
����������
�������

Citation: Camps, O.; Stavrinides,

S.G.; de Benito, C.; Picos, R.

Implementation of the

Hindmarsh–Rose Model Using

Stochastic Computing. Mathematics

2022, 10, 4628. https://doi.org/

10.3390/math10234628

Academic Editors: Junseok Kim and

Gaige Wang

Received: 22 October 2022

Accepted: 4 December 2022

Published: 6 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Implementation of the Hindmarsh–Rose Model Using
Stochastic Computing
Oscar Camps 1 , Stavros G. Stavrinides 2 , Carol de Benito 1,3 and Rodrigo Picos 1,3,*

1 Industrial Engineering and Construction Department, University of Balearic Islands, 07122 Palma, Spain
2 Physics Department, International Hellenic University, 65404 Kavala, Greece
3 Balearic Islands Health Institute (IdISBa), 07120 Palma, Spain
* Correspondence: rodrigo.picos@uib.es

Abstract: The Hindmarsh–Rose model is one of the most used models to reproduce spiking behaviour
in biological neurons. However, since it is defined as a system of three coupled differential equations,
its implementation can be burdensome and impractical for a large number of elements. In this paper,
we present a successful implementation of this model within a stochastic computing environment.
The merits of the proposed approach are design simplicity, due to stochastic computing, and the ease
of implementation. Simulation results demonstrated that the approximation achieved is equivalent
to introducing a noise source into the original model, in order to reproduce the actual observed
behaviour of the biological systems. A study for the level of noise introduced, according to the
number of bits in the stochastic sequence, has been performed. Additionally, we demonstrate that
such an approach, even though it is noisy, reproduces the behaviour of biological systems, which
are intrinsically noisy. It is also demonstrated that using some 18–19 bits are enough to provide a
speedup of x2 compared to biological systems, with a very small number of gates, thus paving the
road for the in silico implementation of large neuron networks.
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1. Introduction

Simulation of the brain is one of the big issues for this century. The initial simula-
tions were performed using models for single neurons [1], but are currently focusing on
multiscale modelling [2] in order to properly address the incredible complexity of the
human brain. The problems outlined in the literature can be divided into two different
broad categories: theoretical and implementation-related ones. The theoretical problems
deal with the different problems on how to model the neurons, the connections, and the
structures inside the brain. On the other hand, the current proposals for implementing
the required infrastructure cover many different approaches, including the actual physical
devices, but also the architecture.

Related to the physical devices where the simulation is performed, the literature
includes proposals ranging from quantum computing [3], to the use of memristors to
implement biologically inspired neural networks [4] or to model specific parts as the
synapses [5], multi-scale hardware simulation of the brains [6], or accelerator for neural
network simulation using analog elements [7]. The architectures implementing full models
use neural networks [8], simulation at the level of tissues [9], interactions with different
parts [10], or descriptions of the communications at a higher level [11].

Another main problem for simulating the human brain related to implementation,
is the one of scaling: the human brain has around 86 billion neurons, with thousands of
inputs each. Thus, one of the biggest challenges is the required computing infrastructure.
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There are many different activities related to this, usually based on high performance
computing resources, requiring huge amounts of power. Among others, we can cite some:
the European Human Brain project [12], which is a 10-year long European funded project,
that has lead to the creation of the Virtual Brain service in EBRAINS [13]; the Open Source
Brain [14], which provides a collection of open source tools for simulating and visualizing
specific models and parts of the brain; and the Swiss Blue Brain Nexus, which aims to
implement and simulate the brain of a mouse [15].

Considering the above, approximate computing emerges as an important technologi-
cal pathway, since it enables high power and resource savings [16]. The price is that this
framework trades accuracy for savings. To this direction, some methods for successfully
implementing approximate computing, ranging from software-based approaches (program-
ming methods and algorithms) to hardware implementations or ubiquitous solutions, have
been proposed.

One of these approaches is Stochastic Computing (SC), proposed by Von Neumann in
1956 [17], making a trade off between calculation time and accuracy. It offers significant
advantages, the most important of them being the utilization of simple logic operations
and the significant reduction of circuit components, when we refer to hardware imple-
mentation, and apparently, reducing the power consumption. The main drawback of
this approach is the increased logic-operation time demanded, which in its turn increases
the total power consumption when the number of bits exceeds 16–17 [18,19]; but there
have already appeared techniques that allow this problem to be alleviated, making SC
competitive even for higher bit-numbers [19]. It has to be mentioned that the property
of stochasticity demanded for number generation could be considered as an equivalent
of the noisy system, its existence being many times beneficial for the designed system. It
should be noted that neuromorphic computing as well as biological neurons themselves
demonstrate characteristics that lay very close to stochastic computing ones, leading to
a noteworthy implementation compatibility, i.e., the sets of consecutive spikes in neuro-
morphic computing or the neurons, as these are compared to the pulse-trains in stochastic
computing [20].

