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Abstract: In this article we originate a new class of Grill Set, namely GSβ-Open Set, which is parallel
to the β Open Set in Grill Topological Space (X, θ, G). In addition, we entitle GSβ-continuous and
GSβ-open functions by applying a GSβ-Open Set and we review some of its important properties.
Many examples are given to explain the concept lucidly. The properties of GSβ open sets are
investigated and studied. The theorems based on the arbitrary union and finite intersections are
discussed with counter examples. Moreover, some operators like GSβ − closure and GSβ − interior
are introduced and investigated. The concept of GSβ − continuous functions are compared with the
idea of G− Semi Continuous function. The theorems based on GSβ − continunity have been proved.
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1. Introduction

In [1,2] the concept based on Grl had been a useful tool like nets and filters for getting
rooted deviation in further studying some topological properties like compactifications,
along with extension problems of different kinds. Many more analyses, such as Al Hawary
et al. [3–7], had characterized and entrenched the properties based on Gene OS in the
classical topo. The study of Grl on a TS was going on from 1930 and 1947 correspondingly
until now. Mathematicians like Al Omari and Noiri along with Dasan and Thivagar had
enriched this field and contribution in this field was worthy. Al Omari and Noiri [8]
defined a new topology and they proposed generalized space in GTS. It was proved that
Grls, nets along with filters, were useful and important for studying some tpl concepts
such as proximity spaces, closure spaces, the theory of compactifications and other similar
extension problems. The supremacy of mathematics was upheld by the interpolation
of concepts like Grl N topology. Choquet [9] was the first one to develop Grl topology.
Choquet [9] originated the philosophy of Grl on a TS and the thought of Grl was revealed
to be an important manoeuvre for examining some topological properties. Dasan and
Thivagar [10] proposed the concept of N-TS and also established the N-Tpl OS.

As noted from the literature [11], there had been a growing trend among topologists to
propose and study different allied or weaker forms of OS, motivating the investigation of the
corresponding types of cts-like functions between TS. This again had given rise to different
decompositions of cts functions. Ganesan [12–14] utilized the operator ϕ to accomplish
their decomposition of cty. Using the idea of Grl and many interesting constructions,
properties and depictions had been deduced. Tpl developments were directly applied
in topical fields such as artificial intelligence and information systems along with data
analysis. Hatir and Jafari [15], Kanchana et al. [16] and Kuratowski [17] characterized
new classes of sets in a GTS and obtained new composition of Cty in terms of Grl. A
classical prototype for decomposition based on Cty along with Semi Cty was the article of
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Levine [18,19]. During the past ten years, the study of Cty along with Compactness, nano
CS and irresolute function has been generalized. Levine proposed the notion of generalized
CS in TS and showed that compactness, countably compactness, para compactness and
normality are all g-csd hereditary. Mandal and Mukherjee [20] fabricated the faintly Cty
and weak Cty functions via tpl Grls.

Mashour [21] and Njastad [22] introduced and inspected semi pre-OS, generalized
semi-OS, semi-generalized OS, generalized OS, SO sets and PO sets which are some of the
weaker forms of the OS, and complements of these sets are labeled as CS correspondingly.
Nagaveni proposed the weakly generalized CS and semi weakly generalized CS in GTS.
Roy and Mukherjee [23,24] declared a new tpl opr via Grl and also discussed a type
of compactness via Grl. Roy and Mukherjee [23] have used Grl on TS with a different
attitude. Roy and Mukherjee [24] elongated this idea further and constructed a topology
for corresponding Grl in a given TS. The notion of soft Grl, soft operators, precontinuity
and soft topology τG were defined and discussed by Saif and Al-Muntaser [25]. The idea of
disintegration of Cty on a GTS and some families of sets was characterized to Grl in [26–28].
Thorn [29] proved that Grls are always a union of ultra-filters. The idea of N TS was
initiated by Veliko [30], and he also extended Grl topology to Grl N TS when further
topological H-closed space was introduced.

