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Abstract: The participation of prosumers in demand-response programs is essential for the success of
demand-side management in renewable-powered energy grids. Unfortunately, the engagement is
still low due to concerns related to the privacy of their energy data used in the prediction processes.
In this paper, we propose a blockchain-based distributed federated learning (FL) technique for energy-
demand prediction that combines FL with blockchain to provide data privacy and trust features
for energy prosumers. The privacy-sensitive energy data are stored locally at edge prosumer nodes
without revealing it to third parties, with only the learned local model weights being shared using a
blockchain network. The global federated model is not centralized but distributed and replicated over
the blockchain overlay, ensuring the model immutability and provenance of parameter updates. We
had proposed smart contracts to deal with the integration of local machine-learning prediction models
with the blockchain, defining functions for the model parameters’ scaling and reduction of blockchain
overhead. The centralized, local-edge, and blockchain-integrated models are comparatively evaluated
for prediction of energy demand 24 h ahead using a multi-layer perceptron model and the monitored
energy data of several prosumers. The results show only a slight decrease in prediction accuracy in
the case of blockchain-based distributed FL with reliable data privacy support compared with the
centralized learning solution.

Keywords: energy prediction; federated learning; blockchain; smart grid management; demand
response; smart contracts; machine learning
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1. Introduction

The increasing availability of energy storage technologies and the higher penetra-
tion of intermittent renewable energy sources at grid edge is pushing the energy grid
towards decentralized management scenarios [1]. Among the different management op-
tions, demand-side management represents an effective method for unlocking a larger share
of energy flexibility at the local level [2]. It leverages the control of electricity consumption
of prosumers either by time-scheduling or power-modulating the loads. Examples include
control of smart appliances, smart thermostats (for heating purposes), or the charging
of electric vehicles (EVs). The success of demand-response (DR) programs depends on
consumer engagement and accuracy of energy predictions a day in advance [3].

The load-flexibility schemes require the dispatch of the set-points to a greater number
of assets during a broader timeframe, therefore energy prediction many steps in advance is
required [4]. The stochastic nature of renewable energy production and the high variation
of demand in the case of small prosumers induces a high level of uncertainty in the energy
prediction [5]. Most of the state-of-the-art approaches deal with one-step-ahead energy
prediction offering good accuracy, but on longer time frames as required in DR, the accuracy
drops significantly [6]. With the advent of Internet of Things (IoT) smart-energy metering
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technology, a significant amount of energy data is becoming available. Therefore energy
utilities are storing energy data centralized in cloud-based systems and use big data and
Machine Learning (ML) to predict energy production/consumption values [7]. Different
time and energy scales (prosumers, communities, etc.) features are used to reduce the
model uncertainty and improve prediction accuracy. In such approaches, ML models are
trained with fine-grained data collected from prosumers to learn a prediction model. The
models are then used to predict the energy demand and the signals for adjusting the energy
demand during the implementation of the programs (see Figure 1a) [8–10].
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To improve the accuracy of the predictions, energy features are used together with
non-energy-related vectors and contextual features such as behavioral or social features [11].
Even though the accuracy in this centralized cloud-based case is better, it raises privacy
concerns. Data privacy is one of the main obstacles to consumers’ engagement in DR
programs [12]. In fact, due to privacy concerns, the adoption of smart meters in many Euro-
pean countries was delayed and the engagement of individual costumers and collectively
operating households in DR programs is limited [13]. Even though a lot of work was put
into privacy-preserving energy metering it is still an open research issue [14–16]. Efforts
are made to provide trusted bidirectional connections among prosumers and utilities, but
centralization is a key issue that makes data privacy sensitive [17]. In Europe, privacy-
sensitive data need to be stored securely, following the current General Data Protection
Regulation (GDPR) rules, thus privacy-based ML plays a major role in energy predic-
tion [18]. The prediction process can be decentralized by employing privacy-preserving
federated-learning (FL) infrastructures (see Figure 1b) [19]. The data are stored at the edge
node in the prosumer premises reinforcing the privacy features and preventing potential
data leakage. Thus, the local ML models are trained on prosumers’ sites and the global
model is updated using the edge nodes information, but in this case, the model parameters
are transferred and not the sensitive data [20,21]. The distribution of the model-learning
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process closer to the edge decreases latency and bandwidth costs as the energy data are
stored locally and not transferred over the network, but the tradeoff is the decrease in
prediction model accuracy [22].

In this context, distributed ledger technologies [23] can bring benefits in reinforcing
the trust in DR program management due to the democratization and transparency features
they provide [24]. For example, data provenance allows tracking the changes at any time
by simply iterating through the blocks of the chain [25]. The immutability assures that any
information stored in the chain remains unchanged and cannot be tampered with by a third
party [26,27]. They are highly desirable features in the case of distributed ML. A public
blockchain network can store the global model in FL cases promoting transparency and
trust among prosumers [28]. As it is impossible to modify the data stored, it reduces the
chances of fraud. The transactions on the blockchain are public and accessible, therefore,
the transactions to update the global federated model are transparent and traceable [29].

