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Abstract: Radio Frequency Identification (RFID) technology is a critical part of many Internet of
Things (IoT) systems, including Medical IoT (MIoT) for instance. On the other hand, the IoT devices’
numerous limitations (such as memory space, computing capability, and battery capacity) make it
difficult to implement cost- and energy-efficient security solutions. As a result, several researchers
attempted to address this problem, and several RFID-based security mechanisms for the MIoT and
other constrained environments were proposed. In this vein, Wang et al. and Shariq et al. recently
proposed CRUSAP and ESRAS ultra-lightweight authentication schemes. They demonstrated, both
formally and informally, that their schemes meet the required security properties for RFID systems.
In their proposed protocols, they have used a very lightweight operation called Cro(·) and Rank(·),
respectively. However, in this paper, we show that those functions are not secure enough to provide
the desired security. We show that Cro(·) is linear and reversible, and it is easy to obtain the secret
values used in its calculation. Then, by exploiting the vulnerability of the Cro(·) function, we
demonstrated that CRUSAP is vulnerable to secret disclosure attacks. The proposed attack has a
success probability of "1" and is as simple as a CRUSAP protocol run. Other security attacks are
obviously possible by obtaining the secret values of the tag and reader. In addition, we present a de-
synchronization attack on the CRUSAP protocol. Furthermore, we provide a thorough examination
of ESRAS and its Rank(·) function. We first present a de-synchronization attack that works for any
desired Rank(·) function, including Shariq et al.’s proposed Rank(·) function. We also show that
Rank(·) does not provide the desired confusion and diffusion that is claimed by the designers. Finally,
we conduct a secret disclosure attack against ESRAS.

Keywords: medical wireless sensor network; ultra-lightweight; secret disclosure attack; Cro(·)
function; Rank(·) function

MSC: 68P25; 94A62

1. Introduction

The fundamental concept underlying the Internet of Things is that any device can be
technologically enhanced to transform into a computing device and communicate with
its surroundings autonomously and in real-time. This vision is becoming a reality due
to the exponential growth in the number of IoT-connected devices around the world. In
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other words, IoT is a cutting-edge technology that aims to connect a large number of
smart devices to the Internet. Because of the many IoT applications in areas such as
smart things, commuting, and healthcare systems, IoT has evolved into an indispensable
aspect of our daily lives. Each smart device has a sensor that allows it to sense, collect,
and communicate data about its surroundings. Each device connects to the Internet,
uses a unique identifier as the name, and sends data from one location to another. This
interconnected system has many advantages to enhancing traditional ecosystems. The use
of sensors in medical devices, for example, has a number of benefits, including remote
and ongoing patient health surveillance and real-time illness treatment, which lowers
healthcare costs and raises the standard of living for the elderly and children. The Medical
Internet of Things (MIoT) employs an intelligent system that allows devices to collect
patient data and send it to a secure cloud-based platform where it can be saved, processed,
and evaluated. In addition to storing the information of numerous patients, these systems
recommend a real-time evaluation of the patient’s stored information in order to improve
the effectiveness of healthcare systems. A significant number of corporations are making
significant investments in the healthcare sector as a result of the incorporation of IoT in
healthcare products. On the other hand, in this example, the patient’s data are incredibly
important and critical. Hence, using it improperly could put the patient in jeopardy or
perhaps bring the entire system to a halt. Consequently, when these smart medical devices
are detecting and transferring data, it is essential to use suitable security mechanisms to
protect those data. As a result, the sender and receiver’s identities must be verified using a
security protocol known as the authentication protocol.

Chien et al. [1] categorized the four types of RFID authentication protocols as follows:

• Full-fledged protocols: These protocols should support common cryptographic com-
ponents such as symmetric and asymmetric encryption functions, as well as other
one-way cryptography functions. For example, they can support time-consuming
primitives, such as Elliptic Curve Encryption (ECC) and RSA.

• Simple protocols: Support for one-way hash functions and symmetric encryption and
the ability to generate pseudo-random numbers on tags are required for this category
of protocols.

• Lightweight protocols: This category contains protocols that can generate pseudo-
random numbers for tags and have simple operations, such as the Cyclic Redundancy
Code (CRC) checksum, which is simpler than the one-way hash function.

• Ultra-lightweight protocols: This class of protocols allows only bit-wise logical oper-
ations on tags, e.g., bit-wise XOR, AND, OR, rotation, and so on. In addition, the tag’s
side could include a pseudo-random number generator.

Recently, Wang et al. [2] proposed a new ultra-lightweight RFID authentication proto-
col based on a new ultra-lightweight function called Cro(·) for MIoT devices. They also
showed their scheme is appropriate for healthcare systems and meets the security crite-
ria (such as consistency, synchronization, and tag anonymity) that are required for RFID
systems. However, in this research, we present a de-synchronization attack against it that
may be used against any chosen Cro(·) function in this scheme. It reveals a vulnerability in
the way their protocol was designed. We also show that since the building block of their
protocol, i.e., Cro(·), is linear and reversible, it has important security pitfalls. Then, we use
the security vulnerability of Cro(·) to conduct a secret disclosure attack with the success
probability of one and complexity of one protocol’s execution and conducting some offline
computations. In the same line, Shariq et al. [3] also proposed a new ultra-lightweight RFID
authentication protocol called ESRAS based on a new ultra-lightweight operation called
Rank(·) for low-cost tags. They also showed their scheme provides the expected security
criteria for RFID systems. In this paper, we demonstrate an efficient de-synchronization
attack against this protocol and show that the proposed Rank(·) function is not a good
choice to provide the expected diffusion and confusion in a cryptographic protocol. We
also presented a secret disclosure attack against Shariq et al.’s protocol.
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1.1. Main Contribution

The following are this paper’s contributions:

1. Presenting a de-synchronization attack against Wang et al.’s protocol called CRUSAP
that may be used against any chosen Cro(·) function.

2. Presenting the security pitfall of Cro(·) operation, which was recently proposed by
Wang et al. They used Cro(·) as a building operation of their proposed protocol, i.e.,
CRUSAP.

3. Implementing a secret disclosure attack against CRUSAP, both theoretically and
practically.

4. Proposing an efficient de-synchronization attack against Shariq et al.’s scheme, ESRAS,
which works for any desired Rank(·) function.

5. Analyzing the details of the proposed Rank(·) and showing that it is equivalent to the
rotation function in reality and does not provide a high level of security.

