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Abstract: In the process of aerospace service, circular mesh antennas generate large nonlinear vi-
brations under an alternating thermal load. In this paper, the Smale horseshoe and Shilnikov-type
multi-pulse chaotic motions of the six-dimensional non-autonomous system for circular mesh an-
tennas are first investigated. The Poincare map is generalized and applied to the six-dimensional
non-autonomous system to analyze the existence of Smale horseshoe chaos. Based on the topological
horseshoe theory, the three-dimensional solid torus structure is mapped into a logarithmic spiral
structure, and the original structure appears to expand in two directions and contract in one direction.
There exists chaos in the sense of a Smale horseshoe. The nonlinear equations of the circular mesh
antenna under the conditions of the unperturbed and perturbed situations are analyzed, respec-
tively. For the perturbation analysis of the six-dimensional non-autonomous system, the energy
difference function is calculated. The transverse zero point of the energy difference function satisfies
the non-degenerate conditions, which indicates that the system exists Shilnikov-type multi-pulse
chaotic motions. In summary, the researches have verified the existence of chaotic motion in the
six-dimensional non-autonomous system for the circular mesh antenna.

Keywords: circular mesh antenna; Smale horseshoe; the Poincare map; multi-pulse chaotic motion;
the extended energy phase method

MSC: 34H10

1. Introduction

As an ideal form for large deployable structures, circular mesh antennas are applied
to various aerospace missions, such as land sensing, earth observation, and deep space
exploration. Circular mesh antennas are designed as a lightweight and flexible structure
in orbit and use metal meshes as a reflecting surface [1–3]. The scale of the circular mesh
antenna can reach the magnitude of 30–50 m, and it is difficult to understand and extract the
essential nonlinear dynamic behaviors of the system from the mass data by the method of
numerical simulations. Many scholars apply chaos theory to study the stability of a circular
mesh antenna when it is deployed and locked in air service. By the nonlinear dynamics
method, the chaotic phenomenon of the circular mesh antenna is predicted, and the validity
and correctness of the prediction are verified by the theoretical and numerical simulations.
Considering the complicated aerospace environment, the circular mesh antenna may cause
large amplitude nonlinear vibrations [4]. This can seriously affect the accuracy and stability
of the system. It is significant to study the nonlinear dynamical behavior of the circular
mesh antenna system.

Nonlinear science has gradually developed into a frontier field of scientific research,
and there is chaotic motion in nonlinear systems [5,6]. The researches of chaos have ex-
perienced the following stages of development: discovery, exploration, in-depth analysis
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and engineering applications. Originally, Smale et al. [7] constructed a map in the discrete
dynamical system with shapes similar to horseshoes and represented chaos in a topological
sense. Li and Yorke [8] gave the definition of chaos in the subsequent research. With
the improvement and development discovery of chaos, modern chaos originated from
Poincare’s pioneering work [9,10] on homoclinic orbits generated by the transverse cross-
ings of stable manifolds and unstable manifolds. In addition, many scholars and scientists
have recently shown interest in applying these natural science models to social sciences [11]
including areas such as psychology [12], family [13], addiction, happiness, and adult love
and romantic relationships. Particularly, the relationship between love affairs [14] and
romances of humans deal with different or similar contents in mathematics, biology and
psychology. Deng et al. [15] proposed a new version of the nonlinear model with two
women competing vehemently for an attractive man in a competitive love-triangle, which
provides more insight into the dynamical behaviors of complex love-triangle relationships.
Huang et al. describe a dynamical love model with the external environments of the love
story of Romeo and Juliet with fuzzy membership function [16]. In the following analysis,
the author used sinusoidal function as external environments which can represent the
positive and negative characteristics of humans to analyze the chaotic behaviors in a novel
extended love model [17]. The researchers reveal the mechanism of chaotic phenomena by
the Lyapunov exponent, chaotic attractor, attractor basins [18], the Melnikov method [19]
and other analytical methods. Zhang et al. [20] reported a class of two-dimensional rational
memristive maps in which all attractors are hidden through numerical simulations. It is
found that these maps can generate periodic, chaotic, quasi-periodic, and hyper-chaotic
solutions. Wen et al. [21] studied the necessary conditions for a chaotic analytical solution
of a Duffing oscillator with fractional order by the Melnikov method and investigated
the bifurcation and chaos threshold of the system. Tian et al. analyzed the fundamental
dynamics of the nonlinear systems with hidden attractors and line equilibria [22].

Among several types of chaotic motions, the horseshoes occur when the stable mani-
fold and the unstable manifold cross transversely at a saddle fixed point. The horseshoes
have been widely studied due to their special geometric structure. Huan et al. [23] put
forward sufficient conditions for homoclinic orbits in the three-dimensional segmented
affine systems and proved the existence of horseshoes under appropriate conditions. Li
and Tomsovic [24] demonstrated that the behavior of unstable trajectories could be ex-
tended to linear combinations of homoclinic orbit in the Hamilton system. Furthermore,
Shilnikov’s theory and its extensions theories [25,26] show that the existence of homoclinic
orbits or heteroclinic orbits implies the existence of horseshoes under certain conditions.
At the same time, the Poincaré map is often utilized in the process of verifying horseshoes.
Liu et al. [27] constructed the Poincaré map and applied integral manifold theory to study
the conditions of periodic solution and the invariant torus for a four-dimensional nonlinear
dynamical system.

There are mainly two different analytical methods for chaotic motion in high-dimensional
nonlinear systems, the generalized Melnikov method [28,29] and the energy phase method [30].
The nonlinear dynamical behaviors of cantilever beams, thin plates, and functionally gra-
dient frustoconical shells were studied using these two methods [31,32]. The Melnikov
method was applied [33] to analyze the jump of multi-pulse chaotic dynamics. More-
over, the extended energy phase method [34] was used to study the chaotic motion of a
four-dimensional nonlinear system. The higher-order Melnikov theories for time-period
equations with homoclinic solutions were developed [35,36]. Yu et al. [37] applied the
energy phase method on non-autonomous systems to study the energy dissipation of the
system, and theoretically generalized the problem to 2n + 2 dimensions. Based on the
energy phase method of Haller and Wiggins, Sun et al. [38] improved the energy phase
method, studying the nonlinear dynamical behaviors of the circular mesh antennas. The
geometry structure of three jumping pulses in six-dimensional phase space is described.
For the choice of the two methods, the generalized Melnikov method is much more com-
plicated than the energy phase method in terms of application, calculation and proof of
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expansion conditions. Therefore, the energy phase method is more suitable for solving
complex nonlinear practical engineering problems.

Many studies of chaotic motions in physical and engineering systems may be related to
homoclinic orbits. The researches on relevant properties of homoclinic orbits are important
for chaotic motions. The properties near the homoclinic orbit are chaotic or transient chaotic
phenomena that can be observed, which exist in physical systems. Chertovskih et al. [39]
found 21 distinct nonlinear convective MHD attractors (13 steady states and 8 periodic
regimes) and identified bifurcations in which they emerge. Cao et al. [40] present a novel
construction of homoclinic/heteroclinic orbits in nonlinear oscillators. It is found that the
present structure gives an accurate approximate solution of a homoclinic/heteroclinic orbit
for large parametric value in relatively few harmonic terms. In the above research, the en-
ergy phase method had been extended to 2n + 2 dimensions in theory, and the multi-pulse
chaotic motion of six-dimensional autonomous systems was analyzed in practical applica-
tions. The construction and description of differential manifolds for the six-dimensional
nonlinear systems need further refined.

