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Abstract: The increasing demand for bandwidth and long-haul transmission has led to new methods
of signal processing and transmission in optical fiber communication systems. The nonlinear Fourier
transform is one of the most recent methods proposed, and is able to represent an integrable nonlinear
Schrödinger equation (NLSE) channel in terms of its continuous and discrete spectrum, to overcome
the limitation of the bandwidth imposed by the Kerr effect on silica fibers. In this paper, we will
propose and investigate the Boffetta-Osburne method for the direct nonlinear Fourier implementa-
tion, and the Gel’fand-Levitan-Marchenko equation for the inverse nonlinear Fourier, as only the
continuous part of the nonlinear spectrum will be used to encode information. A novel methodology
is proposed to improve their numerical implementation with respect to the NLSE, and we analyze
in detail how the improved algorithm can be used in a real optical system, by investigating three
different modulation schemes. We report increased performance transmission and consistency in the
numerical results when the proposed methodology is applied. Our results show that b-modulation
will increase the Q-factor by 2 dB with respect to the other two modulations. The improvement results
with our proposed methodology suggest that b-modulation applied only to a continuous part of the
nonlinear spectrum is a very effective method for maximizing both the transmission bandwidth and
distance in optical fiber communication systems.

Keywords: nonlinear Fourier transform; numerical algorithms; nonlinear Schrödinger equation;
modulation

MSC: 34L25; 35Q60; 35Q55; 35Q94; 65J10; 76B15; 78A46; 94A14; 94A13

1. Introduction

The global data traffic is exponentially increasing due to large bandwidth requests
coming from different services, such as high-definition interactive video, high-resolution
editing video, and distributed systems [1]. The global internet bandwidth has increased
by 28% in 2022, reaching approximately 1 Pbps [2]. Optical fiber is one of the most widely
used transmission mediums when compared to other backbone networks. As opposed to
various communication channels, optical fiber communication systems cannot be modeled
as a linear channel under Gaussian perturbations, since the transmission in this medium
is indeed nonlinear and mainly affected by three physical effects: (1) Kerr nonlinearity,
(2) additive white Gaussian noise, and (3) chromatic dispersion. These effects are considered
as undesirable, and digital signal processing is used to mitigate them at the receiver
side [3,4].

Nowadays, a completely different approach is applied where nonlinearity is treated
as a property of nonlinear channels. This can help to develop new transmission techniques.
Nonlinear Fourier Transform (NFT) is one of the most recent methods studied for transmit-
ting information in optical fiber communication systems in order to overpass the current
state-of-the-art of multi-user transmission in wavelength division multiplexing (WDM)
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systems. From a mathematical point of view, the NFT is able to represent an integrable non-
linear dispersive partial differential equation (PDE) in terms of its continuous and discrete
spectrum [5]. As the wave propagates over the channel under different nonlinear effects,
the impact of the channel on its spectral components will be simply given by independent
linear equations, as will be shown later. This technique is very effective in multi-user
channels where the information can be encoded on the nonlinear part of the spectrum. This
results in reduced inter-channel interference, improved signal to noise ratio, and better
spectral efficiency [6–9]. On the other hand, the implementation of this technique requires
physical changes in the current deployed infrastructure [10].

The NLSE is most widely solved using the numerical method, and hence, a larger
number of numerical solutions have been proposed for it. The main reason behind the
ability for the NLSE ability to be resolved numerically is that it does not have direct
solutions known in analytical form, except for some specific cases. Taha et al. [5,11] made a
comparative analysis of the numerical methods and the finite difference schemes used to
solve the problem associated with NLSE. The analysis included the Ablowitz-Ladik scheme
developed using notions related to the Inverse Scattering Transform (IST), nowadays called
NFT in the telecommunications system community.

The logic behind NFT is quite simple. If the information signal would have to prop-
agate through a highly nonlinear optical fiber governed by the NLSE equation, then its
waveform at a desired distance could be associated with a linear operator that we need to
find. This linear operator is an infinite dimensional matrix with a spectrum that consists of
continuous and discrete eigenvalues. It turns out that these eigenvalues are invariant of the
NLSE during the propagation through the fiber. The goal is to find a modulation scheme
where we can modulate these eigenvalues, thus overcoming the nonlinear effect limitation.
The first idea based on this simplified observation was published around 30 years ago,
where eigenvalue communication was proposed to substitute for the on–off key solution for
transmission in optical fiber communication systems [12]. The same idea was re-proposed
and experimentally verified later in [13–15]. However, many researchers observed that
there is no need to have an unchanged shape in the optical pulse in the NFT domain, as
the channel effect will be a linear one. Moreover, this effect can be easily equalized at the
receiver side, or pre-compensated at the transmitter side.

Several published papers exploit different degrees of freedom of the NFT and the
Inverse NFT (INFT), using both discrete and continuous eigenvalues from the nonlinear
spectrum. This results in a data transmission over the optical fiber similar to orthogonal
frequency division multiplexing (OFDM) [16,17]. Hence, multiple users can access the
optical channel.

Other researchers focused only on the discrete part of the spectrum and proved
experimentally the reliability of the NFT and INFT [18–24]. The sole usage of the continuous
part was studied in several papers [25–29]. Compared to using only the discrete part, this
method resulted in increased performance in terms of spectral efficiency, transmission over
long distances, and lower complexity at the receiver side. Dual polarization experimental
transmission based on NFT was also reported in [30,31]. Full spectrum modulation using
both continuous and discrete nonlinear parts of the spectrum was reported in [32], but this
was limited only to back-to-back transmission.