6. We also propose a full secret disclosure attack against ESRAS.

1.2. Paper Organization

The remainder of the paper is structured as follows: The related works are reviewed
in Section 2 and the explanation of the Cro(·) operation and Wang et al.’s protocol, i.e.,
CRUSAP, is included in Section 3. In Section 4.1, we explain the de-synchronization
attack against CRUSAP. The security pitfall of Cro(·) is explained in Section 4.2, and then
using that flaw, the Wang et al. protocol is subjected to our proposed secret disclosure
attack in Section 4.3. We use the results of simulations in Section 4.4 to confirm that our
proposed secret disclosure attack is practical and doable. The ESRAS protocol is described
in Section 5 and its security pitfalls, including its vulnerability against de-synchronization
and secret disclosure attacks and weakness of the cryptographic properties of Rank(X, Y),
are explained in detail in Section 6. We conclude the paper in Section 7 with concluding
remarks.

2. Related Work

An authentication protocol is said to be rotation-based if a significant proportion of
operations conducted on the parties are extremely lightweight functions, such as bitwise
AND, OR, XOR, and rotations without the use of cryptographic primitives. The SASI proto-
col [1] is an RFID authentication system based on rotation functions, and several researchers
have examined the security of these protocols. For instance, ref. [4] demonstrates that the
protocols detailed in [1,5] are suspicious to de-synchronization and secret disclosure attacks.
Tewari and Gupta [6] suggested another ultra-lightweight authentication scheme based on
XOR and Rotation operations, but some research such as [7–9] showed that this scheme [6]
is vulnerable to de-synchronization and secret disclosure attacks. Furthermore, ref. [7]
introduced a modified version of Tewari and Gupta’s [6] scheme, while [10] illustrated
that their protocol is not secure enough against secret disclosure, de-synchronization, and
man-in-the-middle attacks. In 2017, Fan et al. [11] proposed another ultra-lightweight
authentication scheme named ULRAS, which uses the specific bit operation called the
RR method. However, ref. [12] showed that their protocol is not secure against secret
disclosure attacks and proposed a modified version of [11]. After that, ref. [13] proved
that the proposed protocols in [11,12] suffer from de-synchronization attacks. In this line,
another RFID authentication scheme using the hash function and bitwise operations was
developed by [14]. However, [15] examined the security of this protocol and demonstrated
that it contains security and privacy flaws. Thus, the researchers then made an effort to
enhance the security of the scheme [14] by retaining a minimal level of computational cost
in the database and offering a new secure lightweight protocol. Ref. [16] proposed a double
authentication scheme via secret sharing for low-cost RFID tags, while [17] showed that
their protocol does not withstand replay and de-synchronization attacks. Furthermore,
ref. [18] proposed a lightweight authentication scheme for cloud environments, but [19]
proved that their protocol is suspicious of anonymity and impersonation attacks. Ref. [20]
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proposed an authentication scheme named URAP, and their protocol is secure against a
wide range of attacks.

3. CRUSAP

In this section, first, the notations used in the paper are described. After that, the
Cro(·) function is explained, and then the CRUSAP, in which the Cro(·) function is used as
the main function, is described.

3.1. Notations

Throughout the paper, we used notations represented in Table 1.

Table 1. Notations used in this paper.

Symbol Description

L The Length of secret key and message
Mi The ith message was produced by one of three entities involved in

the authentication phase
TID The tag’s distinct static identifying ID
RIDS The reader index pseudo ID for the current session
TIDS The tag index pseudo ID in the current session
TIDSold The tag index pseudo ID from the previous session
TIDSnew The tag index pseudo ID in the next session
n1, n2, n3 Random numbers
KR The shared secret key between the reader and the cloud server in the

current session
KT A shared key between the tag and the cloud server
Kold

T The previous shared key between the tag and the cloud server
Knew

T The most recent shared key between the tag and the cloud server
K1, K2, K3 Subkeys of KT
Rot(X, Y) The left rotation of X in the amount of Y used in the CRUSAP
RoR(X, Y) The right rotation of X in the amount of Y used in the security analysis

of CRUSAP; RoR(Rot(X, Y), Y) = X;
Cro(X, Y) The proposed function in [2]
⊕ The bitwise Exclusive-OR operation
PRNG The generator of pseudo random numbers
IDT The mapping table in the cloud server
‖ The strings concatenation operation
IDSi The tag’s pseudonym in the ith session
rank(X) The number of bits of X that are 1
nullity(X) The number of bits of X that are 0
Rot(X, Y) The left rotation of string X in amount of rank(Y) in the ESRAS
Groupping(X) The string X is divided into X1‖X2 based on rank(X), and this parti-

tioning is continued as far as |Xi| > Th, where Th is a threshold value
and suggested to be greater than 5 in the ESRAS

Swapping(X′) Assuming that the string X′ has been partitioned based on rank(X′)
and nullity(X′) into X′1‖X′2 then Swapping(X′1‖X′2) = X′′ = X′2‖X′1

Swapping−1(·) The inverse of Swapping(·)
Rank(X, Y) The special function used in the ESRAS
Ri

1 The random value generated in ith session of ESRAS by the reader
BL , BR The left and right halves of B, respectively
∼ X The bitwise complement of the string X

3.2. Cro(·) Function

Wang et al. have claimed that Cro(·) is a cryptographic operation that does not im-
poses a burden on tags and provides protocol security.In this paper, and in Section 4.3, we
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show that this function is very vulnerable against security attacks and the secret values
used in its calculation can be easily obtained. Here, we describe the Cro(·) operation. To
describe Cro(·), at first, a new bit operation called bit-wise crossover is declared by [2].
Given X, Y, and Z are three L bit binary strings (where L represents an even number)
as follows:

X = x1x2x3 . . . xL; x ∈ {0, 1}, i = 1, 2, 3, . . . , L
Y = y1y2y3 . . . yL; y ∈ {0, 1}, i = 1, 2, 3, . . . , L
Z = z1z2z3 . . . zL; z ∈ {0, 1}, i = 1, 2, 3, . . . , L

The bit-wise crossover rearrangement operation is divided into two steps. The pro-
cesses that perform adjacent parity XOR on the strings X and Y are executed first. In the
second step, the output produced by the first step’s operation is subjected to a bit-wise
rearrangement operation. In the following, these two steps are described in more detail:

1. XOR operation on a neighboring even–odd crossing XOR operation: This particu-
lar operation process entails performing an XOR operation on the value of the odd bit
of X and the value of the next even bit of Y, as well as an XOR operation on the value
of the even bit of X and the value of the next odd bit of Y. If i is odd, Zi is computed
as Zi = Xi ⊕Yi+1, and if i is even, Zi is computed as Zi = Xi ⊕Yi−1. After completing
this phase, the binary string Z can be represented as Z = Z1‖Z2‖ . . . ‖Zi‖ . . . ‖ZL,
which equals to Z = X1 ⊕Y2‖X2 ⊕Y1‖ . . . ‖XL−1 ⊕YL‖XL ⊕YL−1.

