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Abstract: Cavum septum pellucidum (CSP) is one of the most important physiologic structures that
should be detected in Ultrasound (US) scanning for the normal development of the fetal central
nervous system. However, manual measurement of CSP is still a difficult and time-consuming task
due to the high noise of US images, even for experienced sonographers. Especially considering
that maternal mortality remains high in many developing countries, a data-driven system with a
medical diagnosis can help sonographers and obstetricians make decisions rapidly and improve their
work efficiency. In this study, we propose a novel data-driven system based on deep learning for the
diagnosis of CSP called CA-Unet, which consists of a channel attention network to segment the CSP
and a post-processing module to measure and diagnose the anomalies of CSP. We collected the US
data from three hospitals in China from 2012 to 2018 year to validate the effectiveness of our system.
Experiments on a fetal US dataset demonstrated that our proposed system is able to help doctors
make decisions and has achieved the highest precision of 79.5% and the largest Dice score of 77.5% in
the segmentation of CSP.

Keywords: data-driven system; cavum septum pellucidum (CSP); segmentation; U-net; attention
network; deep learning
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1. Introduction

Ultrasound (US) is a widely used imaging method for screening and diagnosis in
prenatal diagnosis because it is relatively safe, non-destructive, and low cost. However,
identifying US images manually is almost the only way used by mainstream medical
institutions. It relies heavily on the experience and state of sonographers. Besides, there
are some characteristics of US images which makes the detection more complicated. US
acquisition, the quality of cut surface, and manual measurement techniques all lead to
observed variability and different diagnostic results.

Although the global maternal mortality ratio is declining year by year, there are still
almost 303,000 maternal deaths globally each year [1]. Maternal mortality remains high in
many developing countries, such as South Africa, India, and China. This is mainly caused
by the contradiction between excessive population and deficient medical resources [2].
In particular, the complexity and operator dependence of US imaging, lagging medical
equipment and severe doctor–patient relationship brings about a high misdiagnosis rate of
obstetricians in some underdeveloped regions. In China, excellent sonographers are mainly
distributed in first-class hospitals in big cities. So, the level of sonographers is uneven and
advanced medical devices are scarce in many towns. Many pregnant women need to go to
higher-level hospitals and re-diagnose. Moreover, heavy workloads and mental stress have
already put a heavy burden on obstetricians. After a long period of work, the accuracy of
diagnosis may be affected [3].

In clinical practice, the cavum septum pellucidum (CSP) is one of the most important
physiologic structures for the normal development of the fetal head and central nervous
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system in a pregnant routine examination. According to the guidelines of the American
Society of US, the CSP has become a standard that must be examined for assessing the
development of the fetal central nervous system [4]. The CSP is defined as a liquid chamber
located in two transparent compartments at the front of the midline of the brain [5]. When
the gestation of a normal fetus is 18∼37 weeks [5], CSP should be detected in the trans-
thalamic (TT) sagittal plane and TT axial plane during US scanning [6,7]. The standard TT
axial plane shows the CSP, with both sides of the thalamus and midline clearly. The TT
sagittal plane should detect the integrity of CSP and corpus callosum (CC). Because the
clinical significance of CSP is very important, we mainly focus on the measurement of CSP.
The pathological representation of CSP is mainly the absence of its normal appearances,
such as the absence of the CSP, the presence of an enlarged CSP or narrow CSP. According
to the method of Ref. [8], the CSP width (maximum transverse diameter) is measured at the
axial position, and the CSP wide diameter normal value is 2 to 10 mm. If the CSP width is
<2 mm, our diagnosis is narrow CSP. If the CSP width is >10 mm, our diagnosis is enlarged
CSP. If there is no CSP, then the initial diagnosis is absent CSP. These performances may
indicate an important marker for many associated brain abnormalities [8]. For example,
the absence of CSP on fetal sonography is associated with other intracranial abnormalities,
including septo-optic dysplasia, CC dysgenesis, and so on. However, because the feature
of US images such as a low signal-to-noise ratio usually leads to fuzzy and discontinuous
CSP boundaries, manual measurement of CSP is still a difficult and time-consuming task
even for experienced sonographers. Besides, with the development of data-driven systems,
many researchers combine it with medical decision analysis and implement segmentation
of an entire measurement. However, they have ignored the real clinical application for fully
automatic measurement and anomaly diagnosis. Few studies have been conducted on CSP,
an important biometric for fetal neural maldevelopment.

