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Abstract: This paper suggests and develops a new methodology of estimation for a multivariable
reachability region of a plasma separatrix shape on the divertor phase of a plasma discharge in D‑
shaped tokamaks. The methodology is applied to a spherical Globus‑M/M2 tokamak, including the
estimation of a controllability region of a vertical unstable plasma position on the basis of the experi‑
mental data. An assessment of the controllability region and the reachability region of the plasma is
important for the design of tokamak poloidal field coils and the synthesis of a plasma magnetic con‑
trol system. When designing a D‑shaped tokamak, it is necessary to avoid the small controllability
region of the vertically unstable plasma, because such cases occur in practice at a restricted voltage
on a horizon field coil. To make the estimations mentioned above robust, PID‑controllers for verti‑
cal and horizontal plasma position control were designed using the Quantitative Feedback Theory
approach, which stabilizes the system and provides satisfactory control indexes (stability margins,
setting time, overshoot) during plasma discharges. The controllers were tested on a series of plasma
models and nonlinear models of current inverters in auto‑oscillation mode as actuators for plasma
position control. The estimations were made on these models, taking into account limitations on
control actions, i.e., voltages on poloidal field coils. This research is the first step in the design of the
plasma shape feedback control system for the operation of the Globus‑M2 spherical tokamak. The
developedmethodologymay be used in the design of poloidal field coil systems in tokamak projects
in order to avoid weak achievability and controllability regions in magnetic plasma control. It was
found that there is a strong cross‑influence from the PF‑coils currents and the CC current on the
plasma shape; hence, these coils should be used to control the plasma shape simultaneously.

Keywords: tokamak; robust PID‑controllers; QFT; controllability; reachability; plasma position;
shape

MSC: 93C35; 93C95

1. Introduction
1.1. Background

Tokamaks (toroidal vessels with magnetic coils) are the most promising devices for
solving the controlled fusion problem [1]. In particular, tokamaks are classified by an as‑
pect ratio, A (ratio of a tokamak major radius to a minor radius). One has to differentiate
conventional (A ≈ 3÷ 4) and spherical (A ≈ 1.4÷ 1.7) tokamaks (see the surveys in [2–5]).
Spherical tokamaks, in comparison with conventional tokamaks, have a number of advan‑
tages: better plasma confinement, higher values of safety factor q on a plasma boundary,
higher values of magnetic and electric fields, etc. These features make the creation and
operation of fusion power plants on the basis of spherical tokamaks much cheaper than
power plants based on conventional tokamaks [6,7].

The development of the first DEMO (DEMOnstration Power Plant) as a fusion power
plant was accompanied by an increase in the size of the devices used to achieve the Lawson
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criteria [8], correspondingly increasing their cost and the time required to build them [6,7].
According to expert estimations, the first commercial fusion power plant based on toka‑
maks with a relatively large aspect ratio should be built by about 2075 [6]. However, there
is an alternative approach in which the fusion plant is built up using several modules,
with each module being a spherical tokamak. The construction of such a power plant is
much cheaper compared with using DEMO on the conventional tokamak and can be im‑
plemented in about fifteen years [6]. Due to plasma properties, it is possible to create a
spherical tokamak module with a major radius of ~1.5–1.7 m. In contrast to these plants,
the conventional DEMO major radius is about 9 m. According to modern estimates, a
module fusion power plant is able to provide highly competitive electricity for less than
0.06 $/kWh. In this regard, the work on the development, creation, and operation of spher‑
ical tokamaks is important and promising [6,7]. Advanced plasma magnetic control sys‑
tems are able to provide the reliable operation of tokamaks and fusion power plants on the
basis of tokamaks. Because of this, developments in plasma magnetic control systems for
tokamaks are of great importance.

1.2. Motivation and Novelty
This paper is devoted to plasma magnetic control systems, the controllability region

of the plasma unstable vertical position, and the reachability areas of a separatrix of the
divertor phases of discharges in the spherical Globus‑M/M2 tokamak (Ioffe Institute, Saint
Petersburg, Russia) [9,10]. Usually, this topic is not investigated in detail for tokamaks and
their poloidal systems in projects and in experiments, despite plasma magnetic control
systems being developed and applied in practice [2–5]. However, such inaction in this
matter sometimes leads to faults in tokamak plasma poloidal systems, which create serious
difficulties for plasma control. For instance, in [11], a very narrow controllability region
in the plasma vertical direction of ITER was discovered. It forced the ITER project team
to put additional horizon field coils (HFC) inside the vacuum vessel (VV) to significantly
increase this region [11]. In the tokamak T‑15MD project (Kurchatov Institute, Moscow,
Russia), the HFC took place near poloidal field (PF) coils, which screened the HFC and
made the whole plasma vertical position control system internally unstable. This situation
forced the tokamak designers to place this coil between the VV and the toroidal field coil,
and that provided an acceptable controllability region for plasmamovement in the vertical
direction [12]. In [13], the optimal location of HFC in the IGNITOR tokamak was found for
the first timewith optimization criterion in the form of the size of the vertical controllability
region inside the toroidal field coil, near the VV.