Voskoglou [31] inspected the weaker and stronger forms of g-irresolute functions and
Fuzzy topology in GTS. Song proposed the concept of absolutely countably compact and
also inspected the relationship between these spaces along with other star compact spaces.
Hatir and Jafari [15], with the same motivation, culminated in the interpolation and study
of ϕ OS, where ϕ is a suitable operator. Zhong et al. [32] proposed a class of submeta
compactness in L-TS. Devi et al. introduced a class of generalized semi opn-compact along
with semi-generalized opn-compact in GTS, Pseudo metric topo, and investigated some of
its theorems. Al Ghour [33] introduced the class of soft ωp open sets and proved they closed
under soft union and do not form a soft topology. In addition, decomposition of soft ωp
continuity has been defined and investigated. Al-shami et al. [34] introduced the concept of
sum of soft topological spaces using pair wise disjoint soft topological spaces and studied
some of its basic properties. Mahafzah et al. [35] designed some electronic architecture using
a topological approach. Grill topology has diverse applications in science and engineering
that comprise camouflage filters, categorization, digital image processing, forgery detection,
Hausdorff raster spaces, image analysis, microscopy, paleontology, pattern recognition,
population dynamics, stem cell biology, and topological psychology, along with visual
merchandising.

In this article we propose a new class of set, namely GSβ-Ops, GSβ Csd set, and
GSβ-Cty along with GSβ − opn functions are investigated and some of their properties
have been investigated. Many illustrations are given to explain the concept details. The
concept of GSβ clos and GSβ int are investigated and studied. In addition to that, some
properties are also investigated with some illustrations. The concept of G Semi continuous
and GSβ continuity is independent if proved with a proper example. In addition to this
theory, the concept of GSβ continuous mapping has been defined and investigated. Equiva-
lence relationships between GSβ open function, GSβ closed function and GSβ continuous
functions are investigated and studied. Many theorems based on GSβ − cts functions have
been proved.

2. Preliminaries

A collection G of nonempty Sbt based on a TS (X, θ) is said to be a Grl on X if:
(i) C ∈ G along with C ⊆ D implies that D ∈ G; and in addition (ii) C, D ⊆ X then
C ∪ D ∈ G implies that C ∈ G or D ∈ G. A triplet (X, θ, G) is labeled as a GTS.

Roy and Mukherjee [23] designated a similar topo by a Grl and they examined some
tpl properties. For any point t of a TS (X, θ), θ(t) indicate the number of all opn nbd of t.
We define the function ϕ : P(X)→ P(X) as ϕ(A) = {t ∈ X : A ∩U ∈ G for all U ∈ θ(t)}
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for every A ∈ P(X). Similarly, µ(A) = A ∪ ϕ(A) for all A ∈ P(X) can be defined. The
mapping µ satisfies Kuratowski closure axioms:

(i) µ(φ) = φ;
(ii) if C ⊆ D, then µ(C) ⊆ µ(D);
(iii) if C ⊆ X, then µ(µ(C)) = µ(C);
(iv) if C, D ⊆ X, then µ(C ∪ D) = µ(C) ∪ µ(D).

Analogous to a Grl G on a TS (X, θ), there exists a similar topo τG (say) on X denoted by
τG = {U ⊆ X : µ (X−U) = X−U}, where for each and every C ⊆ X, µ(C) = C ∪ µ(C) =
τG-cl(C) and τ ⊆ τG.

The idea of disintegration of Cty on a GTS and some families of sets were characterized
to Grl in [26–28].

A Sbt E in X is defined to be:

(i) ϕ-opn if E ⊆ int(ϕ(E));
(ii) G-α.opn if E ⊆ int(µ(int(E)));
(iii) G-PO if E ⊆ int(µ(E));
(iv) G-SO, if E ⊆ µ(int(E));
(v) G-β. opn if E ⊆ cl(int(µ(E)));
(vi) β. opn if E ⊆ cl(int(cl(E))).