As mentioned above, one of the problems for simulating large sets of biological neu-
rons is the large amount of computational resources needed to simulate each neuron. Since
the SC approach allows for implementing large sets of neurons at a relatively low cost
of resources, we will study in this paper the possibility of successfully implementing the
Hindmarsh–Rose (HR) model within a SC environment. The merits of the proposed ap-
proach are design simplicity (due to SC) and the ease of implementation, requiring a very
few number of gates compared to the number required for a classical arithmetic implemen-
tation. Simulation results in Matlab demonstrated that the SC achieved approximation is
equivalent to introducing a noise source into the original model.

Consequently, a study for the level of noise introduced, according to the number of
bits in the stochastic sequence, has been performed. Additionally, we demonstrate that
such an approach, even though it is noisy, is close to a real biological neuron, since noise is
an intrinsic characteristic playing a very significant role.

The rest of the paper is organized to follow this goal. The next section introduces the
main concepts of stochastic computing, in order to provide a minimum basis on this issue.
Section 3 introduces the Hindmarsh–Rose model, and how we have implemented it in SC.
Section 4 presents results obtained using different numbers of bits, as well as studies the
variability between different runs. Moreover, in this section, the equivalent noise level is
studied and characterized in terms of the number of equivalent bits. Finally, the last section
discusses the results and provides some hindsight on possible applications.

2. Stochastic Computing Implementation of Analog Systems
2.1. Stochastic Computing Basics

In the approach proposed by Stochastic Computing (SC), numbers are ideally repre-
sented by probabilities [17,21,22]. Thus, operations between numbers can be represented as
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compound probabilities. However, and due to the fact that we cannot represent an actual
probability p, we estimate this probability as the average value of a set of samples P, thus
assuming p ≈< P > [23] and also obtaining an error for the estimation εp, that can be
related to the standard deviation σp of the average value p. In SC, the set of samples is
represented by a string of binary values, and is usually referred to as Stochastic Computing
numbers (SCN) or Stochastic Encoded Numbers (SEN). As for the rest of this paper, we will
use the second calling convention, as well as also using Binary Encoded Numbers (BEN)
as the name for those numbers that are encoded as classical binary numbers. It has to be
noted that two main mappings from real to SEN are typically used, either from the real
domain [0, 1], or from the real domain [−1, 1].

The most basic operations to be performed in SC are multiplication and addition,
and their implementation depends on the selected mapping. In our case, using the [−1,1]
domain leads to these operations being implemented, as in Table 1. In the case where other
operations that are more complex are needed, many different implementations are found
in the literature (division [24], square roots [24], reversible gates [25], etc.), though they are
not to be presented here to focus on the implementation procedure of the studied system,
which only needs additions (substraction) and multiplications.

Table 1. Implementation of basic operations in Stochastic Computing in the [−1, 1] range. The value
of p is such that it is 0 or 1 with a 0.5 probability, p̄ = 1− p, and q is a random variable with a normal
distribution between −1 and 1. Notice that these functions can be trivially expanded to work for
arbitrary vector length.

Operation Implementation Function Name

(x + y)/2 OR(AND(p,x), AND(p̄,y) ) add(x,y)
x*y XNOR(x,y) mult(x,y)
−x NOT(x) neg(x)

Real number to SEN 0 if q > x; 1 otherwise get_sn(x)

Related to the conversion between BEN and SEN, it is usually implemented using
a N-bit random number generator (RNG), whose output is compared to the value of the
N-bit BEN. If the RNG number is below the BEN, the binary output is 1, or 0 otherwise,
as described in Table 1. In the complementary operation, SEN converted back to its BEN
representation, a counter is used to determine the number of 1 in the string, which is a
estimation of the probability. This obviously presents some error, as discussed below.