2. Self-combination crossover rearrangement procedure: At this stage, the bits result-
ing from XOR of X and Y based on the relations explained above, represented by Z,
are rearranged according to the following pattern and form the final output of the
operation, which is Cro(X, Y). Given X and Y are 8-bit strings, Cro(X, Y) is computed
as Cro(X, Y)0 = Z3,Cro(X, Y)1 = Z4,Cro(X, Y)2 = Z2,Cro(X, Y)3 = Z5,Cro(X, Y)4 =
Z1,Cro(X, Y)5 = Z6, and Cro(X, Y)7 = Z7. Figure 1 illustrates a recap of these proce-
dures.

Z = 𝑋1⊕𝑌2||𝑋2⊕𝑌1||…||𝑋𝐿−1⊕𝑌𝐿||𝑋𝐿⊕𝑌𝐿−1

X

Y

Z

Cro(Z)

Figure 1. Cro(·) computation procedure.

3.3. Protocol Description

CRUSAP includes three main entities, tags, (mobile) readers, and the cloud server.
Following [2], Section 3.2, both channels between the reader and the tag and the reader and
the server are wireless and insecure. It is worth noting the cloud server is connected to a
database over the secure channel. This protocol is briefly reviewed in this section in two
phases: Registration Phase and Authentication Phase.

Registration Phase: In this phase of CRUSAP, the cloud server stores the shared secret
and information of tags and readers, including TIDSold, TIDSnew, RIDS, and a mapping
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table IDT, which uses TIDS‖RIDS as an index to find the related KT and KR necessary for
verification. The tag also stores TIDS and KT(K1, K2, K3). Moreover, the reader stores RIDS
and KR. It is worth noting that the mapping table IDT will keep the index TIDSold‖RIDS
and its content during the previous round of verification.

Authentication Phase: To authenticate a legitimate tag in CRUSAP, the process is
as follows:

1. The reader transmits a “Hello” to the tag and asks for verification.
2. As a response, the tag sends its TIDS to the reader.
3. Following receipt of the tag response, the reader generates a random number n1 using

PRNG, then computes a message M1 = Rot(Cro(RIDS, KR), n1) and transmits it,
along with the TIDS, n1, and RIDS, to a cloud server over a public channel.

4. The TIDS‖RIDS will be queried to the database by the cloud server. The correspond-
ing shared key information Knew

T and KR can be obtained if the match is successful.
If not, the database uses the previous version of TIDSold‖RIDS and tries to match
it. If it finds a matching, the server receives the crucial data Kold

T and KR from the
IDT, which corresponds to TIDSold and RIDS; otherwise, the cloud server will deem
this tag to be invalid and will end the verification process. In the case of successful
matching, a confirmation message M2 = Rot(Cro(RIDS⊕ n1, KR), KR) is computed
by the cloud server and sent to the reader over a public channel.

5. The reader verifies the received M2 to successfully authenticate the cloud server and
tag. In addition, the reader produces another random number n2 using PRNG, which is
used to compute M3 = Rot(Cro(TIDS, K1), K2)⊕ n2 and M4 = Cro(Rot(TIDS, K2 ⊕
n2), K1) values. After that, the reader sends M3 and M4 to the tag over a public channel.

6. The tag extracts the random number n′2 from M3 as n′2 = Rot(Cro(TIDS, K1), K2)⊕
M3 and verifies whether M4

?
= Cro(Rot(TIDS, K2⊕ n′2), K1) to authenticate the reader.

Next, the tag calculates and transmits the message M5 = Cro(Rot(K1 + n2, TIDS), K2)
to the reader over a public channel. If authentication failed, the tag refuses to authen-
ticate it, and the process will end.

7. Once M5 is received, the reader verifies whether M5
?
= Cro(Rot(K1 + n2, TIDS), K2) to

authenticate the tag and update its local RIDS and KR. Then, using PRNG, the reader
generates a random number n3, calculates messages M6 = Rot(Cro(K3, n2), K2)⊕ n3,
M7 = Cro(Rot(K3, K1 ⊕ n3), n2), and sends M6‖M7 and M3‖M6‖M7 to the tag and
cloud server, respectively, over a public channel. The reader also carries out an updating
step as RIDS = Rot(Cor(RIDS⊕ K1, K2 ⊕ n1), K3) and KR = Rot(Cor(KR, K1), n1 ⊕
K2).

8. The cloud server also extracts n′2 from M3 and extracts n′3 from M6, respectively, as
n′2 = Rot(Cro(TIDS, K1), K2)⊕M3 and n′3 = Rot(Cro(K3, n′2), K2)⊕M6 and verifies

whether M7
?
= Cro(Rot(K3, K1 ⊕ n′3), n′2) to authenticate the reader and the tag and

start the update phase if its computed M′7 equals the received M7. The updating includes
these computations: TIDSold = TIDS, TIDSnew = Rot(Cor(TIDSold ⊕ K2, K3 ⊕
n′2), K1 ⊕ n′3), Knew

1 = Rot(Cor(K1, n′3), n′2 ⊕ K2), Knew
2 = Rot(Cor(K2, n′2), n′3 ⊕ K3),

Knew
3 = Rot(Cor(K3, n′2), n′3 ⊕ K1), RIDSnew = Rot(Cor(RIDS ⊕ K1, K2 ⊕ n′1), K3),

and Knew
R = Rot(Cor(KR, K1), n′1 ⊕ K2).

9. Upon the receipt of M6‖M7, the tag extracts n′3 from M6 as n′3 = Rot(Cro(K3, n′2), K2)⊕
M6 and verifies whether M7

?
= Cro(Rot(K3, K1 ⊕ n′3), n′2) to authenticate the reader and

carry out the update phase as: TIDS = Rot(Cor(TIDSold⊕K2, K3⊕n′2), K1⊕n′3), K1 =
Rot(Cor(K1, n′3), n′2⊕K2), K2 = Rot(Cor(K2, n′2), n′3⊕K3), K3 = Rot(Cor(K3, n′2), n′3⊕
K1).

