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Abstract: Since the famous slow–fast dynamical system referred to as the Hodgkin–Huxley model
was proposed to describe the threshold behaviors of neuronal axons, the study of various slow–fast
dynamical behaviors and their generation mechanisms has remained a popular topic in modern
nonlinear science. The primary purpose of this paper is to introduce a novel transition route induced
by the comprehensive effect of special rest spike bistability and timescale difference rather than a
common bifurcation via a modified Chua’s circuit model with an external low-frequency excitation. In
this paper, we attempt to explain the dynamical mechanism behind this novel transition route through
quantitative calculations and qualitative analyses of the nonsmooth dynamics on the discontinuity
boundary. Our work shows that the whole system responses may tend to be various and complicated
when this transition route is triggered, exhibiting rich slow–fast dynamics behaviors even with
a very slight change in excitation frequency, which is described well by using Poincaré maps in
numerical simulations.

Keywords: rest spike bistability; slow–fast decomposition analysis; multi-period mixed bursting
phenomena; coexisting whole system responses
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1. Introduction

In the past decades, many research groups and scholars have studied slow–fast dynam-
ical systems via experiments and computations based on extensive applications across many
practical problems. For instance, neuronal activities and neural networks [1–3], calcium-ion
oscillations in cells [4,5], catalytic oxidation reactions [6,7], and other applications [8–10].

Such systems frequently behave in complicated nonlinear phenomena characterized
by various slow–fast dynamic behaviors such as relaxation oscillations, canard phenomena,
bursting oscillations and mixed-mode oscillations. For more details, we suggest readers
refer to the references [10,11] in addition to the references therein. In particular, bursting
oscillations are generally more complicated and varied in oscillation patterns and gener-
ation mechanisms than the other three, and receive much more attention from scholars.
In bursting oscillations, the waveform often presents periodic alternations between a clus-
ter of spiking pattern (SP) and a period of quiescent state (QS). A general and powerful
approach to deal with the mechanism of bursting phenomena in a slow–fast dynamical
system is based on phase reduction and bifurcation theories [12,13]. Such methodology,
i.e., the so-called slow–fast decomposition analysis, mainly consists of two steps: firstly,
dividing the whole system into a fast subsystem and a slow subsystem via the timescale
separation of state variables; secondly, utilizing the attractor structures and their bifur-
cations of the fast subsystem to explain the generation mechanism of potential bursting
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oscillations. Based on this method, bursting phenomena and the underlying generation
mechanisms are well understood by employing dynamics of the fast subsystems. Relatively
complete bursting patterns have been listed by Izhikevich [14] via slow–fast decomposition.
More importantly, Izhikevich also provides a widely adopted classification method for
bursting phenomena, by which one bursting oscillation can be named according to the two
important bifurcations leading to transitions between QSs and the following SPs. For in-
stance, “subcritical–Hopf/LPC” bursting means that the following dynamical generation
mechanism can explain this bursting phenomenon: the trajectory will behave in SPs after it
passes through a subcritical-Hopf bifurcation point and may enter into the following QS
via the bifurcation LPC (fold bifurcation of limit cycles).

Since the dynamic features of the fast subsystems play the leading role in bursting
oscillations, many researchers have paid increasing attention to the complicated structures
existing in the fast subsystems, such as bistability and nonsmooth factors. Moreover, novel
bursting patterns in addition to the related generation mechanisms have been explored in
experiments and numerical computations in succession.

Bistability, referring to two coexisting attractors in a fixed parameter range, represents
a common dynamics structure in nonlinear dynamical systems, and mounting evidence
suggests that this geometric structure is a key factor (but not necessary) in the presence
of bursting oscillations [2,14–16]. Two coexisting stable equilibria have been analytically
investigated to be the principal reason of winner-take-all behavior in competition mod-
els [2,17], or the binocular rivalry in the so-called Levelt’s propositions [18]. Another
bistability structure, namely rest spike bistability consisting of a stable limit cycle and a
stable equilibrium separated by a saddle, has been studied as the core structure for slow
spiking and bursting phenomena in the family of Morris–Lecar models [19]. The mixed
bursting oscillation is a novel bursting form recently observed in a study by Ref. [20], where
the trajectory can perform different SP patterns in a complete periodic motion. Duan et al.
point out that such a special bursting pattern can be explained by bistability structures in
the fast subsystem [21]. In continuous slow–fast dynamical systems, the slow–fast dynamic
behaviors as well as the generation mechanisms are well understood based on slow–fast
decomposition and the relatively well-developed conventional dynamics theories [22].

Discontinuity boundaries will exist in the fast subsystems where some nonsmooth
events are involved, on which nonconventional dynamic behaviors may appear and par-
ticipate in the dynamical evolution process of bursting oscillations. In nonlinear rotary
drilling systems, friction induced by bit-rock interaction laws can cause the vector fields to
become discontinuous, leading to the unique nonsmooth bursting patterns characterized
by stick–slip motions [23–25]. Similar nonsmooth bursting patterns can also be observed
when adopting a threshold control strategy in the Hindmarsh–Rose neuronal model [26].
On the other hand, owing to the unique advantages of nonsmoothness, almost all of the
artificial neuron models are designed to be discontinuous [27].

In the slow–fast dynamical systems with discontinuous vector fields, complicated
structures may be observed in the slow–fast dynamic behaviors when they interact with
discontinuity boundaries, and the traditional dynamics and bifurcation theories may
be useless to the understanding of those slow–fast dynamics behaviors. Fortunately,
owing to the successful application of differential inclusion theory [28], nonconventional
dynamics and bifurcation theories are developing rapidly (more details can be seen in [29]
as well as the references therein). Riding on the nonconventional dynamics theories,
scholars have proved that many nonconventional bifurcations may also affect the transition
mechanisms of slow–fast dynamic behaviors, for instance, nonsmooth fold bifurcation
and boundary homoclinic bifurcation can also cause the alternations between QSs and
SPs [30–32]. Sliding bifurcations lead to unique sliding structures in SPs, although they do
not result in transitions between QSs and SPs [33]. In [34], it was proved that boundary
homoclinic bifurcation is a high codimension nonconventional bifurcation, which may
result in different nonsmooth bursting patterns under different local structures of pseudo-
equilibrium.
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Almost all the above papers related to bursting phenomena indicate that bifurcations
seem to be the only explanation for alternations between QSs and SPs. Recently, a dif-
ferent viewpoint was provided in the works [35–37] via proposal of the novel bursting
mode referred to as pulse-shaped explosion, which can be attributed to the asymptotic
behavior of vector field rather than bifurcations of attractors. Hastings et al. also pointed
out that the saddle point and ghost attractor are the two essential elements leading to the
non-bifurcation-induced transition in long-term ecological understanding [38]. This indi-
cates that the related works regarding bursting oscillations also need to consider not only
potential bifurcations but, more importantly, special flow structures in the fast subsystems.

In previous works related to bursting oscillations, the transition mechanism of bursting
phenomena can be roughly classified into the following two types.

1. The bifurcation-induced transition mechanism, which means that the bifurcation
structures of attractors in the fast subsystems can explain the transitions in bursting
oscillations very well.