On the basis above, a data-driven system can be built through the automatic diagnosis
of fetal CSP using deep learning techniques as a basic treatment. Therefore, obstetricians
can use the machine annotation of CSP and diagnosis results as a reference to guarantee
a more accurate diagnosis and reliable treatment decision. This practice can improve the
work efficiency of sonographers and lower the misdiagnosis rate.

In this work, we propose a novel data-driven system for segmenting and measuring
fetal CSP. The whole model illustration is reported in Figure 1. Firstly, TT, CSP, midline in
TT axial plane and CC, CSP in TT sagittal plane should be segmented. After detecting the
integration of physiologic structure, we measure the width of CSP. The new architecture
proposed for diagnosis is named CA-Unet based on U-net [9] with changes, which is an end-
to-end deep learning architecture. To obtain fine-grained details and context information,
VGG-11 is involved in the encoder of U-net [9] as a pre-trained structure. Besides, we bring
up a channel attention module to decrease the redundant use of computational resources
and model parameters, which can also enhance the robustness to noise of US [10]. Then
we can analyze the integrity of the physiologic structure for the TT axial and sagittal plane
and the width of CSP to get the first-step diagnosis results. Our major contributions to this
study are summarized as follows:

(1) We propose a medical data-driven system for the segmentation and measurement of
CSP using a channel-attention deep network, named CA-Unet. Our CA-Unet is the
first combination of the measurement of fetal CSP and deep learning techniques;

(2) Our system for segmentation is based on improved U-net [9], similar to an encoder-
decoder model. To increase the receptive field and improve the efficiency, we initial-
ized the encoder with weights obtained from an ImageNet pre-trained VGG11 [11];

(3) Moreover, we introduce a new channel attention module, guiding the network to
focus on meaningful information at different channels. By sharing the weights of the
parallel convolutions, we keep the size of the network unchanged and only add a
small number of parameters. This module can be easily added to CNN architectures,
increasing prediction accuracy.
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(4) Our data-driven system considers the measurement process of clinicians to tackle the
automated problem of fetal biometrics measurement. Post-processing is proposed
to measure and diagnose the anomalies of CSP. For validation, we have collected
fetal US datasets in Xiangya hospital, on which our method achieves a Dice score
(DSC) of 77.5% and precision of 79.5%. Our CA-Unet achieves the best segmenta-
tion performance among other state-of-art models, Experimental results demonstrate
that it could effectively enhance obstetricians’ working efficiency and reduce their
misdiagnosis rate.

2. Related Works

Our model draws on experience from multiple areas, including medical data-driven
systems, deep learning for image segmentation, and the application of attention modules.
Next, a detailed introduction will be given to the research related to our works.

2.1. US Data-Driven System

US examination is commonly used for pregnancy diagnosis since US screening is rela-
tively safe, non-destructive, and radiation-free [12,13]. With the development of data-driven
segmentation systems, these systems can segment and carry out decision analysis, which is
helpful to doctors and other decision makers [14,15]. However, US image segmentation is
greatly affected by the quality of the data. There are some properties that complicate the
segmentation tasks, including artifact, attenuation, speckle, and missing boundaries [16–18].
With the widespread use of machine learning, the application of diagnosis, computer-aided
detection (CAD), and US image segmentation is increasing. Luo et al. [19] utilized robust
graph-based (RGB) segmentation and particle swarm optimization (PSO) algorithms to
achieve Breast US image segmentation. Baumgartner et al. [20] presented a new framework
for automatically detecting 13 fetal standard views on the basis of CNN (convolutional
neural network) in 2D US images. The automatic segmentation methods in fetal US imag-
ing usually developed from using segmentation as an intermediate step for measuring
physiologic structure. Both Heuvel et al. [21] and Jing et al. [22] proposed an automatic
measurement of fetal HC (head circumference) using a random forest and the rapid ellipse
fitting method (ElliFit). Some researchers focus on the fetal standard plane recognition;
Yu et al. [23] used a deep convolutional neural network architecture to automatically
recognize FFSP (fetal facial standard plane), which includes the axial, coronal, and sagit-
tal plane. See also Chen et al. [24] for detecting fetal standard planes by using a novel
knowledge-transferred recurrent neural network.

