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Abstract: This paper deals with optimal consensus problems of a general heterogeneous nonlinear
multi-agent system. A novel filter is proposed for each agent by integrating local gradients with
neighboring output information. Using this filter and introducing an appropriate auxiliary variable,
the event-triggered control algorithm is obtained within the framework of the prescribed performance
control. One of the remarkable properties of the proposed algorithm is that it can save resources
by updating control signals only when necessary rather than periodically while achieving optimal
consensus. Theoretical and simulation verifications of the algorithm without the Zeno behavior are
carefully studied. Instructions are also presented for control parameter selection to keep the residual
errors as small as desired.
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1. Introduction

Due to its broad application in quadrotors, mobile robots, and network optimization
of resource allocation, research on distributed control of multi-agent systems has emerged
extensively in the past two decades. Consensus control as a critical distributed feature of
networks, where all agents incorporate only local perception to yield a common state, is
now a subject of active research [1,2]. Consensus problems for multi-agent systems have
yielded many interesting results, ranging from simple integrators to complex nonlinear
dynamics and from fixed communication topologies to switched topologies; see [3–7] and
references therein. In practice, resource allocation in computer networks and collision
avoidance in multi-robot systems can be modeled as distributed optimization problems.
Recently, so-called optimal consensus techniques have been proposed, in which established
consensus problems and distributed optimization problems are simultaneously solved [8].

By combining set valued stability analysis with convex analysis, continuous-time
distributed optimization of convex function sums was realized under a weight-balanced
digraph in [9]. By requiring the local cost function to be twice-differentiable, an average
consensus strategy was presented such that each agent can asymptotically tend towards the
minimum of the global cost function in [10]. This requirement has been removed by [11],
where gradient-based distributed algorithms were proposed under both directed and undi-
rected graphs. A common feature of the above works [9–11] is that the inherent nonlinear
properties and possible disturbances of the agent are not considered. In the presence of
external disturbance, an internal-model-based approach was developed to handle dynamic
optimization problems in [12]. The disturbances need to satisfy the matching condition,
which means the disturbance can only occur in the exact same equation as the control input.
These requirements limit the application of the developed methods to a relatively specific
class of systems. Recently, by applying three types of disturbance estimators, distributed
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optimization strategies have been extended to address second-order systems with mis-
matched and matched disturbances in [13]. In practice, this extension considering only
second-order systems and time-dependent perturbations may not be sufficient due to ubiq-
uitous higher-order dynamics and agent state-dependent uncertainty. However, with few
exceptions, research on distributed optimal consensus control of more general uncertain
higher-order nonlinear systems has received little attention. By constructing an optimal
consensus proportional and integral variable, optimal consensus issues of pure-feedback
systems have been solved in [14]. Most of the above results rely on the classic time-triggered
control paradigm, where the update of the control signal is periodic even when the system
is performing well. This can lead to wasted computing and communication resources, as
remarked by [15,16].

In this work, we study the optimal consensus problem for nonlinear systems, focusing
on saving resources by updating control signals only when necessary rather than peri-
odically. In particular, a more general heterogeneous multi-agent system is investigated
where mismatched uncertainties and possibly agent nonidentical dynamical orders are
considered. A novel filter for each agent is proposed which combines local gradients with
neighboring output information. Subsequently, we complete the optimal consensus control
law design by introducing an event-triggered condition and adopting the backstepping
design procedure. Using the integrating factor method and the Lyapunov function, we
rigorously demonstrate that all agents achieve the approximate optimal consensus under
the proposed protocol, and Zeno behavior can be ruled out. The feasibility of implementing
our algorithm is demonstrated on a group of single-link manipulators. Compared with the
current results, the main contributions are as follows:

1. Different from the classical time-triggered setting, our proposed event-triggered
method is able to significantly reduce the unnecessary control input updates while
ensuring the approximate optimal consensus.

2. In contrast to the study of first- and second-order multi-agent systems, where external
disturbances are assumed to be bounded a priori, we study a more general nonlinear
dynamics where uncertainty is allowed to grow arbitrarily as the variation of agent
states and higher-order heterogeneous dynamics are involved.

