
Citation: Antal, M.; Mihailescu, V.;

Cioara, T.; Anghel, I. Blockchain-

Based Distributed Federated

Learning in Smart Grid. Mathematics

2022, 10, 4499. https://doi.org/

10.3390/math10234499

Academic Editors: Codruta Mare and

Ioana Florina Coita

Received: 31 October 2022

Accepted: 25 November 2022

Published: 29 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Blockchain-Based Distributed Federated Learning in
Smart Grid
Marcel Antal , Vlad Mihailescu, Tudor Cioara * and Ionut Anghel

Computer Science Department, Technical University of Cluj-Napoca, Memorandumului 28,
400114 Cluj-Napoca, Romania
* Correspondence: tudor.cioara@cs.utcluj.ro

Abstract: The participation of prosumers in demand-response programs is essential for the success of
demand-side management in renewable-powered energy grids. Unfortunately, the engagement is
still low due to concerns related to the privacy of their energy data used in the prediction processes.
In this paper, we propose a blockchain-based distributed federated learning (FL) technique for energy-
demand prediction that combines FL with blockchain to provide data privacy and trust features
for energy prosumers. The privacy-sensitive energy data are stored locally at edge prosumer nodes
without revealing it to third parties, with only the learned local model weights being shared using a
blockchain network. The global federated model is not centralized but distributed and replicated over
the blockchain overlay, ensuring the model immutability and provenance of parameter updates. We
had proposed smart contracts to deal with the integration of local machine-learning prediction models
with the blockchain, defining functions for the model parameters’ scaling and reduction of blockchain
overhead. The centralized, local-edge, and blockchain-integrated models are comparatively evaluated
for prediction of energy demand 24 h ahead using a multi-layer perceptron model and the monitored
energy data of several prosumers. The results show only a slight decrease in prediction accuracy in
the case of blockchain-based distributed FL with reliable data privacy support compared with the
centralized learning solution.

Keywords: energy prediction; federated learning; blockchain; smart grid management; demand
response; smart contracts; machine learning

MSC: 68M14; 68T07

1. Introduction

The increasing availability of energy storage technologies and the higher penetra-
tion of intermittent renewable energy sources at grid edge is pushing the energy grid
towards decentralized management scenarios [1]. Among the different management op-
tions, demand-side management represents an effective method for unlocking a larger share
of energy flexibility at the local level [2]. It leverages the control of electricity consumption
of prosumers either by time-scheduling or power-modulating the loads. Examples include
control of smart appliances, smart thermostats (for heating purposes), or the charging
of electric vehicles (EVs). The success of demand-response (DR) programs depends on
consumer engagement and accuracy of energy predictions a day in advance [3].

The load-flexibility schemes require the dispatch of the set-points to a greater number
of assets during a broader timeframe, therefore energy prediction many steps in advance is
required [4]. The stochastic nature of renewable energy production and the high variation
of demand in the case of small prosumers induces a high level of uncertainty in the energy
prediction [5]. Most of the state-of-the-art approaches deal with one-step-ahead energy
prediction offering good accuracy, but on longer time frames as required in DR, the accuracy
drops significantly [6]. With the advent of Internet of Things (IoT) smart-energy metering

Mathematics 2022, 10, 4499. https://doi.org/10.3390/math10234499 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10234499
https://doi.org/10.3390/math10234499
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-2998-4176
https://orcid.org/0000-0001-6166-5266
https://doi.org/10.3390/math10234499
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10234499?type=check_update&version=1


Mathematics 2022, 10, 4499 2 of 19

technology, a significant amount of energy data is becoming available. Therefore energy
utilities are storing energy data centralized in cloud-based systems and use big data and
Machine Learning (ML) to predict energy production/consumption values [7]. Different
time and energy scales (prosumers, communities, etc.) features are used to reduce the
model uncertainty and improve prediction accuracy. In such approaches, ML models are
trained with fine-grained data collected from prosumers to learn a prediction model. The
models are then used to predict the energy demand and the signals for adjusting the energy
demand during the implementation of the programs (see Figure 1a) [8–10].

Mathematics 2022, 10, x FOR PEER REVIEW 2 of 20 
 

 

DR, the accuracy drops significantly [6]. With the advent of Internet of Things (IoT) smart-
energy metering technology, a significant amount of energy data is becoming available. 
Therefore energy utilities are storing energy data centralized in cloud-based systems and 
use big data and Machine Learning (ML) to predict energy production/consumption val-
ues [7]. Different time and energy scales (prosumers, communities, etc.) features are used 
to reduce the model uncertainty and improve prediction accuracy. In such approaches, 
ML models are trained with fine-grained data collected from prosumers to learn a predic-
tion model. The models are then used to predict the energy demand and the signals for 
adjusting the energy demand during the implementation of the programs (see Figure 1a) 
[8–10]. 

 
Figure 1. ML energy prediction models: (a) Centralized learning; (b) Federated learning (FL); (c) 
Swarm learning (blockchain-based distributed FL). 

To improve the accuracy of the predictions, energy features are used together with 
non-energy-related vectors and contextual features such as behavioral or social features 
[11]. Even though the accuracy in this centralized cloud-based case is better, it raises pri-
vacy concerns. Data privacy is one of the main obstacles to consumers’ engagement in DR 
programs [12]. In fact, due to privacy concerns, the adoption of smart meters in many 
European countries was delayed and the engagement of individual costumers and collec-
tively operating households in DR programs is limited [13]. Even though a lot of work 
was put into privacy-preserving energy metering it is still an open research issue [14–16]. 
Efforts are made to provide trusted bidirectional connections among prosumers and util-
ities, but centralization is a key issue that makes data privacy sensitive [17]. In Europe, 
privacy-sensitive data need to be stored securely, following the current General Data Pro-
tection Regulation (GDPR) rules, thus privacy-based ML plays a major role in energy pre-
diction [18]. The prediction process can be decentralized by employing privacy-preserv-
ing federated-learning (FL) infrastructures (see Figure 1b) [19]. The data are stored at the 
edge node in the prosumer premises reinforcing the privacy features and preventing po-
tential data leakage. Thus, the local ML models are trained on prosumers’ sites and the 

Figure 1. ML energy prediction models: (a) Centralized learning; (b) Federated learning (FL);
(c) Swarm learning (blockchain-based distributed FL).

To improve the accuracy of the predictions, energy features are used together with
non-energy-related vectors and contextual features such as behavioral or social features [11].
Even though the accuracy in this centralized cloud-based case is better, it raises privacy
concerns. Data privacy is one of the main obstacles to consumers’ engagement in DR
programs [12]. In fact, due to privacy concerns, the adoption of smart meters in many Euro-
pean countries was delayed and the engagement of individual costumers and collectively
operating households in DR programs is limited [13]. Even though a lot of work was put
into privacy-preserving energy metering it is still an open research issue [14–16]. Efforts
are made to provide trusted bidirectional connections among prosumers and utilities, but
centralization is a key issue that makes data privacy sensitive [17]. In Europe, privacy-
sensitive data need to be stored securely, following the current General Data Protection
Regulation (GDPR) rules, thus privacy-based ML plays a major role in energy predic-
tion [18]. The prediction process can be decentralized by employing privacy-preserving
federated-learning (FL) infrastructures (see Figure 1b) [19]. The data are stored at the edge
node in the prosumer premises reinforcing the privacy features and preventing potential
data leakage. Thus, the local ML models are trained on prosumers’ sites and the global
model is updated using the edge nodes information, but in this case, the model parameters
are transferred and not the sensitive data [20,21]. The distribution of the model-learning



Mathematics 2022, 10, 4499 3 of 19

process closer to the edge decreases latency and bandwidth costs as the energy data are
stored locally and not transferred over the network, but the tradeoff is the decrease in
prediction model accuracy [22].

In this context, distributed ledger technologies [23] can bring benefits in reinforcing
the trust in DR program management due to the democratization and transparency features
they provide [24]. For example, data provenance allows tracking the changes at any time
by simply iterating through the blocks of the chain [25]. The immutability assures that any
information stored in the chain remains unchanged and cannot be tampered with by a third
party [26,27]. They are highly desirable features in the case of distributed ML. A public
blockchain network can store the global model in FL cases promoting transparency and
trust among prosumers [28]. As it is impossible to modify the data stored, it reduces the
chances of fraud. The transactions on the blockchain are public and accessible, therefore,
the transactions to update the global federated model are transparent and traceable [29].

A few approaches in the state of the art are joining FL models with blockchain tech-
nology [30–34] (see Figure 1c) to ensure data privacy and trust features and none to our
knowledge on prosumers’ energy. In our case, the ML prediction models are trained at the
prosumers’ using local energy-demand data, and the blockchain will store and update the
global energy prediction model. We use a public blockchain as it does not limit the joining
of new prosumers and define smart contracts to manage the federated model update, the
model parameters’ replication, and dissemination. As result, the prosumers are more
engaged because the concerns about energy data ownership, confidentiality, and privacy
are decreased due to public blockchain integration and enabling model traceability for any
state change.

In this paper we provide the following contributions:

• Blockchain-based distributed FL for the energy domain to support the privacy-preserving
prediction of prosumers’ energy demand. The global model parameters are immutably
stored and shared using blockchain network overlay.

• Smart contracts to update the global model parameters considering the challenges of
integrating regression-based energy prediction, such as scaling the model parameters
with prosumers’ size and blockchain transactional overhead.

• Comparative evaluation of prosumers’ energy-demand prediction using multi-layer
perceptron (MLP) model distribution in three cases: centralized, local edge, and
blockchain FL.

The rest of the paper is structured as follows. Section 2 presents the state-of-the-
art approaches on distributed ML models for the energy domain. Section 3 presents
the blockchain-based distributed FL model formalization for privacy-preserving energy-
demand prediction and smart contracts for blockchain integration. Section 4 presents
comparative energy-demand prediction results on three cases considering a MLP model
and integration of prosumers’ energy data from meters. Section 5 presents a discussion of
the approach, and Section 6 gives the conclusions and future work.