2.2. Error Estimation

Stochastic numbers are equivalent to bimodal processes. The emerging error when
considering the approximation of a SEN to the value it represents can be calculated using a
random walk process of length n. Thus, it is proportional to

√
n [26]. This way, in an N

bit binary number, the noise caused by the random walk process can be considered to be
included in the lowest N/2 bits, and the relation between the power Sp of the signal and
the power Np of the noise (i.e., the noise figure NF) will be:

NF = 10log10

(
Sp

Np

)
= 10log10

(
2N

2N/2

)
≈ 3.01N/2 dB. (1)

This NF is a key parameter to determine the required number of bits. It is also closely
related to the sensitivity of the equations system to noise. It has been demonstraed that
linear equations can still behave correctly using a low N, but nonlinear systems need higher
values in order to reproduce a correct behavior [27]. On the other hand, it is also worth
noting that this representation error can also be interpreted as a random noise of amplitude
21−N/2, assuming that we are using the [−1, 1] range. For instance, a 16-bit implementation
would lead to an equivalent noise amplitude of 2−7 ≈ 0.008 in the mentioned range.
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2.3. Implementation of Basic Differential Equations

The process of implementing differential equations using SC requires rewriting them
in a specific way [27]. Specifically, the three different transformations below are needed:

1. The equation terms must be organised in a form suited to SC. As an example, the
additions must be replaced by half additions: a + b→ (2a + 2b)/2, while multiplica-
tions remain the same. In the case where more complex operations are needed, an
expansive reworking of the equations may be needed to ensure all the operations can
be implemented in SC in the [−1, 1] or [0, 1] range.

2. All the variables have to fall inside the chosen domain ([−1. . . 1] or [0. . . 1]).
3. Any remaining coefficient must be below 1 (in absolute value). This is achieved by

using a time scaling.

After applying the steps above, the equations may be processed as a SC system, i.e.,
multiplications and additions are to be implemented according Table 1.

Another of the elements needed to implement ODE is an integrator. It can be realized
easily using the description in Figure 1. The circuit there performs a continuous integration,
which is implemented by using a counter that increases or decreases one unit depending
on whether the input is 1 or 0. The value of this counter is a BEN, which is then converted
to SEN.

The time step ∆t in the simulation is related to the number of bits, and this is dependent
on which integration method is used. Using a single first order integrator, the effective time
step is determined as [27]:

∆t =
Nacc

2N . (2)

Notice that the design of the integrator includes deciding on the number of bits it has,
this being equivalent to set the precision of the integrator, with a noise figure provided by
Equation (1). In relation with the number of RNG that are used for this scheme, ref. [28]
shows that the use of the same RNG in both inputs leads to an actual improvement of
the accuracy.

Figure 1. Basic implementation scheme of a SC integrator. Notice that both the input ẋ(t) and the
output x(t) are SEN numbers.

3. The Hindmarsh–Rose Model
3.1. Original Model

The Hindmarsh-Rose model [29,30] was proposed in the first half of the 1980’s to
describe the membrane potential x(t) of a neuron, coupled to the rate of transport of
sodium and potassium ions y(t), as well as to a so-called adaptation current z(t). The
equations proposed by this model are as follows, when expressed in the dimensionless form:

dx
dt

= y− ax3 + bx2 − z + I (3)

dy
dt

= c− dx2 − y (4)

dz
dt

= r(s(x− xR)− z) (5)
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The usual values of the dimensionless parameters are a = 1, b = 3, c = 1, d = 5, r = 10−3,
s = 4, xR = −1.6. The first four (a, b, c, d) are used to model the behaviour of the fast ion
channels, while r models the slow ion channels. The time scale of the neuron is defined
by r, and xR is related to the membrane potential. The value of the forcing current into
the neuron I is around −10 to 10, and we have used I = 3. Some procedures to fit these
parameters to actual measured neuronal behaviour can be found in the literature [31–33].

3.2. Stochastic Computing Implementation

In order to implement the model, Equations (3)–(5) must be rewritten in a suitable
form, as discussed above. That is, we have to ensure the following conditions [27]:

1. All the additions are expressed in a suitable form for stochastic computing.
2. All the values of x, y and z are inside the [−1, 1] interval.
3. All the values of the parameters are inside the [−1, 1] interval.

The code we have used to implement the HR model after those transformations is
shown in Figure 2. The auxiliary functions add(), mult(), neg() and get_sn() are defined
in Table 1. Notice that, to eliminate the problems associated to correlation when using a
squared variable, we use different stochastic values each time we need to use x (X0, X1, X2,
X3, X4, X5), y (Y0, Y1), and z (Z0, Z1). All these values obviously represent the same values
but, due to the probabilistic nature of the stochastic representation, are different chains of 0
and 1.