4. Security Analysis of CRUSAP

In this part, we first provide a de-synchronization attack that may be used against any
chosen Cro(.) function that reveals a vulnerability in the way CRUSAP was designed. The
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security flaw in the Cro(·) function will then be discussed. Then, a secret disclosure attack
against CRUSAP is described to exploit that flaw.

4.1. De-Synchronization Attack

CRUSAP updates the tag’s index after each successful session to avoid traceability and
also provides forward secrecy. However, the reader is the only party that contributes to the
protocol’s exchanged messages’ randomness. Hence, it is possible to apply the proposed
attack by Safkhani et al. [17] on this protocol as follows, assuming that the current records
of the tag is (TIDSi, Ki

1, Ki
2, Ki

3).

1. The adversary eavesdrops a session between the tag and the reader and stores
TIDSi, Mi

3 = Rot(Cro(TIDSi, Ki
1), Ki

2) ⊕ ni
2, Mi

4 = Cro(Rot(TIDSi, Ki
2 ⊕ ni

2), Ki
1),

Mi
5 = Cro(Rot(Ki

1 + ni
2, TIDSi), Ki

2), Mi
6 = Rot(Cro(Ki

3, ni
2), Ki

2) ⊕ ni
3 and Mi

7 =
Cro(Rot(Ki

3, Ki
1 ⊕ ni

3), ni
2), where ni

1, ni
2, and ni

3 are random values generated in ith

session by the reader. However, the session is terminated by blocking Mi
6 and Mi

7,
which means that the tag will not update its records. Hence, the tag record is still
(TIDSi, Ki

1, Ki
2, Ki

3), but the cloud server has (TIDSi, Ki
1, Ki

2, Ki
3) and (TIDSi+1, Ki+1

1 ,
Ki+1

2 , Ki+1
3 ), where, for example, TIDSi+1 = Rot(Cro(TIDSi ⊕ Ki

2, Ki
3 ⊕ ni

2), Ki
1 ⊕ ni

3).
2. The adversary allows another session between the tag and the reader, where the

communicated messages are TIDSi, Mi+1
3 , Mi+1

4 , Mi+1
5 , Mi+1

6 , and Mi+1
7 , which

are computed using ni+1
1 , ni+1

2 , and ni+1
3 , which are random values generated in

i + 1th session by the reader. However, the session is again terminated by block-
ing Mi+1

6 and Mi+1
7 . It means that the tag will not update its records. Hence, the

tag record is still (TIDSi, Ki
1, Ki

2, Ki
3), but the cloud server has (TIDSi, Ki

1, Ki
2, Ki

3)

and (TIDSi+2, Ki+2
1 , Ki+2

2 , Ki+2
3 ), where, for example, TIDSi+2 = Rot(Cro(TIDSi ⊕

Ki
2, Ki

3 ⊕ ni+1
2 ), Ki

1 ⊕ ni+1
3 ).

3. The adversary impersonates the reader toward the tag based on the eavesdropped
messages from Step 1 as follows:

(a) The adversary transmits a message ("hello") to the tag and asks for another
round of verification;

(b) As a response, the tag sends its TIDSi;
(c) Following receipt of the tag response, the adversary sends the stored Mi

3 and
Mi

4 to the tag;
(d) The tag verifies the received Mi

3 and Mi
4 and computes Mi

5 = Cro(Rot(Ki
1 +

ni
2, TIDSi), Ki

2) to the reader/adversary;
(e) The adversary returns the stored local Mi

6 and Mi
7 to the tag;

(f) The tag authenticates the adversary as a legitimate reader and updates its
records based on ni

1, ni
2, and ni

3. Hence, the tag record is (TIDSi+1, K+1),
but the cloud server has (TIDSi, Ki

1, Ki
2, Ki

3) and (TIDSi+2, Ki+2
1 , Ki+2

2 , Ki+2
3 ),

where, for instance, TIDSi+1 = Rot(Cro(TIDSi⊕Ki
2, Ki

3⊕ ni
2), Ki

1⊕ ni
3), while

TIDSi+2 = Rot(Cro(TIDSi ⊕ Ki
2, Ki

3 ⊕ ni+1
2 ), Ki

1 ⊕ ni+1
3 ).

At the end of the above attack, the cloud server’s records for the tags (TIDS, K) does
not match the stored record in the tag’s side with a high probability; hence, they have
been de-synchronized. The attack complexity is just eavesdropping/impersonating three
sessions of the protocol, which shows that the proposed attack does not just have a high
chance of success but also a high efficiency.

4.2. Cro(.) Security Analysis

In this section, we concentrate on Cro(X, Y) and show how by having the output of
this function and one of its inputs, e.g., X, the adversary can obtain the other input, i.e., Y.
For this purpose, it is enough to carry out the steps shown below in order:

1. As previously stated, the Cro(X, Y) relation can be used to calculate the value of Z.
As mentioned before, Z is the result of applying XOR to bits of X and Y, which has
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been converted to Cro(X, Y) by an especial rearrangement. Therefore, we can easily
achieve Z by changing the bit positions of the Cro(X, Y) relation according to the
definition stated in Section 3.2.

2. We also know that an XOR relationship can be retrieved if two specific values are
known. In other words, if we have the Z and also one of the inputs of the Cro(X, Y)
function, e.g., X, one can obtain the other input of the Cro(X, Y) function i.e., Y.
In other words, in the Cro(X, Y) function, Y different bits are calculated based on
Yi = Zi+1 ⊕ Xi+1. As a result, Figure 2 shows how this process is completed.

In the next section of this paper, we will present a secret disclosure attack on CRUSAP
based on this weakness of Cro(·).

X

Y

Z

Cro(Z)

𝒀
𝟐
=
𝑿
𝟏
⊕
𝒁
𝟏

𝒀
𝟏
=
𝑿
𝟐
⊕
𝒁
𝟐

𝒀
𝟕
=
𝑿
𝟖
⊕
𝒁
𝟖

𝒀
𝟖
=
𝑿
𝟕
⊕
𝒁
𝟕

𝒀𝟏, 𝒀𝟐, … , 𝒀𝟖

Figure 2. Cro(.) security analysis.

4.3. Secret Disclosure Attack

Secret disclosure attack is a powerful security attack in which the adversary tries to
discover one or more secret values used in the protocol. It is obvious that after applying
the full secret disclosure attack, it is possible to perform many other attacks, such as
impersonating one of the parties involved in the protocol and so on.