This situation motivated us to suggest and develop a methodology of estimation for
a multivariable reachability region in a plasma separatrix shape on the divertor phase of
plasma discharges in D‑shaped tokamaks. The divertor phase is a key part of plasma dis‑
charge when the plasma is held in a vacuum vessel only by magnetic fields and does not
touch the vessel walls. Depending on various discharge parameters, the start time, dura‑
tion, and end time of the divertor phase may be different.

In the case of the operating spherical Globus‑M2 tokamak, studying the controllabil‑
ity region in the vertical direction made it possible to estimate the stability margin in the
presence of the restriction on theHFC voltage. A new study of the upper and lower bound‑
aries of the reachability area for the plasma shape of the Globus‑M2 tokamak will provide
a chance to estimate the margins of the plasma separatrix location, when the plasma shape
feedback control system will be applied in the presence of restrictions on PF‑coil voltages.
The basic preparations that form the basis of simulations for such physical experiments
with a feedback plasma shape control system were performed in [14–16].

1.3. State‑of‑the‑Art and Beyond‑the‑State‑of‑the‑Art
Numerical and analytical approaches to the controllability areas in tokamaks were

considered in [11–13,17,18]. These methods form the basis of controllability area estimates
for the Globus‑M/M2. In this work, specific methods for estimating the reachability region
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were developed for linear dynamic systems in a steady‑state regime in general and for
plasma shape control in the tokamak in particular. In [19], a numerical analysis of the
sensitivity of plasma shape gaps to poloidal field coil currents of the FAST tokamak was
performed, which is the first step of the plasma position multivariable reachability region
estimation proposed in this article for the Globus‑M2 tokamak

1.4. Hypothesis
With the help of plasma models of the Globus‑M/M2 tokamaks, it is possible to es‑

timate and compare the controllability area of the unstable vertical plasma position and
the reachability area of the plasma shape. To do this, robust PID‑controllers for plasma
position control are needed. The tuning of PID‑controllers is performed using the well‑
known Quantitative Feedback Theory (QFT) approach [20]. The vertical controllability re‑
gion is estimated using numerical simulations of plasma discharges with different initial
displacements and analytically by diagonalizing the A‑matrix of the state–space model
of the plasma without a vertical position PID‑controller. The reachability region of the
plasma shape is estimated by using the matrix relation between the inputs and outputs of
the linear model in the steady‑state regime on the basis of the developed methodology.

1.5. Paper Organization
The paper is organized in the followingway. Section 2 describes the tokamak, models,

and goals of this work. Section 3 presents the tuning and numerical proving of plasma
position PID‑controllers. In Section 4, the estimation of the controllability region of the
vertical plasma positionwasmade using an analytical approachwith the help of numerical
simulations. Section 5 presents a new estimation of the reachability region of the plasma
shape by means of the newmethodology. The Conclusion summarizes the basic results of
the paper.

2. Problem Description
2.1. Globus‑M2 Tokamak

The operating spherical Globus‑M2 tokamak is shown in Figure 1. The vertical cross‑
section of the Globus‑M/M2 tokamak, with the locations of PF coils and VV elements, is
presented in Figure 2a. The basic parameters of this device are as follows: major radius,
R = 0.36 m; minor radius, a = 0.24 m; aspect ratio, R/a = 1.5; toroidal magnetic field,
Bt max = 1 T; plasma current, 0.5 MA; impulse duration, less than 0.7 s [9,10].
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2.2. Plasma Control System Structure
There are eight PF‑coils in the Globus‑M/M2 tokamak. They are used for plasma con‑

trol. The HFC controls the vertical plasma position; the vertical field coil (VFC) controls
the horizontal plasma position. Currents in these coils are supplied by thyristor current
inverters that operate in self‑oscillation mode [15]. These devices have a self‑oscillation
frequency of up to 3 kHz, which is necessary for high‑performance plasma position con‑
trol. The central solenoid (CS), correcting coil (CC), and four poloidal field (PF) coils (PF1,
PF2top, PF2bottom and PF3) can be used for plasma shape control (Figure 2b,c). The
plasma shape in this paper is determined by four gaps between the plasma separatrix and
the first wall of the VV and the positions of two intersection points of the separatrix and
the first wall (Figure 2b,c).

2.3. Linear Plasma Model
The linear plasmamodel was obtained fromKirchhoff’s law equations for the PF coils,

VV elements, and plasma column, as well as Newton’s law of motion for the plasma verti‑
cal and horizontal positions [16]:

.
Ψ[J(t), R, Z] + Rc I = U,

m
..
Z = FZ[J(t), I, R, Z],

m
..
R = FR[J(t), I, R, Z].

