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Abstract: In the job-shop scheduling field, timely and proper updating of the original scheduling
strategy is an effective way to avoid the negative impact of disturbances on manufacturing. In this
paper, a pure reactive scheduling method for updating the scheduling strategy is proposed to deal
with the disturbance of the uncertainty of the arrival of new jobs in the job shop. The implementation
process is as follows: combine data mining, discrete event simulation, and dispatching rules (DRs),
take makespan and machine utilization as scheduling criteria, divide the manufacturing system
production period into multiple scheduling subperiods, and build a dynamic scheduling model that
assigns DRs to subscheduling periods in real-time; the scheduling strategies are generated at the
beginning of each scheduling subperiod. The experiments showed that the method proposed enables
a reduction in the makespan of 2–17% and an improvement in the machine utilization of 2–21%. The
constructed scheduling model can assign the optimal DR to each scheduling subperiod in real-time,
which realizes the purpose of locally updating the scheduling strategy and enhancing the overall
scheduling effect of the manufacturing system.

Keywords: pure reactive scheduling; subscheduling period; dispatching rule (DR); decision tree;
scheduling model
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1. Introduction

Scheduling is an important part of job shop manufacturing systems and a decisive
factor affecting production efficiency [1]. As a classic combinatorial optimization problem,
job shop scheduling has attracted scholars for more than 60 years because of its NP-hard
characteristics [2]. Industries with high discreteness and strong customization, such as crys-
tal ornaments and toys, often lead to unbalanced technological processes in the production
process due to the variety of technological processes and large differences in processing
time. Good scheduling strategies play a huge role. Due to disturbances encountered being
more frequent and diverse in manufacturing systems, it is clear that static scheduling
models can no longer fully meet manufacturing requirements. Dynamic scheduling needs
to consider to machine degradation and the random arrival of products in the production
process [3]. These disturbances are difficult to predict precisely or predictably in the early
stage of scheduling, which may make the original scheduling strategy unsuitable. Due to
the existence of the abovementioned disturbances, the complexity of scheduling increases
rapidly. Therefore, research on the dynamic job shop scheduling problem (JSSP) remains a
topic of considerable interest in the manufacturing industry, with strong application value
and theoretical significance.

In increasingly complex manufacturing systems, uncertain events cause informa-
tion asymmetry between the actual production process and pre-established scheduling
strategies, affecting the execution of the pre-established scheduling strategies. Predictable
disturbances can be dealt with in advance while unpredictable disturbances, such as the
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random arrival of jobs, can have a catastrophic impact on production efficiency in the
case of improper scheduling. Dealing with these unpredictable disturbances rapidly and
accurately ensures the smooth execution of the manufacturing system production process
and is the key to improving production efficiency. However, the following challenges are
encountered in the current research process:

(1) The metaheuristics [4], heuristic methods [5], and exact methods [6] used to optimize
scheduling problems are often affected by computing resources, thus yielding poor
performance of the scheduling strategies generated in a short time [7]. Moreover,
these methods cannot evolve with state changes in the manufacturing system, and
they are insufficient to cope with disturbance factors in the manufacturing system
continuously and efficiently.

(2) Makespan as the scheduling goal has an extensive engineering background and is
widely used in academic research and industrial practice [8]. However, in actual
production processes, the value-added time only accounts for a small part of the
production cycle, and most of the wasted time is nonvalue-added time, such as
waiting and storage [9]. Reducing the proportion of nonvalue-added time is an
effective way to optimize makespan and improve production efficiency.

(3) The unknown moment when the job is released to the manufacturing system and the
unpredictability of its processing attributes make it impossible to obtain all of the job
information that needs to be processed at the initial moment of the manufacturing
system; thus, it is impossible to optimize the JSSP from a global perspective.

To address these challenges, the computational efficiency of the solution and the
adaptive capacity of the obtained scheduling strategies should be considered. In this study,
we apply data mining (DM) techniques to scheduling and mine scheduling knowledge
from historical data to construct a scheduling model. This method can reduce the time
consumption of the solution process and provide a basis for the intelligent generation of
workshop scheduling strategies. The optimization problem of the entire manufacturing
system can be divided into multiple subsystem optimization problems to be solved [10],
thereby reducing the complexity of the entire manufacturing system. Scheduling newly
released jobs with subsystem units can avoid or mitigate disturbances to the state of the
entire manufacturing system. Moreover, the acquired scheduling knowledge can be used
to partially update the manufacturing system scheduling strategies to achieve the goal of
enhancing the overall scheduling efficiency of the manufacturing system.

Based on the above discussion, this study proposes a novel purely reactive scheduling
method for optimizing the JSSP to overcome the negative impact of the randomness of
job arrivals on production efficiency. The production scheduling cycle of the entire manu-
facturing system is divided into several scheduling subcycles, and scheduling strategies
are generated at the beginning of each scheduling subcycle. The generated scheduling
strategies are used to schedule newly released jobs and jobs transferred from previous pro-
cesses in the previous scheduling subperiod. In executing the scheduling strategies in each
scheduling subperiod, the original data containing scheduling knowledge are collected,
and DM technology is used to mine the obtained scheduling knowledge. A scheduling
model is then constructed in a data-driven manner, and a scheduling strategy is generated
for each scheduling subcycle in real-time. The implementation of the above process can not
only quickly generate a scheduling strategy at the beginning of each sub-scheduling cycle
but can also actively schedule the inserted new jobs, avoiding the negative impact of the
random release of a job on the manufacturing process.

The remainder of this paper is organized as follows. Section 2 summarizes research
related to the JSSP and analyzes the optimization problem considered in this study. Section 3
analyzes the optimization problem considered in this study. Section 4 proposes the overall
concept and method for solving the considered problem. Section 5 sets up an experiment
to verify the proposed method. Finally, the results are summarized, and future prospects
are discussed.
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2. Review of the Literature

This section provides a review of numerous studies, summarizes gaps in previous
research, and continues to optimize the scheduling problem on the basis of previous studies.
The summary of previous studies on scheduling problems and scheduling methods is
shown in Table 1 and is described in detail in the following three sections.

Table 1. Summary of the literature.

Literature Scheduling Description

[11–16] Static scheduling Propose advanced heuristic/metaheuristic algorithms to
solve for better performance scheduling policies.

[17–23] Robust scheduling Construct a robust model in the early stages of scheduling
to take into account possible perturbation problems.

[24–28] Rescheduling
Monitor the moment a disturbance appears or the

scheduling policy degrades and update the original
scheduling policy with the set scheduling method.

[29–32] Predictive reactive
Predict possible disturbances in real-time as production

proceeds, and proactively update scheduling policies when
disturbances are predicted.

[33–38] Pure reactive
scheduling

Generate scheduling policies in real-time and dynamically
based on the current job information of the production

system and the current production status without the need
to generate scheduling policies in advance.

2.1. Data Mining and Its Application to the JSSP

Data mining (DM) is a technology that utilizes statistical computing, data management,
machine learning, and artificial intelligence to extract hidden patterns or relationships from
a large amount of data and apply them to future analysis [1]. It has been widely used in
manufacturing, the service industry, and other fields [39,40]. With the ongoing application
of DM technology in all walks of life, a large amount of experience has been accumulated.
Scheduling is an integral part of manufacturing systems, and DM technology has been
widely used to optimize production scheduling problems. DM technology provides new
possibilities for solving dynamic scheduling problems and enhancing the responsiveness
of manufacturing systems as it can rapidly obtain scheduling strategies. Alican et al. [39]
proposed that DM technology could identify meaningful patterns and optimize problems
encountered during the operation of a manufacturing system. Metan et al. [41] combined
simulations, DM, and statistical process control chart technology to develop a real-time DR
scheduling system to reduce the delivery delay time of jobs in a manufacturing system.
Zahmani et al. extracted potential knowledge from scheduling strategies obtained using a
genetic algorithm to reduce the computational load [42]. Shahzad et al. obtained a set of
DR optimization job delays based on DM technology and confirmed their effectiveness in a
static environment [43].

The above research shows that DM technology has been widely applied to solve
scheduling problems in processing workshops and can directly generate scheduling strate-
gies; however, the literature has mainly focused on static scheduling problems. In these
cases, all of the job information to be scheduled is known, and the scheduling strategy
is formulated before production starts. However, it is difficult to satisfy the production
requirements in dynamic environments with frequent disturbances.