A few approaches in the state of the art are joining FL models with blockchain tech-
nology [30–34] (see Figure 1c) to ensure data privacy and trust features and none to our
knowledge on prosumers’ energy. In our case, the ML prediction models are trained at the
prosumers’ using local energy-demand data, and the blockchain will store and update the
global energy prediction model. We use a public blockchain as it does not limit the joining
of new prosumers and define smart contracts to manage the federated model update, the
model parameters’ replication, and dissemination. As result, the prosumers are more
engaged because the concerns about energy data ownership, confidentiality, and privacy
are decreased due to public blockchain integration and enabling model traceability for any
state change.

In this paper we provide the following contributions:

• Blockchain-based distributed FL for the energy domain to support the privacy-preserving
prediction of prosumers’ energy demand. The global model parameters are immutably
stored and shared using blockchain network overlay.

• Smart contracts to update the global model parameters considering the challenges of
integrating regression-based energy prediction, such as scaling the model parameters
with prosumers’ size and blockchain transactional overhead.

• Comparative evaluation of prosumers’ energy-demand prediction using multi-layer
perceptron (MLP) model distribution in three cases: centralized, local edge, and
blockchain FL.

The rest of the paper is structured as follows. Section 2 presents the state-of-the-
art approaches on distributed ML models for the energy domain. Section 3 presents
the blockchain-based distributed FL model formalization for privacy-preserving energy-
demand prediction and smart contracts for blockchain integration. Section 4 presents
comparative energy-demand prediction results on three cases considering a MLP model
and integration of prosumers’ energy data from meters. Section 5 presents a discussion of
the approach, and Section 6 gives the conclusions and future work.

2. Related Work

Distributed ML techniques aim to add privacy-preserving features to the learning
process [35,36]. FL solutions are only partially addressing the privacy and security issues.
The centralization of the learned models makes them vulnerable to malicious attacks and
may constitute a single point of failure [37]. FL aims to address the issues of security,
trust, and privacy leakage, relevant in the smart energy grid scenarios, by combining
blockchain technology [23] with FL and distributed optimization [33]. In the remainder
of this section, we analyze the state-of-the-art FL solutions classified according to the
distributed optimization algorithms used, and highlight the security issues that need to be
addressed in smart energy grids. Then the few approaches on blockchain-based distributed
FL concept are presented, showing their strengths concerning the FL models.

One of the first FL models was presented by Zinkevich et al., who propose a decentral-
ized ML model, referred to as “one-shot parameter averaging”, based on parallel stochastic
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gradient descent (SGD) [38]. The proposed architecture trained local models using the SGD
optimizer, and the central model was created using a single final communication round,
which is suboptimal. Important aspects, such as the data distribution between nodes and
applying one-shot parameter averaging on different ML architectures other than support
vector machines (SVM), were not considered. Boyd et al. propose the alternating direction
method of multipliers that is a form of distributed convex optimization tested on the lasso,
sparse logistic regression, basis pursuit, covariance selection, and SVM [39]. The results
showed that the convergence can be slow, due to the number of communication rounds.
Shamir et al. [40] proposed the Distributed Approximate Newton (DANE) approach that
considers the similarity among problems on different machines, converging in fewer com-
munication rounds. Konečný et al. describe the concept of FL where a centralized model is
trained, using multiple local datasets contained in local nodes, without exchanging data
samples [41]. The solution was optimizing the communication rounds and the conver-
gence time when considering the trade-off between accuracy and data privacy with good
results. The primary methods to train FL models were analyzed by McMahan et al. [42]:
Federated Stochastic Gradient Descent (FedSGD) that averages local nodes’ gradients at
every step in the learning phase, and Federated Averaging (FedAvg), which averages the
weights when all clients have finished computing their local models. Zhu et al. [43] showed
that the accuracy can be heavily impacted if the training data are not independent and
identically distributed (non-IID) among local nodes. Several solutions were proposed
leveraging minimal data distribution between nodes, which can be a source of privacy
leakage. In articles [44,45], a set of enhancements to the FedAvg and FedSGD algorithms
are proposed. They tackle the problems of communication among devices, the correlation
between data heterogeneity, and the convergence rate of the learning process. They show
that even if it is more precise theoretically, the Federated Distributed Approximate NEwton
(FedDANE) algorithm is outperformed in practice by FedProx. FedProx improves the
convergence of the FedAvg algorithm by adding a proximal term for approximation as
shown by Li et al. [46]. The impact of network communication and latency over a FL setup
in a wireless environment is analyzed by Yang et al. in [47], the authors formulating an
optimization problem for energy efficiency under latency constraints. Uddin et al. propose
a novel FL approach that considers mutual information and proves the convergence of
the solution on clinical datasets [48]. The authors refined their solution by introducing a
Lagrangian-based loss function and applying the information bottleneck principle in [49].