(1)

where I =
[
IT
c IT

v Ip
]T is the vector‑ column of currents in the PF coils, VV, and plasma;

Ψ is the vector‑column of magnetic fluxes through areas encircled by the currents; J(t) is
the plasma current density distribution; Rc is the diagonal matrix of PF, VV, and plasma
electrical resistances; U is the vector‑column of voltages applied to the circuits; m is the
plasmamass; Z and R are plasma coordinates; FR and FZ are horizontal and vertical forces
acting on the plasma.

Changes in the plasma shape are described by projections of the displacements of six
points P1–P6 on the plasma separatrix in the corresponding directions indicated by arrows
in Figure 2b,c. The plasma shape changes with plasmamovement and changes currents in
the system:

P = P[J(t), I, R, Z], (2)

where P =
[
P1 P2 P3 P4 P5 P6

]T .
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In the equilibrium the effect of forces FR and FZ on the plasma is zero, but the ver‑
tical plasma displacements increase the vertical force, ∂FZ

∂Z > 0, causing instability in the
controlled plant. The horizontal plasma position is stable; thus, ∂FR

∂R < 0, allowing us to
neglect the small plasma mass in the horizontal motion equation.

Model Equations (1) and (2), used for small deviations from the plasma equilibrium,
are written as follows:

M[J(t), R, Z]δ
.
I + RI + ∂

∂R Ψ[J(t), R, Z]δR + ∂
∂Z Ψ[J(t), R, Z]δZ = δU,

m
..
Z = ∂

∂I FZ[J(t), I, R, Z]δI + ∂
∂R FZ[J(t), I, R, Z]δR + ∂

∂Z FZ[J(t), I, R, Z]δZ,

0 = ∂
∂I FR[J(t), I, R, Z]δI + ∂

∂R FR[J(t), I, R, Z]δR + ∂
∂Z FR[J(t), I, R, Z]δZ,

δP = ∂
∂I P[J(t), I, R, Z]δI + ∂

∂R P[J(t), I, R, Z]δR + ∂
∂Z P[J(t), I, R, Z]δZ.

(3)

With the introduction of the state vector, x =
[
δIT δ

.
Z δZ

]T
, the input vector,

u = δU, the output vector y =
[
δZ δR δIT

c δPT]T , and the linear transformation, the
model Equation (3) is written in the standard form of the state–space model:

.
x = Ax + Bu,
y = Cx.

(4)

In this work, one model for the Globus‑M plasma and five models for the Globus‑M2
plasma are used (each model corresponds to different tokamak shots). The plasma current
density, J(t); plasma coordinates, R, Z; and currents, I, in the system are identified from
experimental data via plasma equilibrium reconstruction code FCDI [16]. For each shot,
a set of linear time‑invariant (LTI) models corresponding to plasma equilibria at different
time points of the shots were constructed. Each plasma model (4) has 26 states for Globus‑
M2 and 24 states for Globus‑M, 8 inputs, and 16 outputs: x ∈ R26, u ∈ R8, y ∈ R16,
A ∈ R26×26, B ∈ R26×8, C ∈ R16×26. The inputs are voltages on the PF‑coils; the outputs
are the plasma position, the currents in the PF‑coils, and the plasma shape. The parameters
of the plasma change during plasma discharge. Because of this, instead of using onemodel
(4), each set of plasma models was interpolated into a time‑dependent model:

.
x = A(t)x + B(t)u,

y = C(t)x,

x ∈ R26, u ∈ R8, y ∈ R16, A ∈ R26×26, B ∈ R26×8, C ∈ R16×26.

(5)

2.4. Problem Statements
Problems to be solved:

• Tuning of the robust PID‑controllers of the vertical and horizontal plasma positions.
The problem of PID‑controller tuning is finding controller parameters so that an A

matrix of the state–space equation of a closed loop system in continuous time becomes
stable (the real part of all eigenvalues of A should be negative): ∀i real(λi(A)) < 0. The
setting time is about 10 ms, and the overshot is less than 20%.
• Estimation of the size of the unstable vertical plasma position controllability region.

The controllability region of the vertical plasma position means that the control sys‑
tem is able to transfer any vertical plasma position in that region to any state inside that
region in a finite time interval; in doing so, a control action is kept within the allowable
limits (the voltage on the HFC is less than 900 V), and other states at t = 0 are equal to zero:

v = max |Z0|:

∀z̃ ∈ [−v,+v] : ∃u(t) : max|u(t)|≤ umax, Z0 = z(0) = y1(0) : z(t) → z̃.
(6)
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• Estimation of the plasma shape reachability area
Estimation of the reachability area of the plasma shape is divided into two parts: the

upper and lower estimations. This separation is necessary because the reachability area is
multivariable: eight inputs and six outputs are involved, and each input influences each
output. Two kinds of estimation provide more information about the reachability area.