Several numerical algorithms are proposed in the literature to solve the direct NFT
and INFT [33]. To compute the direct NFT, we can generalize the algorithms into two main
methods: (1) the Ablowitz-Ladik method [34,35] and (2) the Boffetta-Osborne Method [36].
To compute the INFT, we can generalize the algorithms into two main methods: the Dar-
boux transformation method [37] and the Gelfand-Levitan-Marchenko (GLM) method [38].
Fast non linear Fourier transform (FNFT) is also analyzed in several papers, and is pub-
lished online as a tool to reduce the implementation complexity of the NFT [39,40]. The pur-
pose of FNFT is to develop an algorithm that computes a fast product between polynomials
that are used to find the continuous spectrum. The NFT and INFT are relatively new meth-
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ods, where the associated numerical implementations have not yet been fully addressed,
especially its application in the field of optical fiber telecommunications.

Analytical solutions of the NLS have also been recently proposed, in [41–45]. Unfortu-
nately, they cannot be directly applied for optical communication, and numerical solutions
with lower complexity are still the only alternative to solve NLS.

In this paper, we propose a methodology to improve both the direct NFT and INFT
numerical implementations in order to obtain only the continuous part of the nonlinear
spectrum. The reason behind choosing this approach as a preliminary results shows
a potential deployment in the future of the optical fiber transmission, reported in [9].
Compared to existing wavelength division multiplexing (WDM) systems, the continuous
spectrum has a higher spectral efficiency and reduced complexity at the receiver side.

For the direct NFT numerical implementation, we will investigate in detail the Boffetta-
Osborne method, as it cannot be simplified using polynomials, in order to make use of the
fast NFT (FNFT), as in [46,47]. An explanation on how this method is improved for NFT,
and how it will affect the INFT implementation without performance degradation, will be
given below.

For the INFT numerical implementation, we will solve and investigate numerically
the GLM integral equations. These equations can represent a complexity that is comparable
to FNFT. We have identified the parameters’ values for maximizing the performance, and
have used them to compare three different types of modulations that are proposed recently.

In the main strength of our work, we present the complex mathematical tools that are
involved in a simplified form, and minimize errors coming from multiple numerical approx-
imations. Being accessible to the NFT research community, this work will help to simulate
the optical fiber communication system with high accuracy, avoiding expensive and time
consuming experimental setups in laboratories. Compared to the FNFT, the algorithm has
higher complexity, but if carefully designed, it can give better performance.

The rest of the paper is organized as follows: in Section 2, we analyze in detail the
direct NFT, and explain the numerical procedure to recover the continuous scattering
coefficient. In Section 3, we analyze the procedures to be followed, starting from the INFT
theory until an accurate numerical simulation of Marchenko system is reached. In Section 4,
we validate our numerical algorithms, and in Section 5, we compare the performance of
three different types of modulations proposed in the literature. The conclusion is given in
the last section.

2. Scattering Coefficient for Nonlinear Fourier Transform

The evolution of the slowly varying complex-valued envelope of the scalar electric
field y(z, t) propagating in a single mode optical fiber, neglecting the effects of polarization
and attenuation, but taking into account the chromatic dispersion and nonlinear refraction
(Kerr effect), is the following:

∂y(z, t)
∂z

= i
β2

2
∂2y(z, t)

∂t2 − iγ|y(z, t)|2y(z, t) (1)

where z is the space coordinate, t is the time reference frame co-moving with the group
velocity of the signal envelope, β2∈ R chromatic dispersion, and γ > 0 nonlinear parameter.
In particular, β2 represents the dispersion of the group velocity, which causes an enlarge-
ment of the impulse during propagation; parameter γ models the nonlinear refraction,
which is the dependence of the refractive index on the optical field intensity.

To simplify Equation (1), we will first multiply it by the imaginary number i, and then
we will make the following substitution: t→ t0t, z→ −σz0z, y→

√
P0u, with P0 = |β2|

(γT2
0 )

in power units, where T0 is a free normalization parameter in units of time, σ = −sgn(β2),
a constant number that represents the nature of the signal inside the optical fiber; the
following parameters are all positive quantities: P0, t0, z0 > 0. By selecting all these
parameters to have the following relation: z0|β2|

2t2
0

= 1, z0γP0 = 2 , for example by choosing
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P0 = 1, z0 = 2
γ , t0 =

√
|β2|

γ , then we will obtain a simplified form of Equation (1) as
the following:

i
∂u
∂z

+
∂2u
∂t2 + 2σ|u|2u = 0 (2)

when σ = −1, then the solution envelope of Equation (2) will be solitons. These are usually
called deep water waves. In the case of σ = +1, then the soliton cannot exist and the
solution is called shallow water as it is similar to the Korteweg-de Vries (KdV) equation.
In this work, we are interested in a deep water waves solution with σ = −1.

Next, we will explain how the NFT method works. Let us suppose that we have a
differential equation that describes the behavior of u(t, z) in (2), and we want to solve
it using NFT. First, we have to find two linear operators L and A that are dependent
on (t, z, {u(t, z)}) (and possibly the derivatives of u(t, z)) that will describe a scattering
problem of the following system: {

Lw = λw
wz = Aw

(3)

where λ is the eigenvalue, w is the eigenfunction, and the subscript denotes the derivative.
The operators L and A will have to be chosen according to a certain criteria as ex-

plained below: we look for an adequate evolutionary equation over the spatial dimension
for w, assuming that the Schwarz Theorem applies; that is, wtz = wzt. We are going to take
the derivative of the first equation in (3) with respect to space, supposing that: λz = 0. Af-
ter some simple manipulation, we can find the following relation: |Lz + (LA− AL)|w = 0.
If we want this to be valid for every w, then we have to impose the following Lax equa-
tion [48]:

Lz + (LA− AL) = 0 (4)

This equation contains a condition of compatibility for the operators, which in this case are
called Lax pairs and can be possibly solved using the PDE for u. To use the NFT, we need to
associate Equation (2) with some Lax pairs. Suppose we have the following Lax pairs [49]:

L =

[
i∂t −iu(t, z)

−iσu∗(t, z) −i∂t

]
(5)

A =

[
2i∂2

t + iσ|u|2 −2iu∂t − iut

−2iσu∗∂t − iσu∗t −2i∂2
t − iσ|u|2

]
(6)

The first differential operator in (5) gives us the associated eigenvalue problem to the NLSE,
while the second one is the temporal evolution of the eigenfunction, as explained in the
following theorem.