Due to the space environment, large deployable antennas will generate complex
chaotic motions during the operation after unfolding and locking. In this paper, the chaotic
motion of the six-dimensional non-autonomous system for the circular mesh antenna is
studied. We analyze the horseshoes and multi-pulse chaotic motion of the six-dimensional
non-autonomous system for circular mesh antenna. The Poincare map is applied to analyze
the horseshoes in the six-dimensional non-autonomous system. The three-dimensional
solid torus structures and in mutually vertical directions are selected, and the solid torus
structure is mapped into a logarithmic spiral structure. Intercept the two-dimensional
cross-section of the map, and the horseshoes occur. The perturbation analysis needs to
be combined with the geometry structures of stable and unstable manifolds. Solving the
dissipative energy difference function of the six-dimensional non-autonomous system, the
transverse zeros and the upper bound of the dissipative factor are obtained. The energy
difference function is verified to satisfy the non-degenerate conditions. The multi-pulse
orbit jumped from the slow manifold returns to the domain of focus attraction.

2. Dynamical Equations and Simplifications

To study chaotic motions of the circular mesh antenna during the operation, according
to reference [38], the three-degree-of-freedom ordinary differential equations are introduced
as follows:

..
w1 + µ1

.
w1 + ω2

1w1 + f1 cos(Ωt)w1 + α11w2
1 + α12w2

2 + α13w2
3 + α14w3

1 + α15w3
2 + α16w3

3

+α17w1w2 + α18w2w3 + α19w3w1 + α20w2
1w2 + α21w2

2w1 + α22w2
2w3 + α23w2

3w2

+α24w2
1w3 + α25w2

3w1 + α26w1w2w3 = F1 cos(Ω1t),

(1)

..
w2 + µ2

.
w2 + ω2

2w2 + f2 cos(Ωt)w2 + β11w2
1 + β12w2

2 + β13w2
3 + β14w3

1 + β15w3
2 + β16w3

3

+β17w1w2 + β18w2w3 + β19w3w1 + β20w2
1w2 + β21w2

2w1 + β22w2
2w3 + β23w2

3w2

+β24w2
1w3 + β25w2

3w1 + β26w1w2w3 = F2 cos(Ω2t),
..
w3 + µ3

.
w3 + ω2

3w3 + f3 cos(Ωt)w3 + γ11w2
1 + γ12w2

2 + γ13w2
3 + γ14w3

1 + γ15w3
2 + γ16w3

3

+γ17w1w2 + γ18w2w3 + γ19w3w1 + γ20w2
1w2 + γ21w2

2w1 + γ22w2
2w3 + γ23w2

3w2

+γ24w2
1w3 + γ25w2

3w1 + γ26w1w2w3 = F3 cos(Ω3t),

where w1, w2 and w3 represent the amplitudes of the first, second, and third modes, µ1, µ2
and µ3 stand for damping coefficient, while fi and Fi represent the extrinsic excitation. Other
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coefficients in the equations are listed in reference [38]. Selecting the internal resonance
relationship 1:4:6, and the six-dimensional average equations of the system are obtained.

.
x1 = − 1

2 µ1x1 − (σ1 + f1)x2 − 9
4 α14x2

(
x2

1 + x2
2
)

− 1
2 α21x2

(
x2

3 + x2
4
)
− 1

2 α25x2
(
x2

5 + x2
6
)
,

(2)

.
x2 = (σ1 − f1)x1 − 1

2 µ1x2 +
9
4 α14x1

(
x2

1 + x2
2
)

+ 1
2 α21x1

(
x2

3 + x2
4
)
+ 1

2 α25x1
(
x2

5 + x2
6
)
,

.
x3 = − 1

2 µ2x3 − 1
4 σ2x4 − 9

16 β15x4
(

x2
3 + x2

4
)
− 1

8 β20x4
(
x2

1 + x2
2
)

− 1
8 β23x4

(
x2

5 + x2
6
)
− 1

8 β24x1x2x5 − 1
16 β24x6

(
x2

1 − x2
2
)
,

.
x4 = 1

4 σ2x3 − 1
2 µ2x4 +

9
16 β15x3

(
x2

3 + x2
4
)
+ 1

8 β20x3
(

x2
1 + x2

2
)

+ 1
8 β23x3

(
x2

5 + x2
6
)
− 1

8 β24x1x2x6 +
1

16 β24x5
(
x2

1 − x2
2
)
− 1

4 F2,

.
x5 = − 1

2 µ3x5 − 1
6 σ3x6 − 3

8 γ16x6
(

x2
5 + x2

6
)
− 1

12 γ20x1x2x3

− 1
24 γ20x4

(
x2

1 − x2
2
)
− 1

12 γ22x6
(
x2

3 + x2
4
)
− 1

12 γ24x6
(
x2

1 + x2
2
)
,

.
x6 = 1

6 σ3x5 − 1
2 µ3x6 +

3
8 γ16x5

(
x2

5 + x2
6
)
− 1

12 γ20x1x2x4

+ 1
24 γ20x3

(
x2

1 + x2
2
)
+ 1

12 γ22x5
(

x2
3 + x2

4
)
+ 1

12 γ24x5
(
x2

1 + x2
2
)
− 1

6 F3,

where σ1, σ2 and σ3 are the perturbation parameters. The normative theory is used to
simplify Equation (2), and its topological equivalent form is obtained. Equation (2) has an
initial equilibrium solution (x1, x2, x3, x4, x5, x6) = (0, 0, 0, 0, 0, 0). The Jacobi matrix of the
linear part of Equation (2) is given by:

J =



− 1
2 µ1 −(σ1 + f1) 0 0 0 0

(σ1 − f1) − 1
2 µ1 0 0 0 0

0 0 − 1
2 µ2 − 1

4 σ2 0 0
0 0 1

4 σ2 − 1
2 µ2 0 0

0 0 0 0 − 1
2 µ3 − 1

6 σ3
0 0 0 0 1

6 σ3 − 1
2 µ3


. (3)

The characteristic polynomial of the Jacobi matrix (3) is expressed as follows:

f (λ) =
(

λ2 + λµ1 +
1
4 µ1

2 + σ1
2 − f1

2
)

×
(

λ2 + λµ2 +
1
4 µ2

2 + 1
16 σ2

2
)
×
(

λ2 + λµ3 +
1
4 µ3

2 + 1
36 σ3

2
)

.
(4)

When the conditions µ1 = µ2 = µ3 = 0 and σ1
2− f1

2 = 0 are satisfied, the polynomial
(4) has a pair of double-zero eigenvalues and two pairs of pure imaginary eigenvalues:

λ1,2 = 0, λ3,4 = ±1
4

σ2i, λ5,6 = ±1
6

σ3i. (5)
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The transformation matrix T is introduced as follows:

A =



λ1 0 0 0 0 0
0 λ2 0 0 0 0
0 0 0 1

4 σ2 0 0
0 0 − 1

4 σ2 0 0 0
0 0 0 0 0 1

6 σ3
0 0 0 0 − 1

6 σ3 0


= T−1 JT. (6)

According to the above transformation, the solution x(t) of the linear part of Equation (2)
can be expressed as follows:

x(t) = TeAtT−1x0 = T



eλ1t 0 0 0 0 0
0 eλ2t 0 0 0 0
0 0 cos 1

4 σ2t sin 1
4 σ2t 0 0

0 0 − sin 1
4 σ2t cos 1

4 σ2t 0 0
0 0 0 0 cos 1

6 σ3t sin 1
6 σ3t

0 0 0 0 − sin 1
6 σ3t cos 1

6 σ2t


T−1x0. (7)

