dt =
√

2
∫ I

0
ρHn(t)a(t)dt
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This Karhunen-Loéve-type representation was proposed in [28] for a quaternion signal
in continuous-time based on augmented statistics and was applied to the problems of
estimation and detection.

3.2.2. Example 2: Gaussian Quaternion Signal plus Wiener Noise Representation

Now, let us consider the quaternion random process given by

q(t) =
∫ t

0
s(τ)dτ + w(t), t ∈ [0, I]

with s(t) a Gaussian, continuous in quadratic mean, quaternion signal with correlation
function L, and w(t) a Q-proper (i.e., the three complementary correlation functions
vanish) standard Wiener process, with correlation function R. Moreover, s(t) and w(t)
are independent.

Let La and Ra be the correlation matrices corresponding to the complex random
vectors obtained from the Cayley-Dickson representation of s(t) and w(t), respectively. In
this case, Ra(t, s) = min{t, s}I4 and H = H(Ra) its associated RKHS which consists of
complex functions f = [ f (1), f (2), f (3), f (4)]T, with first derivate f′ satisfying that∫ I

0
f′H(t)f′(t)dt < ∞

Denote by

Ka(t, s) =
∫ s

0

∫ t

0
La(u, v)dudv

then, the kernel Ka belongs to the direct product space H(Ra)⊗ H(Ra). Let νn and ρn be
its eigenvalues and eigenfunctions, respectively. The following series representation can be
obtained for the augmented vector q(t)

q(t) =
∞

∑
n=1

(∫ t

0
Aφn(u)du

)
qn, t ∈ [0, I]

where the random coefficients are given by

qn =
√

2
∫ I

0
φH

n(t)da(t)

and φn(t) are the eigenfunctions of La, i.e., ρn(t) =
∫ t

0 φn(u)du. A similar series expansion
was obtained by [42] for real signals and is especially useful in the problems of estimating
and detecting a Gaussian signal in additive white Gaussian noise.

4. Application to Detection Problems in the Quaternion Domain
4.1. Detection of Quaternion Deterministic Signals in Quaternion Gaussian Noise

The first issue we tackle is how to detect a quaternion deterministic signal that has
been corrupted by quaternion additive Gaussian noise. A coordinate-free representation
of the augmented quaternion noise based on the QRKHS associated with its augmented
correlation function will allow us to obtain a log-likelihood ratio expression which unifies
a variety of formulas for the optimum detection statistic (for instance, in terms of series
expansions, solutions to integral equations, etc.). Specifically, the detection problem is
formulated as follows

H0 : y(t) = q(t), t ∈ [0, I]
H1 : y(t) = s(t) + q(t), t ∈ [0, I]

(13)

with s(t) a quaternion continuous completely known signal and q(t) a quaternion mean-
square continuous Gaussian noise. P0 and P1 stand for the probability measures corre-
sponding to the null and alternative hypotheses, respectively. Different signal and noise
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representations can be used to derive a number of likelihood ratio formulas. In accordance
with Grenander’s Theorem [43] a method for determining likelihood ratios for continuous-
time observation models entails first reducing the observation signal to an equivalent
sequence, followed by determining the limit of the likelihood ratio for the truncated se-
quence. For this purpose, our approach considers the random coefficients obtained from
the QRKHS representation of the observation quaternion random signal. Then, using
calculations involving RKHS inner products, we compute the log-likelihood ratio to obtain
a suitable detector expression.

Theorem 3. Suppose that s(t) belongs to H(Rq), then the detection problem (13) is not singular
(P0 ≡ P1) and the log-likelihood ratio test is as follows

log
dP1

dP0
(y) = 〈y, s〉Rq −

1
2
||s||2Rq

(14)

Proof. From (12) and the fact that s(t) ∈ H(Rq) we can replace the continuous-time
problem (13) by the following discrete one

H0 : yn = qn, n = 1, 2, . . .
H1 : yn = sn + qn, n = 1, 2, . . .

with qn given in (11) and sn = 〈s, φn〉Hq . Consequently, applying the Grenander’s Theorem [43] to

the discrete detection problem above we obtain thatP0 ≡ P1 since ∑∞
n=1

|sn|2
λn

= ||s||2Rq
< ∞ and

log
dP1

dP0
(y) =

∞

∑
n=1

ynsn

λn
− 1

2

∞

∑
n=1

|sn|2
λn

Taking into account that 〈y, s〉Rq = ∑∞
n=1

1
λn
〈y, φn〉Hq〈φn, s〉Hq = ∑∞

n=1
ynsn
λn

we prove
(14).