The collection of all G-α.opn (resp. G-preopn, G-semiopn, G-β. opn) sets in a GTS
(X, τ, G) is denoted as GαO(X) (res. GPO(X), GSO(X), GβO(X)), βO(X). One says that
a function f : (X, τ, G)→ (Y, σ) is supposed to be G-Semicontinous if f−1(M) ∈ GSO(X)
for respective M ∈ σ.

Using the theory of semi interior and semi closure we have defined β-interior and
β-closure sets. For each sbt D of X, (i) β int (D) = ∪ {E : E ∈ βO(X) and E ⊆ D}, and
(ii) β cl (D) = ∩ {M : X−M ∈ βO(X) and D ⊆ M}.

In this article, we have characterized a GSβ-Ops in a GTS (X, θ, G) and we have
investigated some basic properties. In addition to this, we have characterized GSβ − cts,
GSβ− opn, GSβ− csd and GS∗β− cts function on a GTS (X, θ, G) and we have studied some
of their important properties.

3. GSβ-Open Sets

Definition 1. Accredit (X, θ , G) be a GTS along with B be a sbt of X. Then B is called GSβ− opn in
the case that there exists a U ∈ βO(X) such that U ⊆ B ⊆ µ(U). The class of all GSβ-ops is
expressed as GSβO(X) . The complement of X− B is called GSβC(X).

Example 1. Let X = {d, e, f }, θ = {(φ, X, {d}, { f }, {d, f }} and G = {X, {d}, {d, f }}.
Then GSβO(X) = {φ, {d}, { f }, {d, e}, {e, f }, X}.

Example 2. Let X = {1, 2, 3}, θ = {φ, X, {1}, {2}, {1, 2}} and G = {X, {2}, {2, 3} }.
Then GSβO(X) = {φ, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, X}.

Theorem 1. Assume that (X, θ, G) be a GTS along with let C ⊆ X. Then C ∈ GSβO(X) in the
case that B ⊆ µ(β int(A)).

Proof. If C ∈ GSβO(X), all at once there occurs a V ∈ βO(X) so that V ⊆ C ⊆ µ(V).
However, V ⊆ C entails V ⊆ βint (C). Thus µ(V) ⊆ µ(β int(C)). Consequently
C ⊆ µ(β int(C)). Inversely, let C ⊆ µ(β int(C)). To justify that C ∈ GSβO(X), take
V = β int (A), then V ⊆ C ⊆ µ(V) and C ∈ GSβO(X). �

Corollary 1. If B ⊆ X, then B ∈ GSβO(X) iff µ(B) = µ(β int(B)).

Proof. Given that B ∈ GSβO(X). Then µ is monotonic and idempotent,
µ(B) ⊆ µ(µ(β int (B))) = µ(β int (B)) ⊆ µ (B) implies that µ(B) = µ(β int(B)). Since
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µ(B) = µ(β int (B)) and hence µ is monotonic and idempotent, µ(µ(β int (B))) ⊇ µ(B),
therefore B ⊆ µ(B) is proved. �

Theorem 2. Let (X, θ, G) be a GTS. If A ∈ GSβO(X) and B ⊆ X such that⊆ B ⊆ µ(β int(A)),
then B ∈ GSβO(X).

Proof. Given that A ∈ GSβ O(X). Hence by the above Theorem 1, A ⊆ µ(β int(A)),
but A ⊆ B implies that β int(A) ⊆ β int(B) then consequently by Theorem 2.4 [17],
µ(β int(A)) ⊆ µ(β int(B)). Accordingly, B ⊆ µ(β int(A)) ⊆ µ(β int(B)).
Hence B ∈ GSβ O(X). �

Corollary 2. If C ∈ GSβ O(X) and D ⊆ X such that C ⊆ D ⊆ µ(C), then D ∈ GSβ O(X).