2. Related Work

Distributed ML techniques aim to add privacy-preserving features to the learning
process [35,36]. FL solutions are only partially addressing the privacy and security issues.
The centralization of the learned models makes them vulnerable to malicious attacks and
may constitute a single point of failure [37]. FL aims to address the issues of security,
trust, and privacy leakage, relevant in the smart energy grid scenarios, by combining
blockchain technology [23] with FL and distributed optimization [33]. In the remainder
of this section, we analyze the state-of-the-art FL solutions classified according to the
distributed optimization algorithms used, and highlight the security issues that need to be
addressed in smart energy grids. Then the few approaches on blockchain-based distributed
FL concept are presented, showing their strengths concerning the FL models.

One of the first FL models was presented by Zinkevich et al., who propose a decentral-
ized ML model, referred to as “one-shot parameter averaging”, based on parallel stochastic



Mathematics 2022, 10, 4499 4 of 19

gradient descent (SGD) [38]. The proposed architecture trained local models using the SGD
optimizer, and the central model was created using a single final communication round,
which is suboptimal. Important aspects, such as the data distribution between nodes and
applying one-shot parameter averaging on different ML architectures other than support
vector machines (SVM), were not considered. Boyd et al. propose the alternating direction
method of multipliers that is a form of distributed convex optimization tested on the lasso,
sparse logistic regression, basis pursuit, covariance selection, and SVM [39]. The results
showed that the convergence can be slow, due to the number of communication rounds.
Shamir et al. [40] proposed the Distributed Approximate Newton (DANE) approach that
considers the similarity among problems on different machines, converging in fewer com-
munication rounds. Konečný et al. describe the concept of FL where a centralized model is
trained, using multiple local datasets contained in local nodes, without exchanging data
samples [41]. The solution was optimizing the communication rounds and the conver-
gence time when considering the trade-off between accuracy and data privacy with good
results. The primary methods to train FL models were analyzed by McMahan et al. [42]:
Federated Stochastic Gradient Descent (FedSGD) that averages local nodes’ gradients at
every step in the learning phase, and Federated Averaging (FedAvg), which averages the
weights when all clients have finished computing their local models. Zhu et al. [43] showed
that the accuracy can be heavily impacted if the training data are not independent and
identically distributed (non-IID) among local nodes. Several solutions were proposed
leveraging minimal data distribution between nodes, which can be a source of privacy
leakage. In articles [44,45], a set of enhancements to the FedAvg and FedSGD algorithms
are proposed. They tackle the problems of communication among devices, the correlation
between data heterogeneity, and the convergence rate of the learning process. They show
that even if it is more precise theoretically, the Federated Distributed Approximate NEwton
(FedDANE) algorithm is outperformed in practice by FedProx. FedProx improves the
convergence of the FedAvg algorithm by adding a proximal term for approximation as
shown by Li et al. [46]. The impact of network communication and latency over a FL setup
in a wireless environment is analyzed by Yang et al. in [47], the authors formulating an
optimization problem for energy efficiency under latency constraints. Uddin et al. propose
a novel FL approach that considers mutual information and proves the convergence of
the solution on clinical datasets [48]. The authors refined their solution by introducing a
Lagrangian-based loss function and applying the information bottleneck principle in [49].

FL has high applicability in smart energy grids’ management scenarios. The FL solu-
tions can address issues related to data privacy and security [50]. Traditional architectures
collect user data in centralized databases for further processing, but this imposes data
privacy concerns and security issues. FL approaches are adapted to smart grid use cases
such as energy forecasting and prosumer pattern classification by considering distributed
deployment of smart meters at prosumer locations. A thorough review of applications for
FL is done by Li et al. [44], identifying six directions of industry applications. Su et al. [51]
investigate the applications of decentralized deep-learning technologies in smart grids
and Husnoo et al. [52] discuss a FL framework for prosumers’ energy forecasting. It uses
the Long Short-Term Memory (LSTM) neural network and the FedAvg algorithm [42].
Singh et al. [53] propose a serverless FL design for smart grids with good accuracy results
on datasets. LSTM was used as the central model in an FL approach by Taïk et al. [54].
Without prosumer clustering, the accuracy was not good enough even after multiple
communication rounds. FL was evaluated by Gholizadeh et al. [55], who propose a new
clustering method to reduce the convergence time. Su et al. [56] propose a secure FL scheme
enabling prosumers in a smart grid to share data considering non-IID effects. The method
can train a two-layer deep reinforcement learning algorithm, showing promising results
and communication efficiency. Wang et al. [57] propose using an FL approach to bridge
data between smart meters and the social characteristics of prosumers. Saputra et al. [58]
apply FL design for predicting the energy demand of EVs. The solution allows the charging
station not to share data with the service provider, decreasing communication overhead,



Mathematics 2022, 10, 4499 5 of 19

and improving prediction accuracy. In [59] Liu et al., an FL framework is proposed for
energy grids to learn power consumption patterns and preserve power data security. The
approach combines horizontal with vertical FL.

As the learning model and data distribution are also susceptible to attacks, a trade-off
needs to be made between security and decentralization. Usynin et al. [60] tackle the
model inversion attacks, where an attacker reverse-engineers the federated model and then
discloses the training data. They propose techniques based on gradient methods to expose
image data for attackers, showing how these attacks can be mitigated. Song et al. [61]
describe an efficient privacy-preserving data aggregation model that joins the individual
weights without revealing their models, thus decreasing the risk of data leaks. The algo-
rithm is highly resilient in case of communication faults, being able to compute a reasonable
model even in the case of when a high number of users disconnect. Ganjoo et al. [62] in-
vestigate the poisoning attacks on a FL design targeting to preserve data privacy, and
Liu et al. [59] used encryption to preserve privacy in a FL system. Ma et al. [63] propose a
solution to deal with Byzantine attacks in FL frameworks. They use a privacy-preserving
gradient aggregation mechanism that is efficient, secured, and based on a two-party cal-
culation protocol. Other techniques for privacy and security are based on multi-party
computation and the additive homomorphic property of Paillier [64]. Key exchanges for
authentication and data encryption are applied by Zhao et al. [65] in the context of the
social Internet of vehicles. Finally, a thorough review of security and privacy problems
in the context of FL is presented by Hou et al. [66], where the authors investigate model
extraction and poisoning attacks as well as a solution for incentivizing the participants
for commenting their resources and local results. Table 1 summarizes the state of the art
directions involving FL.

Table 1. FL relevance for smart grid.

Issues in Smart Grid Scenarios FL Solutions

Data privacy preservation and security
Non-blockchain

Distributed perturbation [35], sequential learning [36], model inversion
[60], data aggregation mechanism [61], poisoning attacks mitigation

[37,62], Byzantine-robust FL [63], homomorphic encryption [64],
collaborative authentication protocol [65]

Blockchain enabled Incentivization and avoidance of model poisoning [66], blockchain for
data sharing and serverless computing [53], swarm learning [30]

Optimization of communication costs, devices, and data heterogeneity DANE [40], FedDANE [45], Structured and sketched updates [41],
FedAvg [42], iterative algorithms [47], FedProx [46]

Analytics and energy efficiency AI of things [51], load forecasting [52–54], energy data sharing [53,56,58],
prosumer profiling [57], learning consumption patterns [59]

In this context, we aim to combine FL with blockchain to tackle issues such as model
centralization, trust, and data privacy. Very few approaches were found in the literature.
The concept was introduced by Warnat-Herresthal et al. [30], who propose a system design
such as FL, which eliminates the need for the central coordinator. Instead, operations
on the central model, such as averaging and distributing weights, are held directly on a
decentralized smart contract. This approach increases security because each client can
monitor the integrity and the changes made in the central model. Experimental results
were conducted on IID clinical data used to classify diseases.

Analyzing the existing state of the art, few relevant literature approaches that tackle
data privacy, learning-model centralization, and immutability in the context of ML-based
prediction of energy demand and applications of FL in smart grid scenarios, are found.
In this paper, we address the identified knowledge gap in the literature by proposing a
distributed FL technique for energy-demand prediction that combines FL with blockchain
to assure data privacy for individual energy prosumers. The privacy-sensitive energy data
are stored locally at edge prosumer nodes without the need to reveal it to third parties,
and only the learned local model weight is pushed to the blockchain. The global model
is not centralized but distributed and replicated over the blockchain network thus being



Mathematics 2022, 10, 4499 6 of 19

immutable and offering obfuscation and an anonymization method for the models, making
it difficult for inversion attacks to reveal prosumer behavior.

3. Smart Contracts for Federated Learning

The proposed solution aims to avoid the privacy linkage in the case of energy data
by keeping them on the prosumer nodes. The data of a prosumer are used to train a local
ML model, and the global model is stored in a blockchain network and updated by the
prosumers using smart contracts.

The prosumer ML model will learn a function θw : Rp → R, that depends on a vector
of weights w ∈ Rp. This model θw will be trained with n datapoint pairs of the form (xi, yi),
where xi ∈ Rp are the timestamp-driven features and yi ∈ R are the energy values sampled
by the meters. In the FL approach, k nodes are used to train the global model function θw,
and keep the n energy datapoints distributed in k sets, each stored by an edge node and

with a cardinality ni < n, i ∈ {1..k}, such that
k
∑

i=1
ni = n (see Figure 2).

Mathematics 2022, 10, x FOR PEER REVIEW 6 of 20 
 

 

decentralized smart contract. This approach increases security because each client can 
monitor the integrity and the changes made in the central model. Experimental results 
were conducted on IID clinical data used to classify diseases. 

Analyzing the existing state of the art, few relevant literature approaches that tackle 
data privacy, learning-model centralization, and immutability in the context of ML-based 
prediction of energy demand and applications of FL in smart grid scenarios, are found. In 
this paper, we address the identified knowledge gap in the literature by proposing a dis-
tributed FL technique for energy-demand prediction that combines FL with blockchain to 
assure data privacy for individual energy prosumers. The privacy-sensitive energy data 
are stored locally at edge prosumer nodes without the need to reveal it to third parties, 
and only the learned local model weight is pushed to the blockchain. The global model is 
not centralized but distributed and replicated over the blockchain network thus being im-
mutable and offering obfuscation and an anonymization method for the models, making 
it difficult for inversion attacks to reveal prosumer behavior. 

3. Smart Contracts for Federated Learning 
The proposed solution aims to avoid the privacy linkage in the case of energy data 

by keeping them on the prosumer nodes. The data of a prosumer are used to train a local 
ML model, and the global model is stored in a blockchain network and updated by the 
prosumers using smart contracts. 