The rest of this manuscript is organized as follows. In Section 2, the preliminary
knowledge and the optimal consensus problem to be addressed are introduced. Section 3
introduces our novel filter system and event-triggered control algorithm. Section 4 illus-
trates simulation results of a group of manipulators, while Section 5 draws conclusions and
discusses recommendations and outlook.

Notation: Let 0` and 1` denote, respectively, the vectors of zeros and ones with length
`. For a function φ(t), we say that φ ∈ L∞[0, t f ) if sup0≤t<t f

‖φ(t)‖ < ∞.

2. Problem Formulation and Preliminaries
2.1. Preliminaries

Let G = {V , E ,A} represent the graph describing the communication topology, where
V = {1, . . . , n}, E ⊆ V × V , and A = [aij] ∈ Rn×n represent node set, edge set, and adja-
cency matrix, respectively. An edge (i, j) ∈ E indicates that node j can obtain information
from node i, node i is the neighbor of node j, and necessarily (i, j) ∈ E for an undirected
graph. The set of all neighbors of node i is denoted by Ni. An undirected graph G is
connected if for each distinct pair of nodes i and j, there is a path from i to j. Let aij = 1
if (j, i) ∈ E and aij = 0 otherwise. The Laplacian matrix L = [lij] ∈ Rn×n related to G is
defined as lii = ∑j∈Ni

aij and lij = −aij, i 6= j.

Lemma 1 ([17]). If the undirected graph G is connected, then there exists a nonsingular matrix
P̄ = [p1, . . . , pn] ∈ Rn×n such that

L = P̄
[

0 0T
n−1

0n−1 Λ

]
P̄T = PΛPT
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where Λ = diag{λ2, . . . , λn} with λ` being the positive real eigenvalues of L, ` =, 2 . . . , n, p` are
right eigenvectors of L associated with λ`, p1 = 1n

n , and P = [p2, . . . , pn].

2.2. Problem Formulation

Consider a multi-agent system composed of n nonlinear agents. Each agent can be
described by the following strict-feedback dynamics [18]:

ẋi,m = fi,m(x̄i,m) + gi,m(x̄i,m)xi,m+1 + di,m(t), m = 1, . . . , qi − 1

ẋi,qi = fi,qi (x̄i,qi ) + gi,qi (x̄i,qi )ui + di,qi (t) (1)

in which x̄i,` = [xi,1, . . . , xi,`]
T ∈ R`, ` = 1, . . . , qi, are the state vectors. yi = xi,1 ∈ R and

ui ∈ R represent the agent’s output and the control input, respectively. gi,`(x̄i,`), fi,`(x̄i,`) :
R` → R are nonlinear dynamics functions with unknown analytical expressions. di,`(t) :
[0, ∞) → R denotes uncertain disturbances. Moreover, fi,`(x̄i,`) and gi,`(x̄i,`) are locally
Lipschitz in x̄i,` and di,`(t) are piecewise continuous in t. Agent i has a differentiable local
cost function hi(yi) : R → R, which is strongly convex and has a Lipschitz gradient, i.e.,
there is a constant Mi > 0 satisfying |∇hi(a)−∇hi(b)| ≤ Mi for all a, b ∈ R.

Our control goal is to develop a distributed event-triggered controller ui in (1) such
that the agent outputs achieve the approximate optimal consensus, i.e., lim supt→∞ |yi(t)−
y∗| ≤ ε for all i = 1, . . . , n, where y∗ is the optimal solution of mins∈R h(s) = ∑n

i=1 hi(s),
and ε is a positive constant that can be made arbitrarily small. In addition, all closed-loop
signals are bounded.

To achieve the control goal, we make the following standard assumptions about the
agent (1).

Assumption 1. The communication graph G is undirected and connected.

Assumption 2. Unknown di,`(t), i = 1, . . . , n, ` = 1, . . . , qi, are bounded. There are strictly
positive functions and continuous g

i,`
(x̄i,`) such that g

i,`
(x̄i,`) ≤ |gi,`(x̄i,`)| for all x̄i,` ∈ R`.