The upper estimation of each gap is the maximum value of this gap, which is inde‑
pendent of other gaps (the values of other gaps can be any.

The lower estimation is the maximum value within which all gaps can ch‑
ange simultaneously.

3. Plasma Position PID‑Controllers Tuning
Plasma position controllers are critically important for the operation of the plasma

magnetic control system as a whole. For plasma position control, it is necessary to rapidly
change the currents in the HFC and VFC. There are two thyristor current inverters
(Figure 3) in the plasma position control loops for this goal [15]. In this paper, the pro‑
portional gain is used as a current inverter model for PID‑controller tuning, and a nonlin‑
ear model is used for testing. The first reason to design robust controllers is a very rough
approximation of the current inverter. The second reason is the uncertainties and time‑
variance in the plasma model.
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Figure 3. Block diagram of the Globus‑M/M2 plasma control system.

The QFT approach was chosen for PID‑controller tuning (Figure 4) [20]. This theory
allows us to tune robust controllers in the frequency domain with the help of a Nichols
diagram, taking into account uncertainness in the controlled plant model. The Nichols di‑
agram displays 20log10(|G(s)|) versus arg(G(s)), where G(s) is the transfer function of the
open‑loop system. QFT allows us to use a set of models in format of Equation (4) instead of
a parameter‑varying model (5). The distance from point (−180◦, 0 dB) to the intersection
with the X‑axis in the Nichols diagram is a phase margin; the distance to the intersection
with the Y‑axis in the Nichols diagram is an amplitude margin (Figure 5) [21,22].
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obtained with the PCHIP approach, (7) and (8) [23].

A piecewise cubic Hermite interpolation polynomial (PCHIP) approach [23] in the
MATLAB environment was used to obtain the values of the phase and amplitude mar‑
gins between points corresponding to the linear models (Figure 5). The advantages of the
PCHIP approach are the absence of overshoots and fewer oscillations in comparison with
other interpolation methods [23]. If there are n points ({(x1, f1), . . . , (xn, fn)}) then on
the ith subinterval ([xi, xi+1]) the PCHIP creates a cubic polynomial

fi(x) = a(x − xi)
3 + b(x − xi)

2 + c(x − xi) + yi, (7)

with the following properties:

fi(xi+1) = yi+1,
d fi(xi+1)

dx =
d fi+1(xi+1)

dx ,
∀i = 1, . . . , n − 2 (8)

Thus, wefind that the piecewise function is continuous and continuously differentiable.
A set of plasma models corresponding to Globus‑M2 tokamak shot #37239 [10] was

used to tune the PID controllers. Tuning was performed using the MATLAB QFT Control
Toolbox [24], which provided vertical and horizontal plasma position PID‑controllers:

PIDZ(s) = 43.8 + 7790
s +0.0561 13,300

1+13,300/s ,

PIDR(s) = 2+ 2·104

s +10 10
1+10/s .

(9)

The minimal amplitude and phase margins of the systems with different models are
8.2 dB and 49.3◦ for the vertical positions and 51.7 dB and 65.7◦ for the horizontal positions
(Figure 5). The setting time is about 10 ms, and the overshot is about 20% in testing the
systems using step‑functions (Figure 6).
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ing to different moments of the different plasma shots. Eighteen plasma models corre-
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Figure 6. Step responses of closed‑loop systems with a plasma model corresponding to 185 ms
of shot #37239 with nonlinear current inverter models [15] and PID‑controllers (9), tuned with the
QFT methodology.

For overshot, decreasing the pre‑filter with the transfer function, PF(s) = 103

s+103

(Figure 3), was involved in the vertical position control loop. Its influence is shown in
Figure 7a. The robust properties of the obtained PID‑controllers are presented in Figure 7b.
This involved a set of step responses for the systemswith plasmamodels corresponding to
different moments of the different plasma shots. Eighteen plasma models corresponding
to shots #37239, #37255, #37257, #37702, and #37712 of the spherical Globus‑M2 tokamak
were used; vertical and horizontal plasma position control systems were modeled.
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Figure 7. (a) Step responses of the vertical plasma position in the system with and without the pre‑
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4. Estimation of the Controllability Region of the Unstable Vertical Plasma Position
4.1. Statement of the Estimation Problem

The controllability region of the unstable vertical plasma position (6) is an important
parameter in a D‑shaped tokamak. The plasma beyond the controllability area is uncon‑
trollable and unstable. This causes high‑temperature plasma ejection onto the VV wall,
which can lead to its destruction. The problem of the small controllability region was de‑
tected during the design of the ITER [11] and T‑15MD [12] tokamaks. Because of this, these
machines were equippedwith additional vertical plasma position control coils to suppress
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the plasma vertical instability and increase the vertical controllability region. In this paper,
the estimation of the vertical controllability area for the Globus‑M2 tokamak was made
using two approaches: analytically and via numerical simulations.