When σ2, σ3< 0, the geometric structure of the stable manifold and the unstable
manifold of the six-dimensional non-autonomous system can be described. The unstable
manifold Eu and the stable manifold Es correspond to the pure imaginary eigenvalues and
the real eigenvalues. The trajectory Eu is spirally rising out of the plane. Meanwhile Es

presents the shape of a homoclinic orbit on the plane (u1 − u2), and converged near the
saddle point P1, as shown in Figure 1.
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After obtaining the manifold structure, let f1 = −1, σ1 = f1 + σ1, µ1, µ2, µ3, σ1, F2
and F3 are perturbation parameters. The third-order normal form with parameters for
Equation (2) is given by:

.
y1 = − 1

2 µ1y1 + (1− σ1)y2
.
y2 = σ1y1 − 1

2 µ1y2 +
9
4 α14y1

3 + 1
2 α21y1y3

2,
(8)

+ 1
2 α21y1y4

2 + 1
2 α25y1y5

2 + 1
2 α25y1y6

2

.
y3 = − 1

2 µ2y3 − 1
4 σ2y4 +

9
128 β15y3

3 − 63
128 β15y4

3

− 1
8 β20y1

2y4 − 63
128 β15y3

2y4 +
9

128 β15y3y4
2 + 1

16 β23y3y5
2,

− 1
16 β23y4y5

2 + 1
16 β23y3y6

2 − 1
16 β23y4y6

2

.
y4 = 1

4 σ2y3 − 1
2 µ2y4 +

63
128 β15y3

3 + 9
128 β15y4

3

+ 1
8 β20y1

2y3 +
9

128 β15y3
2y4 +

63
128 β15y3y4

2 + 1
16 β23y3y5

2,

+ 1
16 β23y4y5

2 + 1
16 β23y3y6

2 + 1
16 β23y4y6

2 − 1
4 F2

.
y5 = − 1

2 µ3y5 − 1
6 σ3y6 − 21

64 γ16y6
3 − 1

12 γ24y1
2y6,

− 1
12 γ22y3

2y6 − 1
12 γ22y4

2y6 − 21
64 γ16y5

2y6
.
y6 = 1

6 σ3y5 − 1
2 µ3y6 +

21
64 γ16y5

3 + 1
12 γ24y1

2y5,

+ 1
12 γ22y3

2y5 +
1

12 γ22y4
2y5 +

21
64 γ16y5y6

2 − 1
6 F3.

Let
y3 = I1 cos θ1, y4 = I1 sin θ1, y5 = I2 cos θ2, y6 = I2 sin θ2. (9)

Substituting the transformation (9) into Equation (8), the system (8) in the polar
coordinates is rewritten as follows:

.
y1 = −1

2
µ1y1 + (1− σ1)y2, (10)

.
y2 = σ1y1 −

1
2

µ1y2 +
9
4

α14y1
3 +

1
2

α21y1 I1
2 +

1
2

α25y1 I2
2,

.
I1 = −1

2
µ2 I1 −

1
4

F2 sin θ1,

I1
.
θ1 =

1
4

σ2 I1 +
63

128
β15 I1

3 − 1
8

β20y1
2 I1 +

1
16

β23 I1 I2
2 − 1

4
F2 cos θ1,

.
I2 = −1

2
µ3 I2 −

1
6

F3 sin θ2,

I2
.
θ2 =

1
6

σ3 I2 +
21
64

γ16 I2
3 +

1
12

γ24y1
2 I2 +

1
12

γ22 I1
2 I2 −

1
6

F3 cos θ2.

Equation (10) is rewritten as the simple normal form:

.
u1 = c1u2, (11)

.
u2 = −c2u1 − µ1u2 + c3u1

3 + c4u1 I1
2 + c5u1 I2

2,
.
I1 = c6 I1 −

1
4

F2 sin θ1,

I1
.
θ1 = c7 I1 + c8 I1

3 + c9u1
2 I1 + c10 I1 I2

2 − 1
4

F2 cos θ1,
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.
I2 = c11 I2 −

1
6

F3 sin θ2,

I2
.
θ2 = c12 I2 + c13 I2

3 + c5u1
2 I2 + c10 I1

2 I2 −
1
6

F3 cos θ2.

Among them, c1 = γ25
α25

, c2 = α25
4γ25

[1− 4σ1(1− σ1)], c3 = − 9α14α25
3

4γ25
3 (1− σ1)

2, c4 =

α21α25
2γ25

(1− σ1), c5 = α25
2

2γ25
(1− σ1), c6 = − 1

2 µ2, c7 = 1
4 σ2, c8 = 63

128 β15, c9 = 1
8 β20

α25
2

γ25
(1− σ1),

c10 = 1
16 β23, c11 = − 1

2 µ3, c12 = 1
6 σ3, c13 = 21

64 γ16.
To analyze the influence of damping coefficient and thermal excitation on the nonlinear

dynamic behavior of the system, the perturbation parameters of damping coefficient and
thermal excitation are introduced as follows:

µ1 → εµ1 , µ2 → εµ2 , µ3 → εµ3 , F2 → εF2 , F3 → εF3. (12)

Equation (11) is rewritten as the Hamilton system with disturbance terms, and the
system is extended to a non-autonomous system. The multi-scale method is used to
introduce the time differential form:

.
u1 =

∂H
∂u2

+ εgu1 = c1u2, (13)

.
u2 = − ∂H

∂u1
+ εgu2 = −c2u1 + c3u1

3 + c4u1 I1
2 + c5u1 I2

2 − εµ1u2,

.
I1 =

∂H
∂θ1

+ εgI1 = εc6 I1 −
1
4

εF2 sin θ1,

I1
.
θ1 = −∂H

∂I1
+ εgθ1 = c7 I1 + c8 I1

3 + c9u1
2 I1 + c10 I1 I2

2 − 1
4

εF2 cos θ1,

.
I2 =

∂H
∂θ2

+ εgI2 = εc11 I2 −
1
6

εF3 sin θ2,

I2
.
θ2 = −∂H

∂I2
+ εgθ2 = c12 I2 + c13 I2

3 + c5u1
2 I2 + c10 I1

2 I2 −
1
6

εF3 cos θ2,

.
φ = ω1.

When ε = 0, the Hamilton function of the unperturbed system from Equation (13) is

H = 1
2 c1 +

1
2 c2u1

2 − 1
4 c3u1

4 − 1
2
(
c4 I1

2 + c5 I2
2)u1

2 − 1
2 c7 I1

2

− 1
4 c8 I1

4 − 1
2 c10 I1

2 I2
2 − 1

2 c12 I2
2 − 1

4 c13 I2
4.

(14)

When ε 6= 0, the system is a perturbed system, each disturbance term can be expressed as:

gu1 = 0, gu2 = −µ1u2, (15)

gθ1 = −1
4

F2 cos θ1, gθ2 = −1
6

F3 cos θ2,

gI1 = c6 I1 −
1
4

F2 sin θ1, gI2 = c11 I2 −
1
6

F3 sin θ2.

3. Smale Horseshoe

In the six-dimensional non-autonomous dynamic system, there are chaotic motions in
the system which can be judged through the geometric structure near the homoclinic orbits.