2. Non-bifurcation-induced transition mechanism, which means that the transitions in
bursting oscillations can only be attributed to the unique manifold structures rather
than to the bifurcation structures.

The bifurcation-induced transition mechanism in continuous (or discontinuous) slow–
fast dynamical systems can be regarded as the replay of dynamics structures of bifurcations,
which can be predicted well via bifurcation analyses of the fast subsystems, and the related
achievements are plentiful and substantial. However, for the non-bifurcation-induced
transition mechanism, there is not yet a useful research method, and the research also
is relatively lag. Accordingly, further exploration of non-bifurcation-induced transition
mechanism is important and meaningful to the comprehensive understanding of bursting
phenomena in the slow–fast dynamics theory.

In the recent works by [30,39] involving Filippov slow–fast dynamical systems, unique
nonsmooth rest spike bistability consisting of a stable nonsmooth cycle and the inner stable
pseudo-equilibrium point is proved as the core structure of bursting patterns. Specifically,
the alternation from the spike attractor (stable cycle) to the rest attractor (inner equilibrium)
is not caused by bifurcations in the fast subsystems, thus indicating the occurrence of a
non-bifurcation-induced transition. However, unfortunately, the underlying dynamics
mechanism still needs to be clarified. Based on this, we will present further discussion of
such non-bifurcation-induced transition structure in this paper by establishing a Filippov
modified Chua’s circuit model with an external low–frequency excitation. Furthermore,
we try to analyze the dynamics generation mechanism and the induced slow–fast dynam-
ics behaviors, especially the influence on whole system responses, through quantitative
calculations and qualitative analyses.

The rest of this paper is organized as follows. Section 2 presents a 3D Filippov slow–
fast dynamical system by establishing a Filippov modified Chua’s circuit with an external
low-frequency excitation. In Section 3, nonsmooth singularities are analyzed by employing
nonconventional dynamics theory. Various slow–fast dynamics behaviors as well as the
generation mechanisms are presented in Section 4 via numerical simulations. We draw
some conclusions and discussions in Section 5.

2. Mathematical Model

The typical Chua’s circuit and modifications have been taken as examples in many
studies of slow–fast dynamics via experiments or numerical simulations. To name but a
few, canards and chaotic bursting were reproduced in memristor-based Chua’s circuit [40];
Marszalek and Trzaska analyzed mixed-mode oscillations and relaxations in slow–fast
modified Chua’s circuit models with autonomous vector fields [41]. Particularly, those
modified Chua’s circuits with low–frequency excitations are also employed to investigate
various bursting oscillations and the generation mechanisms [24–26,42].

Here, we consider one modified Chua’s circuit by introducing a current source,
as shown in Figure 1a. Such a circuit system consists of two capacitances C1,2, one in-



Mathematics 2022, 10, 4606 4 of 21

ductance L, one constant resistance R, one sinusoidal current source iS = Im sin(ωt) and
one nonlinear resistance RN . According to the Kirchhoff Law, the state equations can be
expressed in the 3D ordinary differential equations

C1
du1

dt
=

u2 − u1

R
− g
(
u1
)
+ iS,

C2
du2

dt
= iL +

u1 − u2

R
,

L
diL
dt

= −u2,

(1)

where RN is designed as a nonlinear resistance possessing a piece-wise smooth voltage–
current characteristic via introducing one comparator, as shown in Figure 1b. Then, the
voltage–current characteristic can be written as

iN = g(u1) =
R12(R15 + R16) + R13R16

R12R15R18
u1 −

R10R16(R7 + R6)

100R6R8R11R18
u3

1 +
(R1 + R2)R16

R1R4R18
Esat sgn(u1). (2)

v

 

1( )i g u=
si1C2C 12

Li

1R

L

(a)

u1

-

+ +

-

R

L
R

N

u1u2 N

 

1R
2R

3R

4R

5R

6R
7R

8R

9R

10R

11R

12R
13R

16R

14R

15R

18R

17R

(b)
v1u

u1

Figure 1. A sketch diagram of Filippov Chua’s circuit. (a) Modified Chua’s circuit with a current
source is; (b) the design scheme of the nonlinear resistor RN in (a).

It can be found that u1 = 0 defines a discontinuity boundary, labeled as Σ, which
means that the vector field of system (1) then is piece-wise smooth.

Using the following transformations τ = t
RC2

, x = u1
Esat

, y = u2
Esat

, z = RiL
Esat

, α = C2
C1

, a =

(R12R15+R12R16+R13R16)R
R12R15R18

, b = − R10R16(R7+R6)RE2
sat

100R6R8R11R18
, δ = −α

(R1+R2)R16R
R1R4R18

, A = RImα
Esat

, Ω = ωRC2

and η = R2C2
L , we can rewrite system (1) into the dimensionless form

ẋ = α
(
y− x− f (x)

)
+ δsgn

(
H(X)

)
+ A sin(Ωτ),

ẏ = x− y + z,

ż = −ηy,

(3)

where · = d
dτ , f (x) = ax + bx3, X =

[
x y z

]T, α, b, A, Ω, η are positive while a, δ are
negative, H(X) := x = 0 represents the discontinuity boundary Σ.

With the assumption that Ω is small enough, i.e., 0 < Ω � 1, then there exists an
order gap between the rates of traditional variables (x, y and z) and the whole excitation,
admitting that the system (3) may perform slow–fast dynamics behaviors. However, there
is no apparent fast variables and slow variables in (3), indicating that the classical slow–fast
decomposition method cannot be directly applied to (3) to explain the potential slow–fast
dynamics behaviors such as bursting oscillations since the division of the slow subsystem
and the fast subsystem in (3) is the first requirement for the application of this method.
In order to apply the classical slow–fast decomposition method to deal with the potential
slow–fast dynamics behaviors in (3), we now introduce the following rise–dimension
method to realize the timescale separation in (3).

Actually,
(

A sin(Ωτ), A cos(Ωτ)
)
=
(
w(τ), v(τ)

)
can be described by a simple planar–

linear system (ẇ = Ωv; v̇ = −Ωw) with the initial condition
(
w(0) = A sin(0), v(0) =
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A cos(0)
)
= (0, A). Therefrom, system (3) then is equivalent to a 3D Filippov fast subsystem

(FS) controlled by a 2D smooth slow subsystem (SS), respectively, expressed as
ẋ = α

(
y− x− f (x)

)
+ δsgn

(
H(X)

)
+ w,

ẏ = x− y + z,

ż = −ηy,

(FS) (4)

and {
ẇ = Ωv,

v̇ = −Ωw.
(SS) (5)

We then have transformed (3) into the standard form represented by a 5D autonomous
Filippov slow–fast dynamical system that embodies three fast variables (x, y and z) and
two slow variables (w and v). Although the rise–dimension method seems to increase the
difficulty in the analysis of (3), it should be pointed out that only the slow variable w appears
in the fast subsystem (4), indicating that the dynamics structures of the fast subsystem only
can be affected by w. As a consequence, the classical slow–fast decomposition method
can be directly employed to explain the generation mechanism of slow–fast dynamics
behaviors in (3) just via regarding the slow variable w as a bifurcation parameter in (4).
Meanwhile, the rise–dimension method also demonstrates that the generalized slow–fast
analysis method proposed in [42] is feasible mathematically and logically.