2.2. Job Shop Scheduling

Job shop scheduling includes both static and dynamic scheduling, and static schedul-
ing can obtain a scheduling policy with superior performance in specific scenarios and
stable production systems. Wei et al. [11] mixed a variable neighborhood equilibrium
optimizer and a sticky bacterium algorithm to solve a JSSP, which accelerated the solution
speed; Yu et al. proposed an improved particle swarm algorithm and compared the genetic
algorithm and particle swarm. Yuraszeck et al. [12] proposed a heuristic algorithm to
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avoid falling into the local optimum when solving scheduling policies, which is suitable for
solving small-scale scheduling problems. Szabó et al. [13] proposed a heuristic algorithm
for Clique Search in Graphs of Special Class, which can obtain better scheduling policies
than genetic algorithms. Luan et al. [14,15] successively improved the whale algorithm
under different scheduling objectives and then obtained faster performance scheduling
policies than variable neighborhood search methods and some scheduling benchmarks.
Sauvey et al. [16] constructed a makespan as the scheduling objective for the job shop
scheduling problem with mixed blocking constraints and used a mathematical model to
solve the scheduling policy using Mosel Xpress software. It was able to obtain a scheduling
strategy with superior performance in specific scenarios and stable production systems, but
it did not consider the possible uncertainties in the production process and had limitations
in scheduling production systems with poor stability.

Production environments are becoming increasingly complex and dynamic because
manufacturing systems are often disturbed by real-time events, such as external order
insertion and task changes during the production process. Traditional static scheduling
generally cannot meet the production requirements of such systems, and research on
dynamic scheduling problems is thus becoming increasingly crucial. At present, according
to the literature, the primary methods for modeling and solving dynamic scheduling
problems include robust scheduling, rescheduling, predictive reactive scheduling, and
purely reactive scheduling.

The robust scheduling method is an optimization method that integrates uncertain
factors into the scheduling model. The key to a robust scheduling method is the prediction
of the occurrence of future disturbance factors. If the prediction is biased, two unfavorable
outcomes can occur in the manufacturing system: First, if the predicted disturbance factor
does not appear, it will lead to an increased idle time of processing equipment and result in
a large number of wasted resources [17]; second, incorrect prediction of the disturbance
factors can cause the performance of the original scheduling strategy to deteriorate such
that it may no longer be suitable for the current production environment [18]. Xiao et al. [19]
constructed a robust scheduling model to solve the dynamic scheduling problem of the
job shop with a random processing time. Fantahun et al. [20] proposed a simulated
annealing algorithm to better schedule irreplaceable operators in the production workshop
and improve production efficiency. Taking makespan as the scheduling goal, Khurshid
et al. [21] successively proposed an evolutionary algorithm and a hybrid evolutionary
strategy to optimize the scheduling problem of the permutation flow shop. To address the
dynamic scheduling problem of randomly arriving tasks, Zhou et al. proposed an event-
triggered dynamic task scheduling method in which uncertain events were considered in
the scheduling model [22]. Wang et al. proposed two robust scheduling formulas based
on scenario sets and used an improved tabu search algorithm for their solution; they were
then applied to an uncertain JSSP with the completion time as the performance index [23].

Rescheduling is a method of updating the original scheduling strategy when a dis-
turbance event is encountered during the operation of a manufacturing system. When the
product requirements or working conditions change, the current production information is
input into the determined mathematical model or algorithm, and the scheduling strategy is
regenerated [24]. In the dynamic scheduling process, the timing of rescheduling, perfor-
mance of the initial scheduling strategy, guarantee of an efficient rescheduling model, and
performance of generating new scheduling strategies are the keys to the scheduling method.
Rescheduling is generally performed when disturbances are encountered, so disturbances
are predicted in advance or monitored in real-time. Zhang et al. [25] proposed an improved
Kalman algorithm that can solve problems in a shorter time than the genetic algorithm and
can be used in dynamic scheduling. Gao et al. established a scheduling model for the new
task disturbance problem encountered in a flexible job shop manufacturing system, which
was divided into two stages: scheduling and rescheduling [26]. Yin et al. [27] constructed
a fine-grained system state description model for timely response to the flexible job shop
scheduling problem with cost loss as the scheduling objective. Vakhania et al. [28] consid-
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ered the job release date and delivery date, constructed a dynamic scheduling framework,
and proposed a polynomial solver algorithm to update the scheduling strategy within a
short timeframe.

The predictive reactive scheduling method first generates an initial scheduling strategy
then predicts disturbance factors in the actual production process and dynamically updates
the scheduling strategy [29], mainly for predictable disturbance events such as the machine
status. Ji and Qiu used DM technology to explore the potential failure modes of workshop
equipment, predict the probability of machine failure when processing current or future
tasks, and provide references for scheduling and rescheduling [30,31]. Zhang et al. [32]
integrated a convolutional neural network and improved the imperialist competition algo-
rithm to overcome the negative impact of machine failure on the production process, which
had a very good reference value for dealing with predictable failures. This method differs
from the robust scheduling method in that it uses real-time data to predict disturbances.
The predictability of disturbances is the premise of using this method. The accuracy of
the prediction is guaranteed. However, this method has limitations for unpredictable
disturbances, such as the release of new jobs.

The purely reactive scheduling method applies the production information and current
production status of the manufacturing system to generate a dynamic real-time scheduling
strategy. Because the scheduling strategy does not need to be created in advance, this
method is also called “online scheduling” [33]. A short calculation time along with the
adaptive and self-learning abilities of scheduling strategies are the basis for the efficient
application of purely reactive scheduling methods [34]. Multiagent scheduling is a repre-
sentative method of purely reactive scheduling. Researchers have proposed agent-based
scheduling systems [35,36]. Each agent aims to maximize its interests, leading to conflicts
with other agents. Mezgebe et al. proposed a negotiation-based control method to ad-
dress disturbances caused by machine failures in a manufacturing system and achieved
significant improvements in reducing the makespan [37]. Zhang et al. designed a two-tier
distributed dynamic workshop scheduling system with a workshop scheduling agent and
a multiservice unit scheduling agent. The negotiation mechanism used DR, and the service
unit scheduling used a multiagent scheduling method based on humoral immunity [38].
Due to the static characteristics of the negotiation mechanism and the algorithms used by
each agent, this method easily led to insufficient adaptability in a dynamic environment.
However, the purely reactive scheduling method has good application value for solving
unpredictable disturbance factors, such as the release of new jobs, because of its strong
reactivity to the state of the manufacturing system.

2.3. Dispatching Rules

A DR is a heuristic rule. Due to its simplicity, interpretability, and low computational
load, it has a shorter execution time than heuristic and metaheuristic methods [44] and a
solid ability to respond to dynamic events. Its working principle is as follows: Whenever a
machine is idle, a priority function is used to prioritize the unscheduled jobs waiting to
be processed on the machine, and the job with the highest priority is processed first. The
parameters of the priority function are usually an attribute value of the job and the current
state of the manufacturing system. It uses the current information to determine which jobs
need to be scheduled and how these jobs are scheduled. Therefore, DRs have been widely
and successfully used to solve dynamic scheduling problems. In addition, this method
neither requires modifying the original scheduling nor increases production instability.

Two methods have been developed to design a DR with excellent performance: hu-
man intervention design [45] and intelligent algorithm automatic design [46,47]. The first
method requires repeated trial and error testing, and the designer must have extensive
experience. The second design process is complex and unexplainable. Although many DRs
have been created and applied, there is currently no DR that can solve a variety of problems
or deal with a variety of disturbances with consistently excellent performance [7,45,48].
Researchers have extensively compared the performance of DRs and demonstrated that
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a suitable DR response can be obtained under different scheduling problems or distur-
bance situations.