Proof. Proof follows directly from Theorem 2 and Corollary 1. �

Proposition 1. If U ∈ βO(X), then U ∈ GSβO(X).

Proof. Let U ∈ βO(X), it implies that U = β int(U) ⊆ µ(βint(U)).
Thus U ∈ GSβO(X). �

Note that the inverse of the above proposition need not be accurate.
Accredit X = { f , g, h}, θ = {∅, X, { f }, { f , g}}, G = {X, { f }, { f , g}}. Then β O(X)

= {∅, { f }, {h}, { f , g}, {g, h}, X} then GSβ O(X) = {∅, { f }, {g}, {h}, { f , g}, {g, h},
{ f , h}, X}. Here {g} and { f , h} are GSβ ops but not β ops.

Theorem 3. Given (X, θ, G) be a GTS. If B ∈ GSO(X) then, B ∈ GSβO(X).

Proof. Given that B ∈ GSO(X), then B ⊆ µ(int(B)). Therefore int (B) ⊆ β int (B), we
have µ(int (B)) ⊆ µ(β int (B)). By propo 3.1 µ(B) ⊆ cl(B), from the above two thms we
get µ(int (B)) ⊆ cl(B). Since B ⊆ cl(int (µ(B)). It follows that B ∈ GSβO(X). �

Note that the inverse of above Theorem need not be accurate. Through Example 2 it
is obvious that GSO(X) = {∅, {1}, {2}, {3}, X}. Therefore {1, 2}, {1, 3}, {2, 3} are GSβ

open but not GSO.

Theorem 4. Given that (X, θ, G)be a GTS:

(i) If Ai ∈ GSβO(X) for all i ∈ J, then ∪i∈J Ai ∈ GSβO(X);
(ii) If D ∈ GSβO(X) and U ∈ β O(X) then D ∩U ∈ GSβO(X).

Proof. (i) Since Ai ∈ GSβO(X), there exist Ai ⊆ µ(β int (Ai)) for all i ∈ J. Hence, we
obtain Ai ⊆ µ(βint (Ai)) ⊆ µ(β int

(
∪i∈J Ai

)
and hence ∪i∈J Ai ⊆ µ

(
β int

(
∪i∈J Ai

))
. This

implies that ∪i∈J Ai ∈ GSβO(X).
(ii) Accredit D ∈ GSβO(X) along with U ∈ β O(X), then D ⊆ µ(β int (D)) along
with β int (U) = U. Now D ∩ U ⊆ µ(β int (D)) ∩ U = (β int (D) ∪ ϕ(β int (D)) ∩
U = ( βint (D) ∩U) ∪ (ϕ(β int (D) ∩U)) (by Theorem 2.10 [17]) = βint (D ∩U) ∪ ϕ(β int
(D ∩U) = µ(β int (D ∩U)). Hence, D ∩U ∈ GSβO(X). �

Remark 1. The following example displays that if E, F ∈ GSβ O(X), then E ∩ F /∈ GSβ O(X).
From Example 1, take E = {e, f } and F = {d, e}, then E, F ∈ GSβ O(X) but

E ∩ F = {e} /∈ GSβ O(X).

Theorem 5. Let (X, θ, G) be a GTS and B ⊆ X. If ∈ GSβ C(X), then β int (µ(B)) ⊆ B.
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Proof. Suppose B ∈ GSβ C(X). Accredit X − B ∈ GSβO(X) and so
X− B ⊆ µ(β int (X− B)) ⊆ β cl(β int (X− B)) = X− β int ( βcl(B)) ⊆ X− β int (µ(B))
implies that β int(µ(B)) ⊆ B. �

Theorem 6. Let (X, θ, G) be a GTS and B ⊆ X such that X− β int(µ(B)) = µ(β int(X− B)).
Then B ∈ GSβ C(X) if and only if β int(µ(B)) ⊆ B.