When attractors of the fast subsystem come into contact with the discontinuity bound-
ary Σ, unique nonsmooth dynamics such as sliding bifurcations and boundary equilibrium
bifurcations may appear and affect the responses of whole system (3). In the following
section, we mainly focus on the analyses of nonsmooth dynamics on Σ.

3. Nonsmooth Dynamics Analyses

Note that the discontinuity boundary Σ divides the whole phase space R = {X|(x, y, z)}
into two subregions R+ = {X|(x, y, z), (x > 0)} and R− = {X|(x, y, z), (x < 0)}, where two
3D smooth subsystems, denoted by S+(x > 0) and S−(x < 0), can be observed in the two
subregions, and the vector fields are, respectively, labeled as F+(x > 0) and F−(x < 0). Let
XΣ (0, yΣ, zΣ; w) be a point on Σ, by using the two Lie derivatives LF+ H = 〈∇H, F+〉 and

LF−H = 〈∇H, F−〉 (∇H = ∂H(XΣ)
∂XΣ

, 〈·, ·〉 denotes the vector inner product), the discontinuity
boundary Σ can be divided into different regions [43].

If LF+ H · LF−H > 0, i.e., F+ and F− have the same direction on Σ at XΣ, then we can
define the two so-called sewing regions{

Σ+ = {XΣ|αyΣ + w− δ > 0, αyΣ + w + δ > 0},
Σ− = {XΣ|αyΣ + w− δ < 0, αyΣ + w + δ < 0},

(6)

where the trajectory will cross through the discontinuity boundary without sliding motion
when it interacts with Σ in Σ+ (or Σ−).

If LF+ H · LF−H < 0, LF+ H < 0 and LF−H > 0, i.e., both F+ and F− point to Σ at XΣ,
then we can define a so-called sliding region

ΣS = {XΣ|αyΣ + w− δ > 0, αyΣ + w + δ < 0}, (7)

where the trajectory will enter into Σ and behave in the special sliding motion when it
interacts with ΣS.

In particular, there are two so-called sliding boundaries between the two sewing
regions (6) and the sliding region (7), which can be defined by LF+ H = 0 and LF−H = 0,
respectively, expressed by {

∂ΣS+ = {XΣ|αyΣ + w + δ = 0},
∂ΣS− = {XΣ|αyΣ + w− δ = 0}.

(8)
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Meanwhile, one 2D sliding vector field located in ΣS can be derived as FS = F−+F+
2 +

Q F+−F−
2 by introducing a scalar Q ∈ [−1, 1] via the Utkin’s equivalent control method, corre-

sponding to a linear-planar system {
ẏΣ = −yΣ + zΣ,

żΣ = −ηyΣ.
(9)

Besides the two 3D smooth subsystems S+ and S−, one may find that the Filippov
fast subsystem (4) also has one 2D sliding subsystem (9) in ΣS. Modulated by the slow
variable w, attractors such as equilibria and cycles of smooth subsystems may collide
with a sliding boundary in (8), behaving in nonconventional bifurcations. In other words,
nonconventional bifurcations in (4) generally occur on sliding boundaries. We now turn to
discuss the equilibria and their stabilities as well as nonconventional bifurcations.

3.1. Equilibria and the Stabilities

Since the system (3) is Z2 symmetrical, the equilibrium points of the fast subsystem (4)
can be written as X0 = (x0, 0,−x0; w). The equilibria in Filippov dynamical systems can
be classified into the following four types: admissible equilibrium, pseudo equilibrium,
boundary equilibrium and virtual equilibrium [29]. Furthermore, the first three types of
equilibria really exist in the state space. In contrast, the last type of equilibrium does not
exist in the state space and should be useless for understanding the slow–fast dynamics
behaviors. Based on the fact that the Filippov fast subsystem (4) consists of two 3D smooth
subsystems S+, S− as well as one 2D sliding subsystem, we then have the following
definition for the equilibria that really exist in the fast subsystem (4).

Definition 1. The real equilibria of the fast subsystem (4) can be classified into the three types:

1. if F+(X0) = 0 and x0 > 0
(

F−(X0) = 0 and x0 < 0
)
, X0 is a so-called admissible

equilibrium (AE), and x0 is restricted by w = x0 + f (x0)− δ
(
w = x0 + f (x0) + δ

)
;

2. if |w| < |δ| and x0 = 0, then X0 is a so-called pseudo equilibrium (PE) located in sliding
region ΣS, and which is equal to the equilibrium of sliding subsystem (9);

3. if F+(X0) = 0, x0 = 0 and w = −δ
(
F−(X0) = 0, x0 = 0 and w = δ

)
, X0 is a so-called

boundary equilibrium (BE) located on ∂ΣS+ (∂ΣS−).

Note that AEs (labeled as AE±) and PEs are the equilibrium points of the 3D smooth
systems S± and the 2D smooth system (9), respectively, the corresponding characteristic
equations of which can determine the stabilities according to the Routh–Hurwitz Criterion.

For an AE, the corresponding characteristic equation can be computed as the unified form

fAE(λ) := λ3 + (κ + 2)λ2 + (κ + η)λ + η(κ + 1) = 0, (10)

where κ = α
(
a + 3bx2

0
)
. Then we have the following result: if (κ + 2) > 0, (κ + 2)(κ + η)−

η(κ + 1) > 0 and η(κ + 1) > 0 are satisfied, the AE is stable.
Meanwhile, the stability of PE is characterized by the corresponding characteristic equation

fPE(λ) := λ2 + λ + η = 0. (11)

Then the two eigenvalues are easy to be derived as λ1,2 = −0.5± 0.5
√

1− 4η, and PE
is always stable when η > 0. Furthermore, it is a stable node when 0 < η ≤ 0.25, while it is
a stable focus when η > 0.25.

3.2. Boundary Equilibrium Bifurcations

The two boundary equilibria, computed as XBE± = (0, 0, 0;∓δ), will connect the AE
and the PE when A > −δ, at which codimension-1 boundary equilibrium bifurcations
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(BEBs) occurs. Taking the boundary equilibrium XBE+ as an example, codimension-1 BEBs
need to meet the two following conditions [34]

det
(
F+,X(XBE+)

)
=− ηα(1 + a) 6= 0,

dH(XBE+)

dw
=

1
α(1 + a)

6= 0,
(12)

where the first one and the second one can be regarded as the nondegeneracy condition
and the transversality condition, respectively.

In the arbitrary small neighborhood of XBE+, there exist an AE (labeled as XAE+ =
(x0, 0,−x0; w1) (x0 > 0)) and a PE (labeled as XPE = (0, 0, 0; w2)). Obviously, we then have{

F+(XAE+) = 0,

H(XAE+) := x0 > 0,
(13)

at XAE+ and {
F+(XPE) + q

(
F−(XPE)− F+(XPE)

)
= 0,

H(XPE) := 0,
(14)

at XPE by introducing the transformation q = 1−Q
2 , respectively. Linearizing (13) and (14)

at XBE+ , we can find that

q = −
x0α
(
1 + a

)
2δ

. (15)

Noting that x0 > 0, we have the following definition for codimension-1 BEBs at
XBE+ when A > −δ, and moreover, the BEBs at XBE− can also be obtained according to
the symmetry.