In the literature, the application of DRs to optimize the JSSP is divided into two
categories. The first category involves selecting different DRs based on different scheduling
criteria. Kaban, Veronique, and Marko analyzed different scheduling criteria. The results
demonstrated the performance of the DRs and confirmed that no DR could provide the
best performance under all scheduling criteria [7,45,49]. The other category involves
selecting different DRs or DR combinations for job shop manufacturing systems in different
situations. Tavakkoli et al. considered 10 different DRs and compared their performance in
different manufacturing systems using makespan as the scheduling criterion. Then, the
best DR to deal with the JSSP was selected [50]. Azadeh et al. proposed assigning DRs on a
machine basis in a manufacturing system, determining the job processing sequence to be
processed, and using the DR combination to optimize the makespan criterion [8]. Metan
et al. used the delay time as the scheduling criterion to select the optimal DR combination
from a predetermined DR library to optimize the JSSP [41]. However, the above methods
solve static scheduling problems, i.e., all of the job information is obtained before scheduling.
When the job information cannot be obtained in advance, the performance of the DR
assigned to a manufacturing system or machine cannot be determined. In other words,
there is a lack of research on how to apply DRs to optimize the JSSP when a job shop
manufacturing system encounters a random process, such as when the job release moment
or its attribute information cannot be obtained in advance.

As discussed above, DM has been widely used to generate scheduling strategies and
predict disturbances. However, the generated scheduling strategies are mostly used to
solve static scheduling problems. Integrating metaheuristics and heuristic algorithms to
optimize dynamic scheduling problems is mostly based on the premise that disturbances
are predictable. In order to overcome unpredictable disturbances, such as the random
arrival of jobs, this paper proposes a pure reactive scheduling method that can generate
scheduling strategies actively and in real-time, quickly combining the advantages of data
model generation scheduling strategies and DRs.

3. Mathematical Model Construction

Before constructing the mathematical model, the involved notations were first defined,
as shown in Table 2.

In a job shop, the order in which jobs are processed is random. The process flow
of each job is diversified and known when it is released into the workshop. Due to the
different jobs, the priorities of the multiple operations that comprise each job will be
different [51]. In the manufacturing process, if a disturbance is considered, the feasible
scheduling strategies will increase sharply, and it is very difficult to select the optimal or
near-optimal scheduling strategy.

The job shop scheduling objective set in this paper is to minimize makespan and
maximize machine utilization, and the objective function is defined as shown in Equations
(1) and (2). Equation (2) represents the average of the actual processing operation time
∑n

j=1 pij of the machine in the job shop production system as a percentage of the machine
operation time Ci.

Minimum Cmax = max{Ci|i = 1, 2, · · · , m} (1)

Maximum Mu =
1
m

m

∑
i=1

n
∑

j=1
pij

Ci
(2)

In constructing the mathematical model, two core parameters, rpijki and fk, are intro-
duced, and the expression of the set rpk composed of rpijki is shown in Equation (3); the
solution of B is shown in Equation (4) with an initial value of 0. Among them, if there are
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pending operations before the machine, each operation flowing out of the machine will
immediately flow into another operation; if not, the machine carries out idling.

rpk =
{

rp1jk1
, rp2jk2

, · · · , rpmjkm

}
(3)

fk =

{
0 i f k = 0
min

{
rpk
∣∣rpijki 6= 0

}
i f k 6= 1

(4)

Table 2. Indexes and parameters.

Notations Descriptions

Indexes
i Index of machine, i ∈ {1, 2, · · · , m}
j Index of jobs, j ∈ {1, 2, · · · , n}

k Index of the machine in the production system when it completes the
currentoperation, k ∈ {0, 1, · · · , K}

Parameters
Ci Time for machine i to complete all tasks, the running time of machine i
oij Machine i processes the operation of job j
Cij Completion time of operation oij
Cmax Maximum completion time for jobs in the production system (makespan)
pij Processing time required for operation oij
rij The moment the operation oijk is released to the machine i

jk
The job to which the kth operation of the machine output in the production
system belongs

jki Job j output by machine jk
oijk Machine i processes the operation of job jk
rpijki

The remaining processing time of oijk , if the machine is idle, rpijki
= 0

rpk
rpijki

on all machines in the production system at the kth presence with
outflow operations

fKi The moment when machine i finally flows out the last job

∆kij
Total number of outflows experienced by machine
i in the course of completing operation oij of job j

Decision variables

xij
whether the machine is processing operation oij, if yes, xij = 1, if no,
xij = 0.

fk
the k− th moment when at least one machine in the production system has
completed the current job

kij The index of the outflow operation oij of machine i

Because machines take different amounts of time to process the job at hand, one
machine may complete multiple jobs while another machine may not have completed
one yet. Therefore, during the job flow, when jobs are flowing out of the machine, some
machines may have some time remaining for the processing of the job at hand, and the
remaining processing time experienced by the job during the machine processing will
constitute a set rpk which is obtained by Equation (3). When a machine completes a job,
if there is a pending job next to that machine, the pending job immediately begins to be
processed, at which point the time remaining for the machine to process the job is equal
to the processing time for that job. The machine with the minimum remaining processing
time among all machines in the production system gives priority to outflow jobs, and the
inflow and outflow of jobs from the machine are expressed as a flow process, and the kth
flow process is represented by Equation (4). After all the jobs flow out of the system, the
task is completed and the time of the last job flowing out is the completion time, and the
time of the last job flowing out of machine i is the time of machine i completing the task.
Thus, Equations (1) and (2) are transformed into Equations (5) and (6).

In this paper, when solving the scheduling strategy, because the process of job flow
is determined by the remaining time that the machine processes the current job, the rela-
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tionship between the time that the machine processes the job and the job flow is shown in
Equation (8). The time for each job to flow from the inflow to the outflow machine is equal
to the time for the machine to process the job. Each operation oi j is completed in a process
in which the outflow of jobs has already occurred in other machines in the system, thus
establishing the relationship between the time pi j for each operation oi j to be processed and
the job flow process in the system, as shown in Equation (8).

The scheduling criterion makespan can be described as the time when the last opera-
tion of the last job in all tasks flows out of the production system, and Ci can be described
as the time when the last operation flows out of machine i. According to the “outflow”
characteristic, the objective function (2) can be transformed into the form shown in Equation
(5), the objective function (3) can be transformed into the form shown in (6), and the whole
mathematical model is shown in Equations (5)–(11).

Minimum Cmax =
K

∑
k=0

( fk+1 − fk) (5)

Maximum Mu =
1
n

n

∑
i=1

n
∑

j=1
pij

fKi
(6)

Subject to
rij + pij ≤ r(i+1)j i = 1, 2 . . . , m; j = 1, 2, . . . , n (7)

kij

∑
k=kij−∆kij

fk − fk−1 = pij i = 1, 2 . . . , m; j = 1, 2, . . . , n (8)

rpijki ≤ pij i = 1, 2 . . . , m; j = 1, 2, . . . , n (9)

rpK =
m

∑
i=1

rpijKi = 0 j = 1, 2, . . . , n (10)

m

∑
i=1

xij = 1 , xij ∈ {0, 1} j = 1, 2, . . . , n (11)

Constraint (7) indicates that operation oij of job j is processed by machine i before its
next operation o(i+1)j is released to machine i + 1; Constraint (8) ensures that all operations
of all jobs will be completed in the production system; Constraint (9) ensures that the
remaining processing time of operation oij during the flow of the production system
does not exceed the total processing time; Constraint (10) ensures that each operation
oij of each job j can be processed, determines the index K value, and then solves for the
scheduling target value; Constraint (11) indicates that only a single operation oij of job j
can be processed by the machine in the same moment.

To better explain the above mathematical model, we take four machines as an example.
Information on the jobs to be completed is shown in Table 3, and the PS column in the
Table 3 indicates the process flow of the job. At the beginning of scheduling, machine 1
has job 1 and job 5 next to it, and according to the selected scheduling method, machine
1 processes job 1 first, x11 = 1, x15 = 0; machine 2 has job 2 next to it, x22 = 1; machine 3
has job 3 next to it, x33 = 1; and machine 4 has job 4 next to it, x44 = 1. No jobs are flowing
from the machine in the production system, fk = 0. At this point, the remaining processing
time for machine 1 processing job 1 is 14, the remaining processing time for machine 2
processing job 2 is 50, the remaining processing time for machine 3 processing job 3 is
28, and the remaining processing time for machine 4 processing job 4 is 24. Therefore,
rp0 = {14, 50, 28, 24}, minrp0 = 14, and the production system starts to run. The first job
to flow out of the machine is machine 1, the time of flow out is 14, f1 = 14, job 1 flows out
from machine 1 to the side of machine 2, and job 5 flows into machine 1. At this point,
rp0 = {77, 36, 14, 10}, minrp0 = 10, kij = 1, and ∆kij = 1 and continues to iterate.
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Table 3. Job shop production system with four machines and five operations.