The prosumer ML model will learn a function 𝜃௪: 𝑅௣ → 𝑅, that depends on a vector 
of weights 𝑤 ∈ 𝑅௣. This model 𝜃௪ will be trained with 𝑛 datapoint pairs of the form (𝑥௜, 𝑦௜), where 𝑥௜ ∈ 𝑅௣ are the timestamp-driven features and 𝑦௜ ∈ 𝑅 are the energy val-
ues sampled by the meters. In the FL approach, 𝑘 nodes are used to train the global 
model function 𝜃௪, and keep the 𝑛 energy datapoints distributed in 𝑘 sets, each stored 
by an edge node and with a cardinality 𝑛௜ ൏ 𝑛, i ∈ {1. . 𝑘}, such that ∑ 𝑛௜௞௜ୀଵ = 𝑛 (see Fig-
ure 2). 

 
Figure 2. FL for prosumers’ energy-demand prediction. Figure 2. FL for prosumers’ energy-demand prediction.

The models are trained locally by each of the k edge nodes associated with the energy
prosumers, obtaining a set of parameter vectors wi for each learned function θwi that
minimizes a prediction error function:

fw : R→ R, fw(xi, yi) = Error(yi, θw(xi)) (1)

Each edge node i solves an optimization problem that computes the best weight vector
wi that minimizes the local prediction error on the local data sampled:

Edge node i : determine wi to min
wi

1
ni

ni

∑
j=1

fwi (xi, yi) (2)



Mathematics 2022, 10, 4499 7 of 19

At central node level the goal is to determine a weight vector wF by defining a
federated model function θwF and considering the local model parameters:

determine wF = ϕ(w1, w2, . . . wk) to min
wF

1
n

n

∑
j=1

fwF (xi, yi) (3)

The weight vector wF of the federated model is computed iteratively based on the
edge models’ weights combined by a function ϕ. There are two main solutions that can be
used to update the federated weight vector. The first one is to use the SGD algorithm that
updates the global model weights based on a weighted average of the edge nodes vectors
of weights [38]. The second approach uses the DANE method that updates the federated
weight based on the average gradient of the local weights [40,41]. It uses several stages
in which the weight vector is updated with the gradient computed as the average of the
gradients from the edge models.

The federated ML optimization considers the acquisition of energy data by the k edge
nodes associated with prosumers (see Figure 3). An initial weight vector is computed to
initialize the global model which is distributed to the edge prosumer nodes. Then, a loop
of s iterations gradually improve the federated weight vector wF (lines 4–9). Each iteration
collects the local gradients, computes the global gradient, updates the federated weights,
and distributes the weight vector ws

F to the edge nodes, to start a new local model training
process. Finally, the algorithm returns the weight vector corresponding to the federated
model learned after the iterations.

Mathematics 2022, 10, x FOR PEER REVIEW 8 of 20 
 

 

Input: 𝑘 edge nodes associated with prosumers, central node for storing the global  

ML model for energy prediction, number of iterations  

Output: weight vector 𝑤ி of the global ML prediction model 

Begin 

1. Collect energy data points (𝑥௜, 𝑦௜)  in 𝑘 edge nodes 

2. Compute an initial weight vector for the global prediction model 𝑤ி଴  

3. Distribute an initial weight vector 𝑤ி଴ to 𝑘 edge nodes 

4. For each 𝑠 in 1 to 𝑛𝑜௜௧௘௥௔௧௜௢௡௦ 

5. Train the local ML prediction models  

6. Collect edge training results as local weights 𝑤௜௦, i ∈ {1. . 𝑘}  
7. Compute global prediction model weights 𝑤ி௦ = ∑ ௡೔௡ ∗ 𝑤௜௞௜ୀଵ  

8. Distribute the global model weights vector 𝑤ி௦ to 𝑘 edge nodes 

9. End For 

10. Return 𝑤ி௦ 

End 

Figure 3. FL for prosumers energy prediction. 

Our solution considers the federated approach for the energy prediction of prosum-
ers and propose the adoption of blockchain and smart contracts to store and update the 
global ML model (see Figure 4). We define smart contracts to publish the local energy 
prediction models weight vectors on the blockchain network. Then we leverage on the 
blockchain to store the model in a tamper-proof manner and to replicate and disseminate 
the local models’ weight to all nodes participating to the network overlay. 

 
Figure 4. Blockchain-based distributed FL for prosumers energy prediction. 

Figure 3. FL for prosumers energy prediction.

Our solution considers the federated approach for the energy prediction of prosumers
and propose the adoption of blockchain and smart contracts to store and update the global
ML model (see Figure 4). We define smart contracts to publish the local energy prediction
models weight vectors on the blockchain network. Then we leverage on the blockchain
to store the model in a tamper-proof manner and to replicate and disseminate the local
models’ weight to all nodes participating to the network overlay.



Mathematics 2022, 10, 4499 8 of 19

Mathematics 2022, 10, x FOR PEER REVIEW 8 of 20 
 

 

Input: 𝑘 edge nodes associated with prosumers, central node for storing the global  

ML model for energy prediction, number of iterations  

Output: weight vector 𝑤ி of the global ML prediction model 

Begin 

1. Collect energy data points (𝑥௜, 𝑦௜)  in 𝑘 edge nodes 

2. Compute an initial weight vector for the global prediction model 𝑤ி଴  

3. Distribute an initial weight vector 𝑤ி଴ to 𝑘 edge nodes 

4. For each 𝑠 in 1 to 𝑛𝑜௜௧௘௥௔௧௜௢௡௦ 

5. Train the local ML prediction models  

6. Collect edge training results as local weights 𝑤௜௦, i ∈ {1. . 𝑘}  
7. Compute global prediction model weights 𝑤ி௦ = ∑ ௡೔௡ ∗ 𝑤௜௞௜ୀଵ  

8. Distribute the global model weights vector 𝑤ி௦ to 𝑘 edge nodes 

9. End For 

10. Return 𝑤ி௦ 

End 

Figure 3. FL for prosumers energy prediction. 

Our solution considers the federated approach for the energy prediction of prosum-
ers and propose the adoption of blockchain and smart contracts to store and update the 
global ML model (see Figure 4). We define smart contracts to publish the local energy 
prediction models weight vectors on the blockchain network. Then we leverage on the 
blockchain to store the model in a tamper-proof manner and to replicate and disseminate 
the local models’ weight to all nodes participating to the network overlay. 

 
Figure 4. Blockchain-based distributed FL for prosumers energy prediction. Figure 4. Blockchain-based distributed FL for prosumers energy prediction.

Smart contracts are deployed on the blockchain network overlay to manage the
weights vector of the global ML model that is shared and used for energy-demand predic-
tion. The contracts contain methods to update the global model weights and their addresses
are known by all nodes participating in the learning process. The main functions imple-
mented in the smart contract are correlated to the FL steps (see Table 2 for the mapping).
The get functions are declared as a view because they do not alter the contract state, which
means that participants will not pay gas when querying the central weights.

Table 2. FL concepts mapped to smart contract.

Decentralized Learning Steps Smart Contract

Weight vector of global model Int256 [] globalModelWeights
Initialize the global model function setInitialWeights (int256[] memory weights)

Retrieve the initial weights of the global model function getInitialWeights () public view returns (int256[] memory)
Push the edge nodes training results function postLocalWeights(int256[] memory weights)

Update the global model weights using the local models function updateGlobalModel () public view returns (int256[] memory)

Figure 5 shows the smart contract function used to update the global mode weights.
Due to the limitations of mapping, we used both accounts and accountPresent to keep track
of edge prosumer participants and their addresses. The globalModelWeights is updated by
averaging the values in localModelWeights, which is the mapping that stores weights from
edge accounts. When updateGlobalModel is called, the globalModelWeights is reinitialized,
then a loop goes through all the prosumer accounts, adds each local weight vector to the
corresponding position in globalModelWeights, and finally, the global weights are divided
by the total number of edge nodes participants, to determine the average.



Mathematics 2022, 10, 4499 9 of 19Mathematics 2022, 10, x FOR PEER REVIEW 10 of 20 
 

 

1: mapping (address => bool) accountPresent; 

2: address [] public accounts; 

3: int256[] globalModelWeights; 

4: mapping (address => int256[]) localModelWeights; 

5: 

6:  Function updateGlobalModel  

7:    Input: msg.sender, initWeights, localModelWeights 

8:    Output: averageweights 

9:    Modifiers: public override 

10:   Begin: 

11:       globalModelWeights = new int256[](initWeights.length); 

12:       for (uint256 i = 0; i < accounts.length; i++) { 

13:          for (uint256 j = 0; j < initWeights.length; j++) { 

14:            globalModelWeights [j] += localModelWeights[accounts[i]][j];     

15:          } 

16:       } 

17:       for (uint256 i = 0; i < initWeights.length; i++){ 

18:          globalModelWeights [i]/= int256(accounts.length); 

19:      } 

20:  End 

Figure 5. Smart contract function for updating the global energy-demand prediction model weights. 

The smart contract functions (defined in Table 2) are invoked by the edge nodes cor-
responding to the smart grid prosumers. The pseudocode of the edge prosumer nodes 
function for local ML model updating is shown in Figure 6. Because the algorithm runs in 
interaction rounds (i.e., either local or global model’s update) the edge nodes need to be 
synchronized to avoid inconsistent models’ update in which the local model weights are 
updated at around and are posted on blockchain for global model update only later at 
round. We use a timestamp-based synchronization between the edge nodes, defining a 
set of milestones to delimit training rounds. Each model training round will be delimited 
by time intervals to get the global model weights from the blockchain and to post the local 
model weights to the blockchain. Only local weights posted by edge nodes in these inter-
vals are considered, otherwise are discarded. 

The algorithm starts by initializing its local time with Universal Time Coordinated 
(UTC) and performing a milestone synchronization with the other edge prosumer nodes 
involved in training (lines 5–6). The node initializes the local model with the weights taken 
from the blockchain then it starts a loop of iterations to train the model with local data 
(lines 8–12). The local weights vector 𝑤௅௦ is sent to the blockchain using the smart contract 
methods when the local time reaches the milestone set for the post. When the local time 
reaches the get milestone, a new weight vector is taken from the blockchain using the 
Smart Contract to initialize the local model for the next iteration (lines 10–11). 