Theorem 1. The Lax equation given in Equation (4) is equivalent to the NLSE equation in
Equation (2) on the hypothesis that the following conditions are true: LΦ = λΦ, Φz = AΦ,

λz = 0, where Φ =

[
φ1
φ2

]
is an autofunction of two components.

Proof of Theorem 1. We first apply the operator A to Φ as

Φz = AΦ =

(
2iφ1,tt + iσ|u|2φ1 − 2iuφ2,t − iutφ2

−2iσu∗φ1,t − iσu∗t φ1 − 2i∂2
t φ2,tt − iσ|u|2φ2

)
(7)

and after this, we apply L to obtain two components: LAΦ1 and LAΦ2. We perform the
same thing, but this time we first apply L and then A to obtain the first component ALΦ1.
Finally, we can find: (LA− AL)Φ1 = −uttφ2 − 2σ|u|2uφ2 and {Lz + (LA− AL)}Φ1 =

−
(

iuz + utt + 2σ|u|2u
)

φ2 = 0, which is the NLSE in Equation (2).
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After choosing the Lax pair, we need to analyze the direct NFT associated with the
following equation:

LΦ = λΦ (8)

For the NFT method to work, we need to impose that at infinity, our solution u will decay
to zero, u→ 0 for |t| → +∞. Equation (8) will be approximated with the following result:

i
[

1 0
0 −1

]
Φt = λΦ, with φ1,t = −iλφ1 and φ2,t = +iλφ2, whose solutions are simple

to calculate.
To form the basis of the solutions space of Equation (8), we can choose from the

following Jost functions, defined as limit [48]:

φ(t, λ) ∼
(

1
0

)
e−iλt, φ(t, λ) ∼

(
0
1

)
eiλt, f or t→ −∞ (9)

ϕ(t, λ) ∼
(

0
1

)
eiλt, ϕ(t, λ) ∼

(
1
0

)
e−iλt, f or t→ +∞ (10)

The overbar sign means that two autofunctions are in straight relation with each other.
For example, the existence of φ(t, λ∗) will imply also that of φ(t, λ), given that if the first
function is a solution to LΦ = λΦ, then the second will also be a solution that is linearly
independent from the first one:

φ(t, λ) =

[
0 −σ
1 0

]
φ∗(t, λ) (11)

Proposition 1. The four solutions φ, φ, ϕ, ϕ are independent in pairs.

Proof of Proposition 1. The Wronskian of two autofunctions can be easily found to be 1
as: W

(
φ, φ

)
= limx→∞ W

(
φ, φ

)
= e−iλteiλt = 1.

The equation LΦ = λΦ should have only two linear independent solutions, and so φ
and φ should be linearly dependent with respect to the pair ϕ and ϕ, as follows:

φ(t, λ) = b(λ)ϕ(t, λ) + a(λ)ϕ(t, λ) (12)

φ(t, λ) = a(λ)ϕ(t, λ) + b(λ)ϕ(t, λ) (13)

This is true when λ∈ R, as the four functions are limited, and in that case, these equations
will define the relative four scattering coefficients data denoted by a(λ), b(λ), a(λ), b(λ).
We note here that these scattering coefficients are time invariant, a property that will be
used for transmitting data over the optical fiber.

To find the spatial evolution of the scattering data, under the hypothesis that:
LΦ = λΦ holds for every z, the operator A is such that:

Φz = AΦ =

( −2iλ2 + iσ|u|22uλ + iut

−2iσu∗λ + iσu∗t 2iλ2 − iσ|u|2
)

Φ (14)

which is the matrix representation that we will use to find the spatial evolution of the
scattering data. The new Jost functions will be defined now as:

Φ(t, z; λ) = e−2iλzφ(t, z; λ), Φ(t, z; λ) = e+2iλzφ(t, z; λ) (15)

Ψ(t, z; λ) = e+2iλz ϕ(x, t; λ), Ψ(t, z; λ) = e−2iλz ϕ(t, z; λ) (16)

They are valid for every z, they will solve equation Equation (8), and they will satisfy
both Equations (9) and (10).
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Let’s take the spatial derivative of Equation (12) with the new Jost function, and after
some manipulation, we obtain the following relations:

az(λ, z) = 0, bz(λ, z) = 4iλ2b(λ, z) (17)

az(λ, z) = 0, bz(λ, z) = −4iλ2b(λ, z) (18)

We can write the spatial evolution of the continuous scattering data, starting from the initial
ones as follows:

a(λ; z) = a(λ; 0), a(λ; z) = a(λ; 0) (19)

b(λ; z) = b(λ; 0)e+4iλ2z, b(λ; z) = b(λ; 0)e−4iλ2z (20)

When the condition a(λ) = 0 is true, then we can define the discrete spectrum of the
Lax operator, which consists of a finite number of discrete eigenvalues. The discrete
scattering coefficient corresponding to these discrete eigenvalues can be computed by using
Equations (12) and (13). In this work, we will focus only on the continuous parameter λ and
its associated continuous scattering coefficient. Altogether, they will define our nonlinear
spectrum of the signal u(t, z).

Numerical Method for the Continuous Scattering Coefficient

We have developed a numerical algorithm to find the continuous scattering coefficient
of the Lax equation: LΦ = λΦ, with the initial condition signal u(t, 0). We followed the
idea introduced in the article by Boffetta and Osborne [36].

The algorithm will use a discretization of u(t, 0) in 2M + 1 samples as: un = u(tn, 0) =
u(n∆t, 0) = u(n T

M , 0), where 2T is the total width of the function u centered at t = 0, such
that u(t, 0) = 0 for |t| ≥ T and M > 0.