4.2. Analytical Estimation
Analytical estimation was performed with the help of the state–space equations of

the system. The A matrix could be reduced to the diagonal form using a transition to
the new basis in the state–space. In this way, the state–space system equations can be
separated into several subsystems. The maximum allowable displacement of each state in
the separated subsystems can be estimated. After that, themaximumvertical displacement
can be obtained using the inverse transformation [12,22].

A system without a vertical plasma position control loop was used for the estimation
of the controllability area (Figure 8), and for this estimation, the maximum allowable volt‑
age was needed. In this case, the mathematical model of the current inverter is the same
as for the controller tuning, namely, the proportional gain. The input of the open system
is the HFC voltage, and the output of the system is the vertical plasma position:

.
x(t) = Ax(t) + Bu(t),

y(t) = Cx(t);

x ∈ R40, u ∈ R1, y ∈ R1, A ∈ R40×40, B ∈ R40×1, C ∈ R1×40

(10)Mathematics 2022, 10, x FOR PEER REVIEW 10 of 19 
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Figure 8. Block diagram of the system for the numerical estimation of the vertical plasma position
controllability region.

Equation (10) is obtained from (5) by using only one input signal. We denote
Q ∈ C40×40 as a diagonalizing matrix such that QÂ = AQ; and Â is the diagonal ma‑
trix, consisting of the A‑matrix eigenvalues. Using A = QÂQ−1 in the state equation of
(10), the following equation was obtained:

.
x(t) = QÂQ−1x(t) + Bu(t). (11)

Multiplying (11) from the left by Q−1, we obtain

Q−1 .
x(t) = ÂQ−1x(t) + Q−1Bu(t). (12)

Further, using x̂ = Q−1x, B̂ = Q−1B, Equation (12) can be transformed with a new
basis in the state–space:

.
x̂(t) = Âx̂(t) + B̂u(t) (13)
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Similarly, in the second Equation of (10), using Ĉ = CQ, we come to the following
observation equation:

y(t) = Cx(t) = CIx(t) = CQQ−1x(t) = Ĉx̂(t) (14)

Since Â is a diagonal matrix, system (13) and (14) could be separated into scalar
and matrix equations, where the Â2−40, B̂2−40, Ĉ2−40 matrix consist of rows of Â, B̂,
Ĉ; consequently

.
x̂1(t) = λ1 x̂1(t) + b̂1u(t),

.
x̂2−40(t) = Â2−40 x̂2−40(t) + B̂2−40u(t),

y(t) = ĉ1 x̂1 + Ĉ2−40 x̂2−40.

(15)

Only one eigenvalue of the A‑matrix has a real positive value: λ1 > 0. Consequently,
x̂1

t→∞→ ∞, x̂i
t→∞→ 0 when i > 1. For x̂1 to be controllable, the control signal should be able

to change the sign of its derivative,
.
x̂1 = λ1 x̂1 + b̂1u. Therefore, the controllable values of

x̂1 are such that

|λ1 x̂1| <
∣∣∣b̂1u

∣∣∣ ⇒ x̂1 max =

∣∣∣∣∣ b̂1umax
λ1

∣∣∣∣∣. (16)

In practice, the elements of the state vector (x) with the greatest impact on the plasma
position are x1 = IHFC and x26 = Z. By neglecting other elements, the expression for the
controllability area on the (IHFC, Z) plane can be obtained:

|x̂unst| =
∣∣∣(Q−1)1, 1 IHFC + (Q−1)1, 26Z

∣∣∣ ≤ ∣∣∣∣∣ b̂1umax
λ1

∣∣∣∣∣, (17)

where (Q−1)1, 1 is an element of the matrix Q−1. Equation (17) shows that the control‑
lability area is a band on the phase plane (IHFC, Z). We denote Zeq(IHFC) as the center
of the band and Zmax as the width of band; values of it can be obtained from (16) and
(17). In order to remain controllable, the plasma cannot move further than Zmax from an
equilibrium position:

Zeq(IHFC) = −(Q−1)1, 1/(Q−1)1, 26 IHFC,∣∣Z − Zeq(IHFC)
∣∣ < Zmax.

(18)

The expression for Zmax can be obtained from (16) and (17):

Zmax =

∣∣∣∣∣ b̂1umax
λ1(Q−1)1,26

∣∣∣∣∣. (19)

An analytical estimation of the controllability area of the vertical plasma position was
applied to the transfer the state–space system from Equations (10) to (15). The maximum
vertical plasma displacement was obtained using (19) for shots #37239, #37255, #37257,
#37702, and #37712 of spherical tokamak Globus‑M2 and for shot #31648 of spherical toka‑
mak Globus‑M. Results are presented in Figure 9.
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4.3. Numerical Simulations 
The idea behind estimating the vertical controllability area is to model the plasma 

dynamics in the tokamak with different initial vertical displacements and a maximum 
returning control signal (Figure 10). Numerical simulations were made using the 
MATLAB/Simulink programming environment. 