Furthermore, the sign of gi,`(x̄i,`) is known.

3. Main Result
3.1. Controller Design

To realize the optimal consensus goal in a distributed manner, we propose a novel
third-order filter for agent i utilizing locally available information. Inspired by [5,11], the
filter is defined as follows:

żi,0 = yi − zi,1 (2)

żi,1 = −α∇hi(yi)− β ∑
j∈Ni

aij(yi − yj)− zi,2

żi,2 = αβ ∑
j∈Ni

aij(yi − yj) (3)

where α > 0 and β > 0 are constants. Furthermore, the auxiliary variable is defined as

ei,1 = zi,0 + żi,0. (4)

Subsequently, a backstepping design method is proposed for each agent by adopting
the prescribed performance control technique presented in [19,20]. Specifically, let us define
the error variables:

ei,m = xi,m − vi,m−1, m = 2, . . . , qi (5)

where vi,m−1 are the virtual control. A performance function is introduced as ρi,`(t) =
(ρi,`,0 − ρi,`,∞)e−γi,`t + ρi,`,∞, ` = 1, . . . , qi, where γi,`, ρi,`,∞, and ρi,`,0 are positive constants
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satisfying ρi,`,∞ < ρi,`,0 and |ei,`(0)| < ρi,`,0. Without loss of generality, let us assume
gi,`(x̄i,`) > 0. The virtual control laws vi,` are proposed as

vi,` = −vi,`φi,`

where vi,` are positive gains, φi,` = ln( 1+ζi,`
1−ζi,`

), and ζi,` =
ei,`
ρi,`

. We propose the event-
triggered distributed controller on the ith agent as

ui(t) = vi,qi (ti,k), ∀t ∈ [ti,k, ti,k+1)
ti,k+1 = inf{t ∈ R : |δi(t)| = ηi}

(6)

where ti,0 = 0, k = 0, 1, 2, . . . , δi(t) = vi,qi (t)− vi,qi (tk), and ηi is a positive design parame-
ter.

The strategy behind (3) is to use only relative output measurements and local gradients
to generate the reference output. The purpose of introducing (2) is to include an integral
term for the tracking error between the output yi and the reference output zi,1 to facilitate
stability analysis; similar efforts can also be found in time-triggered control consensus
methods [5,14].

3.2. Stability Analysis

Theorem 1. Consider a group of n uncertain heterogeneous nonlinear agents (1) controlled by the
distributed event-triggered controller (6) with the filter (3). Under Assumptions 1 and 2, it holds
that each agent can realize the approximate optimal consensus while all signals in the closed-loop
system remain bounded. Furthermore, Zeno behavior can be avoided, i.e., there is a constant4∗i > 0
satisfying ti,k+1 − ti,k ≥ 4∗i for all k = 0, 1, 2, . . . .

Proof. The state variables xi,1, . . . , xi,qi of agent i in (1) can be represented by vi,`, zi,0, zi,1,
zi,2 and t as

xi,1 = ζi,1ρi,1(t)− zi,0 + zi,1
xi,m = ζi,mρi,m(t) + vi,m−1(ζi,m−1), m = 2, . . . , qi.

(7)

Note that gi,` and fi,` are functions of x̄i,`. Therefore, they can be expressed as
gi,1(xi,1) = gi,1(ζi,1ρi,1 − zi,0 + zi,1), fi,1(xi,1) = fi,1(ζi,1ρi,1 − zi,0 + zi,1), gi,m(x̄i,m) =
gi,m(ζi,1ρi,1 − zi,0 + zi,1, . . . , ζi,mρi,m + vi,m−1(ζi,m−1)), fi,m(x̄i,m) = fi,m(ζi,1ρi,1 − zi,0 + zi,1,
. . . , ζi,mρi,m + vi,m−1(ζi,m−1)). Accordingly, the dynamics of zi,0, zi,1, and zi,2 in (3) can be
rewritten as