The steps followed to find out the numerical algorithm for the continuous scattering
coefficient when λ∈ R are given below:

Step 1. We need to solve numerically the Lax equation: LΦ = λΦ, and find an
equation that provides us with a relationship between φ(t, λ) and φ(−t, λ) for |t| ≥ T.

Instead of solving it directly, we will first assume that u(t, 0) = un is constant in the
interval

[
tn − ∆t

2 , tn +
∆t
2

]
. After this, we are going to associate to it the equation, Φt = BnΦ,

which is equivalent to LΦ = λΦ. Bn is an approximation of L with constant step. We are
going to solve numerically the following Cauchy problem, in an iterative way:{

Φt = BnΦ
Φ
(

tn − ∆t
2 , λ

)
= Φn

, t ∈ (tn −
∆t
2

, tn +
∆t
2
) (21)

with

Bn(λ) =

[
−iλ un
−σu∗n iλ

]
, ∀t ∈

(
tn −

∆t
2

, tn +
∆t
2

)
(22)

in order to find the new starting point Φ
(

tn+1 − ∆t
2 , λ

)
= Φn+1, having already previously

found Φn. Solving equation Equation (21) until tn+1 will give us the following iteration:

Φ
(

tn+1 −
∆t
2

)
= Φ

(
tn +

∆t
2

)
= U(un)Φ

(
tn −

∆t
2

)
(23)

where U(un) represents the effect of the L operator on interval (tn − ∆t
2 , tn + ∆t

2 ]. In
particular, we have that:

U(un) = exp(∆xBn) (24)
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An explicit expression of U(un) can be calculated for our case through the definition of the
exponential of a matrix:

exp(∆tBn) =
∞

∑
k=0

∆tk

k!
Bk

n (25)

and taking into account Taylor’s series of the cosh and sinh functions, for the matrix taken
into consideration. The obtained result is:

U(un) =

[
cosh(qn∆t)− iλ

qn
sinh(qn∆t) un

qn
sinh(qn∆t)

− σun
qn

sinh(qn∆t) cosh(qn∆t) + iλ
qn

sinh(qn∆t)

]
(26)

with q2
n = −σ|un|2 − λ2 being a complex number. If we introduce a new vector as:

Ξ(t, λ) =

[
Φ
Φ
′

]
(27)

with Φ
′
= ∂Φ

∂λ , Equation (23) will be transformed into:

Ξ
(

tn+1 −
∆t
2

)
= T(un)Ξ

(
tn −

∆t
2

)
(28)

with

T(un) =

[
U(un) 0
U
′
(un) U(un)

]
(29)

We take t−M as the starting point and iterate it until we find the following relation for a
generic tn:

Ξ
(

tn+1 +
∆t
2

)
=
−M

∏
i=n

T(ui)Ξ
(

t−M −
∆t
2

)
(30)

having the relation:

−M

∏
i=M

T(ui)Ξ(t−M) =

[
Σ 0
Σ
′

Σ

]
Ξ
(

t−M −
∆t
2

)
= SΞ

(
t−M −

∆t
2

)
(31)

and define S the scattering matrix as:

S =

[
Σ 0
Σ
′

Σ

]
, Σ(λ) =

−M

∏
i=M

U(ui) (32)

In Equation (31), we found a relation that connects φ(t, λ) and φ(−t, λ) for |t| ≥ T. In par-
ticular, we performed it for the case when t = T + ∆t

2 . Therefore, we can move to the
second step of our algorithm, starting from this value of t.

Step 2. Assume that the conditions (9) and (10) are satisfied for |t| ≥ T, given that
u(t, 0) = 0 for |t| ≥ T. The operator L (depending on u(t, 0)) will assume its asymptotic
configuration as:

L∞ = i
[

∂t 0
0 −∂t

]
(33)

and so for every t > T, the following relation should hold:

φ(−t, λ) =

(
1
0

)
eiλt (34)



Mathematics 2022, 10, 4513 8 of 20

For t = T + ∆t
2 , we can rewrite Equation (34) as:

φ

(
−T − ∆t

2
, λ

)
=

(
1
0

)
eiλ(T+ ∆t

2 ) (35)

Step 3. Given that: φ(t, λ) = b(λ)ϕ(t, λ) + a(λ)ϕ(t, λ), we can substitute Equation (10)
into it, to find the following relation for the same value of t:

φ

(
T +

∆t
2

, λ

)
= b(λ)

(
0
1

)
eiλ(T+ ∆t

2 ) + a(λ)
(

1
0

)
e−iλ(T+ ∆t

2 ) (36)

Use Equations (27), (31), (35) and (36) to find an expression for φ(t, λ). Using simple
algebraic steps, we can have a numerical approximation of both the continuous scattering
data a(λ) and b(λ) as:

a(λ) = S11e2iλ(T+ ∆t
2 ) =

(
−M

∏
i=M

U(ui)

)
11

e2iλ(T+ ∆t
2 ) (37)

b(λ) = S21 =

(
−M

∏
i=M

U(ui)

)
21

(38)

A summary of the main steps involved in the calculation of continuous scattering data
is presented below:

1. Determine a good approximation of T so that we can say that u(t, 0) = 0 for |t| ≥ T;
2. Descretize the interval (−T, T) in 2M + 1 samples tn = n∆t = n T

M , with n =
−M,−M + 1, . . . M− 1, M;

3. Find ∏−M
i=M U(ui, λ) for the necessary λ;

4. Use Equations (37) and (38) to find the continuous scattering data for the chosen λ;

3. The Inverse Nonlinear Fourier Transform Method

In following section, we will use the scattering data found in the previous section
to find its relationship with the solution u(t, z) of the NLSE equation. We will first give
without proof the following theorem that will be an important step towards the Gel’fand-
Levitan-Marchenko equation [49].