Secret Disclosure Attack on CRUSAP

In this section, we demonstrate how Wang et al.’s protocol is vulnerable to a secret
disclosure attack. The proposed secret disclosure attack runs in two phases:

Learning phase: In this phase of the attack, the adversary eavesdrops the transferred
messages over public channels in one run of CRUSAP and retrieved the exchanged mes-
sages in CRUSAP such as M1, RIDS, n1, and M2‖KT ⊕ KR. In other words, all the required
information for the attack is transferred over a public channel and can be captured by the
adversary.

It is worth noting that the messages are transmitted in the insecure channel as they
are, and everyone, including the adversary, can obtain those messages. On the other hand,
a secure channel is a channel in which the adversary or any unauthorized person has no
access to the messages exchanged in this channel and cannot obtain information about
them. The channels that are used in the registration phase are usually of the secure type,
and the channels that are usually used in the authentication phase are of the insecure



Mathematics 2022, 10, 4611 9 of 16

type. In this section, we are facing an insecure channel used in the authentication phase
of CRUSAP, in which the adversary can easily eavesdrop and obtain all the exchanged
messages in this channel.

Secret disclosure phase: For this phase of the attack, it is enough if the adversary
does as follows:

1. Given M1 = Rot(Cro(RIDS, KR), n1) and n1, conduct RoR(M1, n1), which equals to
Cro(RIDS, KR). For the simplicity, the value of Cro(RIDS, KR) is called B, i.e., B =
Cro(RIDS, KR).

2. Given RIDS and B = Cro(RIDS, KR), it can be easily seen that the secret value of
KR can be calculated after rearranging B using the equation introduced in Section 3.
Figure 3 shows an example of the implementation of our proposed secret disclosure
attack against CRUSAP for L = 8 bit values.

3. Since the adversary retrieved KT ⊕ KR message in the learning phase of the attack,
now with disclosing KR, it is possible to retrieve KT as KT = KT ⊕ KR ⊕ KR.

4. By obtaining KR and KT and also having RIDS and TIDS from the exchanged mes-
sages, other types of attacks can be applied to the protocol. The complexity of the
attack described in this section is only one run of the protocol, and the adversary can
perform this attack with a success probability of one.

1 1 1 1 0 0 1 1

0 1 1 1 0 1 1 0

𝑲𝑹

RIDS

1 0 0 1 0 0 0 1Z

Cro (Z) 1 1 0 0 0 0 1 0

𝑛1:4

0 1 0 0 1 1 0 0𝐌𝟏

0 1 0 0 1 1 0 0𝐌𝟏

M1 = Rot(Cro(RIDS, KR), n1)𝑛1:4

1 1 0 0 0 1 0 0Cro (RIDS , 𝐊𝐑)

Z 1 0 0 0 0 1 0 1

0 1 1 1 0 1 1 0RIDS

1 1 1 1 0 0 1 1

𝐊𝐑= 𝐑𝐈𝐃𝐒𝟏 ⊕𝐙𝟏|| 𝐑𝐈𝐃𝐒𝟐⊕𝐙𝟐||…|| 𝐑𝐈𝐃𝐒𝟖 ⊕𝐙𝟖

𝑲𝑹

Figure 3. An example for proposed secret disclosure attack against CRUSAP.

4.4. Implementation of the Proposed Secret Disclosure Attack against CRUSAP with C#

(1) Calculation of CRUSAP main exchanged messages:
In this section, given L = 32 bits for RIDS and KR, we can compute CRUSAP ex-

changed messages, such as M1, as follows:

1. RIDS = 0 1 1 1 0 1 1 0, 0 1 1 1 0 1 1 0, 0 1 0 0 0 1 1 1, 1 1 0 0 0 1 1 0;
2. KR = 1 0 1 0 0 1 0 0, 0 1 1 0 0 0 0 1, 1 0 1 0 0 1 0 0, 0 1 1 0 0 0 0 1;
3. KT = 1 0 0 0 1 1 0 1, 0 1 1 1 1 1 1 0, 0 1 1 0 0 1 1 1, 1 1 0 0 1 0 0 1;
4. Z = Special XOR(RIDS, KR) = 0 0 1 0 1 1 1 0, 1 1 1 0 0 1 0 0, 0 0 0 1 1 1 1 1, 0 1 0 1 0 1

0 0;
5. Cro(RIDS, KR) = 0 1 1 1 1 1 0 0, 0 0 1 1 0 0 0 0, 0 0 1 1 1 1 1 1, 0 1 0 1 0 1 0 0 ;
6. n1 = 4;
7. M1 = Rot(Cro(RIDS, KR), n1) = 0 1 0 0 0 1 1 1, 1 1 0 0 0 0 1 1, 0 0 0 0 0 0 1 1, 1 1 1 1 0 1

0 1;
8. KT ⊕ KR = 0 0 1 0 1 0 0 1, 0 0 0 1 1 1 1 1, 1 1 0 0 0 0 1 1, 1 0 1 0 1 0 0 0.
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In the following step, we demonstrate how to calculate the value of KR and KT
following the secret disclosure attack explained in Section 4.3.

(2) Disclosure of KR and KT :
Given L = 32 bits values for M1 and RIDS and a known n1, it can be easily seen

that we can compute KR and KT following the steps described in Section 4.3. It worth
noting that M1, RIDS, KT ⊕ KR, and n1 are accessible from the exchanged messages in the
insecure channel of the protocol, which we assume are as follows:

1. M1 = 0 1 0 0 0 1 1 1, 1 1 0 0 0 0 1 1, 0 0 0 0 0 0 1 1, 1 1 1 1 0 1 0 1;
2. KT ⊕ KR = 0 0 1 0 1 0 0 1, 0 0 0 1 1 1 1 1, 1 1 0 0 0 0 1 1, 1 0 1 0 1 0 0 0;
3. RIDS = 0 1 1 1 0 1 1 0, 0 1 1 1 0 1 1 0, 0 1 0 0 0 1 1 1, 1 1 0 0 0 1 1 0;
4. n1 = 4; then, we can carry out the following:
5. Computing RoR(M1, n1) = 0 1 1 1 1 1 0 0, 0 0 1 1 0 0 0 0, 0 0 1 1 1 1 1 1, 0 1 0 1 0 1 0

0= Cro(RIDS, KR);
6. Obtaining Z from the rearrangement of Cro(RIDS, KR) as 0 0 1 0 1 1 1 0, 1 1 1 0 0 1 0

0, 0 0 0 1 1 1 1 1, 0 1 0 1 0 1 0 0 ;
7. Then, since Z = Special XOR(RIDS, KR), given Z and RIDS, we can compute KR as

1 0 1 0 0 1 0 0, 0 1 1 0 0 0 0 1, 1 0 1 0 0 1 0 0, 0 1 1 0 0 0 0 1;
8. Then, KT is calculated as KT = KT ⊕ KR ⊕ KR = 1 0 0 0 1 1 0 1, 0 1 1 1 1 1 1 0, 0 1 1 0 0

1 1 1, 1 1 0 0 1 0 0 1.