żi,0 = ζi,1ρi,1 − zi,0

żi,1 = −α∇hi(ζi,1ρi,1 − zi,0 + zi,1)

−β ∑
j∈Ni

aij((ζi,1ρi,1 − zi,0 + zi,1)− (ζ j,1ρj,1 − zj,0 + zj,1))− zi,2

żi,2 = αβ ∑
j∈Ni

aij((ζi,1ρi,1 − zi,0 + zi,1)− (ζ j,1ρj,1 − zj,0 + zj,1)). (8)

Noting from (6) that |vi,qi (t)− ui(t)| ≤ ηi, the time derivatives of ζi,`, ` = 1, . . . , qi are
given by
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ζ̇i,1 =
1

ρi,1
((żi,0 + ẋi,1 − żi,1)− ζi,1ρ̇i,1)

=
1

ρi,1
(żi,0 − żi,1 − ζi,1ρ̇i,1 + fi,1(ζi,1ρi,1 − zi,0 + zi,1)

+gi,1(ζi,1ρi,1 − zi,0 + zi,1)(ζi,2ρi,2 + vi,1(ζi,1)) + di,1) (9)

ζ̇i,m =
1

ρi,m
(ėi,m − ζi,mρ̇i,m)

=
1

ρi,m
( fi,m(ζi,1ρi,1 − zi,0 + zi,1, . . . , ζi,mρi,m + vi,m−1(ζi,m−1))

+gi,m(ζi,1ρi,1 − zi,0 + zi,1, . . . , ζi,mρi,m + vi,m−1(ζi,m−1))

×(ζi,m+1ρi,m+1 + vi,m(ζi,m)) + di,m +
2vi,m−1

1− ζ2
i,m−1

ζ̇i,m−1 − ζi,mρ̇i,m) (10)

ζ̇i,qi =
1

ρi,qi

(ėi,qi − ζi,qi ρ̇i,qi )

=
1

ρi,qi

( fi,qi (ζi,1ρi,1 − zi,0 + zi,1, . . . , ζi,qi ρi,qi + vi,qi−1(ζi,qi−1))

+gi,qi (ζi,1ρi,1 − zi,0 + zi,1, . . . , ζi,qi ρi,qi + vi,qi−1(ζi,qi−1))vi,qi (ζi,qi )

+ηi + di,qi +
2vi,qi−1

1− ζ2
i,qi−1

ζ̇i,qi−1 − ζi,qi ρ̇i,qi ) (11)

where m = 2, . . . , qi − 1. Let us define the column vector ω = [ζ1,1, . . . , ζ1,q1 , . . . , ζn,1, . . . ,
ζn,qn , z1,0, z1,1, z1,2, . . . , zn,0, zn,1, zn,2]

T and the nonempty and open set Ω = {ω ∈ Rq1+···+qn+3n|
−1 < ζi,`i

< 1, i = 1, . . . , n, `i = 1, . . . , qi}. Since −ρi,`,0 < ei,`(0) < ρi,`,0, ` = 1, . . . , qi,
it holds that ω(0) ∈ Ω. According to (8)–(11), the map f of the closed-loop dynamics
ω̇ = f (ω, t) over the set Ω is piecewise continuous and locally Lipschitz. Therefore, a
unique maximal solution ω of (8)–(11) over Ω on [0, t f ) exists, i.e., ω(t) ∈ Ω, ∀t ∈ [0, t f ).