Theorem 2. The solutions ϕ(t, λ) and ϕ(t, λ) of Lax Equation (8) also satisfying (10), will be
represented as follows:

ϕ(t, λ) =

(
0
1

)
eiλt +

∫ ∞

t
K(t, s)eiλtds (39)

ϕ(t, λ) =

(
1
0

)
e−iλt +

∫ ∞

t
K(t, s)e−iλtds (40)

with K(t, s) and K(t, s) being independent from λ, such that:

K(t, s) = −1
2

u(t) (41)

K(t, s) =
1
2

u(t)∗ (42)

In order to obtain the Gel’fand-Levitan-Marchenko equation, we have to consider that
u(t) should decay fast enough in order to extend Equation (12) to the upper part of the
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complex plane in such a way as to satisfy the following relation of the Jost functions and
continuous data scattering:

1
a(λ)

φ(t, λ) =
b(λ)
a(λ)

ϕ(t, λ) + ϕ(t, λ) (43)

If we substitute (39) and (40) in (43) and we also define the function F(t) = 1
2π

∫ b(λ)
a(λ) eiλtdλ,

we can easily recover the Gel’fand-Levitan-Marchenko equation given as:

K(t, y) + F∗(t + y)−
∫∫ ∞

t
K(t, r)F(r + s)F∗(s + y)drds = 0 (44)

The important case studied in this paper is when the discrete scattering data do not
exist, (a(λ) 6= 0, I(λ) ≥ 0), and F(t) is defined as the inverse Fourier transform of b(λ)

a(λ) .

The ratio b(λ)
a(λ) is also called the reflection coefficient or spectral amplitude of the nonlinear

spectrum. Fast Fourier transform (FFT) can be used to compute it.
Making the following variable change in (44), β = y− t will transform the Gel’fand-

Levitan-Marchenko equation into two equations called Marchenko systems, which will highly
simplify our numerical simulation. If we define: B2(t, 0; z) = −2u(t, z) and B1(t, β) =∫ ∞

0 B2(β, r)F(r + β + 2t)dr as our two auxiliary functions, we can substitute Equation (44)
equivalently with the following Marchenko system:{

B1(t, β) =
∫ ∞

0 B2(t, r)F(r + β + 2t)dr
B2(t, β) =

∫ ∞
0 B2(t, r)F∗(r + β + 2t)dr− F∗(2t + β)

(45)

Equation (45) should be now solved numerically. Observe that in this way the quadrature
formulas that we will use for the approximation of the two integrals that will be applied
on the same interval and on the same variable. Note that to apply such quadrature
formulas, it will be necessary to approximate the domain of function F, as explained in the
next subsection.

3.1. Procedure for the Numerical Simulation of F(t; z)

The purpose of this section is to find a procedure to numerically simulate Equation (45).
We need first to define the domain of F(t; z) = 1

2π

∫ b(λ;z)
a(λ;z) eiλtdλ. FFT will be used in this

regard, together with some sampling constraints to satisfy the sampling theorem. This can
be easily recognized inside the integral with some minor changes.

Let us suppose that the domain of b(λ;z)
a(λ;z) will be in a range between [λMax, λMin] with

N∈ N total discrete points where we have to apply FFT. We denote these discrete points
as: λk = k∆λ = k(λMax−λMin)

N , with k = −N
2 , . . . , N

2 − 1 and ∆λ frequency resolution. In a
strict relation with these points, we will have the non-zero time domain of F(t; z) where
we will define the sampling points as: Tn = n∆T with n = −N

2 , . . . , N
2 − and ∆T time

resolution. The number of points for both domains F(t; z) and b(λ;z)
a(λ;z) will be the same in

this work. Our scope is to find the relationship between λk and Tn for both the time and
frequency domains.

Starting with the smallest frequency associated with the interval [λMax, λMin] that will
be related to ∆T as: ∆T = 1

λMax−λMin
, we also have N∆T = N

λMax−λMin
and ∆T∆λ = 1

N .
In order to solve Equation (44), we developed the following procedure:

1. Approximate the values λMax, λMin, such that b(λ;z)
a(λ;z) = 0 if λ < λMin and λ > λMax to

estimate the domain for b(λ;z)
a(λ;z) .

2. Control if 2∆T < 2π
λMax−λMin

.
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(a) If True, define first p = 2π
λMax−λMin

− 2∆T and perform the following change in
the variables λMin and λMax:
λMin = λMin −

p
2 and λMax = λMax − p

2 .
(b) If False, divide by 2 the step ∆t until point (a) is satisfied.

3. Select the resolution in frequency based on the total number of points as:

∆λ =
λMax − λMin

N
(46)

4. Select the resolution in time as:

∆T =
1

λMax − λMin
(47)

5. Find the spatial evolution of the spectral amplitude by sampling b(λ;z=0)
a(λ;z=0) e4iλ2z on the

grid constructed for b(λ;z=0)
a(λ;z=0) , and apply the inverse FFT in order to find the vector

F(t; z) on the grid with amplitude:

N∆T =
N

λMax − λMin
(48)

6. Select a user-defined variable called tolerance, ε, and check if the function F(t; z)
is less than it at the edge only, in order to better approximate its domain. We will
differentiate between two cases:

(a) If max
[

P
(
±N

2 ∆T
)]

< ε, then the approximated support and the corresponding
grid are chosen such that we can apply the quadrature formulas approximating
the integrals to be computed in the Marchenko system of Equation (3.5).

(b) Otherwise, we multiply by 2 the total number of points and restart from the
second step of this numerical algorithm.

Following this procedure, we will be able to properly represent the signal u(t, z) and the
integral of the function F(t; z).

3.2. The Numerical Method Algorithm for the Marchenko System

Given the above considerations, the points on which we will decide to approximate the
function u(t, z) will be equally spaced at a distance ∆T. The points where we will find u(t, z)
are collected in the following vector: T = [t1 = a, . . . , tn = a + (n− 1)∆T, . . . , tN = b], n =
1, . . . , N, where a < 0 and b > 0 are extreme points of this vector.