Definition 2. If α(1+a)
2δ > 0, i.e., q < 0, then XAE+ and XPE, located at the opposite sides of

XBE+, may convert to each other via XBE+, implying the occurrence of persistence; on the contrary,
if α(1+a)

2δ < 0, i.e., q > 0 , then XAE+ and XPE, located at the same side of XBE+, may collide with
each other at XBE+ and disappear together, implying the occurrence of nonsmooth fold bifurcation.

3.3. Tangencies and the Visibilities

Tangencies and the related concepts are the essences of understanding the nonsmooth
dynamics on discontinuity boundary, especially for sliding bifurcations of cycles [43,44].
Here we introduce the n-th order Lie derivatives Ln

F+ H and Ln
F−H to discuss the tangencies

as well as the local geometries on sliding boundaries ∂ΣS±(Ln
···H = 〈 ∂Ln−1

··· H
∂X , · · · 〉, where

“· · · " denotes F+ or F−, n ∈ N∗).
Note that the two sliding boundaries in (8) are parallel to each other and two simple

tangencies will exist on ∂ΣS±. Taking a point on the sliding boundary ∂ΣS+ as an example,
there exist the following tangencies.

1. Quadratic tangency, also be called the fold point, can be observed when the two
conditions LF+ H = 0 and L2

F+ H 6= 0 are satisfied, i.e.{
αyΣ + w + δ = 0,

− yΣ + zΣ 6= 0,
(16)

at which the trajectory driven by subsystem S+ is tangent to sliding boundary ∂ΣS+.
Furthermore, when L2

F+ H > 0, i.e., −yΣ + zΣ > 0, it is a visible fold, while L2
F+ H < 0,

i.e., −yΣ + zΣ < 0, it is an invisible fold.
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2. Cubic tangency, also be called the cusp point, can be observed when the three condi-
tions LF+ H = 0, L2

F+ H = 0 and L3
F+ H 6= 0 are satisfied, i.e.
αyΣ + w + δ = 0,

− yΣ + zΣ = 0,

− ηzΣ 6= 0,

(17)

at which one sliding orbit is tangent to sliding boundary ∂ΣS+. Furthermore, it is a
visible cusp point when L3

F+ H · LF−H < 0, while it is a invisible cusp point when
L3

F+ H · LF−H > 0.

Meanwhile, the tangencies and visibilities on ∂ΣS+ can be easily discussed according
to the symmetry.

From the above analyses, we can find that a regular point XΣ on Σ can degenerate into
a fold point via (16), and then a cusp point via (17), ultimately a BE via LF+ H = L2

F+ H =

L3
F+ H = 0. On the other hand, we may also find that a cusp point separates the visibilities

of the fold points while a BE can separate the visibilities of cusp points.
To date, the nonsmooth singularities on discontinuity Σ have been analyzed using noncon-

ventional dynamics theory, which may help us to understand the dynamics mechanism for the
nonsmooth structures observed both in the attractors of the fast subsystem and in whole system
responses. In the following section, we push forward our research by numerical studies with
certain parameter values. Furthermore, we discuss the dynamics generation mechanism of the
non-bifurcation-induced transition structure characterized by the alternation from the outside
spike attractor to the inner rest attractor in rest spike bistability.

4. Numerical Studies

When the values of the parameters other than the excitation amplitude A and the exci-
tation frequency Ω are fixed, it is not difficult to understand that the excitation amplitude
A determines the range of slow variable w while the excitation frequency Ω, which has
been assumed as 0 < Ω � 1, does not. Based on the classical slow–fast decomposition
method, the dynamics behaviors of the fast subsystem (4), such as attractors and their
bifurcations, depend on the excitation amplitude A. Thus, when we slightly change the
excitation frequency Omega, the response of the whole system may be constant. However,
the situation is different when there is some special dynamical structure in (4).

In order to exhibit more details, we turn to numerical simulations via setting the
parameters as the values in Table 1. From top to bottom in Figure 2, we give four different
responses of the whole system (3) with different excitation frequencies.

Table 1. Parameters and their values.

Dimensionless Parameter Value

α 1.63
a −0.3
b 0.5
δ −0.5
A 0.8
η 0.6
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Figure 2. Time histories of four responses of whole system (3) corresponding to a different excitation
frequency Ω.

When Ω = 0.01, only spiking oscillation mode can be observed, where the trajectory
alternates between a cluster of relatively large amplitude oscillations (LAOs) and a cluster
of relatively small amplitude oscillations (SAOs), repeated periodically. Then we can call
this phenomenon mixed tonic spiking oscillations (MTSOs) since the amplitudes of spiking
oscillations can be roughly divided into relatively large ones and small ones.

Interestingly when Ω = 0.027, the obvious QSs periodically appears between two
SAOs, i.e., the so-called bursting phenomenon alternating between SPs and QSs can be
observed in this case. Meanwhile, four alternations between LAOs and SAOs can also
appear in every SP, leading to two clusters of LAOs and three clusters of SAOs in every SP.
Then we can call such bursting phenomenon mixed bursting oscillations (MBOs).

Increasing the excitation frequency to Ω = 0.027174, MBOs still can be observed in
this case. However, only two alternations between LAOs and SAOs can be observed in
every SP, leading to that every SP consists of two clusters of SAOs separated by a cluster
of LAOs.

Furthermore, by increasing the excitation frequency to Ω = 0.0285, alternations
between SPs and QSs still exist in the oscillation structure. However, we may find that
LAO no longer exists in SPs in this case, i.e., the amplitudes of SPs nearly keep constant.
Therefore, we call this phenomenon typical bursting oscillations (TBOs).

Based on the numerical results in Figure 2, although the slight change of excitation
frequency Ω does not affect the stabilities and bifurcations of attractors in the fast subsystem
(4), the responses of whole system (3) from MTSOs to two different MBOs and then to
TBOs appear in turn with increasing Ω. We now try to reveal the generation mechanisms
for those oscillation structures using the classical slow–fast decomposition method.

4.1. Generation Mechanism of MTSOs

Since the discontinuity boundary Σ is defined by x = 0, we redraw the phase portrait
in (w, x) plane and the time history of x of the MTSOs when Ω = 0.01, respectively, given
in Figure 3a,b. Then we may find that every spiking oscillation contacts the discontinuity
boundary Σ (denoted as the blue horizontal line). Meanwhile, Figure 3a also reflects that
the mixed tonic spiking oscillation with Ω = 0.01 may be not strictly periodic.

In order to exhibit more details about the oscillation structures, we choose Π1 := w = 0,
Π2 := w = 0.46, Π3 := w = 0.55 and Π4 := w = 0.78 as cross sections, respectively,
as shown in Figure 3a. Poincaré maps are plotted in Figure 4, where one may find that the
response of the whole system (3) then is a quasi-periodic oscillation when Ω = 0.01, since
all the Poincaré maps on the four cross sections are nearly closed curves.
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Figure 3. The MTSOs when Ω = 0.01, which is redrawn with considering nonsmooth
structures. (a) Phase portrait in (w, x) plane; (b) time history of fast variable x.
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Figure 4. Poincaré maps of the MTSOs with Ω = 0.01. (a) Π1 := w = 0; (b) Π2 := w = 0.46;
(c) Π2 := w = 0.55; (d) Π2 := w = 0.78.