FL has high applicability in smart energy grids’ management scenarios. The FL solu-
tions can address issues related to data privacy and security [50]. Traditional architectures
collect user data in centralized databases for further processing, but this imposes data
privacy concerns and security issues. FL approaches are adapted to smart grid use cases
such as energy forecasting and prosumer pattern classification by considering distributed
deployment of smart meters at prosumer locations. A thorough review of applications for
FL is done by Li et al. [44], identifying six directions of industry applications. Su et al. [51]
investigate the applications of decentralized deep-learning technologies in smart grids
and Husnoo et al. [52] discuss a FL framework for prosumers’ energy forecasting. It uses
the Long Short-Term Memory (LSTM) neural network and the FedAvg algorithm [42].
Singh et al. [53] propose a serverless FL design for smart grids with good accuracy results
on datasets. LSTM was used as the central model in an FL approach by Taïk et al. [54].
Without prosumer clustering, the accuracy was not good enough even after multiple
communication rounds. FL was evaluated by Gholizadeh et al. [55], who propose a new
clustering method to reduce the convergence time. Su et al. [56] propose a secure FL scheme
enabling prosumers in a smart grid to share data considering non-IID effects. The method
can train a two-layer deep reinforcement learning algorithm, showing promising results
and communication efficiency. Wang et al. [57] propose using an FL approach to bridge
data between smart meters and the social characteristics of prosumers. Saputra et al. [58]
apply FL design for predicting the energy demand of EVs. The solution allows the charging
station not to share data with the service provider, decreasing communication overhead,
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and improving prediction accuracy. In [59] Liu et al., an FL framework is proposed for
energy grids to learn power consumption patterns and preserve power data security. The
approach combines horizontal with vertical FL.

As the learning model and data distribution are also susceptible to attacks, a trade-off
needs to be made between security and decentralization. Usynin et al. [60] tackle the
model inversion attacks, where an attacker reverse-engineers the federated model and then
discloses the training data. They propose techniques based on gradient methods to expose
image data for attackers, showing how these attacks can be mitigated. Song et al. [61]
describe an efficient privacy-preserving data aggregation model that joins the individual
weights without revealing their models, thus decreasing the risk of data leaks. The algo-
rithm is highly resilient in case of communication faults, being able to compute a reasonable
model even in the case of when a high number of users disconnect. Ganjoo et al. [62] in-
vestigate the poisoning attacks on a FL design targeting to preserve data privacy, and
Liu et al. [59] used encryption to preserve privacy in a FL system. Ma et al. [63] propose a
solution to deal with Byzantine attacks in FL frameworks. They use a privacy-preserving
gradient aggregation mechanism that is efficient, secured, and based on a two-party cal-
culation protocol. Other techniques for privacy and security are based on multi-party
computation and the additive homomorphic property of Paillier [64]. Key exchanges for
authentication and data encryption are applied by Zhao et al. [65] in the context of the
social Internet of vehicles. Finally, a thorough review of security and privacy problems
in the context of FL is presented by Hou et al. [66], where the authors investigate model
extraction and poisoning attacks as well as a solution for incentivizing the participants
for commenting their resources and local results. Table 1 summarizes the state of the art
directions involving FL.

Table 1. FL relevance for smart grid.

Issues in Smart Grid Scenarios FL Solutions

Data privacy preservation and security
Non-blockchain

Distributed perturbation [35], sequential learning [36], model inversion
[60], data aggregation mechanism [61], poisoning attacks mitigation

[37,62], Byzantine-robust FL [63], homomorphic encryption [64],
collaborative authentication protocol [65]

Blockchain enabled Incentivization and avoidance of model poisoning [66], blockchain for
data sharing and serverless computing [53], swarm learning [30]

Optimization of communication costs, devices, and data heterogeneity DANE [40], FedDANE [45], Structured and sketched updates [41],
FedAvg [42], iterative algorithms [47], FedProx [46]

Analytics and energy efficiency AI of things [51], load forecasting [52–54], energy data sharing [53,56,58],
prosumer profiling [57], learning consumption patterns [59]

In this context, we aim to combine FL with blockchain to tackle issues such as model
centralization, trust, and data privacy. Very few approaches were found in the literature.
The concept was introduced by Warnat-Herresthal et al. [30], who propose a system design
such as FL, which eliminates the need for the central coordinator. Instead, operations
on the central model, such as averaging and distributing weights, are held directly on a
decentralized smart contract. This approach increases security because each client can
monitor the integrity and the changes made in the central model. Experimental results
were conducted on IID clinical data used to classify diseases.