Proof. The fundamental part is proved in Theorem 5. Conversely, suppose that
βint(µ(B)) ⊆ B, then X − B ⊆ X − βint (µ(B)) = µ(βint(X− B)) implies that X − B ∈
GSβ O(X). Hence B ∈ GSβ C(X). �

Definition 2. Let (X, τ, G) be a GTS and B ⊆ X. Then:

(i) GSβ-int of B is defined as union of all GSβ-OS contained in B. Then GSβ int(B) =
∪
{

U : U ∈ GSβO(X) and U ⊆ B};
(ii) GSβ-clos of B is defined as intersection of all GSβ-Cs containing B. Then GSβ cl(B) =

∩
{

F : X− F ∈ GSβO(X) and B ⊆ F}.

Theorem 7. Let (X, θ, G) be a GTS and E ⊆ X. Then:

(i) GSβ int(E) is a GSβ-ops contained in E;
(ii) GSβ cl(E) is a GSβ-csd containing E;
(iii) E is GSβ-csd if GSβ cl(E) = E;
(iv) E is GGSβ − opn if GSβ int(E) = E;
(v) GSβ int(E) = X− GSβ cl(X− E);
(vi) GSβ cl(E) = X− GSβ int(X− E)

Proof . Proof follows from the Definition 2 and Theorem 4 (i). �

Theorem 8. Accredit (X, θ, G) be a GTS and A, B ⊆ X. Then the following is correct.

(i) A ⊆ B, then GSβ int(A) ⊆ GSβint(B);
(ii) GSβ int(A ∪ B) ⊆ GSβ int(A) ∪ GSβint(B);
(iii) GSβ int(A ∩ B) = GSβ int(A) ∩ GSβ int(B).

Proof. Proof follows by the Definition 2. �

Definition 3. A function f : (X, θ, G)→ (Y, σ) is said to be GSβ − cts if f−1(V) ∈ GSβO(X)
for every V ∈ βO(Y).

Example 3. Let X = {w, x, y, z}, Y = {1, 2 3, 4},θ = {∅, X, {w}, {x}, {w, x}},σ =
{∅, Y, {1}, {3}, {1, 3}} and G = {{x, z}, X}. Then GSβ O(X) = P(X) and β O(Y) =
{∅, Y, {1}, {2}, {4}, {1, 2}, {2, 4}, {1, 2, 3}}. Define f : (X, θ, G)→ (Y, σ) by f (w) =
2, f (x) = 4, f (y) = 1, f (z) = 3. Then, inverse image of every β ops in Y is GSβ − opn in X.
Therefore f is GSβ − cts.

Remark 2. The idea of G-Semi cont [12] along with GSβ − cts is independent.

(i) From Example 3, we have that GSO(X) = {∅, X, {w}, {y}, {w, x}, {w, z}}. Moreover,
the function f is GSβ − cts. Further f−1({1, 2, 3}) = {w, x, z} is not GSO in X for the
ops {1, 2, 3} of Y. Hence f is not G-Semi cont.

(ii) Accredit X = {l, m, n, o}, Y = {5, 6, 7, 8}, θ = {∅, X, {l}, {n}, {o}, {l, n}, {l, o},
{n, o}, {l, n, o}}, σ = {∅, Y, {6}, {5, 6}, {6, 7}, {5, 6, 7}} and G = {{l}, {n}, {o},
{m, n}, {l, n, o}, {m, n, o}, {l, m, o}, X}. Then GSO(X) = θ and GSβ O(X) =
{∅, X, {l}, {n}, {o}, {l, n}, {l, o}, {l, n, o}, {m, n, o}, {l, m, o}}, β O(Y) = P(Y).
Define f : (X, θ, G)→ (Y, σ) by f (l) = 6, f (m) = 8, f (n) = 7, f (o) = 5. Then the
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function f is G-Semi cont. Correspondingly, the inverse image f−1(8) = {m} is not
GSβ − opn in X for β-opn set, {8} of Y. Later f is not GSβ − cts.

From (i) and (ii) we clinch that the idea of G-Semi cont and GSβ − cts are independent.