According to the Poincaré maps in Figure 4, it is not difficult to predict that limit cycles,
i.e., the so-called spike attractors exist in the Filippov fast subsystem (4). Furthermore,
the relatively large closed curves intercepted from LAOs, labeled as LAO in Figure 4a–c,
indicate that the corresponding spiking attractor behaves in crossing motions on Σ. While
the relatively small closed curves intercepted from SAOs, labeled as SAO in Figure 4b–d,
indicate that the corresponding spiking attractor behaves in sliding motions on Σ.

The relatively small closed curves intercepted from SAOs appears in the inner of
the relatively large closed curves intercepted from LAOs, seen in Figure 4b,c. It indicates
that the spiking attractor behaving in crossing motions coexists with the spiking attractor
behaving in sliding motions. Moreover, the relatively small closed curves intercepted from
SAOs behaves in different nonsmooth structures, which means that the corresponding
spiking attractor may undergo sliding bifurcation.
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Considering the symmetry, as shown by the green circles in Figure 3a, two spike
attractors corresponding to the two SAOs exist in (4), respectively, labeled as LCSA+ (w > 0)
and LCSA− (w < 0). Taking LCSA+ as the example, Figure 5 gives the corresponding
geometry of sliding bifurcation, where LCSA+ crosses through the visible cusp point VC−
on ∂ΣS− when w ≈ 0.533 to undergo a multi-sliding bifurcation, seen in Figure 5b, leading
to the single sliding segment in Figure 5a turns into two sliding segments in Figure 5c.
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Figure 5. The multi-sliding bifurcation geometry of limit cycle LCSA+, where the dark-gray region
denotes sliding region ΣS and the sliding segments are colored in blue. (a) w = 0.7; (b) w ≈ 0.533;
(c) w = 0.45.

We now discuss the generation mechanism for the quasi-periodic MTSOs when
Ω = 0.01 by using the classical slow–fast decomposition method. Via analyzing the
conventional bifurcations of spike attractors in Figure 6a, we can give the complete details
about bifurcations of spike attractors in Table 2.
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Figure 6. Generation mechanism analysis for the MTSOs with Ω = 0.01. (a) One-parameter conven-
tional bifurcation diagram of spike attractors; (b) the superimposition of one-parameter bifurcation
diagram of spike attractors and one segment of trajectory with τ ∈ [ 3π+4nπ

2Ω , 5π+4nπ
2Ω ] (n ∈ N∗); (c) the

relaxation oscillation equivalent to the MTSOs in Figure 3.

Table 2. Bifurcations of spike attractors as well as the abbreviations and parameter values.

Bifurcation Abbreviation Parameter Value

Fold bifurcation of limit cycles LPC2± w ≈ ±0.566
Multi-sliding bifurcation MS± w ≈ ±0.533

Fold bifurcation of limit cycles LPC1± w ≈ ±0.444

As shown by the red real arrows in Figure 6a, the relatively large amplitude spiking
attractor, denoted as LCLA, will collide with the two unstable cycles LCUS±, respectively,
leading to the transitions from LCLA to LCSA± caused by the fold bifurcations of limit
cycles LPC2±. Similarly, the two relatively small amplitude spike attractors LCSA± may
also collide with unstable cycles LCUS±, respectively, leading to the transitions from LCSA±
to LCLA caused by the fold bifurcations of limit cycles LPC1±.

Considering the symmetry, in order to exhibit the generation mechanism of the
quasi-periodic MTSOs, we choose to superimpose one segment of trajectory with τ ∈
[ 3π+4nπ

2Ω , 5π+4nπ
2Ω ] (n ∈ N∗) onto the one-parameter bifurcation diagram of spike attractors,

seen in Figure 6b. During the slow variable w changes from w = −0.8 to w = 0.8, it can be
found that the evolution process of the trajectory can be explained well by using the bifurca-
tion structures of spike attractors. For example, the multi-sliding bifurcation MS− leads the



Mathematics 2022, 10, 4606 12 of 21

SAOs behaving in single-sliding oscillations to turn into a SAO behaving in double-sliding
oscillations. Meanwhile, the two fold bifurcations of limit cycles LPC1− and LPC2+ lead
the transition from SAOs to LAOs and the transition from LAOs to SAOs, respectively.

It should be pointed out that the two multi-sliding bifurcations MS± lead to the
change of sliding modes in SAOs rather than the transitions between attractors. We will
ignore these two multi-sliding bifurcations because the main focus in our work is on the
transition mechanism.

Since the whole system (3) is a slow–fast dynamical system when 0 < Ω << 1, one
may be interested in knowing whether or not the quasi-periodic MTSO response in Figure 3
should be a slow–fast dynamics behavior. The limit cycles in the fast subsystem (4) are
presented in Figure 6a via giving the extreme points in the (w, x) plane. Without loss of
generality, we can also map those limit cycles as fixed points in the (w, x) plane via discrete
dynamics theory. As shown in Figure 6c, where FPLA, FPSA± and FPUS± denote the fixed
points corresponding to LCLA, LCSA± and LCUS±, respectively, while SN1± and SN2±
denote saddle-node bifurcations corresponding to LPC1± and LPC2±.

Similarly, we now represent the quasi-periodic MTSOs in Figure 3 with the maximum
points of spikes, as shown by the cyan points in Figure 6c. Based on the classical slow–
fast decomposition method, we can find that the quasi-periodic MTSOs is a relaxation
oscillation induced by the four saddle-node bifurcations. Accordingly, we may say that
the quasi-periodic MTSOs response in Figure 3 is a typical slow–fast dynamics behavior
characterized by a relaxation oscillation on the torus.

4.2. Generation Mechanism of MBOs and TBOs

Based on the above analyses for the quasi-periodic MTSOs, the response of the whole
system (3) can be well predicted by attractors and the bifurcation structures in (4). Mean-
while, according to the spike attractors and bifurcations in Figure 6a, it seems that the
transitions between spike attractors should be the only alternative for the whole system
trajectory. However, in the MBOs when Ω = 0.027, redrawn in Figure 7, the appearances of
QSs connecting the neighboring two SAOs do not agree with the prediction based on the
two fold bifurcations of limit cycles LPC1±.
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Figure 7. The redrawn MBOs when Ω = 0.027. (a) Phase portrait in (w, x) plane; (b) the superimpo-
sition of time history of fast variable x and the time history of slow variable w.

Figure 7 shows that the MBOs when Ω = 0.027 is a symmetrical period 3TE response
of system (3), where TE denotes the period of excitation TE = 2π

Ω . For the convenience
of analysis, we divide the whole period behavior into six equal time segments in time
history according to the monotonous zones of slow variable w, labeled as Ti(i = 1, . . . , 6),
respectively, seen in Figure 7b. It can be found that the QSs located on τ ∈ T1 and τ ∈ T4
represent the unique sticking motions which occur on discontinuity boundary Σ. Since the
sticking motion is an unique nonsmooth dynamics behavior that the trajectory in Filippov
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systems converges to a stable PE and behaves in a certain static state, we now count PE as
well as BEBs into the bifurcation diagram in Figure 6a, as shown in Figure 8a.
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Figure 8. Rest spike bistabilities as well as the special transitions. (a) Rest spike bistabilities in the fast
subsystem (4) as well as their bifurcations; (b) the superimposition of (a) and two different migration
modes of whole system trajectories in the same evolution direction.