Job Machine 1 Machine 2 Machine 3 Machine 4 PS

1 14 87 31 43 1→2→4→3
2 90 50 60 56 2→1→3→4
3 21 46 28 55 3→4→2→1
4 81 54 44 24 4→2→1→3
5 77 65 32 76 1→3→4→2

In this study, the job shop system only considers two production factors: machines
and materials. Only one machine is responsible for each process, and any technological
process can be allowed. The moment when job i is released to the manufacturing system
is random, and the processing information of the job before its release is unknown. The
movement time of the job in the manufacturing system, machine degradation, and failures
are not considered. When the job is released to the manufacturing system, its process
flow and operating time on each machine become known. Due to the randomness of job
release and its unpredictable characteristics, it is impossible to obtain a suitable scheduling
strategy in the early stage of scheduling. The purpose of this paper is to reasonably solve
the disturbance of job release randomness.

4. Proposed Approach

In this study, the implementation process of the proposed method is based on the
general process of data mining technology. The original data with scheduling knowledge
are initially obtained based on historical production data. Second, the available data with
scheduling knowledge suitable for machine learning algorithms are obtained after data
processing. Subsequently, the scheduling knowledge contained in the data is made explicit.
Finally, a scheduling model is constructed, and the scheduling problem of the manufac-
turing system is optimized through the application of the model. The overall process of
the proposed method is shown in Figure 1. The method is based on data collection and
processing; knowledge extraction is the key to the proposed method; knowledge is obtained
to solve the manufacturing system scheduling problem. To realize the above process, the
following steps are performed: (1) relevant production data for the manufacturing system
are collected, the scheduling goals are clarified, and factors affecting the pros and cons of
the selected scheduling target values are analyzed to determine the optimal scheduling
problem; (2) scheduling strategies to eliminate or reduce the influence of factors affecting
the pros and cons of the scheduling target value (determined in step (1)) in the production
scheduling process are determined to obtain the original data with scheduling knowledge;
(3) the data foundation is consolidated for knowledge extraction to obtain the available
data with scheduling knowledge; (4) a scheduling model that can generate scheduling
strategies in real-time is constructed to allow for iterative scheduling of waiting jobs in the
production process. The specific implementation process is described below.
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4.1. Scheduling Subperiod Division

The purpose of dividing scheduling subperiods is to achieve local scheduling of
known jobs and to generate scheduling strategies in the early stage of subscheduling.
Due to the differences in different manufacturing systems and the uncertainty of the time
of encountering disturbances, the division of scheduling subperiods should be active,
dynamic, and carried out with the production process.

This study considers two goals in the production schedule. The first goal is to minimize
the makespan of the manufacturing system and reduce the job waiting time, and the second
goal is to continue increasing the actual load rate of each machine after obtaining the
first target optimal value to reduce the idle time of the machine. The four-machine job
shop problem is considered an example. As shown in Figure 2, the filled circles represent
operation oij of the job waiting to be processed, and the open circles represent the next
operation o(i+1)j of the job waiting to be processed. Assuming that Figure 2 represents a
moment (mt) in the job shop, it can be seen that there are pending operations in queues
0, 1, and 2. Machines 0, 1, and 2 will change to the working state at the next moment,
queue 4 is empty, and machine 3 remains idle at the next moment. In the absence of new
jobs released into the manufacturing system, if machine 0 processes operation o11 first,
machine 3 will change from idle to working at mt + p11; if machine 0 processes operation
o42 first, machine 3 will change from idle to working at mt + p42 + p11. The order in which
machine 0 processes the operations in queue 0 will not only affect the load rate of machine 3
but also increase the makespan of the entire manufacturing system. Using specific methods
or rules to determine the processing sequence for operations waiting to be processed in
front of a machine can reduce the makespan of the manufacturing system and increase the
actual load rate of the machine.
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When the state of the machine changes from working to idle, the selected DR sorts
the jobs waiting for processing next to each machine according to parameter values such
as the job attribute or process flow, determines the priorities of the operations to be pro-
cessed, and processes the operations with the highest priority until the queue is empty.
Many studies have shown that no DR can effectively optimize multiple scheduling prob-
lems [52], and no DR can be adapted to different manufacturing systems under the same
scheduling problem [7]. However, frequently switching DRs for scheduling problems to
adapt to the scheduling of different manufacturing systems can effectively improve the
production efficiency of the manufacturing system [53]. In the production process of the
entire manufacturing system, taking the machine as a unit, the overall running time of
each machine is iteratively divided into multiple scheduling subperiods, and all of the
scheduling subperiods constitute the manufacturing system scheduling period. A DR
generation scheduling strategy with excellent performance is selected at the beginning of
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each scheduling subperiod. Therefore, determining the scheduling subperiod is the key to
using DRs to optimize production scheduling.

The number of scheduling subperiods in the manufacturing system scheduling period
is the number of times DRs are assigned. Each DR assignment is defined as a decision point.
For the running process of a machine, the time between two adjacent decision points is a
scheduling subperiod. As shown in Figure 3, a machine in the manufacturing system is
considered an example. At m1, there are two operations waiting to be processed in front
of the machine. At this moment, a DR with good performance is selected to determine
the priorities of the two operations to be processed, the first decision is made, and m1 is
decision point 1. When the machine processes the operation, it is immediately transferred
to the operation queue of jobs to be processed in front of the machine that processes the
next operation. After both operations are processed, the time shifts to m2. Between m1
and m2, as a result of operations completed by other machines and jobs newly released
to the manufacturing system, a new queue of jobs to be processed will be formed next to
the machine. At this time, the second decision is made, and m2 is decision point 2. This
decision point will schedule the newly released job in the manufacturing system, avoiding
the adverse effect of the release of a new job disturbing the overall operation process of the
manufacturing system. The time between m1 and m2 is defined as a scheduling subperiod
of the manufacturing system scheduling period. The above process is iterated continuously,
and each scheduling subperiod of the machine operation process can be obtained. The
method for determining the scheduling subperiod for the unit machine in the production
scheduling system is the same as that described above. After determining each scheduling
subperiod, selecting a DR with good performance at the beginning of each scheduling
subperiod is the most critical issue for optimizing production scheduling.
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4.2. Schedule Data Collection Method

Each scheduling subperiod has job processing data and scheduling strategies, and
these data contain rich scheduling knowledge. Simulation technology is a powerful tool
for evaluating the efficiency of different scheduling strategies. These methods can simulate
processes in a short time without changing the state of physical entities to obtain the
results of applying different scheduling strategies in the future [52]. As shown in Figure 3,
the determination of the scheduling strategies for each scheduling subperiod affects the
production efficiency of the entire manufacturing system.

To collect the original data with scheduling knowledge, simulation technology was
used in this study to determine the optimal DR for each scheduling subperiod. In this pro-
cess, it is necessary to simulate the production scheduling cycle of the entire manufacturing
system. A DR is suitable for the scheduling subperiod only if it results in better performance
in the entire production scheduling period. In obtaining the DR combination, the equation
for solving the simulation number (Ns) of the manufacturing system production cycle is
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shown in Equation (12), where Nsp represents the number of subperiods and Ndr represents
the number of DRs that can be selected. As Ns and Nsp increase, the number of simulations
will increase exponentially.

In the actual application process, when facing a complex manufacturing system, an
excessive number of simulations will be required, which will lead to a time-consuming
method of selecting the optimal DR combination using the simulation method; as a result,
it will be difficult to ensure the fluency of the production process. Metan et al. [41] noted
that a long time is required to calculate simulation results when real-time decision-making
is necessary; thus, the simulation method will become useless. Accelerating the selection
of the optimal DR combination to ensure a smooth production process is the key to using
DRs to solve the dynamic scheduling problem in complex manufacturing systems. In
addition, when applying simulation technology, all of the production information in the
manufacturing system should be known. Therefore, it is not feasible to apply simulation
technology to time consumption and generation-scheduling strategies. However, simula-
tion technology can be used to obtain the original data containing scheduling knowledge
from historical production data. The NP-hard characteristics of the JSSP result in relatively
good DR combinations. The better the performance of the DR combination, the better the
collected data will be and the higher the quality of the scheduling knowledge contained in
the data.