Based on the Poincare map method given by reference [41], it is promoted and applied
to analyze the horseshoes in the six-dimensional non-autonomous system. Due to the
large amount of calculation and the difficulty in constructing the topological structure, the
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unperturbed system is decoupled into the first two-dimensional system (u1, u2) and the
latter four-dimensional system (I1, θ1, I2, θ2). Consider the first two-dimensional equations.

When ε = 0, the remaining variables satisfy the conditions
.
I1 = 0 and

.
I2 = 0. Consider

Equation (13) as follows:
.
u1 = c1u2, (16)

.
u2 = −c2u1 + c3u1

3 + c4u1 I1
2 + c5u1 I2

2.

The Hamilton function of Equation (16) can be expressed as:

H1 =
1
2

c1u2
2 +

1
2

c2u1
2 − 1

4
c3u1

4 − 1
2

(
c4 I1

2 + c5 I2
2
)

u1
2. (17)

Considering the system parameters, when c3c1 < 0, it is found that the system had
homoclinic bifurcation. Let c3 > 0 and c1 < 0, discuss the characteristics of homoclinic
bifurcation based on the above parameter settings. When the condition c2− c4 I2

1 − c5 I2
2 < 0

is satisfied, Equation (16) has a unique zero solution (u1, u2) = (0, 0) which is a saddle
point. When c2 − c4 I2

1 − c5 I2
2 > 0, Equation (16) has three singular points. The phase

diagram near the equilibrium point, responding to both of the two cases, is plotted in
Figure 2. The eigenvalues obtained from the first two-dimensional system are expressed as

λ = ±
√
−(c2 − c4 I2

1 − c5 I2
2 ), when the system parameters are taken as c1 = −1.1, c2 = 5.4,

c3 = 4.795, c4 = −1.9, c5 = 6, I1 = 0.98, I2 = 0.49, the phase diagram is shown in Figure 2a,
while the system parameters are chosen as c1 = −1.1, c2 = −5.4, c3 = 4.795, c4 = −1.9,
c5 = 6, I1 = 0.98, I2 = 0.49, and the phase diagram is plotted in Figure 2b. The initial value
is selected as x0 = [0.98,−1.001].
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To study the orbit properties of the first two-dimensional system 1 2( , )u u  better, 
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1 1 2 1 1 2( , , )u c u f u u I= + , (18) 

2 2 1 2 1 2( , , )u c u f u u I= − + .  
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1 1 1

1 2( , , )u u I R R R   , 1f , 2f =
2 2
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A1: 1 2 0c c  . (A1 is local nature, which concerns the properties of the eigenval-

ues of the vector field linearized about the fixed point.) 

Figure 2. The phase diagram of the plane (u1 − u2) (a) The phase diagram of the plane (u1 − u2)
under condition c2 − c4 I2

1 − c5 I2
2 > 0; (b) The phase diagram of the plane (u1 − u2) under condition

c2 − c4 I2
1 − c5 I2

2 < 0.

To study the orbit properties of the first two-dimensional system (u1, u2) better, we
rewrite Equation (16) into the following form:

.
u1 = c1u2 + f1(u1, u2, I), (18)

.
u2 = −c2u1 + f2(u1, u2, I).

Among them, (u1, u2, I) ∈ R1 × R1 × R1, f1, f2=O(|x|2 + |y|2), I is a parameter and
c1 · c2 < 0. We make the following assumptions on Equation (18).

A1: c1 · c2 < 0. (A1 is local nature, which concerns the properties of the eigenvalues of
the vector field linearized about the fixed point.)
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A2: At I = 0, Equation (18) possesses a homoclinic orbit connecting the hyperbolic
fixed point P1(u1, u2) = (0, 0) and itself. On both sides of I = 0, the homoclinic orbit breaks
in a transverse way. The stable and unstable manifolds have different orientations on both
sides of I = 0. (A2 is global in nature. It supposes the existence of a homoclinic orbit.)

When the parameters of the model satisfy the above two assumptions, it is found that
the stable manifold lies outside of the unstable manifold when I > 0. The stable manifold
and the unstable manifold overlap when I = 0. When I < 0, the stable manifold lies inside
of the unstable manifold. The above description is shown in Figure 3.
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Figure 3. The homoclinic orbit local properties.

To analyze the properties near the homoclinic orbit, it is necessary to compute a
Poincare map near the homoclinic orbit. Set up the domains for the Poincare map. The
planes Π0 and Π1 of the small neighborhoods in two vertical directions near the equilibrium
point are introduced as follows:

Π0 = {(u1, u2) ∈ Cs
ε |u1 = ε > 0, u2 > 0}, (19)

Π1 = {(u1, u2) ∈ Cu
ε |u1 > 0, u2 = ε > 0}.

The geometric structure of Π0 and Π1 under the situation I = 0 is given in Fig-
ure 4. From Figure 4, the map PL

0 is mapped from Π0 to Π1. The flow is defined by the
linearization of the system about the origin point, which is expressed as u1(t) = u10 · ec1t,
u2(t) = u20 · e−c2t. There is a point (ε, u20) ∈ Π0 to reach Π1 under the action of Equation (18)
given by solving ε = u20 · e−c2t. Both u10 and u20 are the initial values. The map PL

0 is
denoted by:

PL
0 : Π0 → Π1, (ε, u20) 7→ (ε · ( ε

u20
)

c1
c2 , ε). (20)
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Define a map PL
1 from plane Π1 to Π0. Since the map from plane Π1 to Π0 takes only

finite time, there exists a subspace U ⊂ Π1 in Π1 satisfied the equation

P1(u1, u2, I) = (P11(u1, u2, I), P12(u1, u2, I)) : U ⊂ Π1 → Π0, (21)

PL
1 : Π1 → Π0, (u1, ε) 7→ (ε, c1u1 − c2 I).

The Poincare map is denoted by:

PL = PL
1 ◦ PL

0 : V ⊂ Π0 → Π1, (ε, u20) 7→ (ε, c1ε(
ε

u20
)

c1
c2 − c2 I), (22)

V = (PL
0 )
−1

(U) , PL(u2, I) : u2 7→ Au2
| c1

c2
| − c2 I.

where A = c1ε
1+ c1

c2 > 0.
The fixed point of the Poincare map is essential for discussing the positional rela-

tionship between the fixed point and the periodic orbit. To solve the fixed point of the
Poincare map, the fixed points can be displayed graphically as the intersection of the graph

of PL(u2, I) with the line PL(u2, I) = Au2
| c1

c2
| − c2 I = u2 for different values of I. The

discussion is categorized by the term c1
c2

. There are two cases:
Case 1: When |c1| > |c2|. For this case, Du2 PL(0, 0) = 0. According to different values

of I, the graph of (PL − u2) appears as shown in Figure 5 for I < 0, I = 0 and I > 0.
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In Figure 5a, when the equation PL(u2, I) = Au2
| c1

c2
| − c2 I = u2 is satisfied, the graph

has an intersection point for I > 0, it is the fixed point in case 1. The fixed point is stable
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and hyperbolic, since 0 < Du2 PL < 1 for I sufficiently small. From the topological structure
in Figure 5b, it is concluded that the fixed point corresponds to an attracting periodic orbit
of Equation (18). The fixed point would occur for I < 0, while the homoclinic orbit breaks.

Case 2: When |c1| < |c2|. For this case, Du2 PL(0, 0)→ ∞ . According to the different
values of I, the graph (PL − u2) is described as shown in Figure 6 for I < 0, I = 0 and I > 0.