Analyzing the existing state of the art, few relevant literature approaches that tackle
data privacy, learning-model centralization, and immutability in the context of ML-based
prediction of energy demand and applications of FL in smart grid scenarios, are found.
In this paper, we address the identified knowledge gap in the literature by proposing a
distributed FL technique for energy-demand prediction that combines FL with blockchain
to assure data privacy for individual energy prosumers. The privacy-sensitive energy data
are stored locally at edge prosumer nodes without the need to reveal it to third parties,
and only the learned local model weight is pushed to the blockchain. The global model
is not centralized but distributed and replicated over the blockchain network thus being
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immutable and offering obfuscation and an anonymization method for the models, making
it difficult for inversion attacks to reveal prosumer behavior.

3. Smart Contracts for Federated Learning

The proposed solution aims to avoid the privacy linkage in the case of energy data
by keeping them on the prosumer nodes. The data of a prosumer are used to train a local
ML model, and the global model is stored in a blockchain network and updated by the
prosumers using smart contracts.

The prosumer ML model will learn a function θw : Rp → R, that depends on a vector
of weights w ∈ Rp. This model θw will be trained with n datapoint pairs of the form (xi, yi),
where xi ∈ Rp are the timestamp-driven features and yi ∈ R are the energy values sampled
by the meters. In the FL approach, k nodes are used to train the global model function θw,
and keep the n energy datapoints distributed in k sets, each stored by an edge node and

with a cardinality ni < n, i ∈ {1..k}, such that
k
∑

i=1
ni = n (see Figure 2).
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The models are trained locally by each of the k edge nodes associated with the energy
prosumers, obtaining a set of parameter vectors wi for each learned function θwi that
minimizes a prediction error function:

fw : R→ R, fw(xi, yi) = Error(yi, θw(xi)) (1)

Each edge node i solves an optimization problem that computes the best weight vector
wi that minimizes the local prediction error on the local data sampled:

Edge node i : determine wi to min
wi

1
ni

ni

∑
j=1

fwi (xi, yi) (2)
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At central node level the goal is to determine a weight vector wF by defining a
federated model function θwF and considering the local model parameters:

determine wF = ϕ(w1, w2, . . . wk) to min
wF

1
n

n

∑
j=1

fwF (xi, yi) (3)

The weight vector wF of the federated model is computed iteratively based on the
edge models’ weights combined by a function ϕ. There are two main solutions that can be
used to update the federated weight vector. The first one is to use the SGD algorithm that
updates the global model weights based on a weighted average of the edge nodes vectors
of weights [38]. The second approach uses the DANE method that updates the federated
weight based on the average gradient of the local weights [40,41]. It uses several stages
in which the weight vector is updated with the gradient computed as the average of the
gradients from the edge models.

The federated ML optimization considers the acquisition of energy data by the k edge
nodes associated with prosumers (see Figure 3). An initial weight vector is computed to
initialize the global model which is distributed to the edge prosumer nodes. Then, a loop
of s iterations gradually improve the federated weight vector wF (lines 4–9). Each iteration
collects the local gradients, computes the global gradient, updates the federated weights,
and distributes the weight vector ws

F to the edge nodes, to start a new local model training
process. Finally, the algorithm returns the weight vector corresponding to the federated
model learned after the iterations.
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Our solution considers the federated approach for the energy prediction of prosumers
and propose the adoption of blockchain and smart contracts to store and update the global
ML model (see Figure 4). We define smart contracts to publish the local energy prediction
models weight vectors on the blockchain network. Then we leverage on the blockchain
to store the model in a tamper-proof manner and to replicate and disseminate the local
models’ weight to all nodes participating to the network overlay.
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Smart contracts are deployed on the blockchain network overlay to manage the
weights vector of the global ML model that is shared and used for energy-demand predic-
tion. The contracts contain methods to update the global model weights and their addresses
are known by all nodes participating in the learning process. The main functions imple-
mented in the smart contract are correlated to the FL steps (see Table 2 for the mapping).
The get functions are declared as a view because they do not alter the contract state, which
means that participants will not pay gas when querying the central weights.

Table 2. FL concepts mapped to smart contract.

Decentralized Learning Steps Smart Contract

Weight vector of global model Int256 [] globalModelWeights
Initialize the global model function setInitialWeights (int256[] memory weights)

Retrieve the initial weights of the global model function getInitialWeights () public view returns (int256[] memory)
Push the edge nodes training results function postLocalWeights(int256[] memory weights)

Update the global model weights using the local models function updateGlobalModel () public view returns (int256[] memory)

Figure 5 shows the smart contract function used to update the global mode weights.
Due to the limitations of mapping, we used both accounts and accountPresent to keep track
of edge prosumer participants and their addresses. The globalModelWeights is updated by
averaging the values in localModelWeights, which is the mapping that stores weights from
edge accounts. When updateGlobalModel is called, the globalModelWeights is reinitialized,
then a loop goes through all the prosumer accounts, adds each local weight vector to the
corresponding position in globalModelWeights, and finally, the global weights are divided
by the total number of edge nodes participants, to determine the average.
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The smart contract functions (defined in Table 2) are invoked by the edge nodes
corresponding to the smart grid prosumers. The pseudocode of the edge prosumer nodes
function for local ML model updating is shown in Figure 6. Because the algorithm runs
in interaction rounds (i.e., either local or global model’s update) the edge nodes need to
be synchronized to avoid inconsistent models’ update in which the local model weights
are updated at around and are posted on blockchain for global model update only later
at round. We use a timestamp-based synchronization between the edge nodes, defining a
set of milestones to delimit training rounds. Each model training round will be delimited
by time intervals to get the global model weights from the blockchain and to post the
local model weights to the blockchain. Only local weights posted by edge nodes in these
intervals are considered, otherwise are discarded.