It can be seen the retrieved values for KR and KT , respectively, equal our assumptions
of KR and KT . Therefore, these implementations also showed that our proposed secret
disclosure attack is practical and feasible.

5. ESRAS

ESRAS [3] is another ultra-lightweight authentication protocol that was recently pro-
posed by Shariq et al. This scheme uses an ultra-lightweight operation called Rank(X, Y)
as the core of non-linearity to achieve desired diffusion and confusion, where X and Y are
strings of bits as follows:

X =x1‖x2‖ . . . ‖xn

Y =y1‖y2‖ . . . ‖yn

We describe this operation in this section first because it is crucial to understand the
functionality of ESRAS. Through description, similar to the designers, we use the following
strings for X and Y:

X =11000111101011101100011110011011

Y =10111101110101100011110111000010

Rank(X, Y) uses several other operations as follows:

• rank(X): returns the number of bits of X that are 1, e.g., for the provided example
rank(X) = 20 and rank(Y) = 19;

• nullity(X): returns the number of bits of X that are 0, e.g., for the provided example
nullity(X) = 12 and nullity(Y) = 13; it is obvious rank(x) + nullity(x) = length(x);

• Rot(X, Y): String X is left rotated by rank(Y), for the given example rank(Y) = 19 and
Rot(X, Y) = 00111100110111100011110101110110;

• Groupping(X): The string X is divided into X1‖X2 based on rank(X), and this parti-
tioning is continued as far as |Xi| > Th, where Th is a threshold value and suggested
to be greater than 5. We will discuss Groupping(X) in Section 6.2 in more detail;

• Swapping(X′): Assuming that the string X′ has been partitioned based on rank(X′)
and nullity(X′) into X′1‖X′2 then Swapping(X′1‖X′2) = X′′ = X′2‖X′1.
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Based on these operations, Rank(X, Y) is computed as

Groupping(X) =X′

Groupping(Y) =Y′

Swapping(X′) = X′′ =xm+1‖xm+2‖ . . . ‖xn‖x1‖x2‖ . . . ‖xm; where m = rank(X′)

Swapping(Y′) = Y′′ =ym′+1‖ym′+2‖ . . . ‖yy‖y1‖y2‖ . . . ‖ym′ ; where m′ = rank(Y′)

Rank(X, Y) = ∼ X′′⊕ ∼ Y′′

Protocol Description

The ESRAS protocol has two entities, i.e., RFID tag and the reader–server unit, and it
includes two phases, i.e., initialization phase and authentication phase. It is worth noting
that the channel between the tag and the reader–server is insecure, but the reader-to-sever
communication considered over a secure channel.

In the initialization phase of ESRAS, for each tag T , an identifier ID, a tag’s index
IDS, and two secret keys K1 and K2 are generated by the manufacturer and stored in the
tag’s internal memory and in the server side (BS). In addition, two records for IDS are
considered in BS as IDSold = IDS and IDSnew = Null.

The authentication phase of ESRAS is as follows, in which all messages are transferred
over a public channel:

1. The reader sends a Hello message to the tag.
2. The tag in response returns its IDS.
3. The reader generates a random number R1 and computes A = Rank(Rot(K1, K2), K1)⊕

R1 and B = Rank(Rot(K1, R1), K1 ⊕ K2) ⊕ Rot(Rank(K2, R1 ⊕ K2), K1) and sends
{A‖BR or L} to the tag. For sending messages, BL and BR, respectively, denote the left
and the right halves of B. If rank(B) is odd, then BL is sent; otherwise, BR is sent.

4. Once the message is received, the tag extracts R1 from A and verifies BR or L. As-
suming that the verification was successful, the tag computes C = Rank(Rank(K1 ⊕
K2, R1), Rank(R1, K2))⊕ ID and sends it to the reader.

5. The reader verifies the received C to authenticate the tag and update IDSold =
IDS and IDSnew = Rank(Rot(Rank(IDS ⊕ R1, K1), K2)). Next, it generates a ran-
dom value R2 and calculates D = Rank(R1, K1 ⊕ K2)⊕ Rank(K1, K2)⊕ R2 and E =
Rank(Rot(Rot(R2, R2), K2), IDSnew)⊕Rot(Rank(R1, R1), R2⊕K2). Finally, the reader
sends {D, ER or L} to the tag.

6. Once the message {D, E} is received, the tag extracts R2 from D, computes IDSnew =
Rank(Rot(Rank(IDS⊕ R1, K1), K2)), and verifies ER or L. Assuming that the verifica-
tion was successful, the reader is authenticated, and IDS is updated to IDSnew.

6. Security Analysis of ESRAS

In this section, we provide a more detailed security analysis of ESRAS. More precisely,
while the authors claimed full diffusion and confusion by the introduced component
Rank(X, Y), and based on it, they claimed security against de-synchronization attacks
and secret disclosure attacks, we show that the Rank(X, Y) does not provide the expected
diffusion and confusion. In addition, we show that despite of the used Rank(X, Y), ESRAS
suffers from the de-synchronization attack. Finally, we apply a successful secret disclosure
attack on it.

6.1. De-Synchronization Attack

ESRAS updates the tag’s index after each successful session to avoid traceability and
also provides forward secrecy. However, the reader is the only party that contributes to the
protocol’s exchanged messages randomness. Hence, it is possible to apply the proposed
attack by Safkhani et al. [17] on this protocol as follows, assuming that the current index of
the tag is IDSi:
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1. The adversary eavesdrops a session between the tag and the reader and stores
IDSi, {A‖BL or R}i, Ci, {D‖EL or R}i but blocks {D‖EL or R}i and does not allow the
tag to update its IDSi. Hence, the tag’s records of IDS is IDSi, but the reader has
IDSold = IDSi and IDSnew = Rank(Rot(Rank(IDS ⊕ Ri

1, K1), K2)), where Ri
1 is a

random value generated in ith session by the reader.
2. The adversary allows another session between the tag and the reader, where the com-

municated messages are IDSi, {A‖BL or R}i+1, Ci+1, {D‖EL or R}i+1; however, again,
the adversary blocks {D‖EL or R}i+1 and does not allow the tag to update its IDSi.
Hence, the tag’s records of IDS is IDSi yet but the reader has IDSold = IDSi and
IDSi

new = Rank(Rot(Rank(IDS⊕ Ri+1
1 , K1), K2)), where Ri+1

1 is a random value gen-
erated in i + 1th session by the reader.