Now we show that zi,0(t), zi,1(t), and zi,2(t) are bounded on [0, t f ). Applying the
integrating factor method to (2) yields

zi,0(t) = e−tzi,0(0) +
∫ t

0
e−(t−σ)ei,1(σ)dσ. (12)

It follows from (12) and ei,1 = ρi,1ζi,1 that zi,0 is bounded for any bounded ζi,1. Thus,
we can conclude that zi,0 ∈ L∞[0, t f ). To analyze the boundedness of zi,1 and zi,2, we
define z̄1 = 1ny∗ and z̄2 = − 1

β∇H(z̄1), where ∇H(s) = [∇h(s1), . . . ,∇h(sn)]T for s =

[s1, . . . , sn]T. Denote the regulation errors as z̃1 = z1 − z̄1 and z̃2 = z2 − z̄2, which have the
following dynamics:

˙̃z1 = −βLe1 − βLz̃1 − αβz2 − α∇H(e1 − z0 + z1)
˙̃z2 = Lz1

(13)

where z` = [z1,`, . . . , zn,`]
T with ` = 0, 1, 2 and e1 = [e1,1, . . . , en,1]

T. Motivated by [14], let
us consider the following Lyapunov function

V =
1
2

rT
[

In ϑIn
ϑIn αβPΛ−1PT + ϑβIn

]
r (14)

where r = [z̃T
1 , z̃T

2 ]
T, ϑ < β is positive constant only introduced for stability analysis

purposes, and P and Λ are defined in Lemma 1. A straightforward computation similar
to [14] gives

V̇ ≤ −κ1V + κ2‖z0‖2 + κ3‖e1‖2. (15)
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Here κ1, κ2, and κ3 are positive constants whose values depend only on α, β, ϑ, the
Laplacian matrix L, and the Lipschitz constant Mi for ∇hi. Since e1 and z0 are bounded
on [0, t f ), we can conclude from (15) that V is bounded on [0, t f ). As a result, we have
zi,1, zi,2 ∈ L∞[0, t f ). It then follows from (8) that żi,0, żi,1, żi,2 ∈ L∞[0, t f ).

Step 1. Consider the Lyapunov function Vi,1 = 1
2 φ2

i,1. Differentiating with t and using
(9), we have

V̇i,1 =
2φi,1

(1−ζ2
i,1)ρi,1

(żi,0 − żi,1 − ζi,1ρ̇i,1 + fi,1(ζi,1ρi,1 − zi,0 + zi,1)

+gi,1(ζi,1ρi,1 − zi,0 + zi,1)(ζi,2ρi,2 −vi,1φi,1) + di,1).
(16)

Since ζi,` ∈ (−1, 1), ` = 1, . . . , qi for all [0, t f ), zi,0, zi,1, żi,0, żi,1 ∈ L∞[0, t f ), and ρi,1, ρ̇i,1,
ρi,2 and di are always bounded, considering the continuity of fi,1 and gi,1 and applying the
extreme value theorem and Assumption 2 can obtain that |żi,0− żi,1− ζi,1ρ̇i,1 + fi,1(ζi,1ρi,1−
zi,0 + zi,1) + gi,1(ζi,1ρi,1 − zi,0 + zi,1)ζi,2ρi,2 + di,1| ≤ f̄ ∗i,1, g∗

i,1
≤ gi,1(ζi,1ρi,1 − zi,0 + zi,1) for

positive constants f̄ ∗i,1 and g∗
i,1

for all t ∈ [0, t f ). This together with the fact that 2
(1−ζ2

i,1)ρi,1
> 0

gives:

V̇i,1 ≤
2

(1− ζ2
i,1)ρi,1

(−g∗
i,1

vi,1φ2
i,1 + f̄ ∗i,1|φi,1|), ∀t ∈ [0, t f ).

Therefore, V̇i,1(t) < 0 provided |φi,1| >
f̄ ∗i,1

g∗
i,1

vi,1
, ∀t ∈ [0, t f ). We obtain

|φi,1(t)| ≤ φ∗i,1 = max{|φi,1(0)|,
f̄ ∗i,1

g∗
i,1

vi,1
}, ∀t ∈ [0, t f ). (17)

Hence, the virtual control vi,1(ζi,1(t)) is bounded on [0, t f ). By taking the inverse
logarithmic function in φi,1, we obtain

− 1 < ζ i,1 ≤ ζi,1(t) ≤ ζ̄i,1 < 1, ∀t ∈ [0, t f ) (18)

where ζ i,1 = (e−φ∗i,1 − 1)/(e−φ∗i,1 + 1) and ζ̄i,1 = (eφ∗i,1 − 1)/(eφ∗i,1 + 1). In addition, noting

(9) and v̇i,1(t) =
−2vi,1
1−ζ2

i,1
ζ̇i,1, we have ζ̇i,1(t) and vi,1(t) are bounded on [0, t f ).