  

Figure 5. Smart contract function for updating the global energy-demand prediction model weights.

The smart contract functions (defined in Table 2) are invoked by the edge nodes
corresponding to the smart grid prosumers. The pseudocode of the edge prosumer nodes
function for local ML model updating is shown in Figure 6. Because the algorithm runs
in interaction rounds (i.e., either local or global model’s update) the edge nodes need to
be synchronized to avoid inconsistent models’ update in which the local model weights
are updated at around and are posted on blockchain for global model update only later
at round. We use a timestamp-based synchronization between the edge nodes, defining a
set of milestones to delimit training rounds. Each model training round will be delimited
by time intervals to get the global model weights from the blockchain and to post the
local model weights to the blockchain. Only local weights posted by edge nodes in these
intervals are considered, otherwise are discarded.

The algorithm starts by Initializing Its local time with Universal Time Coordinated
(UTC) and performing a milestone synchronization with the other edge prosumer nodes
involved in training (lines 5–6). The node initializes the local model with the weights taken
from the blockchain then it starts a loop of iterations to train the model with local data
(lines 8–12). The local weights vector ws

L is sent to the blockchain using the smart contract
methods when the local time reaches the milestone set for the post. When the local time
reaches the get milestone, a new weight vector is taken from the blockchain using the Smart
Contract to initialize the local model for the next iteration (lines 10–11).



Mathematics 2022, 10, 4499 10 of 19Mathematics 2022, 10, x FOR PEER REVIEW 11 of 20 
 

 

1: Function updateLocalModel 

2:   Input: 𝑤ி௦ global model weight vector corresponding to training iteration 𝑠  

3:   Output: Local weight vector 𝑤௜௦ 

4:   Begin 

5:      𝑙𝑜𝑐𝑎𝑙௧௜௠௘ local clock synchronization with UTC time  

6:      𝑙𝑜𝑐𝑎𝑙௠௜௟௘௦௧௢௡௘௦ model updating milestones synchronization 

7:      𝑤௅଴ = getInitialWeights () 

8:      for s in 1 to 𝑛𝑜௜௧௘௥௔௧௜௢௡௦     

9:          𝑤௅௦ = 𝑡𝑟𝑎𝑖𝑛(𝜃௪ಽ, {(𝑥௜, 𝑦௜)|𝑖 ∈ {1, , 𝑛௞}) 

10:         if (𝑙𝑜𝑐𝑎𝑙௧௜௠௘ =  𝑙𝑜𝑐𝑎𝑙௠௜௟௘௦௧௢௡௘௦௣௢௦௧ ) then postLocalWeights(𝑤௅௦) 

11:         if (𝑙𝑜𝑐𝑎𝑙௧௜௠௘ =  𝑙𝑜𝑐𝑎𝑙௠௜௟௘௦௧௢௡௘௦௚௘௧ ) then 𝑤௅௦ାଵ= retrieve updateGlobalModel() 

12:     end for 

13:   return  𝑤௅௦ 

14: End 

Figure 6. Updating the local ML models at edge prosumer nodes. 

4. Evaluation Results 
To test the blockchain-based energy-demand prediction, the infrastructure presented 

by us in [67] was used to acquire the readings of prosumers’ energy consumption. In short 
each prosumer has installed power meters featuring the International Electrotechnical 
Commission (IEC) 62056 protocol and power quality analyzer that uses Hypertext Trans-
fer Protocol (HTTP) to transfer energy data. The meters send data each five seconds using 
MQ Telemetry Transport (MQTT) messaging service and the data are stored in a local 
data model. 

We have aggregated the energy measurements taken over five months at intervals of 
15 min. The objective is to predict the next day’s demand for each prosumer using one 
value each hour, thus 24 energy values. As the prosumers can be of very different energy 
scales, a clustering algorithm is used to select those with a similar scale of energy con-
sumption (i.e., concerning the maximum energy demand). The energy data are non-IID 
on the local edge nodes associated with the monitored prosumers. Also, they may have 
different consumption patterns. Thus, each local model was trained on local shuffled data 
samples received from energy meters for the first four months, with a validation split of 
10%, and was tested on one month’s data. 

The local prediction model on each prosumer edge node is a fully connected MLP, 
which uses a feedforward neural network. We trained and tested multiple MLP configu-
rations to determine the meta-parameters (i.e., the vector of weights) to be used in the 
learning process. The number of epochs in each iteration was set to one because FedAvg 
is used to average the weights determined by local models after each epoch. The optimal 
number of averaging iterations was determined and fine-tuned during evaluation. Other 
tuned meta-parameters were the number of hidden layers, neurons, and the learning rate. 
In our feature selection process, we have found that the most relevant input features, be-
sides energy consumption values, were linked to the date and time of the values. 

The MLP model used for energy prediction features one hidden layer with 30 neu-
rons, rectified linear unit (ReLu) activation function for the hidden layer, and linear acti-
vation for the output layer (see Table 3). We have used the stochastic gradient descent 
with mean squared error (MSE) as loss function, a He uniform-variance scaling initializer, 
and a batch size of 32. As input for the model, the best results were obtained for 26 input 
features, out of which 24 were the hourly energy data of a day in the past, 1 is the day of 
the week, and 1 Boolean to indicate whether the forecasted day is on a weekend. Before 

Figure 6. Updating the local ML models at edge prosumer nodes.

4. Evaluation Results

To test the blockchain-based energy-demand prediction, the infrastructure presented
by us in [67] was used to acquire the readings of prosumers’ energy consumption. In short
each prosumer has installed power meters featuring the International Electrotechnical
Commission (IEC) 62056 protocol and power quality analyzer that uses Hypertext Transfer
Protocol (HTTP) to transfer energy data. The meters send data each five seconds using
MQ Telemetry Transport (MQTT) messaging service and the data are stored in a local
data model.

We have aggregated the energy measurements taken over five months at intervals
of 15 min. The objective is to predict the next day’s demand for each prosumer using
one value each hour, thus 24 energy values. As the prosumers can be of very different
energy scales, a clustering algorithm is used to select those with a similar scale of energy
consumption (i.e., concerning the maximum energy demand). The energy data are non-IID
on the local edge nodes associated with the monitored prosumers. Also, they may have
different consumption patterns. Thus, each local model was trained on local shuffled data
samples received from energy meters for the first four months, with a validation split of
10%, and was tested on one month’s data.

The local prediction model on each prosumer edge node is a fully connected MLP,
which uses a feedforward neural network. We trained and tested multiple MLP config-
urations to determine the meta-parameters (i.e., the vector of weights) to be used in the
learning process. The number of epochs in each iteration was set to one because FedAvg
is used to average the weights determined by local models after each epoch. The optimal
number of averaging iterations was determined and fine-tuned during evaluation. Other
tuned meta-parameters were the number of hidden layers, neurons, and the learning rate.
In our feature selection process, we have found that the most relevant input features,
besides energy consumption values, were linked to the date and time of the values.

The MLP model used for energy prediction features one hidden layer with 30 neurons,
rectified linear unit (ReLu) activation function for the hidden layer, and linear activation
for the output layer (see Table 3). We have used the stochastic gradient descent with mean
squared error (MSE) as loss function, a He uniform-variance scaling initializer, and a batch
size of 32. As input for the model, the best results were obtained for 26 input features, out
of which 24 were the hourly energy data of a day in the past, 1 is the day of the week, and
1 Boolean to indicate whether the forecasted day is on a weekend. Before each iteration,



Mathematics 2022, 10, 4499 11 of 19

we applied a data normalization, using a min-max scaler to bring the data in the interval
[−1, 1], before feeding them into the network. After each prediction, the inverse scaling
function is used to de-normalize the results.

Table 3. MLP configuration used for local energy prediction models.

MLP Configuration

Number of input neurons 26
Number of output neurons 24
Number of hidden layers 1

Number of neurons in hidden layer 30
Activation function at hidden layer ReLu
Activation function at output layer Linear

Optimizer SGD
Loss function MSE

Kernel initializer He uniform
Batch size 32

The smart contracts for blockchain integration and global ML model update were
implemented using Solidity and deployed in a private Ethereum blockchain [68]. Ethereum
was selected for the good support for implementing the smart contracts in a Turing complete
language such as Solidity and for customizing chain specifications in terms of consensus
algorithm, prefilled accounts, block genesis configuration, gas, etc.

The local models for the edge prosumer nodes were built using the Keras library [69].
The interaction between the edge prosumer nodes and the smart contract was enabled
by a blockchain Application Programmable Interface (API), developed in NodeJS, using
the web3 library [70]. The API creates for each edge prosumer node a secured blockchain
account and enables function calls through HTTP GET and POST requests. In this way
in each iteration, the edge prosumer nodes receive the central model weights from the
blockchain, train the model and then post the newly trained local weights.

The smart contracts feature two state variables: an array representing the initial global
model weights and a map to store the local weights for each edge prosumer node. To
reduce the blockchain overhead, we used only one-dimensional arrays to store the weights
of a local prediction model and gave the responsibility to update the array to the edge
prosumer node. To store a weights’ array in the smart contract, the edge prosumer node
must flatten the local model weights’ array before posting it. To reconstruct a model from a
weights’ array received from the smart contract, the edge prosumer device must reshape
the 1D array to the original Keras model (see Figure 7).

Mathematics 2022, 10, x FOR PEER REVIEW 12 of 20 
 

 

each iteration, we applied a data normalization, using a min-max scaler to bring the data 
in the interval [−1,1], before feeding them into the network. After each prediction, the in-
verse scaling function is used to de-normalize the results. 

Table 3. MLP configuration used for local energy prediction models. 

MLP Configuration  
Number of input neurons 26 

Number of output neurons 24 
Number of hidden layers 1 

Number of neurons in hidden layer 30 
Activation function at hidden layer ReLu 
Activation function at output layer Linear 

Optimizer SGD 
Loss function MSE 

Kernel initializer He uniform 
Batch size 32 

The smart contracts for blockchain integration and global ML model update were 
implemented using Solidity and deployed in a private Ethereum blockchain [68]. 
Ethereum was selected for the good support for implementing the smart contracts in a 
Turing complete language such as Solidity and for customizing chain specifications in 
terms of consensus algorithm, prefilled accounts, block genesis configuration, gas, etc. 