2.2. Deep Learning for Image Segmentation

Fully Convolutional Networks (FCN) [25] is a pioneering work of semantic segmen-
tation, which applied convolutional and upsampling segmented methods and merged
information of different scales. There are many model variants based on FCNs for im-
provement. Firstly, the U-Net [9] utilized the encoder-decoder structure fusing low-level
and high-level features to obtain different scale contexts. Then, Vijay et al. [26] proposed
the decoder using pooling indices computed in the max-pooling layer to perform non-
linear upsampling. Furthermore, PSPNet [27] developed a pyramid pooling module to
embed difficult scenery context features in an FCN-based pixel prediction framework.
The most widely used deep learning networks for medical image segmentation is still
UNet [9] and improvements based on it [28–30]. Fu et al. [31] presented an architecture
called M-Net that solved optic disc and optic cup segmentation joint problems. It mainly
consists of the multi-scale input layer, U-shape convolutional network, and a side-output
layer. Unet++ [32] utilized a deeply-supervised encoder-decoder network and re-designed
skip pathways to decrease the semantic gap between the feature maps of the encoder and
decoder sub-networks, which showed better performance in medical image segmentation.
Some researchers have proposed a similar idea to us but the detailed method and target
are different. Trinh et al. combined spatial and channel attention gate by element-wise
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multiplication and added them into skip connection for abnormal tissue segmentation [33].
SCAU-Net introduced spatial attention and channel attention as modules in the encoder-
decoder structure for gland segmentation [34]. CA-Net presents channel attention and
spatial attention in the decoder for Lesion Segmentation [35]. However, we propose a novel
channel attention module at skip connections with an improved U-net structure for CSP
segmentation. The automatic segmentation methods in fetal US imaging usually developed
from using segmentation as an intermediate step for measuring physiologic structure. Both
Heuvel et al. [21] and Jing et al. [22] proposed an automatic measurement of fetal head
circumference using a random forest and the rapid ellipse fitting method. Our work is the
first combination of the diagnosis of fetal CSP and deep learning method.

2.3. Application of Attention Module

The attention mechanism is widely used in many fields such as machine translation,
natural language processing and so on [35]. Attention mechanisms can be divided into
soft attention and hard attention. Hard attention is usually used in reinforcement learning,
but soft attention is normally used in computer vision. Recently, there have been more
applications combining deep learning with computer vision, and most of them focus
on using a mask to form an attention mechanism in terms of classification and object
detection [36,37]. Spatial Transformer Networks (STN) [38] employed a new module, the
Spatial Transformer, which can manipulate the spatial data within the network to maintain
the key information. SENet [39] adopted a new strategy of feature re-calibration to acquire
the importance of each feature channel automatically, which included two operations,
“Squeeze” and “Excitation”. CBAM [40] sequentially applied attention maps along two
separate dimensions, channel and spatial, improving the ability to capture features of a
network model without increasing computations and parameters. Rao et al. [41] extracted
information from the image space and the feature space as the input to capture useful
information and discard useless features in the feature learning process.

3. Method

Our diagnosis system is based on U-net [9], which is one of the most successful
methods of image segmentation, especially for medical image segmentation. The encoder-
decoder structure and skip connection used are very classic design methods. There are
many new modified convolutional neural network designs based on U-net, such as M-net,
U-net++ [32], and so on. However, the upsampling and downsampling process of U-net
causes a big loss of information [42]. Besides, the depth of the U-NET network is slightly
insufficient to get a big receptive field and context information. It is especially easy to cause
misidentification and mis-segmentation for US images due to high noise.

To solve this problem, we proposed CA-Unet. The whole model is shown in Figure 1.
Firstly, TT, CSP, midline in TT axial plane and CC, CSP in TT sagittal plane should be
segmented. After detecting the integration of physiologic structure, we measure the width
of CSP. The main structure is developed from U-net using an encoder and decoder style of
network structure. It consists of a Convolutional layer(CONV), rectified linear unit (ReLU),
Batch Normalization layer(BN), max-pooling layer, transposed Convolution and Attention
module, which can be divided into three major parts: the feature encoder module, the
attention module, and the feature decoder module, as shown in Figure 2. There are several
important modifications in our architecture to compare with the origin U-net. We can see
the detailed design as follows.