Theorem 9. Considering a function m : (X, θ, G)→ (Y, σ), the subsequent conditions are equiv-
alent:

(i) m is GSβ − cts;
(ii) For all H ∈ β C(Y), m−1(H) ∈ GSβC(X);
(iii) For all n ∈ Xand each V ∈ βO(Y) containing m(n), there occurs an U ∈ GSβO(X)

containing n such that m(U) ⊆ V .

Proof . (i) ⇒ (ii) Obvious from Definition 3.
(i)⇒ (iii) Let V ∈ βO(Y) and m(n) ∈ V. Then by (i) m−1(V) ∈ GSβO(X) containing n.
Hence, taking m−1(V) = U, we acquire n ∈ U and m(U) ⊆ V.
(iii)⇒ (i) Let V ∈ βO(Y) along with n ∈ m−1(V). Then m(n) ∈ V ∈ βO(Y) and hence by
(iii) there exist U ∈ GSβO(X) containing n such that m(U) ⊆ V. Then, we get n ∈ U ⊆
µ(β int(U)) ⊆ µ(β int

(
m−1(V)

)
. It shows that m−1(V) ⊆ µ(β int

(
m−1(V)

)
. Hence, m is

GSβ − cts. �

Theorem 10. A function m : (X, θ, G)→ (Y, σ) is GSβ − cts in the case that the graph func-
tion n : X → X×Y , categorized by n(z) = (z, f (z)) for apiece z ∈ X, is GSβ − cts.

Proof. Assume that m is GSβ − cts. Accredit z ∈ X also w ∈ βO(X×Y) containing n(z).
Then, there exist a U ∈ βO(X) along with V ∈ βO(Y), so that n(z) = (z, f (z)) ∈ U ×V ⊆
W. Since m is GSβ − cts, there exist a G ∈ GSβO(X) containing z such that m(G) ⊆ V.
By Theorem 4(ii), G ∩ V ∈ GSβO(X) along with n(G ∩U) ⊆ U × V ⊆ W. This implies
that n is GSβ − cts. Inversely, suppose that n is GSβ − cts.Accredit z ∈ X and V ∈ α(Y)
containing f (z). Then X×V ∈ βO(X×Y) and by GSβ-cty of n, there exist a U ∈ GSβO(X)
containing z such that n(U) ⊆ X ×V. Then we got m(U) ⊆ V and hence m is GSβ − cts.
�

Definition 4. Accredit (X, θ) be a TS along with let (Y, σ, G) be a GTS. A function
m : (X, θ)→ (Y, σ, G) is said to be GSβ − opn if for every U ∈ βO(X), m(U) is GSβ − opn in
(Y, σ, G).

Theorem 11. A function m : (X, θ)→ (Y, σ, G) is GSβ − opn if for every r ∈ X and each
pre-nbd U of r, consists of a V ∈ GSβO(Y) such that m(r) ∈ V ⊆ m(U).

Proof. Suppose that m is GSβ − opn function and let ∈ X. Accredit U be any pre-nbd of r.
Then there occurs G ∈ βO(X) so that r ∈ G ⊆ U. Therefore m is GSβ− opn, m(G) = V (say)
∈ GSβO(Y) and m(r) ∈ V ⊆ m(U). Inversely, suppose that U ∈ βO(X). Then every r ∈ U,
there occurs a Vz ∈ GSβO(X) such that m(r) ∈ Vz ⊆ m(U). Thus m(U) = ∪{Vr : r ∈ U}
and hence by Theorem 4(i), m(U) ∈ GSβO(Y). This implies that m is GSβ − opn. �

Theorem 12. Let m : (X, θ)→ (Y, σ, G) be a GSβ − opn function. If D ⊆ Y and F ∈
β C(X) containing m−1(D), then there exists a H ∈ GSβ O(Y) containing U such that m−1(H) ⊆
F.