The local models for the edge prosumer nodes were built using the Keras library [69]. 
The interaction between the edge prosumer nodes and the smart contract was enabled by 
a blockchain Application Programmable Interface (API), developed in NodeJS, using the 
web3 library [70]. The API creates for each edge prosumer node a secured blockchain ac-
count and enables function calls through HTTP GET and POST requests. In this way in 
each iteration, the edge prosumer nodes receive the central model weights from the block-
chain, train the model and then post the newly trained local weights. 

The smart contracts feature two state variables: an array representing the initial 
global model weights and a map to store the local weights for each edge prosumer node. 
To reduce the blockchain overhead, we used only one-dimensional arrays to store the 
weights of a local prediction model and gave the responsibility to update the array to the 
edge prosumer node. To store a weights’ array in the smart contract, the edge prosumer 
node must flatten the local model weights’ array before posting it. To reconstruct a model 
from a weights’ array received from the smart contract, the edge prosumer device must 
reshape the 1D array to the original Keras model (see Figure 7). 

 
Figure 7. Keras model integration for reduced smart contracts complexity. 

Three different prosumers’ energy-demand prediction test cases were set up using 
IID data and comparatively evaluated: centralized learning, edge learning, and distrib-
uted FL. 

Figure 7. Keras model integration for reduced smart contracts complexity.

Three different prosumers’ energy-demand prediction test cases were set up using IID
data and comparatively evaluated: centralized learning, edge learning, and distributed FL.

In centralized learning case, the edge prosumer nodes data were aggregated, and a
single global model was trained using the entire dataset. After the tuning process, we
found that a single hidden layer with 35 neurons, an SGD optimizer with a 0.9 learning
rate, a batch size of 128 trained for 1100 epochs achieve the best results (see Figure 8).
As expected, this learning approach obtains the highest accuracy (i.e., mean absolute



Mathematics 2022, 10, 4499 12 of 19

percentage error—MAPE 9.51) but features-limited privacy-preserving support due to data
movement and centralization features.

Mathematics 2022, 10, x FOR PEER REVIEW 13 of 20 
 

 

In centralized learning case, the edge prosumer nodes data were aggregated, and a 
single global model was trained using the entire dataset. After the tuning process, we 
found that a single hidden layer with 35 neurons, an SGD optimizer with a 0.9 learning 
rate, a batch size of 128 trained for 1100 epochs achieve the best results (see Figure 8). As 
expected, this learning approach obtains the highest accuracy (i.e., mean absolute percent-
age error—MAPE 9.51) but features-limited privacy-preserving support due to data 
movement and centralization features. 

 
Figure 8. (a) Training central model on 2000 epochs (after 1100 epochs the improvements are mini-
mal); (b) Centralized learning MAPE; (c) Energy prediction results for a prosumer. 

In the local edge approach, each edge prosumer node trains its model using only the 
local energy data. No exchange of model parameters or energy data is done with the other 
nodes. Each local node is responsible for storing its data and tuning the local model. Fi-
nally, we plotted accuracy for each prosumer node and determined the average MAPE to 
illustrate the aggregated accuracy results. In Figure 9 we can see that, even though the 
average MAPE is 10.82, some prosumers (e.g., prosumer #4) obtain high errors, due to low 
variance in local datasets. 

 
Figure 9. (a) Edge learning MAPE (b) Energy prediction for a Prosumer #3. 

In the blockchain-based distributed FL case, we tested two configurations: one with 
IID data, and one without IID data. For the IID configuration, the energy data were dis-
tributed randomly among edge prosumer nodes which facilitates the convergence of 
learning process (see Figure 10). To find the number of iterations for the learning model, 
the validation and train loss were compared during a long training session. In this case, 
the local energy data at the edge contained samples from every prosumer part of the test 

Figure 8. (a) Training central model on 2000 epochs (after 1100 epochs the improvements are minimal);
(b) Centralized learning MAPE; (c) Energy prediction results for a prosumer.

In the local edge approach, each edge prosumer node trains its model using only
the local energy data. No exchange of model parameters or energy data is done with the
other nodes. Each local node is responsible for storing its data and tuning the local model.
Finally, we plotted accuracy for each prosumer node and determined the average MAPE
to illustrate the aggregated accuracy results. In Figure 9 we can see that, even though the
average MAPE is 10.82, some prosumers (e.g., prosumer #4) obtain high errors, due to low
variance in local datasets.

Mathematics 2022, 10, x FOR PEER REVIEW 13 of 20 
 

 

In centralized learning case, the edge prosumer nodes data were aggregated, and a 
single global model was trained using the entire dataset. After the tuning process, we 
found that a single hidden layer with 35 neurons, an SGD optimizer with a 0.9 learning 
rate, a batch size of 128 trained for 1100 epochs achieve the best results (see Figure 8). As 
expected, this learning approach obtains the highest accuracy (i.e., mean absolute percent-
age error—MAPE 9.51) but features-limited privacy-preserving support due to data 
movement and centralization features. 

 
Figure 8. (a) Training central model on 2000 epochs (after 1100 epochs the improvements are mini-
mal); (b) Centralized learning MAPE; (c) Energy prediction results for a prosumer. 

In the local edge approach, each edge prosumer node trains its model using only the 
local energy data. No exchange of model parameters or energy data is done with the other 
nodes. Each local node is responsible for storing its data and tuning the local model. Fi-
nally, we plotted accuracy for each prosumer node and determined the average MAPE to 
illustrate the aggregated accuracy results. In Figure 9 we can see that, even though the 
average MAPE is 10.82, some prosumers (e.g., prosumer #4) obtain high errors, due to low 
variance in local datasets. 

 
Figure 9. (a) Edge learning MAPE (b) Energy prediction for a Prosumer #3. 

In the blockchain-based distributed FL case, we tested two configurations: one with 
IID data, and one without IID data. For the IID configuration, the energy data were dis-
tributed randomly among edge prosumer nodes which facilitates the convergence of 
learning process (see Figure 10). To find the number of iterations for the learning model, 
the validation and train loss were compared during a long training session. In this case, 
the local energy data at the edge contained samples from every prosumer part of the test 

Figure 9. (a) Edge learning MAPE (b) Energy prediction for a Prosumer #3.

In the blockchain-based distributed FL case, we tested two configurations: one with
IID data, and one without IID data. For the IID configuration, the energy data were
distributed randomly among edge prosumer nodes which facilitates the convergence of
learning process (see Figure 10). To find the number of iterations for the learning model,
the validation and train loss were compared during a long training session. In this case,
the local energy data at the edge contained samples from every prosumer part of the test
case. The accuracy of the prediction process is better but did not exceed the accuracy of the
centralized approach. Nevertheless, such data distribution improves the convergence of
the distributed FL prediction process.



Mathematics 2022, 10, 4499 13 of 19

Mathematics 2022, 10, x FOR PEER REVIEW 14 of 20 
 

 

case. The accuracy of the prediction process is better but did not exceed the accuracy of 
the centralized approach. Nevertheless, such data distribution improves the convergence 
of the distributed FL prediction process. 

In the distributed FL configuration with non-IID data, since only the data distribution 
is different from our model, we considered the setup and features as in the previous case. 

 
Figure 10. (a) Blockchain-based distributed FL model accuracy when trained with IID data. (b) En-
ergy prediction for prosumer #3. 

The results show that the non-IID blockchain-based distributed FL model has slightly 
less accuracy (see Figure 11). But even so, the average MAPE is 14.35, which is good for 
the implementation of DR programs and meets the privacy-preserving need for prosum-
ers’ energy data. Also, some prosumers can benefit from using such an approach as their 
MAPE value is better. For example, prosumer #4 had the worst MAPE value in the local 
edge test case but the accuracy was improved when using the proposed learning solution. 
This was caused by the limited variance in its local test case data, compared to a broader 
knowledge base received from the distributed learning blockchain model. 

 

Figure 10. (a) Blockchain-based distributed FL model accuracy when trained with IID data. (b) Energy
prediction for prosumer #3.

In the distributed FL configuration with non-IID data, since only the data distribution
is different from our model, we considered the setup and features as in the previous case.

The results show that the non-IID blockchain-based distributed FL model has slightly
less accuracy (see Figure 11). But even so, the average MAPE is 14.35, which is good for the
implementation of DR programs and meets the privacy-preserving need for prosumers’
energy data. Also, some prosumers can benefit from using such an approach as their MAPE
value is better. For example, prosumer #4 had the worst MAPE value in the local edge test
case but the accuracy was improved when using the proposed learning solution. This was
caused by the limited variance in its local test case data, compared to a broader knowledge
base received from the distributed learning blockchain model.

Mathematics 2022, 10, x FOR PEER REVIEW 14 of 20 
 

 

case. The accuracy of the prediction process is better but did not exceed the accuracy of 
the centralized approach. Nevertheless, such data distribution improves the convergence 
of the distributed FL prediction process. 

In the distributed FL configuration with non-IID data, since only the data distribution 
is different from our model, we considered the setup and features as in the previous case. 

 
Figure 10. (a) Blockchain-based distributed FL model accuracy when trained with IID data. (b) En-
ergy prediction for prosumer #3. 

The results show that the non-IID blockchain-based distributed FL model has slightly 
less accuracy (see Figure 11). But even so, the average MAPE is 14.35, which is good for 
the implementation of DR programs and meets the privacy-preserving need for prosum-
ers’ energy data. Also, some prosumers can benefit from using such an approach as their 
MAPE value is better. For example, prosumer #4 had the worst MAPE value in the local 
edge test case but the accuracy was improved when using the proposed learning solution. 
This was caused by the limited variance in its local test case data, compared to a broader 
knowledge base received from the distributed learning blockchain model. 

 
Figure 11. (a) Blockchain-based distributed FL model accuracy when trained with non-IID data;
(b) Energy prediction result for Prosumer #3.



Mathematics 2022, 10, 4499 14 of 19

The performance of each evaluation case was determined using the mean absolute
percentage error against the test energy data set (see Table 4). Even though individual
tuning was done for each scenario, we can observe that our learning solution achieves
comparable results with state-of-the-art centralized and local trained models, without
violating the privacy laws.

Table 4. Average MAPE results for prosumers’ test cases considered.