3.1. Improved U-net Architecture

The improved U-net includes two main encoding and decoding paths. The encoder
path can be seen as a feature extractor. It resembles a VGG11 [11] barring the terminal fully
connection layer, which consists of 11 sequential layers, as seen in Figure 2. Each layer of
the encoder path is firstly passed through two repeated blocks of 3 × 3 CONV, BN, and
ReLU. A dropout layer (with a probability of 0.1) is included between two blocks. The
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original U-Net [9] did not use batch normalization and dropout. BN makes the distribution
of input data for each layer in the network relatively stable and accelerates the model
learning rate. Dropout can effectively alleviate the occurrence of over-fitting, and to some
extent achieve the effect of regularization. The output through the CONV-BN-ReLU is then
downsampled and operated through a 2 × 2 max-pooling with strides of 2. Every time we
downsample, the size of the feature map becomes 1/2, and the number of channels in the
output feature map is doubled.

Figure 1. Model illustration. The model firstly proposed a new medical image segmentation method
by jointly training the U-net (VGG 11) and the channel attention module. After detecting the
integration of the physiologic structure, we measured the width of CSP to give the auxiliary diagnosis.

Figure 2. The diagram of the proposed CA-Unet (Channel Attention U-net) model. The solid yellow
boxes represent the output of CONV-BN-ReLU block. The hollow yellow boxes represent the copied
feature maps. Channel Attention Module filters the propagated features through the skip connections.

The decoding path is similar to the encoding path with one exception: max-pooling
is replaced by transpose convolution with 2 × 2 up-convolution to double the size of the
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feature map and half the number of feature channels each time. Simultaneously, skip
connections are also implemented between cropped feature maps and decoding paths to
ensure that semantic information is added at the top level of the network. Each upsampling
contains two 3 × 3 convolutional layers, one BN, and ReLU, just like the encoding path. Fi-
nally, the 1× 1 convolution network with a sigmoid activation function is used to determine
the probability of each pixel belonging to different classes to achieve segmentation.

3.2. Channel Attention Module

The attention model has many applications in natural language processing and image
saliency detection. It aims to find the target area from a large amount of information
quickly. The attention mechanism learning method is divided into hard attention and
soft attention, and most of them are used in multiple space scales. This paper proposes a
different network design of attention mechanism based on the channel scale. We introduce
a new architectural unit, which we call Channel Attention Module. Through this module,
it can learn global information to enhance meaningful features and suppress meaningless
information from a channel perspective. The structure of the Channel Attention Module is
illustrated in Figure 3.

The Channel Attention Module process mainly consists of three parts, Global Average
Pooling process, attention weighting, and generating context vector function, respectively.
Firstly, we use Global average pooling [43] to turn all points in space into a single value.
This is mainly because we want to exploit the correlation between the channels. GAP
(Global Average Pooling) is able to mask the spatial distribution information to promote
the calculation of scale more accurately. The input is a feature map (the dimension is
C× H ×W , where C, H, and W represent the number of channels, length , and width of
the feature map, respectively), which processes GAP (Global Average Pooling) to get a
C× 1× 1 matrix , the lth layer of channels is calculated as follow:

el = FGAP

(
al(i, j)

)
=

1
H ×W

w

∑
j=1

h

∑
i=1

al(i, j) (1)

where (i, j) represents the horizontal and vertical coordinates of point a ε a in feature map
with the size of H ×W, where l ranges from {1, 2, ..., C}, which represents the number of
feature maps. The so-called activation is to model the degree of correlation between channels.

After squeezing the channels from global information into a group of values, we
would like to calculate the score function to find what input information should be focused
on. It is also called attention weighting, and aims to model the degree of correlation
between channels. Therefore, the activation function we choose should study the nonlinear
relationships between the channels. The results we got from Equation (1) can form a vector
e, which represents

{
el , l ε {1, 2, ..., C}

}
. As shown in Figure 3.

s = ξ{Ws[γ(Wa · e + ba)] + bs} (2)

γ(z) = max(0, z) (3)

ξ(x) = tanh(x) =
ex − e−x

ex + e−x (4)

The dimension of Wa is C
sc × C, and sc represents the scaling parameter, which can cut

down the number of channels so as to reduce the amount of calculation. Where the weight
parameter Wa ε R

C
sc×C and Ws ε RC× C

sc ,bias term ba ε R
C
sc×1 and bs ε RC×1 .