4.2. Discrimination between Two Quaternion Gaussian Signals

The second detection problem we study is the discrimination problem between two
quaternion random signals which is formulated by the following hypotheses pair

H0 : y(t) = q1(t), t ∈ [0, I]
H1 : y(t) = q2(t), t ∈ [0, I]

(15)

where qi(t), i = 1, 2, are Gaussian, continuous in quadratic mean, quaternion signals with
correlation functions Ri(t, s), respectively. P0 and P1 stand for the probability measures
corresponding to the null and alternative hypotheses, respectively, and verify that P0 ≡ P1,
that is, the detection problem (15) is not singular. Let ai(t), i = 1, 2, be the complex random
vectors associated with the Cayley-Dickson representation of qi(t), i = 1, 2, respectively.
Let νn and ρn be the eigenvalues and eigenfunctions of operator Ra1 on the RKHS H(Ra2).
Then the log-likelihood ratio for the underlying hypothesis test problem is provided in the
following theorem.

Theorem 4. The log-likelihood ratio test corresponding to (15) can be expressed as follows

log
dP1

dP0
(y) =

1
2

∞

∑
n=1

log νn +
1
2

∞

∑
n=1

1− νn

νn
y∗nyn (16)

where the uncorrelated random variables yn =
√

2〈a1, νnρn〉Ra1
, underH0 and yn =

√
2〈a2, ρn〉Ra2

,
underH1.
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Proof. From the conditions of nonsingularity required we obtain that Ra2 −Ra1 ∈ H(Ra2)⊗
H(Ra2) and that Ra2 dominates to Ra1 , that is, Ra2 − Ra1 is a correlation matrix too [1]. On
the other hand, Ra2 is Hilbert-Schmidt on L2[0, I] since Ra2(t, s) is a continuous function
on [0, I]⊗ [0, I]. Thus, there exists an isomorphism between H(Ra2) and L2[0, I] [44], so
ρn = R1/2

a2
ψn with ψn ∈ L2[0, I]. Using the series expansion (12) for the observation

quaternion signal y(t) with H = H(Ra2)

y(t) =
∞

∑
n=1

yn

(
AR1/2

a2
ψn

)
(t), t ∈ T

we get the following equivalent problem in terms of the random coefficients yn

H0 : yn =
√

2〈a1, νnρn〉Ra1
 N(0, 2νn), n = 1, 2, . . .

H1 : yn =
√

2〈a2, ρn〉Ra2
 N(0, 2), n = 1, 2, . . .

Then [10] the log-likelihood ratio for y1, y2, . . . is given by (16).

4.3. Numerical Example

We consider the model (13) with the following quaternion signal to show the perfor-
mance of the proposed detector (14)

s(t) =
1

π2 cos πt + i
1

π2 cos πt + j
1

π2 cos πt + k
1

π2 cos πt, t ∈ [0, 1]

and the quaternion noise q(t) =
√

2x(t)eiθ + k
√

2x(t)eiθ , with x(t) the zero-mean Wiener
real process and θ an standard Normal random variable, independent of x(t). Moreover,
we consider H = L2[0, 1], the space of square integrable complex functions. Figure 1 shows
the detection probability P = 1− ψ

(
ψ−1(1− α)− d

)
(ψ denotes the cumulative probability

distribution function of a N(0, 1) random variable) in relation to the false-alarm probability
α by using the Neyman-Pearson criterion, in terms of the signal-to-noise ratio

d2 = ||s||2Rq
=

∞

∑
n=1

1
λn
|〈s, φn〉Hq |2

obtained with n = 5 (blue line) and n = 10 (red line) terms, respectively.
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Figure 1. Detection probability versus the false-alarm probability.

5. Conclusions

A generic RKHS framework for the statistical analysis of augmented quaternion ran-
dom vectors has been presented. First, we have developed the properties of the RKHS
associated with the correlation matrix of an augmented complex vector process and, sec-
ond, we have obtained an explicit expression of the widely QRKHS inner product that can
effectively transform the functional quaternion data into a series representation simplifying
their statistical treatment. This novel QRKHS has allowed us to exploit the full advantages
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of the RKHS theory to propose general solutions to WL processing problems in continuous-
time, for instance, detection problems. These solutions have shown to generalise those
previously introduced in the literature in particular cases, for example, under the assump-
tion of proper (rotation-invariantly distributed) quaternion signals or for mean-square
continuous quaternion signals [34,35]. In particular, the quaternion RKHS approach has
been applied to deal with the detection of a deterministic signal disturbed by additive
Gaussian noise and the discrimination between two quaternion Gaussian signals with
unequal covariances in the continuous-time case. Note that, in practice, the determination
of eigenvalues and eigenfunctions can be quite involved. However, it is possible to employ
a numerical method of solution, such as the Rayleigh-Ritz method (see [45] for a detailed
study about its practical application).

Further research related to other hypercomplex systems, such as the tessarines, will be
explored in the future to study possible extensions of the results provided in this work.
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