Step m (m = 2, . . . , qi). Applying the method from step 1 recursively to the remaining
steps and selecting Vi,m = 1

2 φ2
i,m, we can obtain

V̇i,m ≤
2

(1− ζ2
i,m)ρi,m

(−g∗
i,m

vi,mφ2
i,m + f̄ ∗i,m|φi,m|), ∀t ∈ [0, t f ) (19)

where f̄ ∗i,m > 0 and g∗
i,m

> 0 are constants satisfying:

g∗
i,m
≤ gi,m(ζi,1ρi,1 − zi,0 + zi,1, . . . , ζi,mρi,m + vi,m−1(ζi,m−1)), m = 2, . . . , qi

| fi,`(ζi,1ρi,1 − zi,0 + zi,1, . . . , ζi,`ρi,` + vi,`−1(ζi,`−1)) + di,` +
2vi,`−1

1− ζ2
i,`−1

ζ̇i,`−1 − ζi,`ρ̇i,`

+ gi,`(ζi,1ρi,1 − zi,0 + zi,1, . . . , ζi,`ρi,` + vi,`−1(ζi,`−1))ζi,`+1ρi,`+1| ≤ f̄ ∗i,`, ` = 2, . . . , qi − 1

| fi,qi (ζi,1ρi,1 − zi,0 + zi,1, . . . , ζi,qi ρi,qi + vi,qi−1(ζi,qi−1))

+ ηi + di,qi +
2vi,qi−1

1− ζ2
i,qi−1

ζ̇i,qi−1 − ζi,qi ρ̇i,qi | ≤ f̄ ∗i,qi
.
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It then follows from (19) that

|φi,m(t)| ≤ φ∗i,m = max{|φi,m(0)|,
f̄ ∗i,m

g∗
i,m

vi,m
}, ∀t ∈ [0, t f ). (20)

Consequently, the virtual control vi,m(ζi,1(t)) is bounded on [0, t f ) and ζi,m satisfies

− 1 < ζ i,m ≤ ζi,m(t) ≤ ζ̄i,m < 1, ∀t ∈ [0, t f ) (21)

where ζ i,m = (e−φ∗i,m − 1)/(e−φ∗i,m + 1) and ζ̄i,m = (eφ∗i,m − 1)/(eφ∗i,m + 1). In addition, noting

(10) and (11) and v̇i,m(t) =
−2vi,m
1−ζ2

i,m
ζ̇i,m, we have ζ̇i,m(t), vi,m(t), and v̇i,m(t) are bounded on

[0, t f ). Notice by (18), (21), and zi,0, zi,1, zi,2 ∈ L∞[0, t f ) that ω(t) ∈ Ω∗ for all t ∈ [0, t f ),
where Ω∗ is a nonempty and compact subset of Ω. Therefore, the solution is global, i.e.,
t f = ∞.

Next, we show that all agents can realize the approximate optimal consensus. Invoking
(12) and (18) leads to

|zi,0(t)| = e−t|zi,0(0)|+
∫ t

0
e−(t−σ)|ei,1(σ)|dσ

≤ e−t|zi,0(0)|+
∫ t

0
e−(t−σ)ρi,1(σ)dσ.