The γ refers to the RELU function, through which the dimension will not be changed.
We then multiply with Ws and add bias term bs, which is also a fully connected layer as
above. We finally pass by a Tanh activation function to get the output of s. This is the score
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function of each attention feature map. The attention weighting reflects the importance of
channels at location i, j throughout the network.

Lastly, the operation is the element-wise multiplication of input feature maps and
attention weighting:

x = s · a (5)

We replace the original input a with the x obtained by the Channel Attention Module,
and introduce it into the original U-net network structure for locating the target area.

Figure 3. Schematic diagram of the Channel Attention Module: Input features are scaled with the
score function to model the degree of correlation between the channels.

3.3. Post-Processing

After segmenting the fetal biometrics, we propose post-processing to measure the
width of CSP and give a diagnosis of the anomalies. This combines the segmentation
methods with real clinical applications. Firstly, we diagnose the width of CSP, which is
measured at the axial position with a maximum transverse diameter in the TT axial plane.
The width of CSP can be calculated by:

cspwidth =
hwidth · edepth

cwidth
(6)

where hwidth represents the height of pixels for CSP, the edepth is the equipment we use to
correspond with the real depth of images to the frequency, and cwidth denotes the width of
the images. Moreover, if the width is greater 10 mm, diagnosis is enlarged CSP. If width
< 2 mm, it is narrow CSP. Finally, if any biometric such as CC, CSP, and TT cannot be
detected, the biometric absent is added to the diagnosis.

4. Experimental Design
4.1. Experimental Data Collection

In this paper, data collection, arranging, and integration come from the department of
Obstetrics and Gynecology of Xiangya Hospital, Xiangya Second Hospital, and Xiangya
Third Hospital in Hunan Province. Informed consent was obtained from all research sub-
jects. Table 1 demonstrates the HIS, EMR, and LIS systems used by the three hospitals
to collect data. Table 1 shows the departmental information, transmitted statistics, and
collection time of the three hospitals. As shown in Table 2, large amounts of medical data
associated with Obstetrics from 2012 to 2018 are strictly recorded, pre-processed, and classi-
fied by different systems in the three hospitals. To ensure the accuracy of our experiment,
we extracted pregnant women in the prenatal testing system with gestational age during
18–37 weeks from 2013–2018. In this experimental design, the age for all patients was
22–48 years. All images were collected using the Philips iU22, GE Voluson 730 Doppler US
system by two-dimensional convex array probe, with a frequency from 2.5 to 5 MHz.

We extracted 224 patients for analysis, so we selected 224 TT axial planes and 224 sagit-
tal planes of fetal US images for training and testing. Because we should detect the CSP
from these two standard sections in clinical medicine, and if the fetal gestation between 18
and 37 weeks cannot be detected TT (trans-thalamic), CSP, midline in TT axial plane or CC
and CSP in TT sagittal plane, the fetus should be diagnosed as lacking this structure [44].
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The image size was 1136 × 852 pixels. The biological structure ground truth was drawn
and measured by a collaboration between three radiologists with extensive experience in
obstetric US images. One radiologist was responsible for manually extracting the area and
measuring the width of CSP, and the other two radiologists refined the results.