Ns = (Ndr)
Nsp (12)

4.3. Construction of the Scheduling Model

To solve the scheduling problem of rapidly assigning a DR in the scheduling subcycle,
based on the original data that contain scheduling knowledge obtained using simulation
technology, a machine learning algorithm is used to mine the scheduling knowledge
contained in the operation of the entire manufacturing system, and a DR assignment model
is constructed. Thus, a solution to the above problems is achieved.

As shown in Figure 4, this study divides the process of constructing the assigned DR
model into three modules: data collection, simulation, and learning. The data collection
module collects job attribute data and processes the data in the job manufacturing system;
the collected data is stored in database 1. The simulation module obtains the data containing
scheduling knowledge. The realization process selects the optimal DR combination for each
manufacturing system. The optimal DR combination is combined with the data collected
by the data collection module to produce data with scheduling knowledge; these data are
stored in database 2. The learning module accesses the knowledge in the learning data
and builds a DR assignment model. The assigned DR model can be directly used in the
scheduling process for a manufacturing system.
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The scheduling model is the core of the method proposed in this study. This ensures
that a scheduling strategy can be generated in real-time. The construction process for the
scheduling model is shown in Figure 5, including the collection of raw data containing
scheduling knowledge, the assembly of high-quality available data, and the training and
prediction of multiclassification models. The specific implementation process is as follows.
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Collect raw data with scheduling knowledge: Historical production data include
processing parameters, such as the processing time of the job on each machine, the process
flow in the manufacturing system, the state of each machine in the manufacturing system,
and a DR library composed of multiple DRs. Of these, this study only considers the idle
and working states of the machine. The above data can be collected directly; however, they
contain no scheduling knowledge. As described in the previous section, the determined
scheduling decision moment divides the scheduling period of the entire manufacturing
system into multiple scheduling subperiods. The job processing data are linked to the
DRs in the DR library based on simulation technology. The relevant parameter data of the
job in each scheduling subperiod and the assigned DR in the scheduling subperiod are
combined to form an instance sample, and the data contain rich scheduling knowledge.
The job parameter data in the scheduling subcycle are defined as the attribute data of
the instance samples, and the assigned DR is defined as the label of the instance samples.
Simulating multiple manufacturing systems in the same category can ensure sufficient
historical instance samples. Because the times when the job is released and the job release
moment are unknown, the collection of original data with scheduling knowledge is based
on historical production data.

Collect high-quality available data: Before using machine learning algorithms to mine
the knowledge contained in the data, it is necessary to ensure the availability of data and
their suitability for input into machine learning classification algorithms; it is also necessary
to ensure the data are of a high quality so that the constructed model will have good
performance. For the former, this study adopts the method of changing the data structure
because the attribute data of the collected sample data are n rows and m columns. If n is
equal to 1, the sample data of this instance do not contain scheduling knowledge because
when a scheduling subperiod only includes one job to be scheduled, the effect of assigning
any DR is indistinguishable. When n is greater than 1, the sample data contains scheduling
knowledge, but this example sample is not suitable as the input data for the machine
learning classification algorithm because the attribute data structure of the input data of
the machine learning classification algorithm should be one row and m columns. Therefore,
the structure of the attribute data of the collected data with scheduling knowledge needs to
be changed, and there is a need to transform the original data structure (n ∗m)× d into an
n ∗ (m + 1) structure. This study employs data feature selection and data preprocessing
methods for this purpose. The data preprocessing includes removing duplicate values,
filling in missing values, and deleting outliers. The feature selection process is mainly used
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to eliminate features that are of no value in the data and prevent such features from affecting
the performance of the model, such as the time when a job is released to the system.

Training and prediction of multiclassification models: A typical problem in supervised
learning is classification [53]. In classification problems, supervised learning is used to
construct a classifier that can label new instances based on experience with known labeled
instance samples. The problem in this study is a classification problem because the label of
the example sample comprises multiple values, and the constructed decision model is a
multiclassification model [54]. The DT algorithm has been widely used in the establishment
of classification models due to its ease of understanding, fast calculation speed, high
accuracy, and lack of required domain knowledge or parameter assumptions [55]. Based on
the above advantages, this study uses a DM algorithm to build a decision model to realize
the real-time assignment of DRs to each scheduling subperiod of the manufacturing system
scheduling period. The available high-quality data are divided into training and test sets in
proportion to the construction process. The training data are used to build the model, and
the test data are used to evaluate the performance of the trained model. The cooperation
between the training and prediction processes ensures a stronger prediction performance
of the model.

4.4. Application of the Scheduling Model

After the construction of the decision model is completed, the next step is the applica-
tion of the decision model. According to the method described in the previous section, the
model is used at each decision time. The processing parameters of the job to be scheduled
on the machine at the decision time comprise the data input to the decision model before
processing. If there is no job to be scheduled on the machine at the decision time, the
machine state becomes idle, and the new decision time becomes the time before the job
is released or transmitted to the machine. If there is only one job to be scheduled on the
machine at the decision time, the decision model is not used, and the job is processed
directly by the machine. If there are multiple jobs to be scheduled on the machine at the
decision time, the parameter data of the jobs are combined to create the original data input
to the decision model. After processing the data using the same method as when the model
was constructed, the data are processed to produce usable, high-quality data that can be
directly input into the decision model. The decision model then outputs the DR, which
generates the scheduling strategy for the scheduling subperiod.

5. Experiments and Results
5.1. Experiment Setup

In this paper, the experiment used an 8G running memory, i5cpu personal computer. To
verify the feasibility of the proposed method and the efficiency of the constructed decision-
making model, a set of control experiments were designed and executed for different
manufacturing systems. The method of integrating Taillard and Marko to generate the JSSP
is consistent with actual-scale industrial problems [49,51]. Because the output scheduling
strategy time of the decision model is significantly shorter than the processing time of
the job operation, the precondition was to ignore the decision time of the decision model.
Before generating the scheduling problem, the following assumptions were made:

• the delivery dates of all operations will be ignored;
• the transportation time between machines is zero;
• no faults occur during machine processing.

In the specific generation method, the number of jobs, attributes of the jobs, number of
machines, and technological process of the jobs comprised a manufacturing system. With
the goal of minimizing the makespan and maximizing the actual utilization of machines,
the scheduling of each manufacturing system was defined as a JSSP. In the manufacturing
system, the job attributes included the job processing time on the machine and the moment
when the job is released to the manufacturing system. The processing time, ptij, of each
operation on each machine required to complete the job satisfied the geometric distribution
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of (0, φ), and the size of φ controlled the difference in the processing time of the operation to
complete the job on the machine. The greater the value of φ, the greater the time difference
between machine processing operations, and thus, the greater the heterogeneity of the
jobs. The release moment, rj, when the job is released to the manufacturing system was
random, but the upper limit should be the total production time of the manufacturing
system. This study assumes that the release moment, rj, satisfied the geometric distribution
of (0, ϕ). The value of ϕ controlled the load rate of the manufacturing system. The smaller
the value of ϕ, the higher the load rate of the manufacturing system. The number of
machines was n, and the machines were numbered as {0, 1, · · · , n− 1}. The process flow
of the job involved selecting one or more machines in the manufacturing system and
rearranging and combining them; each machine only processed each job once. From the
above, the generated manufacturing system included the following four categories: high
job heterogeneity and a high manufacturing system load rate, low job heterogeneity and
a low manufacturing system load rate, high job heterogeneity and a low manufacturing
system load rate, and low job heterogeneity and a high manufacturing system load rate.

Table 4 gives an example of the manufacturing system data for four machines and
10 jobs. Each row represents a job. The values in column Rj represent the release moment,
rj, when the job is released to the manufacturing system; the empty cells in column Rj
represent that the job to be processed on the machine was transferred to the previous
machine after processing. The values in column PTj represent the time for the job to be
processed on the machine. If the value of PTij is 0, job j does not need to be processed on
machine i. The value in column Mi represents the order of operations for processing the
job. For example, for job 0, the job was released to the system at time 65, and the process
flow proceeded through M3, M2, M0, and M1 in sequence; the processing times on M3, M2,
M0, and M1 were 26, 5, 14, and 87, respectively.

Table 4. Manufacturing system data example (four machines and ten jobs).