3. The adversary impersonates the reader toward the tag based on the eavesdropped
messages from Step 1 as follows, i.e., IDSi, {A‖BL or R}i, Ci, {D‖EL or R}i:

(a) The adversary sends a Hello message to the tag;
(b) The tag returns its IDSi;
(c) The adversary sends {A‖BL or R}i to the tag;
(d) Once the message is received, the tag extracts Ri

1 from Ai and verifies Bi
R or L.

The verification will be successful, and the tag computes Ci = Rank(Rank(K1⊕
K2, Ri

1), Rank(Ri
1, K2))⊕ ID and sends it to the reader/adversary;

(e) The adversary sends {D, ER or L}i to the tag;
(f) Once the message {D, E}i is received, the tag extracts Ri

2 from Di, computes
IDSi+2

new = Rank(Rot(Rank(IDS⊕Ri
1, K1), K2)), and verifies Ei

R or L. Assuming
that the verification was successful, the reader is authenticated, and IDS is
updated to IDSnew.

At the end of the above procedure, the reader’s records for the tag’s index are
IDSold = IDSi and IDSi

new = Rank(Rot(Rank(IDS ⊕ Ri+1
1 , K1), K2)), while the tag’s

record is IDSi+2
new = Rank(Rot(Rank(IDS⊕ Ri

1, K1), K2)), where Ri
1 and Ri+1

1 are two inde-
pendent random values generated, respectively, by the reader in ith and i + 1th sessions.
Hence, with the probability of 1− 2−l , we have Ri

1 6= Ri+1
1 and with the same probability

IDSi+1
new 6= IDSi+2

new. Since the probability for IDSi+1
new 6= IDSi is also the same, the success

probability of the proposed attack is 1− 2−l+1. The attack complexity is just eavesdrop-
ping/impersonating three sessions of the protocol, which shows that the proposed attack
not only has a high chance of success but also a high efficiency. This attack contradicts the
designer’s claim against the protocol’s security against a de-synchronization attack in [3].

6.2. On the Cryptographic Properties of Rank(X, Y)

As it has been mentioned already, designers also used the operation Groupping(X) =
X′ through the computation of Rank(X, Y), in which the string X is divided into X1‖X2
based on Rank(X), and this partitioning is continued as far as |Xi| > Th, where Th is a
threshold value and suggested to be greater than 5. To understand Groupping(X), the
authors provided a numerical example [3] (Figure 1) based on Th = 6. Following that
example, it is clear Groupping(X) = X′ = X. The provided example for Groupping(X) =
X′ = X in [3] (Figure 2) also confirms that Groupping(X) = X′ = X. Hence, we can
omit the description of this operation. Following this, we can state that Rank(X, Y) =∼
X′′⊕ ∼ Y′′, where ∼ X is the bitwise complement of the string X. On the other hand,
for any bit xi, we can state that ∼ xi = 1⊕ xi and ∼ xi⊕ ∼ yi = 1⊕ xi ⊕ 1⊕ yi. Hence,
Rank(X, Y) = X′′ ⊕Y′′.

To accomplish Swapping(X′), assuming that X′ = x′1‖x′2‖ . . . ‖x′n and rank(X′) = m, it is
computed as Swapping(X′) = X′′ = x′m+1‖x′m+2‖ . . . ‖x′n‖x′1‖x′2‖ . . . ‖x′m. Hence, given that
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X′ = Groupping(X) = X and Swapping(X′) = X′′ = xm+1‖xm+2‖ . . . ‖xn‖x1‖x2‖ . . . ‖xm
and assuming that rank(X) = m and rank(Y) = m′, then:

Swapping(X) = X′′ =xm+1‖xm+2‖ . . . ‖xn‖x1‖x2‖ . . . ‖xm

Swapping(Y) = Y′′ =ym′+1‖ym′+2‖ . . . ‖yy‖y1‖y2‖ . . . ‖ym′

Rank(X, Y) = X′′ ⊕Y′ =(xm+1‖xm+2‖ . . . ‖xn‖x1‖x2‖ . . . ‖xm)⊕
(xm+1‖xm+2‖ . . . ‖xn‖x1‖x2‖ . . . ‖xm)

Given the definition of Rot(X, Y) and Rank(X, Y), we can represent Rank(X, Y) as
follows:

Rank(X, Y) =Rot(X,∼ X)⊕ Rot(Y,∼ Y)

It shows that Rank(X, Y) does not provide the desired diffusion and confusion. More
precisely, for Rank(X, Y), they claimed that it provides full diffusion, while if it provides full
diffusion, then any modification in input should change any bit of the output with the prob-
ability of 0.5. However, for the given Rank(X1, Y), consider the case where for the string X1,
we have x1x2 = 10; thus, changing those bits into 01 to create X2 does not affect rank(X2)
compared to rank(X1). Additionally, Rank(X2, Y) is identical to Rank(X1, Y) in all n− 2
bits that are not affected by those bits, and those bits of Rank(X2, Y) and Rank(X1, Y)
complement each other exactly. It means that rank(Rank(X2, Y)⊕ Rank(X1, Y)) = 2 with
the probability of 1. In addition, from Rank(X2, Y)⊕ Rank(X1, Y), without the knowledge
of X1 or Y, the adversary can identify rank(X), which contradicts another claim of the
designers in which the claimed Rank(X, Y) does not leak any information related to input
values.