This indicates that

|zi,0(t)| ≤
{

e−t|zi,0(0)|+ (ρi,1,0 − ρi,1,∞)te−t + ρi,1,∞(1− e−t), if γi,1 = 1
e−t|zi,0(0)|+

ρi,1,0−ρi,1,∞
1−γi,1

(e−γi,1t − e−t) + ρi,1,∞(1− e−t), else (22)

In addition, by (15), we further have

V(t) = e−κ1tV(0) +
∫ t

0
e−κ1(t−σ)(κ2‖z0(σ)‖2 + κ3‖e1(σ)‖2)dσ. (23)

Noting that |ei,1(t)| ≤ (ρi,`,0 − ρi,`,∞)e−γi,`t + ρi,`,∞ and (22), we can conclude e1 and
z0 exponentially converge to the compact set Ψ0 = {z0 ∈ Rn|‖z0‖2 ≤ ∑n

i=1 ρ2
i,1,∞} and

Ψ1 = {e1 ∈ Rn|‖e1‖2 ≤ ∑n
i=1 ρ2

i,1,∞}, respectively. Furthermore, we can conclude from (23)

that V also converges exponentially to the compact set Ψ2 = {V ∈ R|V ≤ (κ2+κ3)∑n
i=1 ρ2

i,1,∞
κ1

}.
which can be kept arbitrarily small by reducing ρi,1,∞. By the definition of V in (14), z̃i,1 and
z̃i,2 tend towards an arbitrarily small neighborhood around zero. Recalling z̄1 = 1ny∗ and
z̃1 = z1 − z̄1, we can conclude that all agents can reach the approximate optimal consensus,
i.e., lim supt→∞ |yi(t)− y∗| ≤ ε for all i = 1, . . . , n, where ε is a positive constant that can
be made arbitrarily small by decreasing ρi,1,∞.

We are now in a position to show that there is a constant4∗i > 0 such that ti,k+1− ti,k ≥
4∗i for all k = 0, 1, 2 . . . . Recalling δi(t) = vi,qi (t)− vi,qi (tk) for all t ∈ [ti,k, ti,k+1), we have
|δ̇i(t)| = |v̇i,qi (t)|. Since v̇i,qi is bounded, there exists a positive constant ςi such that
|δ̇i(t)| ≤ ςi. Considering that δi(ti,k) = 0 and limt→ti,k+1 δi(t) = ηi, it can be inferred that
there must exist a positive constant4∗i = ηi

ςi
satisfying ti,k+1 − ti,k ≥ 4∗i . Thus, we have

completed proving that the resulting control input updates are free from Zeno behavior.
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4. Simulation Results

We illustrate the application of our method with a numerical example involving six
single-link robotic manipulators, as shown in Figure 1. The ith manipulator is described by
the following dynamics:

ẋi,1 = xi,2
ẋi,2 = 1

Ji
(ui − ξixi,2 −Migχi sin(xi,1)), i = 1, . . . , 6 (24)

where x̄i = [xi,1, xi,2]
T with xi,1 ∈ R and xi,2 ∈ R representing the angle of the link

and the angular velocity, respectively. ui ∈ R denotes the control torque. g, Ji, ξi, Mi,
and χi are uncertain physical parameters whose definition can be found in [21]. The
communication topology between the manipulators is shown in Figure 2. The parameters
of the manipulator models are: g = 9.81, Ji = 0.1 + 0.03i, ξi = 0.2 + 0.01i, Mi = 0.5 + 0.02i,
and χi = 0.3 + 0.15i. The local cost functions hi are chosen as:

h1(x1,1) = (x1,1 − 0.5)2, h2(x2,1) = x2
2,1 + e0.1x2,1 , h3(x3,1) = (x3,1 + 0.1)2,

h4(x4,1) = 1.5x2
4,1 + 2x4,1 + 1, h5(x5,1) = 1.3x2

5,1 − 1, h6(x6,1) = x2
6,1 − x6,1 + 4.

The initial configurations of the manipulators are x̄1(0) = [0.8, 1]T, x̄2(0) = [−0.8,−1.5]T,
x̄3(0) = [0.8, 1]T, x̄4(0) = [−0.8,−1]T, x̄5(0) = [0.8, 1]T, and x̄6(0) = [1.5, 1]T. The filter (2)
and (3) and controller (6) are implemented with the parameters vi,1 = 1, vi,2 = 5, ηi = 0.6,
α = 1, and β = 1. The performance functions are set to ρi,1(t) = (5− 0.01)e−0.35t + 0.01
and ρi,2(t) = (10− 0.01)e−0.35t + 0.01.