No. M0 R0 PT0 M1 R1 PT1 M2 R2 PT2 M3 R3 PT3

0 2 14 3 87 1 5 0 65 26
1 2 90 3 50 1 31 0 0 5
2 0 0 21 1 6 2 10 3 43
3 1 1 0 4 54 3 28 2 56
4 2 77 1 51 0 0 44 3 15
5 0 6 32 3 46 2 80 1 24
6 2 11 0 4 9 1 48 3 77
7 0 6 90 1 93 3 78 2 58
8 3 60 1 79 0 37 27 2 33
9 3 49 0 0 40 2 83 1 54

After the historical production data of the manufacturing system were collected, a DR
library was constructed to schedule the jobs in the manufacturing system, and a group of
highly adaptive DR combinations was selected from the DR library to guide the generation
of scheduling strategies for the manufacturing system. The parameter value of the DR
was obtained through the job properties. According to the characteristics of the generative
manufacturing system in this study, the job attributes were as follows:

• Processing time (PT): the time required for the operation of the job to be processed on
the machine;

• Processing sequence (PS): the total number of operations required by the job in the
manufacturing system;

• Total processing time (TPT): the total time the job was processed in the manufacturing
system; the total processing time, TPTj, of job j is given in Equation (13):

TPTj =
m

∑
i=1

ptij (13)
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• Remaining total processing time (RPT): the total remaining processing time of the job
in the manufacturing system; the remaining total processing time, RPTj, of job j is
shown in Equation (14), where ĵ represents the number of operations to be performed
in the current job:

RPTj =
n

∑
j= ĵ

ptij (14)

• Remaining total processing sequence (RPS): the number of operations remaining in
the manufacturing system for the job; the remaining total processing sequence of job j
is shown in Equation (15):

RPSj = n− ĵ (15)

Based on the attributes of the above job, 10 DRs were defined to create the single-
parameter DR library, as summarized in Table 5. The first six DRs in Table 5 were static
single-parameter DRs, and their parameter values did not change with the job process; the
last four DRs were dynamic single-parameter DRs, and their parameter values did change
with the job process. The constructed DR library contained static single-parameter DRs
and dynamic single-parameter DRs, which ensures that the DRs can solve various dynamic
scheduling problems.

Table 5. Single-parameter DRs.

No. DR Parameter Description

1 SPT Processing time Priority processing for jobs with the shortest
processing time

2 LPT Processing time Priority processing for jobs with the longest
processing time

3 SPS Processing sequence Priority processing for jobs with the shortest
processing sequence

4 LPS Processing sequence Priority processing for jobs with the longest
processing sequence

5 STPT Total processing time Priority processing for jobs with the shortest total
processing time

6 LTPT Total processing time Priority processing for jobs with the longest total
processing time

7 SRPT Total remaining
processing time

Priority processing for jobs with the shortest total
remaining processing time

8 LRPT Total remaining
processing time

Priority processing for the job with the longest
total remaining processing time

9 SRPS Total remaining
processing sequence

Priority processing for jobs with the shortest total
remaining processing sequence

10 LRPS Total remaining
processing sequence

Priority processing for jobs with the longest total
remaining processing sequence

P = P1 × P2 (16)

Based on the current knowledge, no single-parameter DR can adapt to the scheduling
process of an entire manufacturing system. The method for constructing a new DR proposed
by Kaban [45] was applied to construct the DR library required in this study. The second
category of DRs in the constructed DR library was composed of mixed-parameter, in which
two job attributes were combined. The equation for solving the parameter value of the
mixed-parameter DR is given in Equation (16), where P1 is one value of a job attribute, and
P2 is another value of a job attribute. For example, P1 is the value of the processing time PT,
and P2 is the value of the total processing time TPT; the value of PT ∗ TPT is the parameter
value of the hybrid DR. If the value of PT ∗ TPT for the job waiting to be processed by the
machine is small, the mixed-parameter DR corresponding to the priority being processed is
S_PT_TPT. If the value of PT ∗ TPT for the job waiting to be processed by the machine is
large, the mixed-parameter DR corresponding to the priority being processed is L_PT_TPT.
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The job attributes and the hybrid DRs’ parameters which calculated by Equation(16) are
listed in Table 6 resulting in a total of 10 hybrid parameters. Different DRs were constructed
by sorting the priority of the jobs according to the parameter values from small to large
and from large to small, and each parameter value could create two mixed-parameter DRs.

Table 6. Mixed parameter DR.

Parameter PT PS TPT RPT RPS

PT ×
√ √ √ √

PS × ×
√ √ √

TPT × × ×
√ √

RPT × × × ×
√

RPS × × × × ×

In summary, the DR library constructed in this study contains 10 single-parameter
DRs and 20 mixed-parameter DRs, totaling 30 DRs.

P̂ = max

(
∑

j
p0j, ∑

j
p1j, ∑

j
p2j, ∑

j
p3j

)
(17)

ϕ =
P̂
λ

(18)

To verify the performance of the proposed method for the four manufacturing system
categories, 20 sets of data were generated for each manufacturing system category. Each
manufacturing system contained four machines and 50 operations. The attribute data
of each category of the manufacturing system were determined based on the geometric
distribution in a specific interval, as summarized in Table 7. The equations for the upper
limit value, ϕ, of the geometric distribution interval subject to the release moment of the
job are given in Equations (17) and (18), where P̂ represents the ideal makespan of the
manufacturing system, which is equivalent to the maximum actual working time for a
machine to complete all tasks in the manufacturing system.

Table 7. Attribute value ranges of a job in the manufacturing system.

No. Category R PT

1 High job heterogeneity and high manufacturing system load rate [0,P̂/2] [1,100]
2 Low job heterogeneity and low manufacturing system load rate [0,P̂] [1,100]
3 High job heterogeneity and low manufacturing system load rate [0,P̂/2] [1,1000]
4 Low job heterogeneity and high manufacturing system load rate [0,P̂] [1,1000]

Because of the large number of different DR combinations in the entire manufacturing
system, it was unrealistic to use simulation technology to search all of the possible DR
combinations to obtain the optimal DR combination. Therefore, this study used a local
search method to identify the optimal DR combination. To verify the performance of the
searched DR combination, the minimum limit value of the makespan was considered. The
value of the minimum makespan limit, L_Makespan, was equal to the value of P̂.

The implementation tool of all the above experimental processes was Spyder software,
and the programming language was Python. Among them, the DR in the DR library was
written as a function that reproduced the production process of the job shop and simulated
the performance of each DR combination, and automatically output the scheduling target
value and collect data with scheduling knowledge.

5.2. Acquisition of Data with Scheduling Knowledge

The data with scheduling knowledge were obtained through simulation, and a DR was
assigned to each subscheduling period by means of a full search, and then a DR combination
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was assigned to the entire scheduling period. In this study, 10,000 DR combinations were
randomly obtained from the DR library for each manufacturing system. As the scheduling
subperiod was divided, the number of DRs in different DR combinations might have
differed due to the influence of each DR on the scheduling subperiod. For 20 manufacturing
systems generated under the same category, the best and worst DR combinations from
10,000 DR combinations were selected; the large differences between the optimal and worst
scheduling objective values verify the sensitivity of the DR combinations to the optimal
scheduling problem. Figures 6–9 show comparisons of the optimal makespan limit value,
the makespan value under the optimal DR combination, and the makespan value under
the worst DR combination as well as the sum of the best actual machine utilization rate
under the optimal makespan value and the sum of the optimal actual machine utilization
rate under the optimal makespan value for different categories of manufacturing systems.
The makespan value of the optimal DR combination was close to or equal to the optimal
limit value of the makespan, which confirms that the optimal DR combination among the
10,000 DR scheduling combinations exhibited excellent scheduling performance. However,
it was also possible to continue expanding the DR search range to obtain the optimal DR in
order to obtain a better DR combination. Figure 6 shows a comparison of the performance
of different DR combinations for a high job heterogeneity and high manufacturing system
load rate. The optimization range of the makespan value was 3–15%, and the improvement
in the machine utilization of the manufacturing system was 3–17%. Figure 7 shows a
comparison of the performance of different DR combinations for a low job heterogeneity
and low manufacturing system load rate. The optimization range of the makespan value
was 5–15%, and the improvement in the machine utilization of the manufacturing system
was 2–16%. Figure 8 shows a comparison of the performance of different DR combinations
for a high job heterogeneity and high manufacturing system load rate. The optimization
range of the makespan value was 5–16%, and the improvement in the machine utilization
of the manufacturing system was 2–21%. Figure 9 shows a comparison of the performance
of different DR combinations for a high job heterogeneity and low manufacturing system
load rate. The optimization range of the makespan value was 6–13%, and the improvement
in the machine utilization of the manufacturing system was 3–14%. The above results verify
the effectiveness of the scheduling method proposed in this study for handling uncertain
disturbances in the job release.