To solve the Marchenko system in Equation (45), we are going to use the Nyström
method, approximating the integrals by means of a quadrature formula to derive a discrete
system to be solved through an appropriate method. In particular, we want to find B2(t, β)
for β = 0. The system in (45) with β = 0 will be:{

B1(tn, 0) =
∫ ∞

0 B2(t, r)F(r + 2tn)dr
B2(tn, 0) =

∫ ∞
0 B1(t, r)F∗(r + 2tn)dr− F∗(2t)

(49)

Equation (49) should be solved numerically. We observe that inside the integral, we
need to evaluate B2(t, r) and B1(t, r) for values of higher than zero. As a result, we need
to solve for the values of β 6= 0. In particular, we are going to take β and r from the same
domain D = [2m∆t]lm=0 where l = ceil

[
N
2 − n

]
is the first value of m, such that we are

outside the domain of F. The reason for this choice is that such a domain should take into
account the fact that we know the support of F, which is evaluated in both integrals as
r + 2tn = r + 2n∆t. The sampling step of variable r where we will integrate is: ∆β = 2∆t.



Mathematics 2022, 10, 4513 11 of 20

Now, we can finally approximate both integrals in Equation (49) using the Simpson rule to
find the system of equations:{

B1
(
tn, rj

)
= ∑l

m=0 dmB2(tn, rm)F
(
rn+j+m

)
B2
(
tn, rj

)
= ∑l

m=0 dmB1(tn, rm)F∗
(
rn+j+m

)
− F∗

(
rn+j

) (50)

where rn+j+m = (k + j + l)∆β, dm = ∆β
3 {1, 4, 2, 4, 2..}, j = 0, . . . , l. The system in

Equation (50) can be represented using a matrix notation such as:∣∣∣∣ I −FD
F ∗D I

∣∣∣∣∣∣∣∣B1
B2

∣∣∣∣ = ∣∣∣∣ 0
F ∗
∣∣∣∣ (51)

where F =
(

F
(
rn+j+m

))l
m,j=0 , F ∗ =

(
F
(
rn+j

))l
j=0, D = diag{dm}l

m=0 , are known vari-
ables. The unknown variables are:

B1 = (B1(tn, rm))
l
m=0, B2 = (B2(tn, rm))

l
m=0 (52)

In Equation (51), we are interested in the first component of B2. After finding B1 = FDB2
from the first part of the system, we substitute it in the second part, and then solve the
following system:

(F ∗DFD + I)B2 = F ∗ (53)

Once we have solved it, we are able to find out the signal propagated at a desired distance z:

u(t, z) = B2(r0) (54)

In summary, to find out the solution u(t, z) of Equation (2) through the implementation
of the INFT (in this case, when a(λ) 6= 0 for every λ∈ C), we need to follow the steps below:

1. Based on the above algorithm, we first need to find the scattering data a(λ) and b(λ),

and their ratio b(λ)
a(λ) .

2. We need to find the spatial evolution of continuous spectral amplitudes b(λ)
a(λ) by

multiplying them with e4iλ2z (step 2 should be applied only in case we will transmit
the signal in an optical fiber described by Equation (2)).

3. Find F(t, z) = 1
2π

∫ b(λ)
a(λ) eiλtdλ using IFFT, as explained above.

4. Solve the system in (53) to find out u(t, z) given in (54).

4. Validation of the NFT and INFT Algorithm Implementations

To verify our algorithm implementation for both the direct and inverse nonlinear
Fourier methods, we have run multiple tests on soliton pulses taken as the initial condition
with a well-known analytically closed form solution. The initial condition of our simulation
is the hyperbolic secant function shown also in Figure 1:

u(t, 0) = eitsech(t) (55)
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Figure 1. The soliton pulse defined in (55).

We can theoretically find the closed form solution of the scattering data, as in [50]:

a(λ) = φ1(t, λ)eiλ, b(λ) = φ2(t, λ)eiλ (56)

φ =

[
− (i/2) tanh(t)+λ+1/2

i/2+λ+1/2 e−iλt

− i/2
(i/2+λ+1/2)cosh(t) e−i(λ+1)t

]
(57)

In Figures 2 and 3, we show the continuous scattering data obtained from Equation (55)
using the NFT algorithm described in the previous sections.

−30 −20 −10 0 10 20 30
0.7

0.8

0.9

1

λ

R
e
{
a
}

−30 −20 −10 0 10 20 30
−0.2

0

0.2

λ

I
m
{
a
}

Figure 2. Real and imaginary parts of a(λ).
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Figure 3. Real and imaginary parts of b(λ).
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The difference between the analytical continuous scattering, a(λ), and the numer-
ical one, â(λ), is measured in terms of the normalized means squared errors (NMSEs),
defined as:

NMSE =

∫ +∞
−∞ |a(λ)− â(λ)|2dλ∫ +∞

−∞ |a(λ)|
2dλ

(58)

We compare the numerical results obtained with the proposed modified algorithm similiar
to [36] and theoretical one given in Equations (56) and (57), for different numbers of
discrete points M, as shown in Figure 4. We have assumed a truncated soliton pulse in the
range t ∈ [−6, 6], and a spectral parameter λ ∈ [−10, 10]. The NMSE is used to measure
the differences for both scattering coefficients a(λ) and b(λ) in order to understand how
much the numerical simulations will deviate from the analytical one as a function of M.
If M = 128, it means that u(t, 0) is discretized in 2 ∗M + 1 = 257 points. The results are
highly correlated to M, as can be observed from Figure 4. If M will increase, the NMSE will
also increase more and more between the numerical and theoretical results.

For further verification of our numerical algorithm procedure for the calculation of
scattering data, we have checked if the following condition is satisfied (which we know
that it should be always true):

|a(λ)|2 + |b(λ)|2 = 1 (59)

For a fixed M = 128, we have obtained an error that is approximately 10−10, that is:
|a(λ)|2 + |b(λ)|2 − 1 ≈ 10−10; consequently we can conclude that the proposed methodol-
ogy has been well implemented and that it is working.
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Figure 4. NMSEs of a(λ) and b(λ) for different values of M.