Figure 6a shows that when the equation PL(u2, I) = Au2
| c1

c2
|− c2 I = u2 is satisfied, the

fixed point appears at I < 0. It is a repelling fixed point. In Figure 6b, when corresponding
to I < 0, this fixed point tends to repel the periodic orbits. The fixed point would occur for
I > 0, while the homoclinic orbit breaks.

We are considering the Poincare map in the system (I1, θ1, I2, θ2). Horseshoes are one
of the most critical characteristics of chaotic phenomena in nonlinear dynamical behaviors.
Intercepting the linear flow of Equation (2), equations are rewritten into the following form:

.
x1 = −1

2
µ1x1 − (σ1 + f1)x2 + P(x1, x2, x3, x4, x5, x6), (23)

.
x2 = (σ1 − f1)x1 −

1
2

µ1x2 + Q(x1, x2, x3, x4, x5, x6),

.
x3 = −1

2
µ2x3 −

1
4

σ2x4 + R(x1, x2, x3, x4, x5, x6),

.
x4 =

1
4

σ2x3 −
1
2

µ2x4 + S(x1, x2, x3, x4, x5, x6),

.
x5 = −1

2
µ3x5 −

1
6

σ3x6 + T(x1, x2, x3, x4, x5, x6),

.
x6 =

1
6

σ3x5 −
1
2

µ3x6 + U(x1, x2, x3, x4, x5, x6),

Under the initial condition of (x1, x2, x3, x4, x5, x6) ∈ R6, µ1, µ2, µ3, σ2, σ3 > 0 and
σ1− f1 > 0. The functions of P, Q, R, S, T, U all belong to the space C2. (x1, x2, x3, x4, x5, x6) =
(0, 0, 0, 0, 0, 0) is a fixed point of Equation (23), and the eigenvalues of Equation (23) linearized
about the origin are given by λ1,2 = 0, λ3,4 = ± 1

4 σ2i,. λ5,6 = ± 1
6 σ3i. We make two assump-

tions for the above system, such as:
(H1). Equation (23) has homoclinic orbits connecting the fixed point (0, 0, 0, 0, 0, 0)

to it.
(H2). µ1, µ2 and µ3 are different from each other.
Equation (23) has a pair of double-zero eigenvalues and two pairs of pure imaginary

eigenvalues. The map PL
2 near the origin point is derived from the linearized flow. It is

more suitable to use the polar coordinates. The following transformations are introduced:

.
x3 = r1 cos θ1,

.
x4 = r1 sin θ1,

.
x5 = r2 cos θ2,

.
x6 = r2 cos θ2. (24)

The linearized vector fields are given by:

.
r1 = −1

2
µ2r1,

.
θ1 =

1
4

σ2,
.
r2 = −1

2
µ3r2,

.
θ2 =

1
6

σ3. (25)

The linear flow represented by Equation (25) can be rewritten in a new form as follows:

r1(t) = r10e−
1
2 µ2t, θ1(t) =

1
4

σ2t + θ10, r1(t) = r20e−
1
2 µ3t, θ2(t) =

1
6

σ3t + θ20. (26)

where r10, r20, θ10, θ20 are the initial values.
The three-dimensional solid torus structures Π2 and Π3 of the vector field near the

origin point are introduced as follows:

Π2 = {(r1, θ1, r2, θ2)|r1 = ε}, (27)
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Π3 = {(r1, θ1, r2, θ2)|r2 = ε},
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It is found that Π2 and Π3 are all three-dimensional solid torus structures which are
highly symmetrical. The central circle of Π2 and the locally unstable manifold intersect at
r2 = 0. The central circle of Π3 intersect with the stable manifold at r1 = 0. The intersections
of locally stable manifolds and unstable manifolds with homoclinic manifolds are defined
as p0 and p1.p0 = (ε, θ, 0, 0) = Γ ∩Ws

loc, p1 = (0, 0, ε, θ) = Γ ∩Wu
loc. The geometry structure

of the solid torus structures and manifolds is depicted as shown in Figure 7.
Figure 7a represents a cross-section diagram taken from two three-dimensional solid

torus structure diagrams. Figure 7b describes the process of the PL
2 map in the three-

dimensional solid torus structures Π2 and Π3, respectively. Let ε = r20e
1
2 µ3t, the time

t = 2µ3 log
ε

r20 mapped is obtained from Π2 to Π3. The map PL
2 is denoted as

PL
2 : Π2 7→ Π3,


ε
θ1
r2
θ2

→


ε( r2
ε )

µ2
µ3

θ1 +
σ2

2µ3
log

ε
r2

ε

θ2 − σ3
3µ3

log
ε

r2

. (28)

Consider an infinite sequence of solid annuli contained in Π2:

Ak =

{
(r1, θ1, r2, θ2)|r1 = ε , θ1 − α ≤ θ1 ≤ θ1 + α, εe

−2π(k+1)µ3
σ2 ≤ r2 ≤ εe

−2πkµ3
σ2 , 0 ≤ θ2 ≤ 2π

}
. (29)

For ∀α > 0, k = 0, 1, 2 . . ., the geometry structure is shown in Figure 8.
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The behavior of boundary of Ak under Π2 needs to be investigated. The boundary of
Ak consists of the union of terminal linear structures at both ends, and also consists of a
left terminal and a right terminal which are expressed as El

k and Er
k. Its inner and outer

surfaces are marked as Si
k and So

k . The above terminal structures are denoted by:

El
k =

{
(r1, θ1, r2, θ2)|r1 = ε , θ1 = θ1 − α, εe(k+1)c ≤ r2 ≤ εekc, 0 ≤ θ2 ≤ 2π

}
, (30)

Er
k =

{
(r1, θ1, r2, θ2)|r1 = ε , θ1 = θ1 + α, εe(k+1)c ≤ r2 ≤ εekc, 0 ≤ θ2 ≤ 2π

}
,

Si
k =

{
(r1, θ1, r2, θ2)|r1 = ε , θ1 − α ≤ θ1 ≤ θ1 + α, r2 = εe(k+1)c, 0 ≤ θ2 ≤ 2π

}
,

So
k =

{
(r1, θ1, r2, θ2)|r1 = ε , θ1 − α ≤ θ1 ≤ θ1 + α, r2 = εekc, 0 ≤ θ2 ≤ 2π

}
,

where c = −4πµ3
σ2

. The geometry boundary structure is shown in Figure 9. The geometry
structure was regarded as a solid torus structure nested in a three-dimensional ring structure
in a small neighborhood α of θ1. The structure includes left terminal, right terminal, inner
surface and outer surface. Substituting Equation (30) into the map PL

2 , the following forms
are obtained.
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PL
2 (El

k) =

{
(r1, θ1, r2, θ2)

∣∣∣∣∣ εe
−2π(k+1)µ2

σ2 ≤ r1 ≤ εe
−2πkµ2

σ2 , r2 = ε, 0 ≤ θ1 ≤ 2π,
θ1 − α + 2πk ≤ θ1 ≤ θ1 − α + 2π(k + 1)

}
, (31)

PL
2 (Er

k) =

{
(r1, θ1, r2, θ2)

∣∣∣∣∣ εe
−2π(k+1)µ2

σ2 ≤ r1 ≤ εe
−2πkµ2

σ2 , r2 = ε, 0 ≤ θ1 ≤ 2π,
θ1 + α + 2πk ≤ θ1 ≤ θ1 + α + 2π(k + 1)