Proof. Suppose that m is GSβ-open. Let D ⊆ Y and F ∈ β C(X) containing m−1(U).
Then X − F ∈ β O(X) and by GSβ-openness of m, m(X− F) ∈ GSβO(X). Thus H =

Y −m(X− F) ∈ GSβC(Y). Consequently, m−1(D) ⊆ F implies that D ⊆ H. Further we
obtain that m−1(H) ⊆ F. �
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Theorem 13. For any bijection m : (X, θ)→ (Y, σ, G) the following conditions are equivalent:

(i) m−1 : (Y, σ, G) → (X, τ) is GSβ − cts
(ii) m is GSβ − opn;
(iii) m is GSβ-csd.

Proof. Proof follows from Definition 4. �

Definition 5. Let (X, θ, G) be a GTS. A sbt E of X is defined as GS∗β set if E = L ∩ M,
where L ∈ βO(X) and µ( β int(M)) = β int(M).

Theorem 14. Let (X, θ, G) be a GTS and let B ⊆ X. Then B ∈ βO(X) iff B ∈ GSβO(X) and B
is GS∗β-set in (X, θ, G).

Proof. Let B ∈ βO(X), Then B ∈ GSβO(X), implies that B ⊆ µ(β int(B)). Also B can
be expressed as B = B ∩ X, where B ∈ βO(X) and µ( βint (X)) = β int(X). Thus B
is a GS∗β-set. Inversely, let B ∈ GSβO(X) and B be GS∗β-set. Then B ⊆ µ(β int(B)) =

µ(β int(U ∩V)), where U ∈ βO(X) and µ(β int(V)) = β int(V). Now B ⊆ U ∩ B ⊆
U ∩ µ(β int(U ∩V)) = U ∩ (U ∩ µ(U) ∩ µβ( int(V)) = U ∩ β int(V) = β int(B). Hence
we get B ∈ βO(X). �

Definition 6. A function m : (X, θ, G)→ (Y, σ) is GS∗β − cts if for each D ∈ βO(Y), m−1(D)

is GS∗β-set in (X, θ, G).

Theorem 15. Let (X, θ, G) be a GTS. Then for a function m : (X, θ, G)→ (Y, σ) the subsequent
statement is equivalent:

(i) m is pre cts;
(ii) m is GSβ − ctsand GS∗β − cts .

Proof. Proof follows directly from the Definition 6. �

Example 4. Let X = {1, 2, 3, 4}, θ = {ϕ, X, {1}, {3}, {1, 3}}, Y = {a, b, c, d}, σ =
{ϕ, Y, {a}, {b}, {a, b}} and G = {{1, 2}, X}. GSβO(X) = {{1}, {2}, {1, 2}, {2, 3}}.
Define a function f : (X, θ, G)→ (Y, σ) by f (1) = a, f (2) = d, f (3) = c, f (4) = b. Hence
function f is GS∗β continuous because for each D ∈ βO(Y), m−1(D) is GS∗β Continuous (Figure 1).
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4. Conclusions

This research article investigated GSβ open set, GSβ closed set, GSβ continuous func-
tion, GSβ interior and closure and GSβ open function. The concept of GSβ open set along
with the concept of β open set is compared and discussed. Many theorems are discussed
besides the counter examples. Some significant characteristics and key properties which
are associated with these GSβ open sets are proved with the help of GSβ interior and GSβ

closure. In addition to this, the theory of GSβ Continuous mappings has been introduced
and some theorems are provided. Finally, the concept of GS∗β has been introduced and
discussed in detail.
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Nomenclature

GTS Grill Topological Space
Nbd Neighborhood
Ops Open Set
TS Topological space
Cty Continuity
Sbt Subsets
opn Open
PO Preopen
SO semi open
Semicont semi continuous
cts Continuous
int Interior
clos closure
Cs closed set
GS Grill Set
Thm Theorem
Coro Corollary
Gene Generalized
Grl Grill
Tpl opr Topological operator
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