Figure 9. (a) Estimation of the vertical controllability area during the different shots of the Globus‑
M/M2 spherical tokamaks. Points correspond to the minimal vertical controllability area during the
divertor phase of each shot. (b) The controllability area limits and phase trajectory projections on
the plane (IHFC, Z) for the Globus‑M2 model at 197 ms of shot #37712 at a maximum of 900 V and a
minimum of−900 V on HFC. Circles denote points in the controllability area; x marks denote points
out of the controllability area; green shading corresponds to the controllability area (18). (c) Minimal
controllability area during shots on the plane (IHFC, Z).

4.3. Numerical Simulations
The idea behind estimating the vertical controllability area is to model the plasma

dynamics in the tokamak with different initial vertical displacements and a maximum
returning control signal (Figure 10). Numerical simulations were made using the MAT‑
LAB/Simulink programming environment.
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Figure 10. (a) Results of the system simulations with different initial vertical plasma displacements
and maximum voltages on the HFC. (b) Principle of the binary search algorithm to find the control‑
lability region. Red points are initial displacements out of the controllability region and blue points
are inside the controllability region. Step by step, the limit of the controllability region estimation
accuracy grows. The accuracy increases up two times at each step.

The maximal initial displacement in the controllability region was found using the
following iteration procedure. The first step is to choose an initial vertical displacement,
Z0. Then, the plasma dynamics are modeled with this initial displacement (Z(t = 0) = Z0)
and themaximally allowed control signal (Umax), countering the initial displacement. If the
control signal manages to return plasma to position Z = 0, then the displacement Z0 is in
the controllability region, and the next modeled displacement will be greater; otherwise,
Z0 is outside the controllability region, and the next modeled displacement is chosen to
be smaller. At each step, the difference in the modeled Z0 decreases until the required
accuracy is obtained.

The results of the numerical and analytical estimations are consistent with each other.
However, the analytical estimation takes less time than the numerical estimation in terms
of the calculations.
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5. Estimation of the Reachability Area of the Plasma Shape
5.1. Definitions of Plasma Shape Estimations

For the successful operation of D‑shaped tokamaks, it is necessary to control the
plasma shape using feedback. One needs to hold the plasma separatrix near the first
wall of the VV. In Globus‑M/M2 tokamaks, PF‑coils are used for plasma shape control
(Figures 2 and 3), but the HFC and the VFC also influence the plasma shape. Estimating
the reachability area is performed using the matrix relationship between the inputs and
outputs in a steady‑state regime. The relationship is obtained from the state–space model
of the plant, with all control loops and PID‑controllers in them:

.
x(t) = Ax(t) + Bu(t),

y(t) = Cx(t);

x ∈ R42, u ∈ R8, y ∈ R6, A ∈ R42×42, B ∈ R42×8, C ∈ R6×42.

(20)

Assuming that derivatives in (20) are equal to zero (because the steady‑state regime
is considered), the following expression can be investigated:

.
x = 0 = Ax + Bu ⇒ x = −A−1Bu; y = Cx = −CA−1B

M

u = Mu. (21)

TheM‑matrix is the sensitivity of the output signals to changes in inputs (Figure 11).
This shows how each input signal (Z, R, ICS, IPF1, IPF2t, IPF2b, IPF3, ICC) influences different
outputs (P1–P6). Because the reachability area of the plasma shape is multivariable, the
problem of its estimation was divided into upper and lower estimations.
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Figure 11. Sensitivity of plasma shapes, namely, gaps, to the references of the plasma position and
the currents in the PF‑coils for shot #37239 of tokamak Globus‑M2 versus shot #31648 of Globus‑M at
185 ms. Histograms show a strong connection between plasma position and plasma shape, a weak
influence from the central solenoid current on the plasma shape, and a strong cross‑influence from
the PF‑coils currents on the plasma shape’s projections, P1–P6.
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The upper estimation of each gap is the maximal absolute value of this gap, which is
independent of other gaps (values of other gaps do not matter).

The lower estimation is the maximal simultaneous absolute value of all gaps (all gaps
have the same value).

The limits on the plasma position references are 5 cm, and the limits on the references
of the PF‑currents are 1000 A.