4.2. Implementation Details

We have experimentally implemented our method on a PC with Intel Core E5-2690v4
CPU, 128 GB of system RAM, and 2X Nvidia RTX2080Ti GPU. The codes are implemented
in Python 3.6 and PyTorch 0.4 on Ubuntu 16.04 LTS OS. In our experiments, fetal US
image segmentation is realized by our new architecture U-net with channel attention by
using VGG11 as an encoder path. The input is an image block of size 1136 × 852, which
includes the standard TT axial plane and sagittal plane. The output is the segmentation
of the thalamus, midline, and CSP in the TT axial plane. The loss function we used is a
combination of binary cross-entropy loss and dice loss, which is widely used in medical
image segmentation, and can be calculated by:

Ldetail = L bce + L dice (7)

L bce = − 1
n ∑ y ∗ log

(
y′
)
+ (1− y) ∗ log

(
1− y′

)
(8)

L dice =
2 ∑(y′ ∗ y)
∑ y′ + ∑ y

(9)

where y is the ground truth of each pixel, and y′ is model prediction.The segmentation of
CSP and CC is in the TT sagittal plane to ensure the integrity of these structures and the
standard of the selected plane. We then calculate the width of CSP. The CSP measurement
method is as follows: The thalamus section shows CSP as the liquid opacity between the
first 1/3 of the midline of the brain and the pair of parallel linear echoes in the anterior horn
of the lateral ventricle. The shape of it is a rectangle or triangle. According to the method
of Ref. [8], the CSP width (maximum transverse diameter) is measured at the axial position,
and the CSP wide diameter normal value is 2 to 10 mm. If the CSP width is >10 mm, our
diagnosis is enlarged CSP. If the CSP width is <2 mm, our diagnosis is narrow CSP. If there
is no CSP, then the initial diagnosis is absent CSP. The equation can be measured by:

cspwidth =
hwidth · edepth

cwidth
(10)

where hwidth represents the height of pixels for CSP, the edepth is the equipment we use to
correspond with the real depth of each photo, which changes with different frequencies,
and cwidth denotes the width of images with 852 pixels. Through this calculation we can
give the diagnosis for CSP. The main segmentation method is trained using the Adam
optimizer [45] with a learning rate of 0.001 , and batch size of 10. Besides, we also use some
common data augmentation such as random crops axial flips.

4.3. Evaluation Metric

In order to assess the image segmentation performance, we use four standard metrics:
Precision, Recall, Dice coefficient (DC) [46], and Hausdorff distance. Dice coefficient is a
function of evaluating similarity and is usually used to calculate the similarity or overlap
of two samples. In medical image segmentation, it is the most common evaluation criteria.
According to Table 3, they can be defined as follows:

Precisionbio =
TP

TP + FP
(11)
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Recallbio =
TP

TP + FN
(12)

DCbio =
2|A

⋂
B|

A + B
=

2TP
2TP + FP + FN

(13)

Table 1. Medical data collection with start and finish time from the three hospitals in China.

Hospital System Start Time Finish Time

Xiangya Hospital HIS 1 January 2014 7 July 2018
EMR 1 December 2013 1 November 2018

The Second
Xiangya Hospital

HIS 1 September 2012 5 November 2018
EMR 25 September 2013 27 May 2018

EMR document file 1 January 2014 10 May 2018
LIS 1 January 2015 31 May 2017
RIS 1 February 2016 17 December 2018

PACS 1 January 2015 18 December 2018

The Third
Xiangya Hospitall

HIS 1 April 2005 5 December 2018
EMR 1 April 2005 5 December 2018

EMR document base 1 May 2017 9 December 2018

Table 2. Medical data classification for obstetrics from the three hospitals in China.

Data Category Amount

Medical information 1,933,535 items
Outpatient service 591,237 people

Doctors’ device in outpatient 24,021,296 items
Be hospitalized 1,149,184 people

Diagnosis 1,089,321 items
Electronic medical records 4,855,618 items
Doctors’ device in clinical 25,757,698 items

Inspection records 157,426 items
Medical laboratory records 8,725,584 items
Routine inspection records 22,358,871 items

Operation records 218,022 items

Table 3. Definition of TP, FP, FN, and TN.

Unit (Pixels) Ground Truth Not the Physiologic
Structure

Predicted the physiologic
structure True Positive (TP) False Positive (FP)

Predicted Not the physiologic
structure False Negative (FN) True Negative (TN)

Hausdorff distance [47] evaluates the symmetry distance between two samples. Dice
coefficient (DC) is only sensitive to the internal padding of the mask, while Hausdorff
distance is sensitive to the segmented boundaries. The definition is as follows:

dH(G, S) = max{dG,S, dS,G}

= max
{

max
gεG

min
sεS

d(x, y), max
sεS

min
gεG

d(x, y)
}

(14)

where d(x, y) represents the Euclidean distance between pixels x and y. G is the ground
truth CSP area, and S is the segmented area for CSP by our system. A smaller value of HD
generally indicates better segmentation performance.
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4.4. Experimental Results

In our experiment, we divide the Ultrasound (US) images of TT axial plane and TT
sagittal plane into a training set and testing set, respectively. According to the method
proposed in Section 3, we trained the model using the training set and the corresponding
segmented ground truth. In the test set, the automated segmentation results were compared
to the ground truth segmentations by radiologists for evaluation. Then, the precision, recall,
Dice coefficient and Hausdorff distance were computed on the segmented results.