The algorithm starts by Initializing Its local time with Universal Time Coordinated
(UTC) and performing a milestone synchronization with the other edge prosumer nodes
involved in training (lines 5–6). The node initializes the local model with the weights taken
from the blockchain then it starts a loop of iterations to train the model with local data
(lines 8–12). The local weights vector ws

L is sent to the blockchain using the smart contract
methods when the local time reaches the milestone set for the post. When the local time
reaches the get milestone, a new weight vector is taken from the blockchain using the Smart
Contract to initialize the local model for the next iteration (lines 10–11).



Mathematics 2022, 10, 4499 10 of 19Mathematics 2022, 10, x FOR PEER REVIEW 11 of 20 
 

 

1: Function updateLocalModel 

2:   Input: 𝑤ி௦ global model weight vector corresponding to training iteration 𝑠  

3:   Output: Local weight vector 𝑤௜௦ 

4:   Begin 

5:      𝑙𝑜𝑐𝑎𝑙௧௜௠௘ local clock synchronization with UTC time  

6:      𝑙𝑜𝑐𝑎𝑙௠௜௟௘௦௧௢௡௘௦ model updating milestones synchronization 

7:      𝑤௅଴ = getInitialWeights () 

8:      for s in 1 to 𝑛𝑜௜௧௘௥௔௧௜௢௡௦     

9:          𝑤௅௦ = 𝑡𝑟𝑎𝑖𝑛(𝜃௪ಽ, {(𝑥௜, 𝑦௜)|𝑖 ∈ {1, , 𝑛௞}) 

10:         if (𝑙𝑜𝑐𝑎𝑙௧௜௠௘ =  𝑙𝑜𝑐𝑎𝑙௠௜௟௘௦௧௢௡௘௦௣௢௦௧ ) then postLocalWeights(𝑤௅௦) 

11:         if (𝑙𝑜𝑐𝑎𝑙௧௜௠௘ =  𝑙𝑜𝑐𝑎𝑙௠௜௟௘௦௧௢௡௘௦௚௘௧ ) then 𝑤௅௦ାଵ= retrieve updateGlobalModel() 

12:     end for 

13:   return  𝑤௅௦ 

14: End 

Figure 6. Updating the local ML models at edge prosumer nodes. 

4. Evaluation Results 
To test the blockchain-based energy-demand prediction, the infrastructure presented 

by us in [67] was used to acquire the readings of prosumers’ energy consumption. In short 
each prosumer has installed power meters featuring the International Electrotechnical 
Commission (IEC) 62056 protocol and power quality analyzer that uses Hypertext Trans-
fer Protocol (HTTP) to transfer energy data. The meters send data each five seconds using 
MQ Telemetry Transport (MQTT) messaging service and the data are stored in a local 
data model. 

We have aggregated the energy measurements taken over five months at intervals of 
15 min. The objective is to predict the next day’s demand for each prosumer using one 
value each hour, thus 24 energy values. As the prosumers can be of very different energy 
scales, a clustering algorithm is used to select those with a similar scale of energy con-
sumption (i.e., concerning the maximum energy demand). The energy data are non-IID 
on the local edge nodes associated with the monitored prosumers. Also, they may have 
different consumption patterns. Thus, each local model was trained on local shuffled data 
samples received from energy meters for the first four months, with a validation split of 
10%, and was tested on one month’s data. 

The local prediction model on each prosumer edge node is a fully connected MLP, 
which uses a feedforward neural network. We trained and tested multiple MLP configu-
rations to determine the meta-parameters (i.e., the vector of weights) to be used in the 
learning process. The number of epochs in each iteration was set to one because FedAvg 
is used to average the weights determined by local models after each epoch. The optimal 
number of averaging iterations was determined and fine-tuned during evaluation. Other 
tuned meta-parameters were the number of hidden layers, neurons, and the learning rate. 
In our feature selection process, we have found that the most relevant input features, be-
sides energy consumption values, were linked to the date and time of the values. 

The MLP model used for energy prediction features one hidden layer with 30 neu-
rons, rectified linear unit (ReLu) activation function for the hidden layer, and linear acti-
vation for the output layer (see Table 3). We have used the stochastic gradient descent 
with mean squared error (MSE) as loss function, a He uniform-variance scaling initializer, 
and a batch size of 32. As input for the model, the best results were obtained for 26 input 
features, out of which 24 were the hourly energy data of a day in the past, 1 is the day of 
the week, and 1 Boolean to indicate whether the forecasted day is on a weekend. Before 

Figure 6. Updating the local ML models at edge prosumer nodes.