5.2. New Methodology and Upper Estimation of the Reachability Area of the Plasma Shape
The upper estimation is the maximum offset of each gap so that the inputs are within

the specified limits. Using (21), the problem of the upper estimation of the ith output is
expressed as the following equation:

yi → max

s.t. yi = Miu =
8
∑

j=1
Mi,juj,∣∣uj

∣∣< ujmax, j = 1, 8,

(22)

where Mi is the ith row of matrix M. To maximize the sum,
8
∑

j=1
Mi,juj, it is necessary and

sufficient to maximize each term because all the terms are independent. This is achieved
using the following equation:

uj = sign
(

Mi,j
)
ujmax (23)

Substituting the result of (23) into (22), the maximal possible displacement of the ith
gap can be calculated by the expression

yimax =
8

∑
j=1

Mi,jsign(Mi,j)ujmax. (24)

Using (24), the upper estimation was made of all six gaps of the plasma separatrix for
six shots, as in Section 3. The results are shown in Figure 12.
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5.3. Methodology and Lower Estimation of the Reachability Area of the Plasma Shape
The lower estimation is obtained with the help of the auxiliary estimation [22].
The auxiliary estimation is the maximal displacement of each gap so that other gaps

are equal to zero.
For example, to obtain the auxiliary estimation for gap g1, it is necessary to find the

maximal displacement of this gap, y1 = M1u; other gaps (g1–g6) are equal to zero, and all
inputs u are less than the allowable limits:

y1 → max

s.t. y = Mu, yi = 0, i = 2, 6,∣∣uj
∣∣< ujmax, j = 1, 8.

(25)

To obtain the auxiliary estimation, matrix M ∈ R6×8 was divided into two matrices,
M1 ∈ R6×2 and M2 ∈ R6×6; similarly, the plasma position references were separated from
the following PF‑current references: u ∈ R8, u = [uT

1 , uT
2]

T , u1 ∈ R2, u2 ∈ R6. This
allows us to reverse the square matrix M2:

y = Mu = M1u1 + M2u2 ⇒ u2 = M−1
2 (y − M1u1). (26)

Further output signals are defined in the form of y = [0, . . . , 0, yi, 0, . . . , 0]T ; all possi‑
ble values of inputs u1 ∈ R2 are listed and the values of u2 obtained by (26) are tested for
admissibility. With the help of a binary search (similar to Section 3), themaximumpossible
displacements of each gap (yi) show that other gaps are equal to zero and can be obtained.
The complexity of each gap estimation is O(N2log2(N)), where N is the number of nodes
in the split in order to iterate over the references.

The disadvantages of this approach are high computational complexity and low ac‑
curacy because this approach requires brute force. Another way to calculate the auxiliary
estimation is linear programming [25]. The linear programming approach solves problem
(25) analytically. The problemmay be represented in the standard form, consisting of a lin‑
ear function to be maximized with linear problem constraints and non‑negative variables:

f (x1, . . . , xn) = c1x1 + . . . + cnxn → max;

s.t. a11x1 + . . . + a1nxn ≤ b1;

. . .

am1x1 + . . . + amnxn ≤ bm;

x1 ≥ 0, . . . , xn ≥ 0.

(27)

In addition, the standard Formula (27) may be represented in a matrix form:

max
{

cTx
∣∣∣s. t. Ax ≤ b , x ≥ 0

}
. (28)

By dividing the inputs to two non‑zero variables, ui = xi − xn+i, where n = 8 is the
number of inputs, problem (25) transitions to the standard formula:

y1 = M1,1x1 + M1,2x2 + . . . + M1,8x8 − M1,1x9 − M1,2x10 − . . . − M1,8x16 → max,

s. t. Mi,1x1 + Mi,2x2 + . . . + Mi,8x8 − Mi,1x9 − Mi,2x10 − . . . − Mi,8x16 = 0, i = 2, 6,

xj − xn+j ≤ ujmax,

−xj + xn+j ≤ ujmax,
j = 1, 8

xk ≥ 0, k = 1, 16.

(29)
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Problem (29), equivalent to (27) and (28), is solved using the simplex method [25]. To
explain how the simplex method works, geometric interpretation can be used. Problem
constraints are half‑spaces. In sum, the constraints denote a convex polyhedron, and it is
necessary to find a point in it where the functional value is at its maximum. It is possible to
show that the solution is one of the corner points. Each iterative step of the method is the
transition from one corner point to the adjacent, at which the value of the function grows.
The criterion of algorithm stopping is finding such a point where, in all the adjacent corner
points, the functional value is lower than in the current point [25].

Solving (29) for gap P1 at 185 ms of shot #37239, the maximum displacement with
other gaps equal to zero can be obtained. It is 116 mm. It is achieved with position refer‑
ences equal to −20 mm vertically and −1 mm horizontally and currents references in six
PF‑coils: 1000 A, 1000 A, 625 A, 520 A, 1000 A, and 454 A for CS, PF1, PF2 top, PF2 bottom,
PF3, and CC, respectively.