Additionally, based on Figures 10–13 we analyzed the difference between using dis-
patching rule combination performance and genetic algorithm performance. The genetic
algorithm used real number coding, and the individual coding adopted the method of
random ordering of all processes. The mutation was a random exchange of the serial
numbers of the two processes. The fitness was determined according to the calculation time
of each individual coding. The evaluation indicators used mean deviation and coefficient
of variation. The purpose of using the average deviation as the evaluation index was to
express the difference in the overall performance of the two methods, and the purpose
of using the coefficient of variation as the evaluation index was to express the overall
stability of the performance of the two methods. When using makespan as the scheduling
target, the average performance deviations of the combination of variable coefficient rules
and the genetic algorithm under the four categories were −5.5, −16.8, −40.65, and −38.5,
respectively. Continue to take the sum of machine utilization as the scheduling target. For
the four categories of job shop scheduling systems, the average performance deviations of
using the dispatching rule combination and the genetic algorithm were 0.006, 0.017, 0.028,
and 0.021, respectively, which proves the overall superiority of using the dispatching rule
combination to optimize the job shop scheduling problem. It can be seen from Table 8
that the overall performance stability of the dispatching rule combination optimization
method was worse than that of the genetic algorithm when the makespan was used as
the scheduling target. The combination of Figures 10–13 does not hide the performance of
the dispatching rule combination optimization method, even if the genetic algorithm used
in optimizing some job shop scheduling problems showed better performance; when we



Mathematics 2022, 10, 4608 19 of 30

continue to optimize machine utilization, the dispatching rule combination optimization
method showed better stability.
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Table 8. Overall stability comparison of scheduling rule combination and genetic algorithm perfor-
mance.

Scheduling
Criterion Method

Low Job
Heterogeneity and

High Load Rate

Low Job
Heterogeneity and

Low Load Rate

High Job
Heterogeneity and

High Load Rate

High Job
Heterogeneity and

Low Load Rate

Makespan Best DR set 9.324 9.563 152.774 165.438
GA 8.994 12.169 148.959 163.826

Machine
use ratio

Best DR set 0.01 0.21 0.1 0.016
GA 0.011 0.27 0.11 0.017



Mathematics 2022, 10, 4608 21 of 30
Mathematics 2022, 10, x FOR PEER REVIEW 22 of 33 
 

 

 

 

Figure 10. Low job heterogeneity and a high manufacturing system load rate. 

 

 

Figure 11. Low job heterogeneity and a low manufacturing system load rate. 

 

Figure 10. Low job heterogeneity and a high manufacturing system load rate.

Mathematics 2022, 10, x FOR PEER REVIEW 22 of 33 
 

 

 

 

Figure 10. Low job heterogeneity and a high manufacturing system load rate. 

 

 

Figure 11. Low job heterogeneity and a low manufacturing system load rate. 

 

Figure 11. Low job heterogeneity and a low manufacturing system load rate.



Mathematics 2022, 10, 4608 22 of 30

Mathematics 2022, 10, x FOR PEER REVIEW 22 of 33 
 

 

 

 

Figure 10. Low job heterogeneity and a high manufacturing system load rate. 

 

 

Figure 11. Low job heterogeneity and a low manufacturing system load rate. 

 

Mathematics 2022, 10, x FOR PEER REVIEW 23 of 33 
 

 

 

Figure 12. High job heterogeneity and a high manufacturing system load rate. 

 

 

Figure 13. High job heterogeneity and a low manufacturing system load rate. 

To sum up, the quality of the scheduling data with scheduling knowledge collected 
by the method in this paper can be guaranteed, thereby ensuring the availability and su-
periority of the constructed dispatching rule assignment model. 

Table 8. Overall stability comparison of scheduling rule combination and genetic algorithm perfor-
mance. 

Scheduling  
Criterion  Method 

Low Job Heterogeneity 
and High Load Rate 

Low Job Heteroge-
neity and Low 

Load Rate 

High Job Hetero-
geneity and High 

Load Rate 

High Job Hetero-
geneity and Low 

Load Rate 

Makespan Best DR set 9.324 9.563 152.774 165.438 
GA 8.994 12.169 148.959 163.826 

Machine  
use ratio 

Best DR set 0.01 0.21 0.1 0.016 
GA 0.011 0.27 0.11 0.017 

5.3. Data Preprocessing 
After collecting the production data related to the manufacturing system and using 

simulation technology to search for the optimal DR combination for the manufacturing 
system from the DR library, the original data with scheduling knowledge could be 

Figure 12. High job heterogeneity and a high manufacturing system load rate.

Mathematics 2022, 10, x FOR PEER REVIEW 23 of 33 
 

 

 

Figure 12. High job heterogeneity and a high manufacturing system load rate. 

 

 

Figure 13. High job heterogeneity and a low manufacturing system load rate. 

To sum up, the quality of the scheduling data with scheduling knowledge collected 
by the method in this paper can be guaranteed, thereby ensuring the availability and su-
periority of the constructed dispatching rule assignment model. 

Table 8. Overall stability comparison of scheduling rule combination and genetic algorithm perfor-
mance. 

Scheduling  
Criterion  Method 

Low Job Heterogeneity 
and High Load Rate 

Low Job Heteroge-
neity and Low 

Load Rate 

High Job Hetero-
geneity and High 

Load Rate 

High Job Hetero-
geneity and Low 

Load Rate 

Makespan Best DR set 9.324 9.563 152.774 165.438 
GA 8.994 12.169 148.959 163.826 

Machine  
use ratio 

Best DR set 0.01 0.21 0.1 0.016 
GA 0.011 0.27 0.11 0.017 

5.3. Data Preprocessing 
After collecting the production data related to the manufacturing system and using 

simulation technology to search for the optimal DR combination for the manufacturing 
system from the DR library, the original data with scheduling knowledge could be 

Figure 13. High job heterogeneity and a low manufacturing system load rate.

To sum up, the quality of the scheduling data with scheduling knowledge collected
by the method in this paper can be guaranteed, thereby ensuring the availability and
superiority of the constructed dispatching rule assignment model.

5.3. Data Preprocessing

After collecting the production data related to the manufacturing system and using
simulation technology to search for the optimal DR combination for the manufacturing
system from the DR library, the original data with scheduling knowledge could be col-
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lected. The attributes of these data comprised the processing parameters of the jobs in the
manufacturing system and the parameters of each DR.

The manufacturing system described in Table 4 is considered as an example. Three DRs
(SPT, STPT, and STWR) were set in the DR library. After the simulation, they were divided
into 29 scheduling subperiods, as listed in Table 9. Each sample data point represented a
scheduling subperiod. The data structure contained sample data with a single attribute
corresponding to one label and sample data with multiple attributes corresponding to one
label. For the former, only one job was scheduled in the scheduling subperiod, which did
not contain scheduling knowledge. The latter indicates that multiple jobs were scheduled in
the scheduling subperiod, which contain scheduling knowledge. Because the data input to
the machine learning algorithm should comprise a label corresponding to a row of attribute
data, this type of datum cannot be directly input into the machine learning algorithm.
Before using the DM algorithm to build a decision model, it is necessary to process the
original data with scheduling knowledge using the methods of high-quality data collection
described in the previous section. Given the characteristics and structure of the original
data, the specific processing flow is described below.

Table 9. Raw data with scheduling knowledge (four machines and 10 jobs).

No. M0 R0 PT0 M1 R1 PT1 M2 R2 PT2 M3 . . . DR No.

0 0 0 21 1 6 2 10 3 . . . STWR 0
1 3 49 0 0 40 2 83 1 . . . SPT 1
2 2 77 1 51 0 0 44 3 . . . STPT 2
3 2 90 3 50 1 31 0 . . . STWR 3
4 . . . STPT 4
5 0 6 32 3 46 2 80 1 . . . SPT 5

0 6 90 1 93 3 78 2 . . .
6 . . . STWR 6
7 0 0 21 1 6 2 10 3 . . . SPT 7

2 11 0 4 9 1 48 3 . . .
1 1 0 4 54 3 28 2 . . .