By employing (9) and (15) as well as the results, it is easy to check that one stable focus
type pseudo-equilibrium branch PE, existing in the sliding region ΣS, will disappear at
the two boundary equilibrium points XBE± via nonsmooth fold bifurcations (respectively
labeled as NF±). Under the separation of the four bifurcations LPC1± and NF±, seen in
Figure 8a, three special rest spike bistability structures, composed by stable focus type
pseudo-equilibrium points (rest attractors) and nonsmooth stable cycles (spike attractors),
can be observed in the fast subsystem. One is composed of PE coexisting with the relatively
large amplitude crossing cycle LCLA, while the other two are composed of PE and the small
amplitude sliding cycles LCSA±, more details are given in Table 3.

Table 3. Rest spike bistability structures in the fast subsystem.

Sort Attractor Parameter Range Border Bifurcation

I LCLA, PE w ∈ (−0.444, 0.444) LPC1−, LPC1+
II LCSA+, PE w ∈ (0.444, 0.533) LPC1+, NF+
III LCSA−, PE w ∈ (−0.533,−0.444) LPC1−, NF−

By then, the symmetrical period 3TE MBOs in Figure 7 can be divided into two
different transition routes. Taking the trajectories in decreasing intervals of the excitation
as the example, as shown in Figure 8b, the segment with τ ∈ T1 (black dash–dotted curve)
and the segment with τ ∈ T3 (black solid curve), respectively, converge to the special rest
attractor PE and the crossing spike attractor LCLA. Then, the segment when τ ∈ T1 and the
segment when τ ∈ T3 converge to the relatively small amplitude spiking attractor LCSA−,
respectively, caused by the bifurcation NF− and the bifurcation LPC2−.

According to the bifurcation structures presented in the fast subsystem (seen in Figure 8a),
even when starting from the stable PE, the trajectories of the whole system may also transition
to LCSA± via the two nonsmooth fold bifurcations NF±, and repeat the transition route similar
with the first case with Ω = 0.01. Clearly, the transition route in the black dash–dotted
curve is non-bifurcation-induced transition. Therefore, the key to understanding the generation
mechanism of MBOs in Figure 7 is to reveal the dynamics mechanism underlying the appearance
of the two coexisting distinct transition routes shown in the green circle in Figure 8b, especially
the fundamental reason that results in the transition from LCSA± to PE.

One may note that the two coexisting attractors in the rest spike bistability II (III)
may be very close to each other in the geometric position. For instance, see the rest spike
bistability II when w = 0.445 in Figure 9a. The clockwise stable cycle LCSA+, starting from
the smooth region R+ (R−), behaves in the sliding motion ΓS+ (ΓS−) when it enters into ΣS
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at the point PR+ (PR−) , until it crosses through the sliding boundary ∂ΣS− (∂ΣS+) at the
point PS− (PS+) to enter into the opposite side of Σ. We can find that the coexisting stable
PE is very close to the sliding segment ΓS−. We now focus on the division of attractor
basins of the two coexisting attractors in the rest spike bistability II, which is important to
explain the transition route from LCSA± to PE.
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Figure 9. Dynamical structures of rest spike bistability II as well as the local dynamics structure.
(a) Rest spike bistability II when w = 0.445; (b) the local dynamics structure between PE and the
sliding segment ΓS−.

Since the stable PE is very close to the sliding segment ΓS− of spike attractor LCSA+,
the sliding trajectories (denoted by ΦS(x(τ), y(τ), z(τ)) = (0, yS(τ), zS(τ))) between PE
and the sliding segment ΓS− will converge to one of the two coexisting attractors ultimately,
According which the attractor basins of the two coexisting attractors in rest spike bistability
II can be analyzed. Meanwhile considering that the sliding vector field (9) is linear, all the
sliding trajectories ΦS can be derived analytically according to that PE is a stable focus,
expressed by
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(18)

where the two coefficients µ1,2 can be calculated by submitting the corresponding initial
conditions of a sliding trajectory ΦS into (18).

It is not difficult to verify that the two cusp points on sliding boundaries ∂ΣS± both
are visible, computed as VC±(0,− 0.445±0.5

1.63 ,− 0.445±0.5
1.63 ) via (17). Taking VC+ as the initial

conditions of (18), one special sliding orbit, labeled as ΦC+, can be computed with negative
τ. Certainly, the sliding trajectories between PE and ΦC+ will slide to the stable PE in the
forward time. However, what is in doubt is whether all the sliding trajectories between
ΦC+ and ΓS− will converge to the spike attractor LCSA+, that can be answered via the
following numerical method.

One may note that all the sliding trajectories between ΦC+ and ΓS− inescapably
cross through the visible fold points between VC+ and PS+. Thus, the attractor basin
structure can be easily obtained by which of the rest spike bistabilities II the trajectories from
these visible fold points eventually converge to. Via numerical verification, the point PB+
divides the sliding boundary ∂ΣS+ between VC+ and PS+ into two segments. As shown in
Figure 9b,where trajectories starting from visible points between VC+ and PB+ converge to
PE to behave in sticking motions after a minimal oscillation in R+, while trajectories starting
from visible points between PB+ and PS+ oscillate to spike attractor LCSA+. Similarly,
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another special sliding orbit, denoted as Φ+
sep, can be obtained numerically by taking PB+

as the initial condition of (18). It can be regarded as an attractor basin boundary of the rest
spike bistability II in sliding region.

Meanwhile, the classical slow–fast decomposition method reflects a fundamental fact
in the family of slow–fast dynamical systems, referring to the fact that the dynamics behav-
iors of the fast subsystem are modulated continuously by the slow variable. According to
that, the attractor basin structures of rest spike bistability II have changed after the whole
system completes one spiking oscillation. Without loss of generality, taking the trajectory
oscillating along with the LCSA+ in Figure 9a as the example. Assume that the whole
system trajectory starts at a point in the sliding region, where the corresponding slow
variable is W1 = 0.5sin(0.027τ1), the trajectory completes a spike after one period of LCSA+

(denoted as TSA+). The slow variable has changed to be W2 = 0.5sin[0.027(τ1 + TSA+)],
i.e., there exists a slight variation ∆w = |W1 −W2|. For more precision, here we name it the
deviation of the slow variable (DSV for short).