As another property of Rank(X, Y), designers claimed that it is a one-way function,
and given Rank(X, Y) and Y for instance, it is not possible to determine X. However, given
Y, the adversary easily computes:

Swapping(Y) = Y′′ =ym′+1‖ym′+2‖ . . . ‖yn‖y1‖y2‖ . . . ‖ym′

Given Y′′, X′′ is computed as X′′ = Rank(X, Y) ⊕ Y′′. On the other hand, X′′ =
Swapping(X) = xm+1‖xm+2‖ . . . ‖xn‖x1‖x2‖ . . . ‖xm and rank(X) = rank(X′′) = m. Hence,
given X′′ = x′′1 ‖ . . . ‖x′′n , it is possible to invert the Swapping(·) and determine X as follows,
where Swapping−1(·) is used to denote the inverse of Swapping(·):

Swapping−1(X′′) = X =x′′n−m‖x′′n−m+1‖ . . . ‖x′′n‖x′′1 ‖x′′2‖ . . . ‖x′′m

Hence, given Rank(X, Y) and Y for instance, X is determined uniquely; vice versa,
given Rank(X, Y) and X for instance, Y is determined uniquely, which contradicts the
designers’ claim in [3], Section 3.2.

6.3. Secret Disclosure Attack

While the proposed attack in Section 6.1 works for any Rank(·) function and shows a
structural flaw in the designed ESRAS, in Section 6.2, we described undesired properties of
Rank(·), which are used in this section to mount a more dedicated attack. The proposed
attack in this section is a secret disclosure attack that reveals confidential information of
a given tag. During the proposed attack, we use the fact that rank(X) = rank(X′), then
Rot(Y, X) = Rot(Y, X′).
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The computed message through a session of the protocol are:

A =Rank(Rot(K1, K2), K1)⊕ R1

B =Rank(Rot(K1, R1), K1 ⊕ K2)⊕ Rot(Rank(K2, R1 ⊕ K2), K1)

C =Rank(Rank(K1 ⊕ K2, R1), Rank(R1, K2))⊕ ID

IDSnew =Rank(Rot(Rank(IDS⊕ R1, K1), K2))

D =Rank(R1, K1 ⊕ K2)⊕ Rank(K1, K2)⊕ R2

E =Rank(Rot(Rot(R2, R2), K2), IDSnew)⊕ Rot(Rank(R1, R1), R2 ⊕ K2)

and the messages are transferred over a public channel. IDS, {A‖BR or L}, C and {D, ER or L}
are accessible by the adversary. In addition, IDS is updated at the end of each successful
authentication.

Consider the transferred messages in the ith and jth sessions. Given that K1 and K2 are
constant values for each tag and provided Ai and Aj, we can state that:

Ai ⊕ Aj =[Rank(Rot(K1, K2), K1)⊕ Ri
1]⊕ [Rank(Rot(K1, K2), K1)⊕ Rj

1]

=Ri
1 ⊕ Rj

1

On the other hand, assuming that rank(Ri
1) = rank(Rj

1), then Rank(Rot(K1, Ri
1), K1 ⊕

K2) = Rank(Rot(K1, Rj
1), K1 ⊕ K2). In addition, if rank(Ri

1 ⊕ K2) = rank(Rj
1 ⊕ K2) and

rank(Ri
1) = rank(Rj

1), then rank(Ai ⊕ Aj) = rank(Bi ⊕ Bj).
Let us assume the adversary has stored IDSi, {Ai‖Bi

R or L}, Ci, and {Di, Ei
R or L} for a

session and blocked the last message to the tag. Thus, the tag’s record for its index is still
IDSi. Let us assume the adversary flips two bits of Ai to achieve A′i, e.g., ai

x and ai
y, such

that |x− y| = l
2 , where l is the parameter length. In this case, assuming that rank(Ri

1 ⊕
K2) = rank(Rj

1⊕K2) and rank(Ri
1) = rank(Rj

1), then considering B′i corresponds to A′i, we
have rank(Bi

L ⊕ B′iL) = 1 and rank(Bi
R ⊕ B′iR) = 1, and the probability of switching from left

to right or vice versa in the required part of Bi is 2
l and remains the same with the probability

of 1− 2
l . Hence, if the adversary sends {A′i‖B′iR or L} to the tag such that A′i is computed by

flipping two bits of Ai, as mentioned above, and B′iR or L is computed by flipping a chosen
bit of B′iR or L, with the probability of (1− 2

l )
1
2 ×

1
2 ×

1
l/2 , the sent message will be accepted

by the tag, and the tag will return a response for C. Assuming that the tag returned a
response, it means that the provided conditions were held. Hence, we can conclude that
(Rank(Rot(K1, K2), K1))i ⊕ (Rank(Rot(K1, K2), K1))j = 1, where (Rank(Rot(K1, K2), K1))i

and (Rank(Rot(K1, K2), K1))j, respectively, denote ith and jth bits of Rank(Rot(K1, K2), K1).
In this way, the adversary could achieve a single bit of information related to the secret
parameters. The adversary can eavesdrop more IDS, {A‖BR or L}, C, and {D, ER or L} and
repeat the attack to extract whole (Rank(Rot(K1, K2), K1))i. The expected complexity (in
the term of sessions) of the attack is as follows:

l × 1
(1− 2

l )
1
2 ×

1
2 ×

1
l/2 × l

=
1

(1− 2
l )

1
2 ×

1
2 ×

1
l/2

Given (Rank(Rot(K1, K2), K1))i and eavesdropped A values, R1 values are achievable.
Then, from that information and the given values of BR or L on each session, the adversary
can develop a linear equation system to extract K1 and K2. Following it and given C, it is
possible to extract ID, which completes the secret disclosure attack on ESRAS.

7. Conclusions

Over the years, many ultra-authentication schemes have been proposed; however, un-
fortunately, all of those protocols are not secure. These protocols are commonly vulnerable
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to a variety of attacks, such as secret disclosure, de-synchronization, and impersonation
attacks. This paper, similar to other papers in this field, once again showed that the ultra-
lightweight operations, e.g., a limited number of bitwise operations, such as AND, OR, and
XOR, are not enough to design a completely safe security protocol. This is why they are
linear reversible operations.

In this paper, we proposed a de-synchronization attack and a secret disclosure attack
against Wang et al.’s ultra-lightweight protocol called CRUSAP, with a success probability
of one. We also show security vulnerabilities of ESRAS against de-synchronization and
secret disclosure attacks.
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Abbreviations

RFID Radio Frequency IDentification
IoT Internet of Things
MIoT Medical Internet of Things
ECC Elliptic Curve Cryptography
RSA Rivest-Shamir-Adleman Public-key Encryption Algorithm
ID The tag unique identifier
IDS The tag’s pseudonym
RIDS The reader’s pseudonym
CRC Cyclic Redundancy Code checksum
PRNG Pseudo Random Number Generator
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