8 3 49 0 0 40 2 83 1 . . . SPT 8
9 2 90 3 50 1 31 0 . . . STPT 9

3 60 1 79 0 37 27 2 . . .
10 2 14 3 87 1 5 0 . . . STPT 10

0 6 32 3 46 2 80 1 . . .
11 0 0 21 1 6 2 10 3 . . . SPT 11

2 11 0 4 9 1 48 3 . . .
3 49 0 0 40 2 83 1 . . .

. . . . . . . .
29 0 6 90 1 93 3 78 2 . . . SPT 29

The data feature selection process is illustrated in Figure 14. Because assigning DRs
and then generating the scheduling strategy is based on the machine as the unit and
dividing the scheduling subperiod is also based on the machine, the decision-making times
on each machine were independent of each other. The attribute data of the original data
with scheduling knowledge were grouped by machine and processed in the same manner.
For the original data with scheduling knowledge in this study, the release time attribute
column (columns R0, R1, R2, and R3) and machine columns (columns M0, M1, M2, and M3)
were removed, and the grouped data were combined vertically. In this process, the number
(quantity) of jobs in each scheduling subperiod was added manually, and the resulting data
were defined as the data after feature selection.

The second step was a transformation of the data structure. Before the transforma-
tion, data preprocessing operations were performed to delete abnormal sample data that
did not contain scheduling knowledge. Then, the data with scheduling knowledge were
transformed into a structural form in which a row of attribute data corresponded to the
label data. Commonly used mathematical and statistical methods include the sample mean,
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sample standard deviation, coefficient of variation, and classic machine learning dimen-
sionality reduction algorithms. In this study, the PCA algorithm was used, transforming
the original data structure (n ∗m)× d into a n ∗ (m + 1) structure. Finally, the available
data with scheduling knowledge were preprocessed, including the elimination of repeated
values and deletion of outliers. The outlier deletion process employed the 3σ principle.
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5.4. The Construction of the Scheduling Model

After obtaining the available high-quality data, the data were divided into a training
set and a test set at a ratio of 7:3, and the DM algorithm was used to build a multiclassi-
fication model. In constructing the model, a grid search method was used to obtain the
optimal parameters of the DR algorithm. The accuracies of the decision-making models
constructed for manufacturing systems of different categories obtained after five rounds of
crossvalidation are listed in Table 10.

Table 10. Classification model accuracy results.

Production
System

Category

Low Job
Heterogeneity,

High Load Rate

Low Job
Heterogeneity,
Low Load Rate

High Job
Heterogeneity,

High Load Rate

High Job
Heterogeneity,
Low Load Rate

Acc. (%) 79.96 77.99 85.92 83.81

5.5. Analysis of Model Performance

To verify the effectiveness of the constructed decision model for solving the scheduling
problem in response to the disturbance factor of the job release moment with unknown
released job information, 20 sets of data were collected for each manufacturing system
category and randomly combined into 10,000 DR combinations. Simulation technology was
used to search for the optimal DR combination with the goal of maximizing the sum of the
utilization rate of each machine in the makespan and the manufacturing system. Then, the
constructed decision model was used to iteratively assign DRs at each decision moment in
the production process, and the generated scheduling strategy was used to assign the jobs
in the scheduling subperiod. After all of the processing tasks of the manufacturing system
were completed, the makespan value and sum of the utilization rate of each machine in the
manufacturing system were calculated.

Figures 15–18 show comparisons between the makespan values and total machine
utilization values of the manufacturing system obtained under the optimal DR combination
identified through global search and the DR combination produced by the iterative as-
signment of the decision-making model for different categories of manufacturing systems.
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Although the effect is less than that of the optimal DR combination obtained through the
global search, the difference is insignificant, and the effect is the same in some manufac-
turing systems. Thus, the proposed method can solve the disturbance problem of the
new job release in the manufacturing system efficiently and in real-time. A comparison
of the decision-making effect of the decision model and the optimal DR combination ob-
tained through the global search is shown in Figure 19 for each type of manufacturing
system (Figure 19a represents high job heterogeneity and a high manufacturing system load
rate, Figure 19b shows low job heterogeneity and a low manufacturing system load rate,
Figure 19c shows high job heterogeneity and a high manufacturing system load rate, and
Figure 19d represents high job heterogeneity and a low manufacturing system load rate);
the statistical analysis of the comparison is summarized in Table 11. For the manufacturing
system category of low job heterogeneity and a high manufacturing system load rate,
compared with the most optimal DR combination, over half of the manufacturing system
makespan increase rates were less than 1%; the average increase rate was 1.059%, and the
median was 0.298%. The attenuation rates of the sum of the utilization values for each
machine in half of the manufacturing systems were less than 1%; the average attenuation
rate was 1.218%, and the median was 1.041%. For the manufacturing system category of
low job heterogeneity and a low manufacturing system load rate, the average increase
rate of the makespan value compared to the optimal DR combination was 3.139%, and the
median was 3.276%; the average attenuation rate of the sum of the utilization values of each
machine was 2.993% with a median of 3.276%. For the manufacturing system category of
high job heterogeneity and a high manufacturing system load rate, compared with the most
optimal DR combination, nearly half of the manufacturing system makespan increase rates
were less than 1%; the average increase rate was 2.287%, and the median was 1.979%. The
attenuation rates of the utilization value for each machine in over half of the manufacturing
systems were less than 1%; the average attenuation rate was 2.287%, and the median was
1.979%. For the manufacturing system category of high job heterogeneity and a low manu-
facturing system load rate, compared with the most optimal DR combination makespan
value, the average increase rate was 2.836%, and the median was 1.772%. Compared with
the most optimal DR combination, the average attenuation rate of the utilization value for
each machine was 2.712%, and the median was 1.908%.
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Table 11. Statistics of the comparison between the decision model and optimal DR combination results.

Scheduling
Criterion

Statistical
Indicators

Low Job
Heterogeneity and

High Load Rate

Low Job
Heterogeneity and

Low Load Rate

High Job
Heterogeneity and

High Load Rate

High Job
Heterogeneity and

Low Load Rate

Makespan Avg. (%) 1.059 3.139 2.287 2.836
Med. (%) 0.298 3.276 0.193 2.712

Machine
use ratio

Avg. (%) 1.218 2.993 1.979 1.772
Med. (%) 1.041 2.324 0.946 1.908

In summary, the decision-making model constructed in this study had significant
effects, and the decision-making effects of models for different categories were similar to
those obtained using the optimal DR simulation. The time range for each decision and
generation of a locally optimal scheduling policy was 0.12–0.21 s, which is much less than
the processing time of the job on the machine. This verifies that the proposed method can
provide an efficient and real-time response to the impact of the randomness of the new job
release on the manufacturing system.

6. Conclusions

Data mining (DM) technology provides a novel and effective solution for real-time
job shop disturbance problems. In this paper, a purely reactive scheduling approach is
proposed based on the data mining process. Firstly, a novel DR combination method was
used to collect data with scheduling knowledge; secondly, the collected data were used to
construct a decision model that can assign DR in real-time; finally, a four-machine scale
JSSP was used to verify the effectiveness of the proposed method. The main contributions
of this paper are as follows.

(1) A novel DR combinatorial optimization JSSP mixed-integer linear programming
model was constructed, and a DR combinatorial optimization method is proposed.

(2) A decision tree algorithm was used to train a decision model for assigning DRs from
the collected data. The model assigned DRs at the beginning of each subscheduling
cycle, which achieved an optimal overall scheduling policy by generating a locally op-
timal scheduling policy and overcame the adverse effects of the dynamic perturbation
problem of midjob release.

(3) The performance of the decision model DR combination method for assigning DR
is similar under the scheduling objectives of makespan and machine utilization,
demonstrating the superior performance of the scheduling policy generated using the
DM technique.

However, the method proposed in this paper still has significant limitations. The
construction of scheduling decision models using DM depends on the quality of the
collected scheduling data, and further research is needed on how to generate scheduling
data using the DR combination method; in terms of application scenarios, this paper
only verifies the value of DM for optimizing dynamic scheduling problems on a classical
job shop, and future research should focus on applications in more complex and wider
production environments.
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