Similarly, it is possible to make the auxiliary estimation for each gap using the sim‑
plex method. After that, it is necessary to move from the auxiliary estimation of each gap
to the lower estimation, i.e., the maximal displacement that all gaps could achieve simul‑
taneously with the input signals in allowable limits:

ymax : ∀y ∈ R6 :
∣∣∣yi

∣∣∣≤ ymax, i = 1, 6, y = Mu,
∣∣∣uj

∣∣∣≤ ujmax, j = 1, 8. (30)

If yi max is the auxiliary estimation of the ith gap, then it is possible to simultaneously

put each gap in limits aiyimax ≥ 0, i = 1, 6, provided that 1 ≥
6
∑

i=1
ai. This can be shown

with the help of the linearity of the matrix multiplication:

y = [a1y1max, a2y2max, . . . , a6y6max]
T =

= a1[y1max, 0, . . . , 0]T + a2[0, y2max, 0, . . . , 0]T + . . . + a6[0, . . . , 0, y6max]
T

(31)

Because yi max is the auxiliary estimation, then

[0, . . . , 0, yimax, 0, . . . , 0]T = Mui, ui ∈ R8,
∣∣∣ui

j

∣∣∣≤ ujmax. (32)

The upper index is used formatching input signals and the gap number that this input
displaces. Substituting (31) and (32) into (30), one obtains the following equation:

y = Mu = M
6

∑
i=1

aiui = M

[
6

∑
i=1

aiui
1,

6

∑
i=1

aiui
2, . . . ,

6

∑
i=1

aiui
8,

]T

. (33)

The first component of the input signal is within the allowable limits:

u1 =
6
∑

i=1
aiui

1 ≤ u1max. Using
6
∑

i=1
ai ≤ 1, ui

1 ≤ u1max, ui
1 ≤ u1max, we come to the fol‑

lowing nonstrict inequality:

u1 =
6

∑
i=1

a1ui
1 ≤

6

∑
i=1

a1ui
1max = ui

1max

6

∑
i=1

a1

≤1

≤ ui
1max. (34)

Thus, the first component of the input signal is within the allowable limits. Similarly,
in (34), each component of the input is also within the allowable limits. For the estimation
of ymax, it is enough to choose

ai : ymax = aiyimax,
6

∑
i=1

ai = 1. (35)
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Solving (35), we obtain the following equation:

ymax =

(
6

∑
i=1

y−1
imax

)−1

. (36)

The result of (36) can be verified by the following substitution:

ai =

(
yimax

6
∑

j=1
y−1

jmax

)−1

,

6
∑

i=1
ai =

6
∑

i=1

(
yimax

6
∑

j=1
y−1

jmax

)−1

=

(
6
∑

j=1
y−1

jmax

)−1
6
∑

i=1
y−1

imax = 1.

(37)

Summarizing all of the above, the auxiliary estimation is the solution to the linear
programming problem, whichwas solved by the simplexmethod; reversing the sum of the
reversed auxiliary estimations (37) is the lower estimation for each moment of each shot.

For example, at 185 ms of shot #37239 of the Globus‑M2 spherical tokamak, the lower
estimation of the reachability area is 5.4 mm; i.e., all gaps, g1–g6, could take any values in
a range from −5.4 mm to 5.4 mm, with inputs within allowable limits (a position displace‑
ment less than 5 mm and currents in PF‑coils less than 1000 A).

By solving (29)–(36), the lower estimations of the reachability region of the plasma
can be obtained for five shots of Globus‑M2 and one shot of Globus‑M, as shown in Fig‑
ure 13. The advantage of the simplex method over the coarse force method using (26) is
the increased accuracy and reduced time costs. Simplex method calculations are about
100 times faster.
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6. Conclusions
The preparations of the plasma shape control system for theGlobus‑M2 tokamakwere

performed to apply a new methodology of plasma shape estimation. For that application,
PID‑controllers were synthesized using the QFT method. A numerical simulation shows
that they stabilize the system with plasma models for various plasma shots. Analytical
and numerical estimations of the vertical controllability area provided equivalent results.
For tokamaks Globus‑M and Globus‑M2, these values are similar and are about 15 cm.

The controllability region of the unstable vertical plasma position rapidly changes
during shots and from shot to shot. Its value is about 10 cm (Figure 9). Because the plasma
column height is about 60–80 cm, and the VV height is 1 m (Figure 1), the plasma can be
controlled over almost the entire height of the VV.

The reachability area was estimated for both tokamaks. It is shown that the current
in the central solenoid provides a minimal influence on the plasma shape (Figure 11). The
current in the PF3 coil in Globus‑M2 has more influence on the plasma shape than the
same current in Globus‑M. The lower reachability estimation is about 1 cm; the upper
reachability estimation is about 10–20 cm.

The reachability area of the plasma shape for each gap is about 1–10 cm; consequently,
the development of a plasma shape feedback control system is possible. In Figure 11,
the influence of each PF‑coil on the plasma shape is shown. All coils, besides the central
solenoid, have a noticeable influence on the plasma shape; consequently, it is important
to develop a multivariable plasma shape control system on the basis of PF‑coils without a
central solenoid in the feedback, which should primarily control the plasma current.
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