To verify for F(t; 0), we recall that u(t, 0) can be found from (41) and (44), and as-
suming z = 0 and y = t, we have that: −2K(t, 0) = u(t) and K(t, t) + F∗(2t) −

∫∫ ∞
t

K(t, r)F(r + s)F∗(s + t)drds = 0. When u(t, 0) is very small, we can assume that K and F
are also small. It follows that the third addendum of Equation (44) can be negligible and
we can consider: |u(t, 0)| ≈ 2|F(2t, 0)|.

Assuming as an initial condition: u(t, 0) = 10−3e−x2
, we can simply use the FFT to find

out F(t), taking into account strictly following the algorithm shown in the section above.
The domain of λ is selected based on the maximum value that we have observed from
the ratio of b(λ)/a(λ), which is in the order of 10−3, such that: |b(λ)/a(λ)| > 10−6 ∀λ ∈
[λmin, λmax]. In addition, to verify the hypothesis according to which |u(t, 0)| ≈ 2|F(2t, 0)|
and knowing that the maximum of u(t, 0) is 10−3, we can assume that the domain of F(t) is
the interval where F(t) > 10−6. We are going to look for the number of points N on which
to calculate b(λ)/a(λ) and F(t) based on the above observation.



Mathematics 2022, 10, 4513 14 of 20

In Figure 5, we show the result of both functions |u(t, 0)| and 2|F(2t, 0)| with N = 128,
which looks very similar to each other. Selecting the right number of points N is very
important, as the two functions will not look so similar to each other in the case where N is
lower than 128.
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Figure 5. The magnitude of |u(t, 0)| in blue and 2|F(2t, 0)| in red.

5. Applications of NFT and INFT on an Optical Communication System

In this section, we will apply our proposed implementation of the NFT/INFT algo-
rithms on a modulated signal used in optical communications. The information is encoded
in continuous scattering data at the transmitter side and is decoded on the receiver side
using both NFT and INFT numerical methods (as explained in the previous sections). We
call this a naive implementation as it is in principle simple, but it has some disadvantages
that we are going to note below. The second modulation that we will investigate is similar
to the previous one, with the difference of better controlling the pulses in the time and fre-
quency domains. Lastly, we will apply our NFT/INFT algorithm to the recently proposed
method called b-modulation, where only b(λ) will be used to encode the information at
the transmitter side.

The nonlinear Fourier transform transmission system will exploit its orthogonality
property to allow different users to transmit at the same time in optical fiber medium
without any interference with each other. This is similar to the traditional OFDM that is
used in almost all new wireless and wired technologies. The scenario that we are going to
investigate will involve only the continuous part of the nonlinear spectrum, as the discrete
part will increase the complexity at the receiver side. The use of a root searching algorithm
is needed, and it is difficult to control their number. In a numerical simulation, we will
make sure that there is no discrete part of the nonlinear spectrum.

The first modulation where we are going to test our implementation of NFT/INFT
algorithm is originally proposed in [16]. Suppose we have the following quadrature phase
shift keying (QPSK) modulated signal expressed in the time domain as:

s(t, 0) = ∑
k

sk p(t− kT) (60)

where sk ∈ {1± i,−1± i} complex symbols, T = 0.02[ns] is the pulse duration, and p(t)
is the root raised cosine function with unit energy and roll off factor ρ = 0.2. Let us
also define: S( f )= F{s(t)}, the linear Fourier transform of our modulated signal. In the
first modulation, the linear spectrum S( f ) is mapped directly to the continuous nonlinear
spectrum defined as the ratio between scattering data, called the reflection coefficient:
ηc(λ, 0) = b(λ,0)

a(λ,0) = − 1
2π S

(
− λ

π

)
. In order to compute the numerical sample in the time
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domain, we use the INFT algorithm as explained in the previous sections. The transmitted
signal in the optical fiber will be:

ηc(t, 0) = INFT(ηc(λ, 0)) (61)

At the receiver side, the NFT algorithm is used to obtain:

ηc(λ, z) = NFT(ηc(t, z)) (62)

The channel equalization is also applied to obtain the transmitted non linear spectrum as:

ηc(λ, 0) = ηc(λ, z)e−4jλ2z (63)

The equalization is performed by inverting the effect of the channel, which is simply a
phase shift in the nonlinear Fourier transform. An inverse Fourier transform followed by a
match filter are used to recover the received symbols:

ŝk =
∫ ∞

−∞
s(t, z)p∗(t− kT)dt (64)

where ŝk is an estimation of sk in case the channel is affected by white Gaussian noise.
In the second modulation that we are going to investigate, the reflection coefficient

ηc(λ, 0) is not obtained directly from mapping the linear Fourier transform, but from the
following transformation to ensure that the signals have the same energy in linear and
nonlinear space:

ηc,n(λ, 0) =
(

e|S(λ,0)|2 − 1
)1/2

ejarg(S(λ,0)) (65)

The third modulation to test our algorithm is called b-modulation. The data are en-
coded only on b(λ, 0) as part of the nonlinear spectrum with the following transformation:

b(λ, 0) = AS(λ, 0) (66)

where:

A =

√
1− e−|S(λ,0)|2√
|S(λ, 0)|2

(67)

The continuous scattering data a(λ, 0) are related to b(λ, 0) as:

a(λ, 0) =
√

1− |b(λ, 0)|2e
jH
(

log(1−|b(λ,0)|2)
2

)
(68)

whereH(·) denotes the Hilbert transform. The reflection coefficient will be denoted as ηc,b(λ, 0).
The details of b-modulation are already discussed in several other papers [30,51,52].