Gears

Motor

Link

Figure 1. Single-link manipulator.

3

1

4

2

5 6

Figure 2. Communication topology.

Simulation results show the performance of the proposed event-triggered controller
in Figures 3–10. The manipulator angles and velocities are exhibited in Figure 3, from
which a satisfactory consensus has been reached. Furthermore, the minimizer of the
global cost function h(y) = ∑6

i=1 hi(y) is y∗ = −0.022. Figure 3 also reveals that each
manipulator angle converges to y∗, although only the neighboring output information and
local gradients are available. In addition, as the optimal consensus approaches, the velocity
of the manipulator decreases and converges to zero. The evolution of the errors ei,1 and ei,2
is shown in Figure 4 along with their corresponding performance functions. Clearly, ei,1 and
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ei,2 always fulfill the predefined performance specification, as manifested by the theoretical
analysis, despite the presence of event-triggered control inputs. The required control input
of each manipulator is pictured in Figures 5–10, respectively. We can observe from Figures 5–
10 that the value of the manipulator control is updated aperiodically, only when certain
conditions violate the specification (refer to (6)). If the condition is not violated, the value of
the control will remain as the value of the last updated controller. To show the advantages
of the proposed event-triggered method, a comparative simulation is also carried out, in
which the control signal update is periodic and the period is chosen as 1 ms. Simulation
results show the performance of the time-triggered controller in Figures 11–17. Furthermore,
Table 1 summarizes the corresponding update times of the five manipulator control signals
under the event-triggered controller and the time-triggered controller. These results confirm
that our event-triggered control method can achieve the approximate optimal consensus
similar to the time-triggered controller, while greatly reducing the number of control signal
updates and saving computation and communication resources.

0 5 10 15

-1

0

1

2

0 5 10 15

-6

-4

-2

0

2

4

Figure 3. Trajectories of the angles xi,1 and the velocities xi,2 under the event−triggered control.
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-5

0

5

0 5 10 15

-10

-5

0

5

10

Performance function

Figure 4. Trajectories of the errors ei,1 and ei,2 under the event−triggered control.
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Figure 5. Event−triggered control input u1.
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Figure 6. Event−triggered control input u2.
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Figure 7. Event−triggered control input u3.
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Figure 8. Event−triggered control input u4.
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Figure 9. Event−triggered control input u5.
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Figure 10. Event−triggered control input u6.

0 5 10 15

-1

0

1

2

0 5 10 15

-4

-2

0

2

Figure 11. Trajectories of the angles xi,1 and the velocities xi,2 under the time−triggered control.
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Figure 12. Time−triggered control input u1.



Mathematics 2022, 10, 4622 12 of 14

0 5 10 15

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 0.005 0.01
1.5

1.6

1.7

1.8

1.9

Figure 13. Time−triggered control input u2.
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Figure 14. Time−triggered control input u3.
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Figure 15. Time−triggered control input u4.
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Figure 16. Time−triggered control input u5.
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Figure 17. Time−triggered control input u6.

Table 1. The number of updates for controls under event-triggered controllers and periodic time-
triggered controllers.

Manipulator 1 Manipulator 2 Manipulator 3

Event-triggered control 1130 716 630
Periodic time-triggered control 15,000 15,000 15,000

Manipulator 4 Manipulator 5 Manipulator 6

Event-triggered control 949 551 171
Periodic time-triggered control 15,000 15,000 15,000

5. Conclusions

A novel event-triggered control framework has been presented in this work to realize
optimal consensus control of nonlinear agents. It saves resources without sacrificing
consensus convergence by proposing new filters and introducing event-triggered rules
to reduce unnecessary control signal updates. Furthermore, we confirmed the Zeno-free
nature of the method by demonstrating that there is a positive lower bound between two
consecutive updates of the control input. Simulation results of single-link manipulators
validated our theoretical finding. Some open questions are worthy of further investigation,
including the extension of the current results to more general switching topologies and
robust analysis of communication delays.
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