}
,

PL
2 (S

i
k) =

{
(r1, θ1, r2, θ2)

∣∣∣∣∣ r1 = εe
−2π(k+1)µ2

σ2 , r2 = ε, 0 ≤ θ1 ≤ 2π,
θ1 − α + 2π(k + 1) ≤ θ1 ≤ θ1 + α + 2π(k + 1)

}
,

PL
2 (El

k) =

{
(r1, θ1, r2, θ2)

∣∣∣∣∣ r1 = εe
−2πkµ2

σ2 , r2 = ε, 0 ≤ θ1 ≤ 2π,
θ1 − α + 2πk ≤ θ1 ≤ θ1 + α + 2πk

}
,
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Each terminal structure under the Poincare map PL
2 is given, the geometric structure

was constructed in Figure 10, as a solid ring nested inside the three-dimensional torus
structure. Similarly, stable manifold and unstable manifold can be distinguished. The cross-
section under the Poincare map is given in Figure 10b. For sufficiently large k,PL(Ak) cuts
through Ak. For µ3 > µ2, PL expands along the µ3 direction. When µ3 < µ2, PL contracts
along the µ3 direction. Lines parallel to Ws

loc are contracted. Lines connecting Si
k and So

k
are stretched under PL. From the above analysis, PL contains two expanding directions
and one contracting direction if µ3 > µ2, or one expanding direction and two contracting
directions when µ3 < µ2. It follows that PL contains horseshoes and the accompanying
chaos phenomena.

The change process of the cross-section is regarded as the behavior of introducing a
vertical line and horizontal sum line on the two-dimensional plane. The four lines can be
mapped into a logarithmic spiral structure through the transformation of the Poincare map,
as shown in Figure 11.
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Figure 11. The process of from a planar linear structure to a logarithmic spiral structure.

In the three-dimensional space, the structure of the Poincare map PL(Ak) goes through
Ak, as is shown in Figure 12. By Theorem 3.2.17 in reference [34], the Poincare map PL(Ak)
satisfies the conditions that the logarithmic spiral structure after the Poincare map has two
intersections with the upper and lower boundaries of the rectangular area. It is verified
that within the six-dimensional non-autonomous system exist horseshoes.
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4. Shilnikov-Type Multi-Pulse Chaotic Motions

The nonlinear dynamical characteristics of the unperturbed and perturbed system of
Equation (13) are given, respectively. Based on the eigenvalues calculated in Equation (5),
the homoclinic bifurcation exists in the system (16) when c1 · c3 < 0. Let c3 > 0 and c1 < 0,
the equilibrium point is obtained; discuss the parameter settings as follows:

1. When c2 − c4 I1
2 − c5 I2

2 < 0, the system has one equilibrium point P(u1, u2) = (0, 0),
which is a saddle point.

2. When c2 − c4 I1
2 − c5 I2

2 > 0, the system has three singular points, which are P1(0, 0)
and P2,3 = (±B, 0). When c2 − c4 I1

2 − c5 I2
2 = 0, the system is in a critical state and

bifurcates. The saddle point P(u1, u2) = (0, 0) bifurcates into three solutions P1(0, 0)
and P2,3 = (±B, 0), and the pitchfork bifurcation appears. P1(0, 0) is saddle point and

P2,3 = (±B, 0) are center points, where B =
{

1
c3
[c2 − c4 I2

1 − c5 I2
2 ]
} 1

2 .
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Substituting P2,3 into the Hamilton function (17), the expression of the homoclinic
orbit is given by:

u1(T1) = ±

√
2ε1

c3
sech(2

√
c1ε1T1), (32)

u2(T1) = ±2ε1

√
2

c1c3
tan(2

√
c1ε1T1) sec h(2

√
c1ε1T1),

Discuss the latter four-dimensional system, the variables I1, I2, θ1 and θ2 represent
the amplitude and the phase, respectively. When Ii ≥ 0, i = (1, 2), the system has two
center points P2,3 = (±B, 0) and a saddle point P1(0, 0) under the unperturbed case. A
pair of homoclinic orbits uh

±i(T1, Ii), i = (1, 2) exist in the interval I ∈ (I1, I2) /∈ [I11, I12]×
[I21, I22] ⊂ R2. The homoclinic orbits satisfy the condition lim

T→±∞1
u±i(T1, Ii) = P2,3, which

T1 is defined as a two-dimensional slowly varying manifold in the phase space. In the
six-dimensional non-autonomous phase space, the five-dimensional hyperbolic invariant
manifold M0 is defined as follows:

M0 =
{
(u, I, θ) ∈ R× R2 × S2|u = P1, I1 < I < I2, 0 ≤ θi < 2π

}
, i = (1, 2). (33)

M0 has five-dimensional stable manifold Ws(M0) and five-dimensional unstable
manifold Wu(M0). The singular point connected by the homoclinic orbit Γ along Ws(M0)
and Wu(M0). The homoclinic orbit Γ converges to the saddle point P1(0, 0). Ws(M0)
and Wu(M0) intersect transversely along a five-dimensional homoclinic manifold. The
homoclinic orbit Γ is defined as follows:

Γ =
{
(u, I, θ)

∣∣∣u = uh
±i(T1, Ii), I ∈ (I1, I2),

γ =
∫ T1

0 DIi H
(

uh
±i(T1, Ii), I

)
ds + θi0

}
, i = (1, 2).

(34)

Two-dimensional regular hyperbolic invariant rings θ(I) corresponding to each am-
plitude of vibrations have a three-dimensional stable manifold Ws(θ(I)) and unstable
manifold Ws(θ(I)), respectively. The θ represents the phase of vibration. It is consistent
with the formation of a three-dimensional homoclinic manifold.

According to the criterion of boundary manifold, the five-dimensional unstable mani-
fold at the boundary is inflow manifold. It is a local characteristic of the six-dimensional
non-autonomous system.

Constraining the unperturbed system (12) to the invariant manifold, the latter four-
dimensional equations are rewritten as:

.
I1 = 0, (35)

I1
.
θ1 = c7 I1 + c8 I1

3 + c9u1
2 I1 + c10 I1 I2

2,
.
I2 = 0,

I2
.
θ2 = c12 I2 + c13 I2

3 + c5u1
2 I2 + c10 I1

2 I2,
.
φ = ω1.
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I ∈ (I1, I2) = C, where C is the constant. Based on the condition in reference [30],
when the conditions DIi H(q±(I) , I) 6= 0, i = (1, 2) are satisfied, the solution of the system
(35) is a two-dimensional ring. When DIi H(q±(I) , I) = 0, i = (1, 2), the solution is a fixed
point, DIi H(q±(I) , I), i = (1, 2) are denoted as:

DI1 H(P2,3 , Ir) = c7 I1r + c8 I1r
3 + c9P2,3

2 I1r + c10 I1r I2r
2, (36)

DI2 H(P2,3 , Ir) = c12 I2r + c13 I2r
3 + c5P2,3

2 I2r + c10 I1r
2 I2r.

The system (35) generates resonance under conditions (36). I1r and I2r represent the
resonance values, which are expressed as follows:

I1r
2 =

c3(c10c12 − c7c13) + ε1(c5c10 − c9c13)

c3(c8c13 − c10
2)

, (37)

I2r
2 =

c3(c8c12 − c7c10) + ε1(c5c8 − c9c10)

c3(c10
2 − c8c13)

,

Substituting the homoclinic orbit equations into Equation (35), the vibration phases θ1
and θ2 are obtained as:

θ1 =

(
d1 +

2ε1c9

c3

)
T1 −

c9
√

ε1

c3
√

c1
tanh(2

√
c1ε1T1) + θ10, (38)

θ2 =

(
d2 +

2ε1c9

c3

)
T1 −

c5
√

ε1

c3
√

c1
tanh(2

√
c1ε1T1) + θ20.