f10 = mult ( get_sn ( x1 ) , Y0 ) ) , neg ( mult ( get_sn ( x2 ) , X0 ) ) ;
f11 = add ( add ( get_sn ( x0 ) , f10 ) , f10 ) ;
f12 = add ( mult ( get_sn ( x3 ) , X1 ) , neg ( mult ( get_sn ( x4 ) , X2 ) ) ) ;
f13 = add ( neg ( mult ( get_sn ( x5 ) , Z0 ) ) , get_sn ( u ) ) ;
f14 = add ( f12 , f13 ) ;
x = add ( f11 , f14 ) ;
f20 = neg ( add ( get_sn ( y0 ) , mult ( get_sn ( y1 ) , X3 ) ) ) ;
f21 = add ( mult ( get_sn ( y2 ) , X4 ) , neg ( mult ( get_sn ( y3 ) , Y1 ) ) ) ;
y = add ( f20 , f21 ) ;
f30 = add ( mult ( get_sn ( z1 ) , X5 ) , neg ( mult ( get_sn ( z2 ) , Z1 ) ) ) ;
z = add ( neg ( get_sn ( z0 ) ) , f30 ) ;

Figure 2. Example of code used to implement Equations (3)–(5) in a form suited to Stochastic
Computing. The auxiliary functions are specified in Table 1. The values (lowercase) x0. . . x5, y0. . . y3,
z0. . . z2 are the values of the parameters in the transformed equations.

4. Results

All the results in this section have been obtained using Matlab simulation. The
corresponding code has been uploaded to https://github.com/rpicos-uib/stochastic_
nonlinear_chaos, in the HR_model folder.

The first batch of results concern the number of bits (i.e., the length of the chain)
needed to obtain the expected behaviour. That is, we expect to be able to reproduce spiking.
To do so, we first integrated the HR model using the conventional arithmetic; for the set of
parameters a = 1, b = 3, c = 1, d = 5, r = 10−3, s = 4, xR = −1.6. For the sake of convenience,
we will call this simulation the exact solution. We integrated up to a final time of 100 s with
dt = 0.01 s, using the transformed equations discussed in the previous section, and initial
conditions x = 0.351, y = 0.862, z = 0.666, which are equivalent to the non-scaled x = 0.1,
y = 0.1, z = 3. Notice that, since the scaling is different for the different variables, the initial
conditions do not scale equally. The results for the x variable are shown in Figure 3. We
can see that the spiking behaviour is present, with amplitudes close to 0.6 and increasing
distance between them. The phase space representation of this system (the x-y variables) is
shown in Figure 4.

https://github.com/rpicos-uib/stochastic_nonlinear_chaos
https://github.com/rpicos-uib/stochastic_nonlinear_chaos
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Figure 3. Temporal evolution of the x variable in the HR model, using conventional arithmetic (top,
“exact”), and stochastic computing (20, 19, 16 bits).

Figure 4. Space state of the x and y variables in the HR model, using conventional arithmetic (top,
“exact”), and stochastic computing (20, 19, 16 bits).

After the exact simulation, we have tested three different lengths lB of the SEN.
Specifically, we have tested for Nb = 20, 19, 16, where lB = 2Nb . The temporal evolution of
these solutions are depicted in Figure 3, and the space states are plotted in Figure 4. All of
these simulations were obtained using the same initial conditions and parameter values
than for the exact solution.

As is clear from the previous figures, the spiking behaviour is present in all three
SC simulations. The results corresponding to 16 bits seem too noisy, and the space state
portrait is hard to distinguish. However, at 19 and 20 bits, the signal is much clearer, and the
portrait is obviously present. In addition, the temporal evolution of the signal is less noisy.

It is worth noticing that the temporal evolution of the signals is quite different from
the exact solution. This could be expected, since one of the main characteristics of the
nonlinear systems is that small differences at the input cause enormous differences in the
dynamical evolution. As discussed above, we have noise in all of the parameters of the
system: the variables and the constants. That is, we can assume that we have a noise signal
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overlapping the integrator, as mentioned when discussing the noise in SC systems. We
have checked the effect of noise in the exact solution by introducing three noise sources (εx,
εy, εz) in the HR equations:

dx
dt

= y− ax3 + bx2 − z + I + εx (6)

dy
dt

= c− dx2 − y + εy (7)

dz
dt

= r(s(x− xR)− z) + εz (8)

The noise sources are white noise generators of constant amplitude aε. Figure 5
compares three different simulation using the exact solution (top) with aε = 0.02 noise, and
three different simulations using SC and 19 bits (bottom). As can be observed in the exact
solution, even such a small noise enormously affects the dynamics.

Figure 5. Comparison between three different simulation using the exact (Conventional Arithmetics,
C.A.) solution (top) with aε = 0.02 noise, and three different simulations using SC and 19 bits
(bottom).