In Figure 4, we also visualized the segmentation results of the trained model on our
dataset. The rows from the top to the bottom (a, c) represent the TT axial plane, (b, d)
represent the TT sagittal plane. (a, b) and (c, d) are from different tangent planes of the
same pregnant woman, respectively. In the TT axial plane of fetal head, we segmented
the structure of TT, midline, and CSP. In the TT sagittal plane, CSP and CC are segmented
by our model. From left and right, one can see the input image, ground truth marked by
sonographers, segmentation by our model, and the comparison between ground truth and
our model. As we can see from Figure 4, Red represents the ground truths, and yellow
denotes the predictions. The Orange section is the ground truth part, but we did not
recognize it, and the Green section is misidentification. The red section for midline, yellow
for TT, blue for CSP, and yellow for CC are the overlap between ground truth and prediction.
Visual inspection suggests that our model performed well on this dataset. In general, the
performances on TT sagittal plane are better than TT axial plane, which can be caused by
the low signal-to-noise ratio of TT axial plane. Next, we compare the performance of our
algorithm with previous state-of-the-art methods including U-net, TernausNet [48], and
U-net++ [32]. Qualitative comparisons of multi-class physiologic structure segmentation
are presented in Table 4 in terms of Precision, Recall, DC (Dice score), and Hausdorff
Distance. The best results for each physiologic structure segmentation are highlighted in
bold font. As shown in the table, our model attains a precision of 79.5%, outperforming
U-net and U-net++ by 9.2% and 5%, respectively. Our network shows better performance
than others in terms of Precision, Recall, Dice coefficient, and Hausdorff distance. Through
our experiments, it can be seen that U-net with VGG 11 encoder outperforms the U-net
architecture. Besides, we found that our proposed Channel Attention module exploits
the context information on the channel dimensions, so our proposed model performs
better than the U-net baseline by 7.1% in terms of Dice coefficient. We also outline the
number of trainable parameters and inference times of each model. By increasing the
1.38 M parameters in the standard U-net, the performance can be improved by 10% in terms
of DC. As shown in Table 4, the segmentation results of our CA-Unet network significantly
outperforms traditional U-net, TernausNet, and U-net++.

From Figure 5–10, the results of our automatic segmentation model were quantitatively
evaluated by applying the evaluation metrics including Precision, Recall, and Dice. The
results were reported by histograms with error bars and demonstrated performance on
different biological structures in the TT-sagittal plane and TT-axial plane. The columns
show the average performance of the segmentation, and the error bars indicate the stability
of the models. Specifically, it can be easy to see that our model presents good performance
on Precision and DC among all different physiologic structures, but such an improvement
is not obvious for TT segmentation. This is because the boundary of TT is not obvious
in the US images. Figures 11 and 12 present the ROC curves over the different planes in
comparison with different state-of-art methods. For each ROC curve, the area under the
curve (AUC) was computed. An average AUC of 80.3% and 81.6% were reached by our
model and it showed that our proposed method achieved the highest AUC on these two
planes.
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Figure 4. From top to bottom, TT axial (a, c) and TT sagittal plane (b, d) of fetal US scan, The
ground-truth segmentation (2) is highlighted in red line. Similarly, our model marks the contours of
physiologic structure in yellow lines (3). The comparison of ground truth and our model (4).

Table 4. Quantitative comparison of multi-class physiologic structure segmentation on the TT-axial
and TT-sagittal of fetal head US images in terms of Dice score (DC), Hausoff distance, Inference Time,
and Parameters with different network structures.