When d1 = c7 + c8 I1
2 + c10 I2

2, d2 = c12 + c10 I1
2 + c13 I2

2, θ10 and θ20 are initial values
of the vibration phases. The phase shifts are denoted as:

∆θi = θ(+∞ , Ii)− θ(−∞ , Ii), i = (1, 2), (39)

∆θ1 =
2c9
√

ε1

c3
√

c1
, ∆θ2 =

2c5
√

ε1

c3
√

c1
.

The six-dimensional non-autonomous system with perturbation is investigated. The
invariant manifold M0 becomes the invariant manifold Mε, when the system is sub-
jected to dissipative perturbations. Due to the saddle point P1 keep the hyperbolic
characteristics under dissipative perturbations, Mε is sufficiently close to M0. A section
Σφ0 = {(u1, u2, I1, I2, θ, φ)|φ = φ0 } is introduced into the system. The hyperbolic invari-
ance of the subspace M0, Ws(M0) and Wu(M0) still keep the properties. The invariant
manifold of the combined cross-section can be expressed as the following forms:

M0
φ0 = {(u1, u2, I1, I2, θ)|(u1, u2) = P1, Ii1 < I < Ii2, 0 ≤ θi ≤ 2π }, (40)

Mε
φ = {(u1, u2, I1, I2, θ) ∈ R× R× R× S|(u1, u2) = P2,3, I11 < I < I12, 0 ≤ θ1 ≤ 2π }.

The latter four-dimensional equations on Mε
φ are expressed as:

.
I1 = −1

2
µ2 I1 − ε

1
4

F2 sin(θ1 + φ), (41)

I1
.
θ1 =

1
4

σ2 I1 + c8 I1
3 + c9u1

2 I1 + c10 I1 I2
2 − 1

4
εF2(cos θ1 + φ),

.
I2 = −1

2
µ3 I2 − ε

1
6

F2 sin(θ2 + φ),

I2
.
θ2 =

1
6

σ3 I2 + c13 I2
3 + c5u1

2 I2 + c10 I1
2 I2 −

1
6

εF3 cos(θ2 + φ).
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Combining with the invariant manifold and the geometric structure of the five-
dimensional stable manifold and unstable manifold, the influence of dissipative perturba-
tions is analyzed.

Under dissipative perturbations, the invariant manifold M0 becomes the invariant
manifold M0ε, M0ε is close enough to M0.

M0 → M0ε = {(u1, u2, I, θ)|(u1, u2) = P1, Ii1 < I < Ii2, 0 ≤ θi ≤ 2π }(i = 1, 2). (42)

Let I2 = I2r ∈ U, I2 ∈ [I2θ − ε, I2θ + ε] ⊂ [I21, I22], θ ∈ [0, 2π]. To analyze the influence
of the dissipative perturbations, introduce the transformation I = Ir +

√
εh and τ =

√
εt.

The Hamilton system is expressed as:

.
h = c6 I1θ −

1
4

F2 sin(θ1 + φ0) + c6
√

εh, (43)

.
θ1 = 2I1θc8h +

√
εc8h2 −

√
εF2

4I2θ
cos(θ1 + φ0),

the Hamilton function is denoted as:

∆ĤD(h, θ1) = c6 I1θθ1 − c8 I1θh2 +
1
4

F2 cos(θ1 + φ0). (44)

When ε = 0, the fix points of the system (43) in the interval θ1 ∈ (0, 2π) are given by:

Q1 = (0, θ1s) = (0, π − arcsin
4c6 I1θ

F2
),Q2 = (0, θ1c) = (0, arcsin

4c6 I1θ

F2
). (45)

The characteristics of the Jacobi matrix of the unperturbed part in the system (43) at
Q1 and Q2, which is

J =
[

0 − 1
4 F2 cos θ1

2c8 I1θ 0

]
. (46)

When 1
2 c8F2 I1θ cos θ1c > 0, the system (43) has two eigenvalues with opposite signs, the

eigenvalues of Q1 under the unperturbed system are λ1,2 = ±
√

1
2 c8F2 I1θ cos arcsin c6 I1θ

F2
, the

eigenvalues of Q2 are under the unperturbed system are λ3,4 = ±i
√

1
2 c8F2 I1θ cos arcsin c6 I1θ

F2
.

Q1 is a saddle point connected with the homoclinic orbit, Q2 is the center point. The
characteristics of the Jacobi matrix of the linear part of the system (43) under the dissipative
perturbation ε, which is given by

Jε =

[
c6
√

ε − 1
4 F2 cos θ1

2c8 I1θ

√
εF2

4I1θ
sin θ1

]
. (47)

The dynamical characteristics of the singular points Q1 and Q2 are uncovered. The

eigenvalues of Q1 are λε
1,2 = c6

√
ε±

√
1
2 F2c8 I1θ cos θ1s, compared with the eigenvalues of

the unperturbed system, Q1 keeps hyperbolic properties, so the singular point Q1 is still a

saddle point with perturbation. The eigenvalues of Q2 are λε
3,4 = c6

√
ε± i

√
1
2 F2c8 I1θ cos θ1s,

the center point Q2 becomes a stable sink Qε2 under small perturbations.



Mathematics 2022, 10, 4454 20 of 25

Considering the dissipation perturbation, the n-order energy difference function is:

∆nHD(u1, u2, I1, I2, θ1, θ2, φ0)

= ĤD(h, θ1 + n∆θ)− ĤD(h, θ1)− n
∫

A [ d
du1

gu1(u1, u2, I, θ) d
du2

gu2(u1, u2, I, θ)]du1du2 − n
∫

∂A1

gIdθ

= nc6 I1r∆θ1 +
1
4 F2[cos(θ1 + φ0 + n∆θ1)− cos(θ1 + φ0)] +

16nµ1ε1∆θ1
3c3
√

ε1
+ nc11 I2r∆θ2.

(48)

ĤD(h, θ1 + N∆θ1) is the energy function of n pulses. ĤD(h, θ1) represents the first
pulse. ∆θ is the phase shift. The expression of dissipation factor is

d =
µ1

F2
=

3c3
√

c1[
√

F2
2 − 16c62 I1θ

2[1− cos(n∆θ1 + φ0)] + 4c6 I1θ sin(n∆θ1 + φ0)]

16nε1∆θ1F2 − 6c3
√

c1 I1θ∆θ2F2
, (49)

where d depicts the relationship between the dissipation factor and the external
excitation. When the dissipative energy difference function satisfies the condition
∆n ĤD(u1, u2, I1, I2, θ1, θ2, φ0) = 0 and α = n∆θ1

2 + θ1 + φ0, the following equation can
be obtained:

sin α = sin(
n∆θ1

2
+ θ1 + φ0) =

32nµ1ε1∆θ1 + 6nc3
√

c1c11 I2θ∆θ2

3F2c3
√

c1 sin( n∆θ1
2 + φ0)

. (50)