To further study this equivalence, we have performed several simulations for different
numbers of bits, between 11 and 24. The equivalent noise level has been calculated as
the rms noise when the x variable is not spiking, since in the exact solution this would
correspond to a zero value. The results are shown in Figure 6, where the noise equivalent
level for each simulation is shown as a cross, and an average for all the simulations
corresponding to a given number of bits are shown as a green circle. It can be observed
that the tendency is downwards, as expected, with a noise following a power law, as in
Equation (9):

εx = 2−ηN . (9)

where η is a parameter that accounts for the effects of nonlinearity and feedback on the
system. In our case, η has been found to be η ≈ 1/3.5.



Mathematics 2022, 10, 4628 8 of 11

Figure 6. Equivalent noise amplitude for different number of bits. The red x correspond to the noise
level of a single simulation; the green o are the average of all the simulations with a given number of
bits; the blue line is the fitting of the averages according to Equation (9), with η = 1/3.5.

5. Discussion

In this paper, we have presented a discussion on the implementation of the HR neuron
model using Stochastic Computing. This approach has benefits considering the ease of
implementation, requiring a very low number of gates, since arithmetic operations can
be carried out using simple logic operations, as can be XNOR for multiplication or a
multiplexer for addition. In order to implement the equations, we have rewritten them,
as stated in [27], to be normalized in the range [−1, 1] for all the possible mathematical
operations, including values of the constants and the time scale.

These modified equations have been implemented in Matlab and simulated for a
different number of SCN lengths. It has been found that SC implementation is equivalent
to introducing a noise source in the original equations. We have empirically found that the
relation between the amplitude of the introduced noise and the length of the SCN follows
an inverse power low, as this is expressed in Equation (9). We have compared this intrinsic
noise to the effect of introducing a noise in the conventional arithmetic equations, and we
have observed that, for instance, at a 0.02 noise level (normalized to [−1, 1]), we have very
similar results to those in SC using 18 bits.

Related to the speed of a possible ASIC or FPGA realization, we can state that we
need 2N clock cycles to perform a full operation equivalent to a conventional arithmetic
implementation. That is, we can do the following number of steps per unit of time:

NO =
2N

Tclk
. (10)

In our case, we have observed that using 19 bits provided a good enough approx-
imation. Thus, assuming a FPGA running at 100 MHz and with the same dt = 0.01 s
as used in the simulations, we would need tO real time seconds to obtain one second in
simulation time:

tO = 2NTclk
1s
dt

. (11)

This results in tO ≈ 0.52 s. This way, a very simple implementation can provide a x2
speedup with reference to a real time system, including noise. This would pave the way
to the in silico simulation of simple biological systems, since the low number of required
gates per neuron allows for complex systems. However, it has to be noted that the speed of
the simulated systems would be closer to the biological originals, which take advantage of
parallelism instead of just speed.

In any case, it has to be noted that the simulation of an equivalent system of a single
neuron using Matlab is much faster, requiring only on the order of ms. This must be,
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however, taken cum grano salis, since the required time in Matlab for a large number of
neurons grows very fast, while in SC using an actual implementation in a FPGA would not.
This is caused because the implementation in SC runs in parallel; thus, the required time is
not growing with the number of neurons, even if the required number of components does.

As a comparison with an equivalent implementation in the hardware, we can mention
a FPGA implementation of a simpler version of the HR model in two dimensions, using
piece-wise linear approximations of the functions [34]. This work used a 32 bits fixed
point arithmetic implementation requiring four full adders and two multiplexers for their
preferred option. Another implementation in an FPGA was performed in [35], which im-
plemented a fractional-order version of the HR model into an Altera DE2-115 FPGA. Their
implementation for a single neuron required 1425 logic elements, and 1589 registers. As a
comparison, our implementation just required 70 logic gates for the 14 adders, 20 XNOR
gates for the multiplications and negations, plus the random number generator, which
can be conducted externally using a white noise generator. It has to be noted that this
reduction in the number of needed elements has the drawback of a much higher run time,
as discussed above.

Future work will follow this line, implementing whole layers of neurons to study,
among others, epileptic seizures [36]. Currently, most of the simulations are performed
using numerical simulations that require very long times, so our approach would be highly
beneficial in this field, allowing real time simulation.
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The following abbreviations are used in this manuscript:

AI Artificial Intelligence
B2S Binary to Stochastic
BEN Binary Encoded Number
FFT Fast Fourier Transform
FPGA Field Programmable Gate Array
IoT Internet of Things
NF Noise Figure
ODE Ordinary Differential Equation
RNG Random Number Generator
SC Stochastic Computing
SCN Stochastic Computing Number (see also SEN)
SEN Stochastic Encoded Number(s)
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