4. Evaluation Results

To test the blockchain-based energy-demand prediction, the infrastructure presented
by us in [67] was used to acquire the readings of prosumers’ energy consumption. In short
each prosumer has installed power meters featuring the International Electrotechnical
Commission (IEC) 62056 protocol and power quality analyzer that uses Hypertext Transfer
Protocol (HTTP) to transfer energy data. The meters send data each five seconds using
MQ Telemetry Transport (MQTT) messaging service and the data are stored in a local
data model.

We have aggregated the energy measurements taken over five months at intervals
of 15 min. The objective is to predict the next day’s demand for each prosumer using
one value each hour, thus 24 energy values. As the prosumers can be of very different
energy scales, a clustering algorithm is used to select those with a similar scale of energy
consumption (i.e., concerning the maximum energy demand). The energy data are non-IID
on the local edge nodes associated with the monitored prosumers. Also, they may have
different consumption patterns. Thus, each local model was trained on local shuffled data
samples received from energy meters for the first four months, with a validation split of
10%, and was tested on one month’s data.

The local prediction model on each prosumer edge node is a fully connected MLP,
which uses a feedforward neural network. We trained and tested multiple MLP config-
urations to determine the meta-parameters (i.e., the vector of weights) to be used in the
learning process. The number of epochs in each iteration was set to one because FedAvg
is used to average the weights determined by local models after each epoch. The optimal
number of averaging iterations was determined and fine-tuned during evaluation. Other
tuned meta-parameters were the number of hidden layers, neurons, and the learning rate.
In our feature selection process, we have found that the most relevant input features,
besides energy consumption values, were linked to the date and time of the values.

The MLP model used for energy prediction features one hidden layer with 30 neurons,
rectified linear unit (ReLu) activation function for the hidden layer, and linear activation
for the output layer (see Table 3). We have used the stochastic gradient descent with mean
squared error (MSE) as loss function, a He uniform-variance scaling initializer, and a batch
size of 32. As input for the model, the best results were obtained for 26 input features, out
of which 24 were the hourly energy data of a day in the past, 1 is the day of the week, and
1 Boolean to indicate whether the forecasted day is on a weekend. Before each iteration,
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we applied a data normalization, using a min-max scaler to bring the data in the interval
[−1, 1], before feeding them into the network. After each prediction, the inverse scaling
function is used to de-normalize the results.

Table 3. MLP configuration used for local energy prediction models.

MLP Configuration

Number of input neurons 26
Number of output neurons 24
Number of hidden layers 1

Number of neurons in hidden layer 30
Activation function at hidden layer ReLu
Activation function at output layer Linear

Optimizer SGD
Loss function MSE

Kernel initializer He uniform
Batch size 32

The smart contracts for blockchain integration and global ML model update were
implemented using Solidity and deployed in a private Ethereum blockchain [68]. Ethereum
was selected for the good support for implementing the smart contracts in a Turing complete
language such as Solidity and for customizing chain specifications in terms of consensus
algorithm, prefilled accounts, block genesis configuration, gas, etc.

The local models for the edge prosumer nodes were built using the Keras library [69].
The interaction between the edge prosumer nodes and the smart contract was enabled
by a blockchain Application Programmable Interface (API), developed in NodeJS, using
the web3 library [70]. The API creates for each edge prosumer node a secured blockchain
account and enables function calls through HTTP GET and POST requests. In this way
in each iteration, the edge prosumer nodes receive the central model weights from the
blockchain, train the model and then post the newly trained local weights.

The smart contracts feature two state variables: an array representing the initial global
model weights and a map to store the local weights for each edge prosumer node. To
reduce the blockchain overhead, we used only one-dimensional arrays to store the weights
of a local prediction model and gave the responsibility to update the array to the edge
prosumer node. To store a weights’ array in the smart contract, the edge prosumer node
must flatten the local model weights’ array before posting it. To reconstruct a model from a
weights’ array received from the smart contract, the edge prosumer device must reshape
the 1D array to the original Keras model (see Figure 7).
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Three different prosumers’ energy-demand prediction test cases were set up using IID
data and comparatively evaluated: centralized learning, edge learning, and distributed FL.

In centralized learning case, the edge prosumer nodes data were aggregated, and a
single global model was trained using the entire dataset. After the tuning process, we
found that a single hidden layer with 35 neurons, an SGD optimizer with a 0.9 learning
rate, a batch size of 128 trained for 1100 epochs achieve the best results (see Figure 8).
As expected, this learning approach obtains the highest accuracy (i.e., mean absolute
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percentage error—MAPE 9.51) but features-limited privacy-preserving support due to data
movement and centralization features.
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Figure 8. (a) Training central model on 2000 epochs (after 1100 epochs the improvements are minimal);
(b) Centralized learning MAPE; (c) Energy prediction results for a prosumer.