Note that the excitation frequency has been assumed as 0 < Ω << 1, then we have
∆w ≈ 0.5ΩTSA+, indicating that the DSV ∆w will increase along with the increase of
Ω, as shown in the sketch map in Figure 10a. As we have mentioned that PE may be
very close to the sliding segment ΓS− of LCSA+, seen in Figure 9a, the increase in DSV
caused by the increase of Ω, even though it is relatively small, can lead to unexpected
influence on the attractor basins of rest spike bistability II. To illustrate this point, Figure 10b
gives the attractor basin structures of rest spike bistability II with w = 0.445 ,i.e., ∆w = 0.
The special sliding orbit Φ+

sep (colored in red) divides the sliding region ΣS into two different
sub-regions by the aid of sliding boundary ΣS+, respectively, denoted by ΣSP and ΣSL.
The sliding trajectories then converge to PE when they are located in ΣSP while the sliding
trajectories converge to LCSA+ (represented by the two sliding segments ΓS±) when they
are located in ΣSL.
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Figure 10. The relationship of DSV ∆w and excitation frequency Ω as well as the influence on attractor
basin structures of rest spike bistability II. (a) Sketch map of the relationship of ∆w and Ω; (b) the
attractor basin structures of rest spike bistability II in Figure 9a with ∆w = 0; (c) the attractor basin
structures of rest spike bistability II in Figure 9a with ∆w = 0.034.

Interestingly, when we increase the DSV to a appropriate value, for instance, ∆w = 0.034,
another unique sliding orbit besides Φ+

sep, denoted by Φ−sep, can also be obtained numerically.
Therefore, the attractor basin structures of rest spike bistability II can be redivided by using
Φ+

sep as well as the two sliding boundaries ΣS±, as shown in Figure 10c. Especially, we can
find that the sliding segment ΓS− then is located in ΣSP while the sliding segment ΓS+ still
is located in ΣSL. Sticking motions can be observed when the whole system trajectories
oscillating along with LCSA+ move to the sliding segment ΓS− just in time. While spiking
oscillations will persist when the whole system trajectories oscillating along with LCSA+

move to the sliding segment ΓS+ just in time.
Accordingly, one may find that a threshold ΩT exists in the whole system (3) under the

parameter conditions in Table 1, which can be approximately computed as ΩT ≈ 0.025837
via tracking the critical value of Ω of the appearance of the dash-dotted transition route
in Figure 8b. Therefore, we have the following results for the transitions from rest spike
bistability II to rest spike bistability I. When Ω < ΩT , only the transition from LCSA+

to LCLA can be observed, which is explained well by the fold bifurcation of limit cycles
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LPC1+. However, when Ω ≥ ΩT , the special transition from LCSA+ to PE can also be
observed besides the above. That can be explained by the disappearance of LCSA+ induced
by the nonnegligible DSV rather than a common bifurcation. Accordingly, we name it the
transition induced by the DSV effect. Meanwhile, considering the symmetry, we have the
same results about transitions from the rest spike bistability III to the rest spike bistability I.

For convenience, we can summarize the transition mechanism in a monotonous zone
of slow variable w into the following two types when Ω ≥ ΩT .

• The regular transition route, meaning that the trajectory of the whole system will
transition to LCLA from LCSA±, and then to LCSA∓ via the fold bifurcations of limit
cycles, leading to the birth of mixed tonic spiking oscillation pattern;

• The irregular transition route, meaning that the trajectory of the whole system will
transition to PE from LCSA± via DSV effect, and then to LCSA∓ via the nonsmooth
fold bifurcations, leading to the birth of bursting oscillation pattern.

By then, the generation mechanism underlying the symmetrical period 3TE MBOs in
Figure 7 can be understood well based on the above analyses. More precisely, assuming
that the trajectory starts at the maximum of w in T1, it, respectively, passes through the rest
spike bistability II and III three times when it oscillates along with spike attractor LCSA±,
where the transition induced by DSV effect, respectively, only takes place once. It results
in a symmetrically periodic transition structure composed of two irregular transitions
followed by for regular transitions in a complete oscillation period. Then, the period 3TE
MBOs, consisting of two QSs characterized by sticking motions and two SPs characterized
by mixed spiking oscillations, can be observed in the whole system.

Based on the analysis of the generation mechanism of the period 3TE MBOs when
Ω = 0.027, it is not difficult to understand the responses of whole system (3) when
Ω = 0.027174 and Ω = 0.0285. We now focus on the generation mechanisms of the two
responses in Figure 11.
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Figure 11. The slow–fast decomposition of responses when Ω = 0.027174 and Ω = 0.0285. (a) Asym-
metrical period–1TE MBOs when Ω = 0.027174; (b) symmetrical period–1TE TBOs when Ω = 0.0285.

When Ω = 0.027174, seen in Figure 11a, we may find that the whole system (3) behaves
in an asymmetrical period–1TE MBOs, and the trajectory, respectively, passes through the
rest spike bistability II and III once when it oscillates along with spike attractor LCSA±.
The transition induced by the DSV effect only occurs when the trajectory moves to the rest
spike bistability I from the rest spike bistability III, however, it does not take effect when the
trajectory moves to the rest spike bistability I from the rest spike bistability II. It results in
the appearance of the asymmetrical period–1TE MBOs consisting of one QS characterized
by a sticking motion and one SP characterized by mixed spiking oscillations.

When Ω = 0.0285, seen in Figure 11b, the whole system response is a symmetrical
period–1TE TBOs. Similarly, with the whole system response with Ω = 0.027174, the trajec-
tory in this case also passes through the rest spike bistability II and III once when it oscillates
along with spike attractor LCSA±, respectively. However, we can find that the transition
induced by the DSV effect may take effect at the two transition locations, leading to the
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trajectory transition from LCSA± to PE. That implies the appearance of the symmetrical
period–1TE TBOs consisting of two QSs characterized by sticking motions and two SPs
characterized by spiking oscillations without LAO.

4.3. Coexistence of Whole System Responses

According to the generation mechanism of whole system responses involving transi-
tions induced by the DSV effect, one may find that any response of the whole system is
a certain combination form of regular and irregular transition routes. Moreover, such a
combination may be random in theory since period–3 movement has been obtained when
Ω = 0.027, implying the appearance of an arbitrary period of whole system response,
even chaos.

More interestingly, the period–1TE MBOs in Figure 11a is asymmetrical, i.e., there
must be another asymmetrical period–1TE MBOs coexisting with the one in Figure 11a
based on the symmetry. It indicates that the coexistence of attractors can also be observed
in the whole system. We will give further discussions in this section.

Figure 12a gives the coexistence response of the whole system when Ω = 0.027174,
and the corresponding initial conditions from top to bottom are (x(0), y(0), z(0)) =
(0, 0.5, 0.5), (x(0), y(0), z(0)) = (0,−0.5,−0.5) and (x(0), y(0), z(0)) = (−2,−2, 2.2), re-
spectively. Numerical results show that there also exists a symmetrical period–1TE MTSOs
(seen in Figure 12(a1)) besides the two coexisting asymmetrical period–1TE MBOs (seen
in Figure 12(a2,a3)), indicating that tristability then exists in the whole system (3). Noting
that the asymmetrical period–1TE MBOs in Figure 12(a3) is symmetrical with the one in
Figure 11a, the corresponding generation mechanism can be obtained according to the
symmetry. Meanwhile, for the symmetrical period–1TE MTSOs in Figure 12(a1), the gener-
ation mechanism is attributed to the fact that only two regular transition routes appear in a
complete period motion.
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Figure 12. Coexisting responses when Ω = 0.027174 as well as the Poincaré map of whole system.
(a) The three coexisting period–1TE responses when Ω = 0.027174; (b) the Poincaré map of whole
system on the section Π1 := w = 0 with Ω ∈ (0.02685, 0.027183).