Method U-net [9] Our CA-Unet U-net
(VGG11) [48] U-net++ [32]

Precision 0.703 ± 0.116 0.795 ± 0.122 0.743 ± 0.121 0.745 ± 0.113
Recall 0.711 ± 0.204 0.742 ± 0.126 0.721 ± 0.127 0.731 ± 0.118

DC 0.704 ± 0.125 0.775 ± 0.123 0.709 ± 0.116 0.723 ± 0.129
Hausoff
Distance 0.672 ± 0.116 0.781 ± 0.124 0.724 ± 0.128 0.701 ± 0.112

Inference Time
(s) 0.13 0.18 0.36 0.31

Params (M) 7.76 9.14 13.7 9.04
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Figure 5. Precision for physiologic structure segmentation based on the TT-sagittal plane of US
images, including the comparison of three other state-of-the-art methods.
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Figure 6. Precision for physiologic structure segmentation based on the TT-axial plane of US images,
including the comparison of three other state-of-the-art methods.
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Figure 7. Recall for physiologic structure segmentation based on the TT-sagittal plane of US images,
including the comparison of three other state-of-the-art methods.
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Figure 8. Recall for physiologic structure segmentation based on the TT-axial plane of US images,
including the comparison of three other state-of-the-art methods.
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Figure 9. Dice for physiologic structure segmentation based on the TT-sagittal plane of US images,
including the comparison of three other state-of-the-art methods.
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Figure 10. Dice for physiologic structure segmentation based on the TT-axial plane of US images,
including the comparison of three other state-of-the-art methods.
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According to the method of Ref. [8], the CSP width (maximum transverse diameter)
is measured at the axial position at last. Table 5 is the evaluation of measuring the width
of CSP. We used Precision, Recall, and F1-measure to evaluate the performance of our
classification, which includes normal CSP, narrow CSP, and enlarged CSP. The F1-score
can be calculated by F1-score = P×R

2(P+R) . As shown in Table 5, the F1-score can achieve
at least 77%. Automatic measurement of the width of the CSP can save the mark time of
sonographers, which can improve their work efficiency.

Table 5. Quantitative evaluation of multi-classification of the width of CSP.

The Width of CSP Precision Recall F1-Measure

Absent 0.667 0.910 0.770
Narrow,

width ≤ 2 mm 0.765 0.929 0.839

Normal,
2 ≤ width ≤ 10 mm 0.738 0.845 0.788

Enlarged,
width ≥ 10 mm 0.812 0.798 0.805

Figure 11. The ROC curves with AUC scores for physiologic structure segmentation based on the
TT-sagittal plane US images, including the comparison of three other state-of-the-art methods.



Mathematics 2022, 10, 4612 16 of 18

Figure 12. The ROC curves with AUC scores for physiologic structure segmentation based on the
TT-axial plane US images, including the comparison of three other state-of-the-art methods.

5. Discussion

In this study, we propose a novel medical data-driven segmentation system: CA-Unet
for segmenting and measuring fetal CSP. This is the first combination of the measurement
of fetal CSP and deep learning techniques. More specifically, our model is based on
improved U-net, which is the first end-to-end deep learning architecture for segmenting
CSP. Secondly, we introduce a new channel attention module to decrease the redundant
use of computational resources and guide the network to focus on meaningful information
at different channels. Lastly, considering the measurement process of clinicians to tackle
the automated problem of fetal biometrics measurement, post-processing is proposed to
measure and diagnose the anomalies of CSP. The experimental results demonstrate that the
proposed CA-Unet outperforms the state-of-art models and achieves the DSC of 77.5% and
precision of 79.5% on fetal US datasets. However, our work only achieves initial success in
enhancing obstetricians’ working efficiency and giving a diagnosis of CSP. Our strategy,
which is based on U-net, is limited by image quality and transferability since the selection
of the standard image on the TT axial and TT sagittal plane also relies on the experience
of clinicians. So, studying image registration in the selection of specifically US images
before our segmentation is also an interesting and meaningful research direction. Besides,
our work is mainly based on US images, and we do not consider the differences between
the source domain and target domain, which limited us to promote our work to other
segmentation systems. In future work, we plan to explore more effective data augmentation
methods for limited data. Besides, we plan to consider using transfer learning to solve the
transfer and robust problem of our strategy.
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