Prosumer Centralized Learning Local Learning Blockchain-Based Distributed FL
Non-IID IID

0 7.58 7.96 10.80 8.83
1 12.03 9.95 16.22 11.74
2 7.15 7.63 13.97 7.66
3 7.43 6.70 11.08 8.27
4 13.37 21.85 19.69 17.02

As expected, the centralized model had the best performance, and locally trained mod-
els underperformed due to lack of data variability, the average minimum and maximum
MAPE values being reported in Table 5.

Table 5. Accuracy of the prediction process.

Test Case
MAPE

Min Average Max

Blockchain-
based federated

learning

Non-IID 10.80 14.35 19.69
IID 7.66 10.62 17.02

Centralized 7.15 9.51 13.37
Local 6.70 10.82 21.85

5. Discussion

Nowadays implementations of management solutions for local energy systems lack
the human and social aspects such as the role of households, privacy, and local community
sustainability goals. The emerging energy system paradigm shift towards more distributed
generation is driven mainly by techno-economic progress and ambitious energy policy
targets. They miss the engagement of prosumers and community members. With the
proliferation of energy services and energy grid digitization, prosumers struggle to maintain
the necessary level of control or awareness over the propagation of their sensitive data
along different stakeholders involved in DR programs. Prosumers are losing control of
energy data and they are not sure that the data are properly managed by utility companies.
This constitutes a barrier to their involvement in energy programs. The blockchain-based
distributed FL solution has the potential of mitigating their concerns as the energy data
are kept on prosumer edge nodes, and only models’ parameters are being transferred.
Blockchain offers a good and fully automated solution for implementing GDPR compliant
data accountability and provenance tracking of local ML parameters complementing the
FL architectures.

However, joining FL and blockchain brings some limitations and open challenges that
need further investigation. One such limitation is the computational cost of blockchain
integration that depends on the blockchain platform and type of setup used. The global
model complexity is determined by factors such as the dimension of the weight vectors
received from the edge prosumer nodes or the number of edge nodes. Thus, it is infeasible
to use public blockchain deployments in conjunction with a complex ML model unless
methods for the partial consideration of parameters in the global model or in a compressed
manner are being integrated [33]. In this case, part of the model can remain personal for
each prosumer and the parameters of the model in the blockchain can be eliminated [71].

The cost of gas for storing the global model and the computational cost for executing
the smart contracts can be very high. Also, a significant element to be considered is the
learning convergence time, which defines the number of communication rounds between
edge prosumer devices and the smart contracts, and this could also significantly increase



Mathematics 2022, 10, 4499 15 of 19

the blockchain cost on public deployments. Therefore, the blockchain-based distributed FL
design is more suitable for private blockchain or networks with low computational costs
such as platforms using Proof of Stake for validation.

Another limitation that may affect the accuracy of the blockchain-based distributed
FL in the case of energy-demand prediction is the imbalances of the data used in training.
Prosumers can have different energy scales and various energy patterns. When significantly
different predictors share their model, there is a chance that some of them are trained and
matched better, and others may be lacking behind. This case is usually present in non-
IID FL models, and those participants should be identified and eliminated during the
training. To deal with this issue, solutions such as FedProx can be integrated to address the
statistical heterogeneity in FL [46]. It considers the heterogeneity of prosumers nodes in
terms of computational resources and amount of data to allow for a different number of
computations to be performed locally.

For our blockchain integration we recommend using a clustering algorithm on the
initial portfolio of prosumers, and different FL models should be assigned to each cluster.
Even if a clustering algorithm is used, the scaler should fit every participant without
knowing the energy data samples. We used prosumers with similar energy amplitudes,
so their values have been scaled between zero and the maximum demand. Normalized
values will improve the convergence of the different models with different rates based on
the prosumer scale. Finally, a zero-knowledge proof algorithm can be used to prove that a
given participant belongs to a cluster without sharing its data.

In our study, we made sure that the local prediction models stored in the blockchain
were associated only with residential household consumers. Also, the training had con-
sidered only verified data acquired by energy meters. However, there can be malicious
participants that may interfere with the blockchain-based distributed FL process, by posting
wrong weights that affect the accuracy of the global model. The issue should be addressed
by conducting validations before accepting new edge prosumer nodes as participants. The
validation could be made transparent, by defining new functionalities to the blockchain
smart contract. Also, it may be done by a third-party stakeholder such as the Distribution
System Operator, who has a high interest in the reliability and the security of the system.
The blockchain offers good transaction traceability and can be used to identify the peers
that mislead the learning model parameters [33]. The solution can be joined with the
methods for incentivizing the prosumers’ participation in demand response. Therefore, the
rewards can be connected to the quality of contribution to the learning and prediction on
top of the rewards for flexibility committed.

The proposed distributed learning system should facilitate and encourage new partici-
pants to join and contribute to the energy-demand prediction. By joining the blockchain
they will download and use the stored model. This could drastically reduce the time
needed for a new participant to integrate local energy samples into the process without
breaking data privacy. Also, it will improve the accuracy of the energy prediction in the
case of a new participant that does not have any pre-trained ML model. The smart grid
scenario could integrate a pre-validation of the new participant and prevent the access of
malicious users.

Finally, our approach can be improved to consider the economics of privacy and
the value of local ML models for energy-demand prediction. Model-sharing strategies
could be implemented at the blockchain level to combine the benefits of both market-based
and regulatory-oriented approaches. The prosumers may have financial benefits from
sharing their ML models, and at the same time, the blockchain may allow the tracking of
the parameters’ updating process and the penalization of illicit behavior. Thus, as future
work, a market-based mechanism can be implemented at blockchain overlay in which
edge prosumer nodes will gain financial revenue for training models and sharing them
with others. A fee is paid to the edge prosumer nodes if their model updates improve the
prediction accuracy. The edge nodes that only download the model and use it for local



Mathematics 2022, 10, 4499 16 of 19

prediction without contributing to the training process will be charged. The trained models
can be rated by edge nodes’ prosumers to eliminate potential malicious nodes.

6. Conclusions and Future Work

In this paper, we describe a blockchain-based distributed FL solution for predicting the
energy demand of prosumers supporting their participation in grid management programs.
We combine the FL model with blockchain to assure the privacy of energy-demand data
used in the predictions. The ML models are trained at edge prosumer nodes using energy
data that are locally stored and only the models’ parameters are shared using a blockchain.
Therefore the global federated model parameters are stored in a tamper-proof manner as
transactions in a blockchain are replicated among all nodes. Smart contracts are defined for
managing the local ML models’ integration with blockchain-specifying functions to address
the data imbalances, model parameters’ scaling, and reduction of blockchain overhead. The
global prediction model is not centralized but distributed and replicated over the blockchain
network, therefore becoming immutable, making it difficult for inversion attacks to reveal
prosumer behavior.

We have provided a comparative evaluation of different ML model distributions
such as centralized, local edge, and distributed FL. The results show that concerning
the prediction of energy demand, our proposed solution’s impact on accuracy is limited
compared to the centralized solution that, as expected, has the best prediction results, but
is exposed to privacy leakage. This makes it a relevant technology for providing energy
services because it addresses prosumers’ concerns related to the privacy of sensitive data
and provides enough benefits in terms of prediction accuracy to reach the potential of DR.

As future work we plan to study the integration of complex deep-learning models such
as convolutional neural networks (CNN) or LSTM to improve prosumers’ energy prediction
accuracy. As the limitation of today’s blockchains in terms of block size, transactions’
dimensions, and gas consumption is well known, we plan to integrate advanced techniques
for the partial integration of learned parameters or for models’ compression. Also, other
types of blockchain platforms will be considered to address the overhead limitations and
to incentivize prosumers’ contribution to the learning and prediction process going beyond
today’s models in the energy domain which reward only the use of energy flexibility.

Author Contributions: Conceptualization, M.A. and T.C.; methodology, T.C.; software, V.M. and
M.A.; validation, M.A. and V.M.; formal analysis, M.A.; investigation, I.A.; writing—original draft
preparation, M.A., T.C., I.A. and V.M.; writing—review and editing, I.A.; visualization, I.A. and V.M.;
funding acquisition, T.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by European Commission as part of the H2020 Framework Pro-
gramme, H2020-LC-SC3-2018-2019-2020 grant number 957816 and by the Romanian Ministry of Edu-
cation and Research, CNCS/CCCDI–UEFISCDI, project grant number PN-III-P3-3.6-H2020-2020-0031
within PNIII.

Data Availability Statement: Not applicable.

Acknowledgments: This work has been conducted within the BRIGHT project grant number 957816
funded by the European Commission as part of the H2020 Framework Programme and it was
partially supported by a grant of the Romanian Ministry of Education and Research, CNCS/CCCDI–
UEFISCDI, project number PN-III-P3-3.6-H2020-2020-0031.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Javid, I.; Chauhan, A.; Thappa, S.; Verma, S.K.; Anand, Y.; Sawhney, A.; Tyagi, V.V.; Anand, S. Futuristic decentralized clean

energy networks in view of inclusive-economic growth and sustainable society. J. Clean. Prod. 2021, 309, 127304. [CrossRef]
2. Kumar, R.S.; Raghav, L.P.; Raju, D.K.; Singh, A.R. Intelligent demand side management for optimal energy scheduling of grid

connected microgrids. Appl. Energy 2021, 285, 116435. [CrossRef]
3. Valentini, O.; Andreadou, N.; Bertoldi, P.; Lucas, A.; Saviuc, I.; Kotsakis, E. Demand Response Impact Evaluation: A Review of

Methods for Estimating the Customer Baseline Load. Energies 2022, 15, 5259. [CrossRef]

http://doi.org/10.1016/j.jclepro.2021.127304
http://doi.org/10.1016/j.apenergy.2021.116435
http://doi.org/10.3390/en15145259


Mathematics 2022, 10, 4499 17 of 19

4. Antal, M.; Toderean, L.; Cioara, T.; Anghel, I. Hybrid Deep Neural Network Model for Multi-Step Energy Prediction of Prosumers.
Appl. Sci. 2022, 12, 5346. [CrossRef]

5. Talari, S.; Shafie-khah, M.; Osório, G.J.; Aghaei, J.; Catalão, J.P.S. Stochastic modelling of renewable energy sources from operators’
point-of-view: A survey. Renew. Sustain. Energy Rev. 2018, 81 Pt 2, 1953–1965. [CrossRef]

6. Ibrahim, B.; Rabelo, L.; Gutierrez-Franco, E.; Clavijo-Buritica, N. Machine Learning for Short-Term Load Forecasting in Smart
Grids. Energies 2022, 15, 8079. [CrossRef]

7. Petrican, T.; Vesa, A.V.; Antal, M.; Pop, C.; Cioara, T.; Anghel, I.; Salomie, I. Evaluating Forecasting Techniques for Integrating
Household Energy Prosumers into Smart Grids. In Proceedings of the 2018 IEEE 14th International Conference on Intelligent
Computer Communication and Processing (ICCP), Cluj-Napoca, Romania, 6–8 September 2018; pp. 79–85.