We conducted different simulation in MATLAB to transmit the three modulated signals
in an optical fiber medium of total length 1600 km. The fiber was divided into 20 spans of
80 km each, where at the end of each span, white noise originating from distributed Raman
amplification was added, with a noise figure of 4 dB. The optical fiber dispersion parameter
is β2 = −20.4 ps2/km, and the nonlinear coefficient is γ = 1.3 W−1 km−1. At the receiver
side, we are going to measure the performance using the Q-factor in dB found directly from
the constellation affected by the white noise, as in [53]:

Q = 10 log10

(
∑k|sk − ŝk|2

∑k|sk|2

)−1

(69)

For historical reasons, the performance in optical systems are usually measured in
terms of the quality Q-factor, given as: Q =

√
2er f c−1(2BER), where er f c−1 is the inverse
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complementary error function, and BER is the bit error rate. For a fixed BER = 10−3,
Q-factor is equal to 9.8 dB. Systems with a Q-factor of less than 9.8 dB will fail to work,
as the number of errors is very large. We can think of this value as a lower bound for our
system to work. The reason for why we are using Equation (69) as a quality parameter
is because the number of transmitted symbols in our numerical simulation is only 1024,
and the minimum BER that we can achieve is only 4.8× 10−4. To fully investigate the
system, even for lower BER, we use Equation (69). Because the oversampling factor used
in this work is 40, we cannot increase the number of symbols to achieve a lower BER, as
the computation cost will be very high.

The local oscillator at the receiver side has no frequency drift and has a linewidth of
100 kHz. The total number of symbols transmitted was 210. We added 25% of overhead
to satisfy Step 1 of the direct NFT algorithm. An oversampling factor of 40 was selected
for the simulations. The system performance for the three different modulations applying
our algorithm are shown in Figures 6 and 7. In Figure 6, we show the Q-factor versus the
average power in the input of the optical fiber for all three modulations. We observe that the
b-modulation performs better compared to the other two modulations, which on the other
hand, show very similar performances. The maximum value of the Q-factor, Q = 25.9 dB,
is achieved when the average power is equal to −1 dBm, for the b-modulation shown in
the blue line in Figure 6. Compared to the other two modulations, the Q-factor is increased
by 2 dB. If the average power is less than −1 dBm, the performance is deteriorating as the
Q-factor is decreasing. The reason behind this is the noisy channel assumed in the system,
which is added by the distributed optical Raman amplifiers assumed over the optical links.
If the average power is greater than −1 dBm, then the Q-factor is also decreasing due to the
nonlinear effects and the numerical errors from many approximation values in our method.
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Figure 6. Q-factor versus input average power for all three modulations for a 50 Gbaud QPSK
modulation over 1600 km of optical fiber. In blue line is shown the b-modulation; in black line, we
show the modulation with a normalized reflection coefficient ηc,n, given in Equation (64), and in red
line, the normal modulation with reflection coefficient ηc,n, given in Equation (63).
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Figure 7. Q-factor versus transmission distances for all three modulations for a 50 Gbaud QPSK
modulation. In blue line is shown the b-modulation, in black line, we show the modulation with a
normalized reflection coefficient ηc,n given in Equation (64), and in red line, the normal modulation
with reflection coefficient ηc,n, given in Equation (63).

In Figure 7, we show the Q-factor versus transmission distances for all three modula-
tions. We also observe better performance when b-modulation is used, shown in the blue
line, and similar performances for the other two modulations. We observe that in the first
400 km of transmission distance, b-modulation has a lower Q-factor with respect to the
other two. After 500 km of transmission distance, b-modulation start to shows a better
Q-factor for all of the distances that we have simulated.

6. Conclusions

In this work, we have improved the NFT and INFT algorithms by going into the
numerical details of the integral equation, proposing a novel methodology for their imple-
mentation, validating the results, and applying them on three different modulated signals
for an optical communication system.

Only the continuous part of the nonlinear scattering data is investigated, as the spectral
efficiency is higher and the complexity implementation is lower compared to the discrete
nonlinear spectrum. We have considered the Boffetta-Osburne method for direct NFT, and
the numerical solution of the GLM integral equation for INFT implementation. For both
methods, we have simplified their complex mathematical derivation and have shown how
to apply them step-by-step for an improved numerical implementation, as they are subject
to various approximation errors that may drastically affect the final performance results.

We have identified four parameters that affect the performances of our numerical
implementations of NFT and INFT during the validation process. They consist of two
temporal parameters: T function width and M discrete points, and two spectral param-
eters: resolution in frequency and the number of points N. The temporal parameter, T,
requires the function to be considered zero outside of 2T, and this will be the source of
additional overhead data that are used in a real modulated signal. The total discrete points,
2M + 1, will define how many data points we can transmit at the same time, similar to
the OFDM scheme. A lower number will affect the performance of the system. The num-
ber of points N was selected to be a high number with the assumption of having a large
oversampling factor at the transmitter side. All these parameters should be optimized in
order to gain the maximum performance from the nonlinear Fourier transform. We also
observed that for large amplitudes, the performance drastically decreased because when
truncating the integrals, due to the Gibbs effect, the errors will also increase. In addition,
during each iteration, the errors are accumulated by affecting the performance of the system.
In Section 3.1, we showed the steps of the algorithm to be used to properly represent the
signal in the time and frequency domains, and how we should select the domain of the
Marchenko system for INFT implementation.
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We then conducted extensive numerical simulations on three different modulation
schemes. Our results suggest that b-modulation is an effective method to be used in optical
fiber communication systems. It shows better performance with a higher Q-factor at a fixed
input average power and distance.

The results presented in this paper show the feasibility of a continuous nonlinear
optical-based spectrum with our proposed methodology for NFT/INFT implementation.
Despite the fact that this is a significant step forward for numerical simulation, it needs
further research targeting of least NFT/INFT complexity and higher accuracy algorithm.
For future work, we plan to use only the Boffeta-Osburne method for both direct NFT and
INFT using the duality principle, and we compare the results with a system where only the
Marchenko system is used. Using only one algorithm without performance degradation
will probably make the system less prone to numerical errors.
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