In order to show more details about the coexistence of responses of the whole system
(3), we turn to exhibit the responses of the whole system via plotting the Poincaré map.
The whole system trajectory will oscillate with LCLA when it is in the regular transition
route. In contrast, the whole system trajectory may move along with PE in the irregular
transition route. Accordingly, Π1 := w = 0 is chosen as the Poincaré cross section, which
can reflect the symmetry of the whole system response and can distinguish well between
the two transition routes. As shown in Figure 12b, we give the Poincaré map of the whole
system when Ω ∈ (0.02685, 0.027183), in which the period–1TE MTSOs (colored in orange)
can persistently exist in the whole frequency range.

Meanwhile, the period–1TE, period–3TE, period–2TE, period–5TE and period–3TE
MBOs can discontinuously appear in turn along with the decrease of Ω. In those periodic
MBOs, further numerical simulations show that the irregular transition route will appear at



Mathematics 2022, 10, 4606 18 of 21

most once, which is absent here for brevity. Here the periodic MBOs colored in red denote
the irregular transition route that only occurs nearby the rest spike bistability II. While the
ones colored in green denote the irregular transition route that only occurs nearby the rest
spike bistability III. Moreover, the black ones denote the irregular transition route occurs
both in the rest spike bistability II and in III. Furthermore, the structures of MBOs may also
alternate between asymmetry and symmetry in this progress. It leads the coexistence of
responses of the whole system (3) to alternate between tristability and bistability, more
details see Table 4.

Table 4. Coexistence of the responses of whole system (3).

Coexistence
Type Ω Zone Response Type

tristability (0.0271193, 0.027183) one period–1TE MTSOs 1 and two period–1TE MBOs 2

bistability (0.0269777, 0.0270228) one period–1TE MTSOs 1 and one period–3TE MBOs 1

tristability (0.0269256, 0.0269444) one period–1TE MTSOs 1 and two period–2TE MBOs 2

bistability (0.0269029, 0.0269114) one period–1TE MTSOs 1 and one period–5TE MBOs 1

tristability (0.0268919, 0.0268956) one period–1TE MTSOs 1 and two period–3TE MBOs 2

1 Symmetrical response(s). 2 Asymmetrical response(s).

Then, we can find that the whole system (3) exhibits various dynamics behaviors
characterized by one period–1TE MTSOs coexisting with one (or two) periodic MBOs when
the irregular transition route is involved. It indicates that the response only involving
regular transition route still exists in the whole system when Ω ≥ ΩT . We now turn to
show another interesting coexistence of the whole system responses.

When Ω = 0.0285, tristability structure can also be observed in the whole system.
As shown in Figure 13a, one symmetrical period–1TE TBOs, which has been presented
in Figure 11b, can coexist with two asymmetrical period–1TE MTSOs, the corresponding
initial conditions from top to bottom are (x(0), y(0), z(0)) = (0, 0, 0), (x(0), y(0), z(0)) =
(2, 2,−2.2) and (x(0), y(0), z(0)) = (−2,−2, 2.2), respectively. Similarly, we also give the
Poincaré map when Ω ∈ (0.0284, 0.02852) in Figure 13b, where the symmetrical period–1TE
TBOs (colored in orange) can persistently exist in the whole frequency range. Meanwhile,
both the two asymmetrical period–1TE MTSOs presented in Figure 13(a2,a3) perform the
obvious period-doubling cascades along with the decrease of Ω, colored in light gray and
gray, respectively.
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Figure 13. Coexisting responses with Ω = 0.0285 as well as the Poincaré map of whole system.
(a) The three coexisting period–1TE responses with Ω = 0.0285; (b) the Poincaré map of whole system
on the section Π1 := w = 0 with Ω ∈ (0.0284, 0.02852).

Different from the former case in Figure 12b, one may find that tristability structure
always exists in the whole system (3) when Ω ∈ (0.0284, 0.02852). Moreover, the tristability
can be composed not only by a period–1TE TBOs coexisting with two periodic MTSOs but
also by a period–1TE TBOs coexisting two chaotic MTSOs.
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5. Conclusions and Discussions

Based on the unique rest spike bistability consisting of a limit cycle and the inner
pseudo equilibrium in a Filippov slow–fast dynamical system, we have further discussed
the non-bifurcation-induced transition characterized by the transition from the outside
spike attractor to the inner rest attractor via various slow–fast dynamic behaviors in system
(3). We found that the common feature DSV effect induced by the objective reality of
timescale difference is one key factor in the transition. Furthermore, it has been proved that
the DSV effect can be determined by timescale difference. In this sense, the non-bifurcation-
induced transition mechanism can be regarded as the comprehensive effect of rest spike
bistability and timescale difference.

Our work also reveals that there exists an essential threshold in timescale difference
when a slow–fast dynamical system possesses such an interesting transition mechanism,
which can be used to distinguish between transition routes across the whole system re-
sponses. As in the Filippov slow–fast dynamical system (3), the threshold ΩT under the
parameter conditions in Table 1 has been given numerically. The whole system only be-
haves in a regular transition route that can be predicted well by bifurcation structures
when Ω < ΩT . However, the irregular transition route, i.e., the non-bifurcation-induced
transition route may coexist with the regular transition route when Ω > ΩT . The whole
system responses then tend to be complicated and varied (shown in Figures 12b and 13b).
This manifests mainly in the two aspects as follows.

• The combination form of the two coexisting transition routes may be random since the
period-3 solution can be observed in the whole system responses, leading to various
oscillation patterns such as multi-periodic and chaotic slow–fast dynamics behaviors.

• Interesting and various coexistences of whole system responses can also be observed.
For instance, discontinuous alternations between bistability, tristability, and persistent
tristability may be performed across the whole system.

Note that the core of the classical slow–fast decomposition analysis method extensively
adopted in slow–fast dynamics represents the dynamics analysis of the fast subsystem after
timescale separation via the key slow variable as the bifurcation parameter. The influence of
timescale difference on the whole system is ignored. On the contrary, our results show that
the timescale difference must be considered in certain conditions, such as the appearance
of rest spike bistability in this paper. Moreover, our numerical results indicate that the
timescale difference is highly sensitive to the whole system in this regard, and thus warrants
the attention of researchers in fields related to slow–fast dynamics.

A similar non-bifurcation-induced transition as that used in this paper has been
involved in recent works [22,31]. However, to the best of our knowledge, we are the first to
investigate that such a special transition mechanism should be a comprehensive effect of
rest spike bistability and timescale difference. Furthermore, our work suggests that one
non-bifurcation parameter of the fast subsystems, i.e., the excitation frequency, can also
induce various slow–fast dynamic behaviors in a Filippov slow–fast dynamical system.
It may provide a valuable reference for the modification and design of artificial neuron
models since nearly all existing artificial neuron models are discontinuous.

Additionally, this paper mainly introduces the non-bifurcation-induced transition
mechanism under the comprehensive effect of rest spike bistability and timescale difference
via numerical methods. An in-depth investigation into the innate character underlying this
transition mechanism and to theorize the related numerical results will prove meaningful
for understanding slow–fast dynamics, which is not a trivial problem and will be our
primary concern in the future.
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