In the local edge approach, each edge prosumer node trains its model using only
the local energy data. No exchange of model parameters or energy data is done with the
other nodes. Each local node is responsible for storing its data and tuning the local model.
Finally, we plotted accuracy for each prosumer node and determined the average MAPE
to illustrate the aggregated accuracy results. In Figure 9 we can see that, even though the
average MAPE is 10.82, some prosumers (e.g., prosumer #4) obtain high errors, due to low
variance in local datasets.
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In the blockchain-based distributed FL case, we tested two configurations: one with
IID data, and one without IID data. For the IID configuration, the energy data were
distributed randomly among edge prosumer nodes which facilitates the convergence of
learning process (see Figure 10). To find the number of iterations for the learning model,
the validation and train loss were compared during a long training session. In this case,
the local energy data at the edge contained samples from every prosumer part of the test
case. The accuracy of the prediction process is better but did not exceed the accuracy of the
centralized approach. Nevertheless, such data distribution improves the convergence of
the distributed FL prediction process.
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In the distributed FL configuration with non-IID data, since only the data distribution
is different from our model, we considered the setup and features as in the previous case.

The results show that the non-IID blockchain-based distributed FL model has slightly
less accuracy (see Figure 11). But even so, the average MAPE is 14.35, which is good for the
implementation of DR programs and meets the privacy-preserving need for prosumers’
energy data. Also, some prosumers can benefit from using such an approach as their MAPE
value is better. For example, prosumer #4 had the worst MAPE value in the local edge test
case but the accuracy was improved when using the proposed learning solution. This was
caused by the limited variance in its local test case data, compared to a broader knowledge
base received from the distributed learning blockchain model.
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The performance of each evaluation case was determined using the mean absolute
percentage error against the test energy data set (see Table 4). Even though individual
tuning was done for each scenario, we can observe that our learning solution achieves
comparable results with state-of-the-art centralized and local trained models, without
violating the privacy laws.

Table 4. Average MAPE results for prosumers’ test cases considered.

Prosumer Centralized Learning Local Learning Blockchain-Based Distributed FL
Non-IID IID

0 7.58 7.96 10.80 8.83
1 12.03 9.95 16.22 11.74
2 7.15 7.63 13.97 7.66
3 7.43 6.70 11.08 8.27
4 13.37 21.85 19.69 17.02

As expected, the centralized model had the best performance, and locally trained mod-
els underperformed due to lack of data variability, the average minimum and maximum
MAPE values being reported in Table 5.

Table 5. Accuracy of the prediction process.

Test Case
MAPE

Min Average Max

Blockchain-
based federated

learning

Non-IID 10.80 14.35 19.69
IID 7.66 10.62 17.02

Centralized 7.15 9.51 13.37
Local 6.70 10.82 21.85

5. Discussion

Nowadays implementations of management solutions for local energy systems lack
the human and social aspects such as the role of households, privacy, and local community
sustainability goals. The emerging energy system paradigm shift towards more distributed
generation is driven mainly by techno-economic progress and ambitious energy policy
targets. They miss the engagement of prosumers and community members. With the
proliferation of energy services and energy grid digitization, prosumers struggle to maintain
the necessary level of control or awareness over the propagation of their sensitive data
along different stakeholders involved in DR programs. Prosumers are losing control of
energy data and they are not sure that the data are properly managed by utility companies.
This constitutes a barrier to their involvement in energy programs. The blockchain-based
distributed FL solution has the potential of mitigating their concerns as the energy data
are kept on prosumer edge nodes, and only models’ parameters are being transferred.
Blockchain offers a good and fully automated solution for implementing GDPR compliant
data accountability and provenance tracking of local ML parameters complementing the
FL architectures.

However, joining FL and blockchain brings some limitations and open challenges that
need further investigation. One such limitation is the computational cost of blockchain
integration that depends on the blockchain platform and type of setup used. The global
model complexity is determined by factors such as the dimension of the weight vectors
received from the edge prosumer nodes or the number of edge nodes. Thus, it is infeasible
to use public blockchain deployments in conjunction with a complex ML model unless
methods for the partial consideration of parameters in the global model or in a compressed
manner are being integrated [33]. In this case, part of the model can remain personal for
each prosumer and the parameters of the model in the blockchain can be eliminated [71].

The cost of gas for storing the global model and the computational cost for executing
the smart contracts can be very high. Also, a significant element to be considered is the
learning convergence time, which defines the number of communication rounds between
edge prosumer devices and the smart contracts, and this could also significantly increase
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the blockchain cost on public deployments. Therefore, the blockchain-based distributed FL
design is more suitable for private blockchain or networks with low computational costs
such as platforms using Proof of Stake for validation.