According to Equation (49), due to d < 1, it can be drawn that:

|n| < nmax =
3c3
√

c1[
√

F2
2 − 16c62 I1θ

2[1− cos(n∆θ1 + φ0)]

16nε1∆θ1F2 − 6c3
√

c1 I1θ∆θ2F2
. (51)

The upper bound on the maximum number of pulses nmax for multi-pulse chaotic
motion is obtained. To compute the transversal zeros of the energy difference function,
define a set containing the transversal zeros of the dissipative energy difference function
as follows:

ẑN
−1 ,

{
(h, θ)

∣∣∣∆N ĤD(u1, u2, I1, I2, θ1, θ2, φ0) = 0, Dθ

∣∣∣∆N ĤD(u1, u2, I1, I2, θ1, θ2, φ0) 6= 0
}

. (52)

The transversal zeros of the dissipative energy difference function ∆N ĤD(u1, u2, I1, I2,
θ1, θ2, φ0) satisfy the condition:

θ1 +
n∆θ1

2
+ φ0 = 2nπ + (−1)mα,θ1 ∈ [−π

2
,

3π

2
]. (53)

The following relationship is obtained as follows:

α = arcsin[
32nµ1ε1∆θ1 + 6nc3

√
c1c11 I2θ∆θ2

3F2c3
√

c1 sin( n∆θ1
2 + φ0)

]. (54)

When the condition n∆θ1 6= 4kπ, k = 0, 1, 2 . . . is satisfied, two transversal zeros
∆n ĤD(u1, u2, I1, I2, θ1, θ2, φ0) are denoted by:

θπ
0,1 =

3π

2
− (

n∆θ1

2
− α)mod2π,θπ

0,2 =
3π

2
− (π +

n∆θ1

2
− α)mod2π. (55)

The transversal zeros satisfy the non-degenerate condition (53); it is verified that there
exist non-degenerate zeros in the Hamilton function ∆ĤD(h, θ1) of the system. When d 6= 0,
the center point Q2 is the zero point of the energy difference function.
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n∆θ1 + φ0 6= 2kπ, k ∈ Z+

Dd∆ĤD(h, θ1, φ0) = Dd(
1
4 F2(cos(θ1 + n∆θ1 + φ0)− cos(θ1 + φ0))) +

16nµ1ε1∆θ1
3c3
√

c1
+ nc11 I2r∆θ2

. (56)

To verify the existence of multi-pulse chaotic motion in the system, it is necessary to
examine the multi-pulse orbit from the slow manifold returns to the attraction domain of
the focus. From the Hamilton function (44), the estimated domain of attraction of θmin can
be obtained as:

c6 I1θθmin +
1
4

F2 cos(θmin + φ0) = c6 I1θθ1c +
1
4

F2 cos(θ1c + φ0). (57)

Substituting the fixed point Q2 into Equation (57), the estimated domain of attraction
of θmin is given by:

θmin +
F2

4c6 I1θ
cos(θmin + φ0) = arccos

4c6 I1θ

F2
+ k, (58)

where k is a constant. Define an annulus Aε near I = I1θ as

Aε =
{
(u1, u2, I1, I2, θ1, θ2)

∣∣u1 = B, u2 = 0, |I − Ii| < C
√

ε , θi ∈ S1, (i = 1, 2)
}

. (59)

the constant C ensures that the unperturbed orbit is always contained in the annulus domain.
The saddle point Q1 and the center point Q2 correspond to the energy function

ĤD(0, θ1s) and ĤD(0, θ1c), respectively. In the interval (0,2π), the pulse jumps from the
starting point Q2 and returns to point Q. The energy function of Q is ĤD(0, θ1∗). Since the
distance between the center point and the falling point is larger than 2kπ, define the falling
point θ1∗ − 2kπ as

θN
1∗ = θ1s + [θ1c + N∆θ1 − θ1s]mod2kπ, (60)

where θ1s = π + arcsin2dI1θ , θ1c = −arcsin2dI1θ .
The energy at the starting point is the largest. When the falling point keeps away from

the start point, the energy gradually decreases. The minimum energy corresponds to the
saddle point Q1. When the energy of the falling point is larger than the saddle point, that is

ĤD(0, θ1∗) > ĤD(0, θ1s). (61)

The falling point finally comes back to the attraction domain of the sink. From the
proof of the above process, it is known that there exists a Shilnikov multi-pulse chaotic
motion in the six-dimensional non-autonomous system.

To verify the above theoretical analysis, numerical simulations and analysis are carried
out based on the six-dimensional average Equation (2) in the Cartesian coordinate system.
The parameters are chosen as µ1 = µ2 = µ3 = µ = 0.06, σ1 = 0.12, σ2 = 0.19, σ3 = 3.12,
α14 = 1.24, α21 = 0.9, α25 = 3.9, β15 = 2.11, β20 = 7, β23 = 24, β24 = 2, γ16 = 2,
γ20 = 5, γ22 = 2.5, γ24 = 2.3, F1 = 9, F2 = 90. We choose F3 as the primary variable.
The initial condition of the selected system is chosen as x10 = 0.44, x20 = 0.2, x30 = 0.35,
x40 = 0.19, x50 = 0.01, x60 = 0.06. The Runge–Kutta algorithm is taken advantage of by the
numerical simulations.

Figure 13a–f show the waveform, phase portraits, spectrogram map, the Maximum
Lyapunov exponent and Poincare maps for the system when F3 = 30. When F3 = 40,
Figure 14 shows the corresponding numerical simulation results. It is concluded that chaos
occurs in the six-dimensional non-autonomous system for the circular mesh antenna.
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Figure 13. The trajectory under the condition F3 = 30. (a) The waveform on the plane (t,x1); (b) The
phase portrait on the plane (x1,x2). (c) The phase portrait in the three-dimensional space (x1,x2,x3).
(d) The Maximum Lyapunov exponent plot of x1. (e) The power spectrum of x1. (f) The Poincare
map on the plane (x1,x2).
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Figure 14. The trajectory under the condition F3 = 40. (a) The waveform on the plane (t,x1). (b) The
phase portrait on the plane (x1,x2). (c) The phase portrait in the three-dimensional space (x1,x2,x3).
(d) The Maximum Lyapunov exponent plot of x1. (e) The power spectrum of x1. (f) The Poincare
map on the plane (x1,x2).

5. Conclusions

The Smale horseshoe and multi-pulse chaotic motion of a six-dimensional non-
autonomous system for the circular mesh antenna are verified. Through the construc-
tion of the Poincare map in the first two-dimensional system, the positional relationship
and geometric structure between the fixed point and periodic orbits are obtained. For the
latter four-dimensional system, the three-dimensional solid torus structure is mapped to
the logarithmic spiral structure. There exists chaos in the sense of the Smale horseshoe. The
Shilnikov multi-pulse chaotic motion of the six-dimensional non-autonomous system is
verified by the extended energy phase method. From the analysis of the above two parts,
the following conclusions can be drawn.
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1. In the process of the Poincare map of the six-dimensional non-autonomous system,
the map contains two expanding directions and one contracting direction in the cross-
section. According to the topological horseshoe theory, there exists chaos in the sense
of a Smale horseshoe.

2. Through the calculation of the energy difference function, the conditions for gen-
erating Shilnikov-type chaos in the six-dimensional non-autonomous systems are
obtained in theory. When the orbit converges to the focus, the Shilnikov-type orbit
jumps up again and repeats this motion in the six-dimensional phase space. The
Shilnikov-type multi-pulse orbit with energy dissipation is formed.
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