8. Amasyali, K.; El-Gohary, N.M. A review of data-driven building energy consumption prediction studies. Renew. Sustain. Energy
Rev. 2018, 81 Pt 1, 1192–1205. [CrossRef]

9. Vesa, A.V.; Cioara, T.; Anghel, I.; Antal, M.; Pop, C.; Iancu, B.; Salomie, I.; Dadarlat, V.T. Energy Flexibility Prediction for Data
Center Engagement in Demand Response Programs. Sustainability 2020, 12, 1417. [CrossRef]

10. Sha, H.; Xu, P.; Lin, M.; Peng, C.; Dou, Q. Development of a multi-granularity energy forecasting toolkit for demand response
baseline calculation. Appl. Energy 2021, 289, 116652. [CrossRef]

11. Shen, M.; Lu, Y.; Wei, K.H.; Cui, Q. Prediction of household electricity consumption and effectiveness of concerted intervention
strategies based on occupant behaviour and personality traits. Renew. Sustain. Energy Rev. 2020, 127, 109839.

12. Vigurs, C.; Maidment, C.; Fell, M.; Shipworth, D. Customer Privacy Concerns as a Barrier to Sharing Data about Energy Use in
Smart Local Energy Systems: A Rapid Realist Review. Energies 2021, 14, 1285. [CrossRef]

13. Safdarian, A.; Fotuhi-Firuzabad, M.; Lehtonen, M. Demand Response from Residential Consumers: Potentials, Barriers, and
Solutions. In Smart Grids and Their Communication Systems. Energy Systems in Electrical Engineering; Kabalci, E., Kabalci, Y., Eds.;
Springer: Singapore, 2019.

14. Hussain, A.; Bui, V.; Kim, H. A Resilient and Privacy-Preserving Energy Management Strategy for Networked Microgrids. IEEE
Trans. Smart Grid 2018, 9, 2127–2139. [CrossRef]

15. Lee, D.; Hess, D.J. Data privacy and residential smart meters: Comparative analysis and harmonization potential. Util. Policy
2021, 70, 101188. [CrossRef]

16. Gan, W.; Yan, M.; Wen, J.; Yao, W.; Zhang, J. A low-carbon planning method for joint regional-district multi-energy systems: From
the perspective of privacy protection. Appl. Energy 2022, 311, 118595. [CrossRef]

17. Mirzaee, P.H.; Shojafar, M.; Cruickshank, H.; Tafazolli, R. Smart Grid Security and Privacy: From Conventional to Machine
Learning Issues (Threats and Countermeasures). IEEE Access 2022, 10, 52922–52954. [CrossRef]

18. Lavrijssen, S.; Espinosa Apráez, B.; ten Caten, T. The Legal Complexities of Processing and Protecting Personal Data in the
Electricity Sector. Energies 2022, 15, 1088. [CrossRef]

19. Fernández, J.D.; Menci, S.P.; Lee, C.M.; Rieger, A.; Fridgen, G. Privacy-preserving federated learning for residential short-term
load forecasting. Appl. Energy 2022, 326, 119915. [CrossRef]

20. Fekri, M.N.; Grolinger, K.; Mir, S. Distributed load forecasting using smart meter data: Federated learning with Recurrent Neural
Networks. Int. J. Electr. Power Energy Syst. 2022, 137, 107669. [CrossRef]

21. Li, J.; Zhang, C.; Zhao, Y.; Qiu, W.; Chen, Q.; Zhang, X. Federated learning-based short-term building energy consumption
prediction method for solving the data silos problem. Build. Simul. 2022, 15, 1145–1159. [CrossRef]

22. Xia, Q.; Ye, W.; Tao, Z.; Wu, J.; Li, Q. A survey of federated learning for edge computing: Research problems and solutions.
High-Confid. Comput. 2021, 1, 100008. [CrossRef]

23. Krichen, M.; Ammi, M.; Mihoub, A.; Almutiq, M. Blockchain for Modern Applications: A Survey. Sensors 2022, 22, 5274.
[CrossRef] [PubMed]

24. Hancock, M.; Vaizey, E. Distributed Ledger Technology: Beyond block chain. In A Report by the UK Government Chief Scientific
Adviser; UK Government Office for Science: London, UK, 2016. Available online: https://assets.publishing.service.gov.uk/
government/uploads/system/uploads/attachment_data/file/492972/gs-16-1-distributed-ledger-technology.pdf (accessed on
28 October 2022).

25. Sigwart, M.; Borkowski, M.; Peise, M.; Schulte, S.; Tai, S. A secure and extensible blockchain-based data provenance framework
for the Internet of Things. Pers. Ubiquit. Comput. 2020, 24, 1–15. [CrossRef]

26. Pop, C.; Cioara, T.; Antal, M.; Anghel, I.; Salomie, I.; Bertoncini, M. Blockchain Based Decentralized Management of Demand
Response Programs in Smart Energy Grids. Sensors 2018, 18, 162. [CrossRef] [PubMed]

27. Cioara, T.; Antal, M.; Mihailescu, V.T.; Antal, C.D.; Anghel, I.M.; Mitrea, D. Blockchain-Based Decentralized Virtual Power Plants
of Small Prosumers. IEEE Access 2021, 9, 29490–29504. [CrossRef]

28. FedSyn: Federated Learning Meets Blockchain. Available online: https://www.jpmorgan.com/technology/federated-learning-
meets-blockchain (accessed on 28 October 2022).

29. Guo, H.; Yu, X. A survey on blockchain technology and its security. Blockchain Res. Appl. 2022, 3, 100067. [CrossRef]
30. Warnat-Herresthal, S.; Schultze, H.; Shastry, K.L.; Manamohan, S.; Mukherjee, S.; Garg, V.; Sarveswara, R.; Händler, K.; Pickkers,

P.; Aziz, N.A.; et al. Swarm Learning for decentralized and confidential clinical machine learning. Nature 2021, 594, 265–270.
[CrossRef]

http://doi.org/10.3390/app12115346
http://doi.org/10.1016/j.rser.2017.06.006
http://doi.org/10.3390/en15218079
http://doi.org/10.1016/j.rser.2017.04.095
http://doi.org/10.3390/su12041417
http://doi.org/10.1016/j.apenergy.2021.116652
http://doi.org/10.3390/en14051285
http://doi.org/10.1109/TSG.2016.2607422
http://doi.org/10.1016/j.jup.2021.101188
http://doi.org/10.1016/j.apenergy.2022.118595
http://doi.org/10.1109/ACCESS.2022.3174259
http://doi.org/10.3390/en15031088
http://doi.org/10.1016/j.apenergy.2022.119915
http://doi.org/10.1016/j.ijepes.2021.107669
http://doi.org/10.1007/s12273-021-0871-y
http://doi.org/10.1016/j.hcc.2021.100008
http://doi.org/10.3390/s22145274
http://www.ncbi.nlm.nih.gov/pubmed/35890953
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/492972/gs-16-1-distributed-ledger-technology.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/492972/gs-16-1-distributed-ledger-technology.pdf
http://doi.org/10.1007/s00779-020-01417-z
http://doi.org/10.3390/s18010162
http://www.ncbi.nlm.nih.gov/pubmed/29315250
http://doi.org/10.1109/ACCESS.2021.3059106
https://www.jpmorgan.com/technology/federated-learning-meets-blockchain
https://www.jpmorgan.com/technology/federated-learning-meets-blockchain
http://doi.org/10.1016/j.bcra.2022.100067
http://doi.org/10.1038/s41586-021-03583-3


Mathematics 2022, 10, 4499 18 of 19

31. Li, D.; Han, D.; Weng, T.H.; Zheng, Z.; Li, H.; Liu, H.; Castiglione, A.; Li, K.C. Blockchain for federated learning toward secure
distributed machine learning systems: A systemic survey. Soft Comput. 2022, 26, 4423–4440. [CrossRef]

32. Hai, T.; Zhou, J.; Srividhya, S.R.; Jain, S.K.; Young, P.; Agrawal, S. BVFLEMR: An integrated federated learning and blockchain
technology for cloud-based medical records recommendation system. J. Cloud Comp. 2022, 11, 22. [CrossRef]

33. Qu, Y.; Uddin, M.P.; Gan, C.; Xiang, Y.; Gao, L.; Yearwood, J. Block-chain-enabled Federated Learning: A Survey. ACM Comput.
Surv. 2022, 55, 70. [CrossRef]

34. Xiao, B.; Xu, Q.; He, C.; Lin, J. Blockchain and Federated Learning Based Bidding Applications in Power Markets. Procedia Comput.
Sci. 2022, 202, 21–26. [CrossRef]

35. Chamikara, M.A.P.; Bertok, P.; Khalil, I.; Liu, D.; Camtepe, S. Privacy preserving distributed machine learning with federated
learning. Comput. Commun. 2021, 171, 112–125. [CrossRef]

36. Zerka, F.; Urovi, V.; Bottari, F.; Leijenaar, R.T.; Walsh, S.; Gabrani-Juma, H.; Gueuning, M.; Vaidyanathan, A.; Vos, W.; Occhipinti,
M.; et al. Privacy preserving distributed learning classifiers—Sequential learning with small sets of data. Comput. Biol. Med. 2021,
136, 104716. [CrossRef] [PubMed]

37. Sun, G.; Cong, Y.; Dong, J.; Wang, Q.; Lyu, L.; Liu, J. Data Poisoning Attacks on Federated Machine Learning. IEEE Internet Things
J. 2022, 9, 11365–11375. [CrossRef]

38. Zinkevich, M.A.; Weimer, M.; Smola, A. Parallelized Stochastic Gradient Descent. In Advances in Neural Information Processing
Systems 23; NIPS 2010; Curran Associates, Inc.: New York, NY, USA, 2010; Volume 10.

39. Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; Eckstein, J. Distributed Optimization and Statistical Learning via the Alternating
Direction Method of Multipliers. Found. Trends Mach. Learn. 2011, 3, 1–122. [CrossRef]

40. Shamir, O.; Srebro, N.; Zhang, T. Communication-efficient distributed optimization using an approximate Newton-type method.
In Proceedings of the 31st International Conference on International Conference on Machine Learning—Volume 32 (ICML’14),
Beijing, China, 22–24 June 2014.

41. Konečný, J.; McMahan, H.B.; Yu, F.X.; Richtárik, P.; Suresh, A.T.; Bacon, D. Federated Learning: Strategies for Improving
Communication Efficiency. arXiv 2016, arXiv:1610.05492.

42. McMahan, H.B.; Moore, E.; Ramage, D.; Arcas, B.A. Federated Learning of Deep Networks using Model Averaging. arXiv 2016,
arXiv:1602.05629.

43. Zhu, H.; Xu, J.; Liu, S.; Jin, Y. Federated learning on non-IID data: A survey. Neurocomputing 2021, 465, 371–390. [CrossRef]
44. Li, L.; Fan, Y.; Tse, M.; Lin, K.-Y. A review of applications in federated learning. Comput. Ind. Eng. 2020, 149, 106854. [CrossRef]
45. Li, T.; Sahu, A.K.; Zaheer, M.; Sanjabi, M.; Talwalkar, A.; Smith, V. FedDANE: A Federated Newton-Type Method. In Proceedings

of the 53rd Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 3–6 November 2019; pp. 1227–1231.
46. Li, T.; Sahu, A.K.; Sanjabi, M.; Zaheer, M.; Talwalkar, A.; Smith, V. Federated optimization in heterogeneous networks. arXiv 2018,

arXiv:1812.06127.
47. Yang, Z.; Chen, M.; Saad, W.; Hong, C.S.; Shikh-Bahaei, M. Energy Efficient Federated Learning Over Wireless Communication

Networks. IEEE Trans. Wirel. Commun. 2021, 20, 1935–1949. [CrossRef]
48. Uddin, M.P.; Xiang, Y.; Lu, X.; Yearwood, J.; Gao, L. Mutual Information Driven Federated Learning. IEEE Trans. Parallel Distrib.

Syst. 2021, 32, 1526–1538. [CrossRef]
49. Uddin, M.P.; Xiang, Y.; Lu, X.; Yearwood, J.; Gao, L. Federated Learning via Disentangled Information Bottleneck. IEEE Trans.

Serv. Comput. 2022, 1–14. [CrossRef]
50. Zhang, C.; Xie, Y.; Bai, H.; Yu, B.; Li, W.; Gao, Y. A survey on federated learning. Knowl.-Based Syst. 2021, 216, 106775. [CrossRef]
51. Massaoudi, M.; Abu-Rub, H.; Refaat, S.S.; Chihi, I.; Oueslati, F.S. Deep Learning in Smart Grid Technology: A Review of Recent

Advancements and Future Prospects. IEEE Access 2021, 9, 54558–54578. [CrossRef]
52. Husnoo, M.A.; Anwar, A.; Hosseinzadeh, N.; Islam, S.N.; Mahmood, A.N.; Doss, R. FedREP: Towards Horizontal Federated Load

Forecasting for Retail Energy Providers. arXiv 2022, arXiv:2203.00219.
53. Singh, P.; Masud, M.; Hossain, M.S.; Kaur, A.; Muhammad, G.; Ghoneim, A. Privacy-preserving Serverless Computing using

Federated Learning for Smart Grids. IEEE Trans. Ind. Inform. 2021, 18, 7843–7852. [CrossRef]
54. Taïk, A.; Cherkaoui, S. Electrical Load Forecasting Using Edge Computing and Federated Learning. In Proceedings of the ICC

2020—2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11 June 2020; pp. 1–6.
55. Gholizadeh, N.; Musílek, P. Federated Learning with Hyperparameter-based Clustering for Electrical Load Forecasting. Internet

Things 2022, 17, 100470. [CrossRef]
56. Su, Z.; Wang, Y.; Luan, T.H.; Zhang, N.; Li, F.; Chen, T.; Cao, H. Secure and Efficient Federated Learning for Smart Grid With

Edge-Cloud Collaboration. IEEE Trans. Ind. Inform. 2022, 18, 1333–1344. [CrossRef]
57. Wang, Y.; Bennani, I.L.; Liu, X.; Sun, M.; Zhou, Y. Electricity Consumer Characteristics Identification: A Federated Learning

Approach. IEEE Trans. Smart Grid 2021, 12, 3637–3647. [CrossRef]
58. Saputra, Y.M.; Hoang, D.T.; Nguyen, D.N.; Dutkiewicz, E.; Mueck, M.D.; Srikanteswara, S. Energy Demand Prediction with

Federated Learning for Electric Vehicle Networks. In Proceedings of the 2019 IEEE Global Communications Conference
(GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019; pp. 1–6.

59. Liu, H.; Zhang, X.; Shen, X.; Sun, H. A Federated Learning Framework for Smart Grids: Securing Power Traces in Collaborative
Learning. arXiv 2021, arXiv:2103.11870.

http://doi.org/10.1007/s00500-021-06496-5
http://doi.org/10.1186/s13677-022-00294-6
http://doi.org/10.1145/3524104
http://doi.org/10.1016/j.procs.2022.04.004
http://doi.org/10.1016/j.comcom.2021.02.014
http://doi.org/10.1016/j.compbiomed.2021.104716
http://www.ncbi.nlm.nih.gov/pubmed/34364262
http://doi.org/10.1109/JIOT.2021.3128646
http://doi.org/10.1561/2200000016
http://doi.org/10.1016/j.neucom.2021.07.098
http://doi.org/10.1016/j.cie.2020.106854
http://doi.org/10.1109/TWC.2020.3037554
http://doi.org/10.1109/TPDS.2020.3040981
http://doi.org/10.1109/TSC.2022.3187962
http://doi.org/10.1016/j.knosys.2021.106775
http://doi.org/10.1109/ACCESS.2021.3071269
http://doi.org/10.1109/TII.2021.3126883
http://doi.org/10.1016/j.iot.2021.100470
http://doi.org/10.1109/TII.2021.3095506
http://doi.org/10.1109/TSG.2021.3066577


Mathematics 2022, 10, 4499 19 of 19

60. Usynin, D.; Rueckert, D.; Kaissis, G. Beyond Gradients: Exploiting Adversarial Priors in Model Inversion Attacks. arXiv 2022,
arXiv:2203.00481.

61. Song, J.; Wang, W.; Gadekallu, T.R.; Cao, J.; Liu, Y. EPPDA: An Efficient Privacy-Preserving Data Aggregation Federated Learning
Scheme. IEEE Trans. Netw. Sci. Eng. 2022, 1. [CrossRef]

62. Ganjoo, R.; Ganjoo, M.; Patil, M. Mitigating Poisoning Attacks in Federated Learning. In Innovative Data Communication Technologies
and Application; Lecture Notes on Data Engineering and Communications Technologies; Springer: Singapore, 2022; Volume 96.

63. Ma, X.; Jiang, Q.; Shojafar, M.; Alazab, M.; Kumar, S.; Kumari, S. DisBezant: Secure and Robust Federated Learning against
Byzantine Attack in IoT-Enabled MTS. IEEE Trans. Intell. Transp. Syst. 2022, 1–11. [CrossRef]

64. Ciucanu, R.; Delabrouille, A.; Lafourcade, P.; Soare, M. Secure Protocols for Best Arm Identification in Federated Stochastic
Multi-Armed Bandits. IEEE Trans. Dependable Secur. Comput. 2022, 1. [CrossRef]

65. Zhao, P.; Huang, Y.; Gao, J.; Xing, L.; Wu, H.; Ma, H. Federated Learning Based Collaborative Authentication Protocol for Shared
Data in Social IoV. IEEE Sens. J. 2022, 22, 7385–7398. [CrossRef]

66. Hou, D.; Zhang, J.; Man, K.L.; Ma, J.; Peng, Z. A Systematic Literature Review of Blockchain-based Federated Learning:
Architectures, Applications and Issues. In Proceedings of the 2021 2nd Information Communication Technologies Conference
(ICTC), Nanjing, China, 7–9 May 2021; pp. 302–307.

67. Antal, C.; Cioara, T.; Antal, M.; Mihailescu, V.; Mitrea, D.; Anghel, I.; Salomie, I.; Raveduto, G.; Bertoncini, M.; Croce, V.; et al.
Blockchain based decentralized local energy flexibility market. Energy Rep. 2021, 7, 5269–5288. [CrossRef]

68. Schäffer, M.; di Angelo, M.; Salzer, G. Performance and Scalability of Private Ethereum Blockchains. In Business Process
Management: Blockchain and Central and Eastern Europe Forum. BPM 2019. Lecture Notes in Business Information Processing; Di Ciccio,
C., Ed.; Springer: Cham, Switzerland, 2019; Volume 361.

69. Ketkar, N. Introduction to Keras. In Deep Learning with Python; Apress: Berkeley, CA, USA, 2017.
70. Panda, S.K.; Satapathy, S.C. An Investigation into Smart Contract Deployment on Ethereum Platform Using Web3.js and Solidity

Using Blockchain. In Data Engineering and Intelligent Computing. Advances in Intelligent Systems and Computing; Springer: Singapore,
2021; Volume 1407.

71. Singhal, K.; Sidahmed, H.; Garrett, Z.; Wu, S.; Rush, K.; Prakash, S. Federated Reconstruction: Partially Local Federated Learning.
Neural Inf. Process. Syst. 2021, 34, 11220–11232.

http://doi.org/10.1109/TNSE.2022.3153519
http://doi.org/10.1109/TITS.2022.3152156
http://doi.org/10.1109/TDSC.2022.3154585
http://doi.org/10.1109/JSEN.2022.3153338
http://doi.org/10.1016/j.egyr.2021.08.118

	Introduction 
	Related Work 
	Smart Contracts for Federated Learning 
	Evaluation Results 
	Discussion 
	Conclusions and Future Work 
	References