Another limitation that may affect the accuracy of the blockchain-based distributed
FL in the case of energy-demand prediction is the imbalances of the data used in training.
Prosumers can have different energy scales and various energy patterns. When significantly
different predictors share their model, there is a chance that some of them are trained and
matched better, and others may be lacking behind. This case is usually present in non-
IID FL models, and those participants should be identified and eliminated during the
training. To deal with this issue, solutions such as FedProx can be integrated to address the
statistical heterogeneity in FL [46]. It considers the heterogeneity of prosumers nodes in
terms of computational resources and amount of data to allow for a different number of
computations to be performed locally.

For our blockchain integration we recommend using a clustering algorithm on the
initial portfolio of prosumers, and different FL models should be assigned to each cluster.
Even if a clustering algorithm is used, the scaler should fit every participant without
knowing the energy data samples. We used prosumers with similar energy amplitudes,
so their values have been scaled between zero and the maximum demand. Normalized
values will improve the convergence of the different models with different rates based on
the prosumer scale. Finally, a zero-knowledge proof algorithm can be used to prove that a
given participant belongs to a cluster without sharing its data.

In our study, we made sure that the local prediction models stored in the blockchain
were associated only with residential household consumers. Also, the training had con-
sidered only verified data acquired by energy meters. However, there can be malicious
participants that may interfere with the blockchain-based distributed FL process, by posting
wrong weights that affect the accuracy of the global model. The issue should be addressed
by conducting validations before accepting new edge prosumer nodes as participants. The
validation could be made transparent, by defining new functionalities to the blockchain
smart contract. Also, it may be done by a third-party stakeholder such as the Distribution
System Operator, who has a high interest in the reliability and the security of the system.
The blockchain offers good transaction traceability and can be used to identify the peers
that mislead the learning model parameters [33]. The solution can be joined with the
methods for incentivizing the prosumers’ participation in demand response. Therefore, the
rewards can be connected to the quality of contribution to the learning and prediction on
top of the rewards for flexibility committed.

The proposed distributed learning system should facilitate and encourage new partici-
pants to join and contribute to the energy-demand prediction. By joining the blockchain
they will download and use the stored model. This could drastically reduce the time
needed for a new participant to integrate local energy samples into the process without
breaking data privacy. Also, it will improve the accuracy of the energy prediction in the
case of a new participant that does not have any pre-trained ML model. The smart grid
scenario could integrate a pre-validation of the new participant and prevent the access of
malicious users.

Finally, our approach can be improved to consider the economics of privacy and
the value of local ML models for energy-demand prediction. Model-sharing strategies
could be implemented at the blockchain level to combine the benefits of both market-based
and regulatory-oriented approaches. The prosumers may have financial benefits from
sharing their ML models, and at the same time, the blockchain may allow the tracking of
the parameters’ updating process and the penalization of illicit behavior. Thus, as future
work, a market-based mechanism can be implemented at blockchain overlay in which
edge prosumer nodes will gain financial revenue for training models and sharing them
with others. A fee is paid to the edge prosumer nodes if their model updates improve the
prediction accuracy. The edge nodes that only download the model and use it for local
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prediction without contributing to the training process will be charged. The trained models
can be rated by edge nodes’ prosumers to eliminate potential malicious nodes.

6. Conclusions and Future Work

In this paper, we describe a blockchain-based distributed FL solution for predicting the
energy demand of prosumers supporting their participation in grid management programs.
We combine the FL model with blockchain to assure the privacy of energy-demand data
used in the predictions. The ML models are trained at edge prosumer nodes using energy
data that are locally stored and only the models’ parameters are shared using a blockchain.
Therefore the global federated model parameters are stored in a tamper-proof manner as
transactions in a blockchain are replicated among all nodes. Smart contracts are defined for
managing the local ML models’ integration with blockchain-specifying functions to address
the data imbalances, model parameters’ scaling, and reduction of blockchain overhead. The
global prediction model is not centralized but distributed and replicated over the blockchain
network, therefore becoming immutable, making it difficult for inversion attacks to reveal
prosumer behavior.

We have provided a comparative evaluation of different ML model distributions
such as centralized, local edge, and distributed FL. The results show that concerning
the prediction of energy demand, our proposed solution’s impact on accuracy is limited
compared to the centralized solution that, as expected, has the best prediction results, but
is exposed to privacy leakage. This makes it a relevant technology for providing energy
services because it addresses prosumers’ concerns related to the privacy of sensitive data
and provides enough benefits in terms of prediction accuracy to reach the potential of DR.

As future work we plan to study the integration of complex deep-learning models such
as convolutional neural networks (CNN) or LSTM to improve prosumers’ energy prediction
accuracy. As the limitation of today’s blockchains in terms of block size, transactions’
dimensions, and gas consumption is well known, we plan to integrate advanced techniques
for the partial integration of learned parameters or for models’ compression. Also, other
types of blockchain platforms will be considered to address the overhead limitations and
to incentivize prosumers’ contribution to the learning and prediction process going beyond
today’s models in the energy domain which reward only the use of energy flexibility.
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